Comprehensive Physiology Wiley Online Library

Effects of Noise Exposure on Auditory Sensitivity

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Decibels
2 The Ear as a Sound Detector and the Microtrauma Theory
3 Noise Levels and Exposures
4 Noise‐Induced Threshold Shifts, Presbyacusis, Sociacusis, and Nosoacusis
5 Estimation of Noise‐Induced Permanent Threshold Shifts
6 Temporary Threshold Shifts from Steady Noise Exposures
7 Temporary Threshold Shifts from Intermittent Exposures
8 Temporary Threshold Shifts from Impulse Noise
9 Damage‐Risk Contours Based on Temporary Threshold Shifts
10 Government Standards
11 Implications of Extant Data on Permanent Threshold Shifts
12 Risk
13 The Biological Baseline — Its use and Misuse
14 Summary
Figure 1. Figure 1.

Weighting functions for assessment of noise levels. The ordinate indicates the number of decibels by which the relative contribution of a given spectral component (frequency) is diminished for the particular weighting function.

Figure 2. Figure 2.

Auditory thresholds in dB SPL at different frequencies. •, old standard (ASA 1951) for “normal” hearing; ×, the new norm (ISO 1964); ○, the threshold sensitivity of an ear after explosion of a firecracker about a foot away (acoustic trauma).

Data from Ward & Glorig 89
Figure 3. Figure 3.

The audiogram of the firecracker‐damaged ear shown in Figure 2, expressed in the conventional manner, i.e., in terms of dB hearing level (ISO), with increasing degrees of hearing loss indicated by a downward deflection from “normal.”

Figure 4. Figure 4.

Curves used for “correcting” audiometric data gathered on male workers for normal hazards of the everyday life: effects of the aging process (presbyacusis) of common noises of nonindustrial origin (sociacusis), and of minor otological hazards (nosoacusis). Age is the parameter. It is assumed that the sample has already been screened to eliminate many individuals whose sociacusic or nosoacusic hearing loss can be ascribed to a particular incident or disease.

Adapted from Spoor 70
Figure 5. Figure 5.

Temporary threshold shift, measured 8 min after the end of a work shift in a given constant noise level, as a function of the resting (preexposure) threshold sensitivity of the ear.

Adapted from Ward 84
Figure 6. Figure 6.

CHABA damage‐risk contours for single continuous noise exposures. These contours indicate those combinations of octave‐band SPL (ordinate), frequency (abscissa), and duration (parameter) that will just produce a temporary threshold shift, measured 2 min after exposure, of no more than 10 dB at 1,000 Hz or below, 15 dB at 2,000 Hz, or 20 dB at 3,000 Hz or above, in the average normal listener.

Adapted from Kryter et al. 47
Figure 7. Figure 7.

Synthesis by Passchier‐Vermeer 55 of the results of many studies relating inferred asymptotic industrial‐noise‐induced permanent threshold shifts (hearing levels after 10 years or more of steady exposure, corrected at least in part for presbyacusis, sociacusis, and nosoacusis by means of curves such as exemplified in Figure 4) at 4,000 Hz as a function of the A‐weighted sound level; continuous uninterrupted daily 8‐h exposures only. The line of fit has been drawn by the present writer.

Figure 8. Figure 8.

Summary of lines of fit to the data synthesized by Passchier‐Vermeer 55, for audiometric frequencies from 500 to 8,000 Hz. The line for 4,000 Hz, for example, is from Figure 7.

Figure 9. Figure 9.

Illustration of the degree of agreement (or lack thereof) between inferred industrial hearing losses at 4,000 Hz due to steady noise (line, from Fig. 7) and those from intermittent (○) and time‐varying (•) exposures having the same equivalent A‐weighted sound levels

Adapted from Passchier‐Vermeer 56


Figure 1.

Weighting functions for assessment of noise levels. The ordinate indicates the number of decibels by which the relative contribution of a given spectral component (frequency) is diminished for the particular weighting function.



Figure 2.

Auditory thresholds in dB SPL at different frequencies. •, old standard (ASA 1951) for “normal” hearing; ×, the new norm (ISO 1964); ○, the threshold sensitivity of an ear after explosion of a firecracker about a foot away (acoustic trauma).

Data from Ward & Glorig 89


Figure 3.

The audiogram of the firecracker‐damaged ear shown in Figure 2, expressed in the conventional manner, i.e., in terms of dB hearing level (ISO), with increasing degrees of hearing loss indicated by a downward deflection from “normal.”



Figure 4.

Curves used for “correcting” audiometric data gathered on male workers for normal hazards of the everyday life: effects of the aging process (presbyacusis) of common noises of nonindustrial origin (sociacusis), and of minor otological hazards (nosoacusis). Age is the parameter. It is assumed that the sample has already been screened to eliminate many individuals whose sociacusic or nosoacusic hearing loss can be ascribed to a particular incident or disease.

Adapted from Spoor 70


Figure 5.

Temporary threshold shift, measured 8 min after the end of a work shift in a given constant noise level, as a function of the resting (preexposure) threshold sensitivity of the ear.

Adapted from Ward 84


Figure 6.

CHABA damage‐risk contours for single continuous noise exposures. These contours indicate those combinations of octave‐band SPL (ordinate), frequency (abscissa), and duration (parameter) that will just produce a temporary threshold shift, measured 2 min after exposure, of no more than 10 dB at 1,000 Hz or below, 15 dB at 2,000 Hz, or 20 dB at 3,000 Hz or above, in the average normal listener.

Adapted from Kryter et al. 47


Figure 7.

Synthesis by Passchier‐Vermeer 55 of the results of many studies relating inferred asymptotic industrial‐noise‐induced permanent threshold shifts (hearing levels after 10 years or more of steady exposure, corrected at least in part for presbyacusis, sociacusis, and nosoacusis by means of curves such as exemplified in Figure 4) at 4,000 Hz as a function of the A‐weighted sound level; continuous uninterrupted daily 8‐h exposures only. The line of fit has been drawn by the present writer.



Figure 8.

Summary of lines of fit to the data synthesized by Passchier‐Vermeer 55, for audiometric frequencies from 500 to 8,000 Hz. The line for 4,000 Hz, for example, is from Figure 7.



Figure 9.

Illustration of the degree of agreement (or lack thereof) between inferred industrial hearing losses at 4,000 Hz due to steady noise (line, from Fig. 7) and those from intermittent (○) and time‐varying (•) exposures having the same equivalent A‐weighted sound levels

Adapted from Passchier‐Vermeer 56
References
 1. Anon. Fed. Regist. 34: 7891–7954, 1969.
 2. Anon. Guide for conservation of hearing in noise (Revised 1973). Rochester, Minn.: Am. Acad. Ophthalmol. Otolaryngol., 1974.
 3. Anon. Assessment of Occupational Noise Exposure for Hearing Conservation Purposes. Geneva, Switzerland: International Organization for Standardization, 1971. (ISO 1999)
 4. Anon. Intersociety committee report: guidelines for noise exposure control. Am. Ind. Hyg. Assoc. J. 28: 418–424, 1967.
 5. Anon. Occupational safety and health standards. Fed. Reginst. vol. 36, no. 105, part II, 1971.
 6. Anon. Public Health and Welfare Criteria for Noise. Washington, D.C.: U.S. Govt. Printing Office, 1973. (Document NCD 73.1)
 7. Anon. Report of standards advisory committee on noise for control of occupational noise exposure. Fed. Regist. vol. 39, no. 207, Oct. 24, 1974.
 8. Baughn, W. L. Noise control — percept of population protected. Int. Audiology 5: 331–338, 1966.
 9. Baughn, W. L. Relation between daily noise exposure and hearing loss as based on the evaluation of 6835 industrial noise exposure cases. Dayton, Ohio: Aerospace Medical Research Laboratory, Wright‐Patterson AFB, 1973. (AMRL‐TR‐73‐53)
 10. Botsford, J. H. Simple method for identifying acceptable noise exposures. J. Acoust. Soc. Am. 42: 810–819, 1967.
 11. Botsford, J. H. Theory of TTS. J. Acoust. Soc. Am. 44: 352, 1968.
 12. Botsford, J. H. Sound without decibels. SIV Sound and Vibration 5: 11, 1971.
 13. Bredberg, G. Cellular pattern and nerve supply of the human organ of Corti. Acta Oto‐Laryngol. Suppl. 236, 1968.
 14. Brusis, T. Gutachtliche Probleme beim Zusammentreffen von Lärmschwerhörigkeit und Hörstörungen anderer Genese unter besonderer Berücksichtigung der Alterssch‐werhörigkeit. Z. Laryngol. Rhinol. Otol. 52: 915–929, 1973.
 15. Burns, W. Noise and Man (2nd. ed.) London: John Murray, 1973.
 16. Burns, W., and D. W. Robinson. Hearing and Noise in Industry. London: H. M. Stationery Office, 1970.
 17. Chalupnik, J. D. (editor). Transportation Noises: a symposium on acceptability criteria. Seattle and London: Univ. of Washington Press, 1970.
 18. Cohen, A., J. Anticaglia, and H. H. Jones. “Sociocusis” — Hearing loss from non‐occupational noise exposure. S/V sound and vibration 4 (11): 12–20, 1970.
 19. Cohen, A., J. R. Anticaglia, and H. H. Jones. Noise‐induced hearing loss. Arch. Environ. Health 20: 614–623, 1970.
 20. Coles, R. R. A., C. G. Rice, and A. M. Martin. Noise‐induced hearing loss from impulse noise: present status. In: Proceedings of the International Congress on Noise as a Public Health Problem, edited by W. D. Ward. Washington, D.C.: EPA, 1974. (US EPA Rept. 550/9‐73‐008.)
 21. Davis, H., and F. W. Kranz. The international standard reference zero for pure‐tone audiometers and its relation to the evaluation of impairment of hearing. J. Speech Hearing Res. 7: 7–16, 1964.
 22. Dieroff, H. G. Zur geschlechtsunterschiedlichen Lärmfestigkeit. Arch. Ohren. Nasen Kehlkopfheilk. 177: 282–289, 1961.
 23. van Dishoeck, H. A. E. The continuous threshold or detailed audiogram for recording stimulation deafness. Acta Oto‐Laryngol. Suppl. 78: 183–192, 1948.
 24. Doppler, U., M. Haider, H. Scheiblechner, and F. Schwetz. Experimentelle Hörermüdung und ihre Rückbildung unter industrieähnlichen, schmalbandigen Lärmbedingungen. Mschr. Ohrenhlk. 107: 245–250, 1973.
 25. Eldredge, D. H., W. P. Covell, and R. P. Gannon. Acoustic trauma following intermittent exposure to tones. Ann. Otol. Rhinol. Laryngol. 68: 723–732, 1959.
 26. Eldredge, D. H., and J. D. Miller. Acceptable noise exposures — damage risk criteria. In: Noise as a Public Health Hazard (ASHA Reports, No. 4), edited by W. D. Ward and J. E. Fricke. Washington, D.C.: ASHA, 1969, p. 110–120.
 27. Elliott, D. N., and T. M. McGee. Effect of cochlear lesions upon audiograms and intensity discrimination in cats. Ann. Otol. Rhinol. Laryngol. 74: 386–408, 1965.
 28. Flach, M. Das Gehör des Musikers aus ohrenärztlicher Sicht. Mschr. Ohrenhlk. 106: 424–432, 1972.
 29. Fosbroke, J. Practical observations on the pathology and treatment of deafness. Lancet 1: 645–648, 1830‐1831.
 30. Gallo, R., and A. Glorig. Permanent threshold shift changes produced by noise exposure and aging. Am. Ind. Hyg. Assoc. J. 25: 237–245, 1964.
 31. Glorig, A., and J. Roberts. National center for health statistics: hearing levels of adults by age and sex. Vital and Health Statistics. Washington, D. C.: PHS, 1965. (PHS Pub. 1000 — Series 11, No. 11. Public Health Service)
 32. Glorig, A., W. D. Ward, and J. Nixon. Damage risk criteria and noise‐induced hearing loss. Arch. Otolaryngol. 74: 413–423, 1961.
 33. Gosztonyi, R. E., L. A. Vassallo, and J. Sataloff. Audiometric reliability in industry. Arch. Environ. Health 22: 113–118, 1971.
 34. Gravendeel, D. W., and R. Plomp. Micro‐noise trauma. AMA Arch. Otolaryngol. 71: 656–663, 1960.
 35. Guberan, E., J. Fernande, J. Cardinet, and G. Ternier. Hazardous exposure to industrial impact noise: persistent effect on hearing. Ann. Occup. Hyg. 14: 345–349, 1971.
 36. Guignard, J. C. A basis for limiting noise exposure for hearing conservation. Dayton, Ohio: Aerospace Medical Research Laboratory, Wright‐Patterson AFB, 1973. (AMRL‐TR‐73‐90)
 37. Harris, J. D. Hearing‐loss trend curves and the damage‐risk criterion in diesel‐engineroom personnel. J. Acoust. Soc. Am. 37: 444–452, 1965.
 38. Henderson, D., R. P. Hamernik, and R. Sitler. Audiometric and anatomical correlates of impulse noise exposure. Arch. Otolaryngol. 99: 62–66, 1974.
 39. Huizing, E. H., A. H. van Bolhuis, and D. W. Odenthal. Studies on progressive hereditary perceptive deafness in a family of 335 members. I. Genetical and general audiological results. Acta Oto‐Laryngol. 61: 35–51, 1966.
 40. Hülse, M., and C. J. Partsch. Beitrag zur Lärmschwerhörigkeit. Z. Laryngol. Rhinol. Otol. 49: 665–669, 1970.
 41. Hunter‐Duvar, I. M., and D. N. Elliott. Effects of intense auditory stimulation: hearing losses and inner ear changes in the squirrel monkey. II. J. Acoust. Soc. Am. 54: 1179–1183, 1973.
 42. Jatho, K., and H. Hellman. Zur Frage des Lärm‐ und Klangtraumas des Orchestermusikers. HNO 20: 21–29, 1972.
 43. Johnson, D. L. Prediction of NIPTS due to continuous noise exposure. Dayton, Ohio: Aerospace Medical Research Laboratory, Wright‐Patterson AFB, 1973. (AMRL‐TR‐73‐91)
 44. Keeler, J. S. Compatible exposure and recovery functions for temporary threshold shift — mechanical and electrical models. J. Sound Vib. 7: 220–235, 1968.
 45. Klosterkötter, W. Gesundheitliche Bedeutung des Lärms. Zentr. Bakteriol. Parasitenk. 212: 336–353, 1970.
 46. Kryter, K. D. Impairment to hearing from exposure to noise. J. Acoust. Soc. Am. 53: 1211–1234, 1973.
 47. Kryter, K. D., W. D. Ward, J. D. Miller, and D. H. Eldredge. Hazardous exposure to intermittent and steady‐state noise. J. Acoust. Soc. Am. 39: 451–464, 1966.
 48. Kylin, B. Temporary threshold shift and auditory trauma following exposure to steady‐state noise. Acta Otol‐Laryngol. Suppl. 152, 1960.
 49. Lehnhardt, E. Die Berufsschäden des Ohres. Arch. Ohren‐, Nasen‐ und Kehlkopfheilk. 185: 11–242, 1965.
 50. van Lier, L. A. J. Presbycusis in a non‐noise‐exposed population. Pract. Oto‐Rhino‐Laryngol. 29: 301–304, 1967.
 51. McRobert, H., and W. D. Ward. Damage‐risk criteria: the trading relation between intensity and the number of nonreverberant impulses. J. Acoust. Soc. Am. 53: 1297–1300, 1973.
 52. Meister, F. J. Der Einfluss der Einwirkdauer bei der Beschallung des Ohres. Lärmbekämpfung 10: 89–91, 1966.
 53. Melnick, W., and M. Maves. Asymptotic threshold shift (ATS) in man from 24 hr. exposure to continuous noise. Ann. Otol. Rhinol. Laryngol. In press.
 54. Merluzzi, F., and R. Hinchcliffe. Threshold of subjective auditory handicap. Intern. Audiology 12: 65–69, 1973.
 55. Passchier‐Vermeer, W. Hearing loss due to exposure to steady‐state broadband noise. Delft, Netherlands, 1968. (IG‐TNO Rept. 35)
 56. Passchier‐Vermeer, W. Noise‐induced hearing loss from exposure to intermittent and varying noise. In: Proceedings of the International Congress on Noise as a Public Health Problem, edited by W. D. Ward. Washington, D.C.: EPA, 1974. (EPA Rept. 550/9‐73‐008)
 57. Peyser, A. Gesundheitswesen u. Krankenfürsorge. Theoretische und experimentelle Grundlagen des persönlichen Schallschutzes. Deut. Med. Wochschr. 56: 150–151, 1930.
 58. Pfander, F. Über die Toleranzgrenze bei akustischen Einwirkung. HNO 13: 27–28, 1965.
 59. Reddell, R. C., and C. P. Lebo. Ototraumatic effects of hard rock music. Calif. Med. 116: 1–4, 1972.
 60. Reger, S. N., and D. M. Lierle. Changes in auditory acuity produced by low and medium intensity level exposures. Trans Am. Acad. Ophthalmol. 58: 433–438, 1954.
 61. Robinson, D. W. (editor). Occupational Hearing Loss. London and New York: Academic, 1971.
 62. Robinson, D. W., M. S. Shipton, and L. S. Whittle. Audiometry in industrial hearing conservation. I. Teddington, England: National Physical Laboratory, 1973. (NPL Acoustics Rept. Ac 64)
 63. Rosen, S., M. Bergman, D. Plester, A. El‐Mofty, and M. H. Satti. Presbycusis study of a relatively noise‐free population in the Sudan. Ann. Otol. Rhinol. Laryngol. 71: 727–743, 1962.
 64. Sataloff, J., and L. A. Vassallo. Hearing conservation. Ind. Med. Surg. 42: 23–26, 1973.
 65. Sataloff, J., L. Vassallo, and H. Menduke. Occupational hearing loss and high‐frequency thresholds. Arch. Environ. Health 14: 832–836, 1967.
 66. Scheiblechner, H. The validity of the “Energy Principle” for noise‐induced hearing loss. Intern. Audiology 13: 93–111, 1974.
 67. Schultz‐Coulon, H. J. Über die Bedeutung des Umwelt‐geräusches für den Hochtonschwerhörigen. HNO 21 (1): 26–32, 1973.
 68. Simonetta, B. Sulla presbiacusia in tribu Africane molto primitive. Minerva Otorinolaringol. 18: 101–112, 1968.
 69. Speaks, C., D. Nelson, and W. D. Ward. Hearing loss in rock‐and‐roll musicians. J. Occupational Med. 12: 216–219, 1970.
 70. Spoor, A. Presbyacusis in relation to noise‐induced hearing loss. In: Proceedings of the International Congress on Noise as a Public Health Problem, edited by W. D. Ward. Washington, D. C.: U.S. Govt. Printing Office, 1974.
 71. Taylor, W., J. Pearson, A. Mair, and W. Burns. Study of noise and hearing in jute weaving. J. Acoust. Soc. Am. 38: 113–120, 1965.
 72. Temkin, J. Die Schädigung des Ohres durch Lärm und Erschütterung. Mschr. Ohrenheilk. Laryngo‐Rhinologie 67: 257–299, 450–479, 527–553, 705–736, 823–834, 1933.
 73. US Air Force. Hazardous Noise Exposure; Air Force Regulation 160‐3. Washington, D.C.: USAF, 1956.
 74. US Air Force. Hazardous Noise Exposure; Air Force Regulation 161‐35. Washington, D.C.: USAF, 1973.
 75. US Army. Noise and Conservation of Hearing. Technical Bulletin TB Med 251. Washington, D.C.: U.S. Army, 1972.
 76. US Department of Health, Education, and Welfare. Criteria for a recommended standard…. Occupational Exposure to Noise. US Department of HEW, National Institute for Occupational Safety and Health. Washington, D.C.: HEW, 1972.
 77. US Environmental Proctection Agency. Information on levels of environmental noise requisite to protect public health and welfare with an adequate margin of safety. Washington, D.C.: EPA, 1974. (EPA Rept. 550/9‐74‐004)
 78. US Public Health Service. National Health Survey (1935‐1936): Preliminary Reports, Hearing Study Series; Bulletins 1‐7. Washington, D.C.: PHS, 1938.
 79. Ward, W. D. Noninteraction of temporary threshold shifts. J. Acoust. Soc. Am. 33: 512–513, 1961.
 80. Ward, W. D. Studies on the aural reflex. II. Reduction of temporary threshold shift from intermittent noise by reflex activity; implications for damage‐risk criteria. J. Acoust. Soc. Am. 34: 234–241, 1962.
 81. Ward, W. D. Damage‐risk criteria for line spectra. J. Acoust. Soc. Am. 34: 1610–1619, 1962.
 82. Ward, W. D. The use of TTS in the derivation of damage risk criteria for noise exposure. Intern. Audiology 5: 309–313, 1966.
 83. Ward, W. D. Biochemical implications in auditory fatigue and noise‐induced hearing loss. In: Biochemical Mechanisms in Hearing and Deafness, edited by M. M. Paperella. Springfield, Ill.: C. Thomas, 1970.
 84. Ward, W. D. Adaptation and fatigue. In: Modern Developments in Audiology, edited by J. Jerger. New York: Academic, 1973, p. 301–344.
 85. Ward, W. D. Noise‐induced hearing damage. In: Otolaryngology, edited by M. M. Paparella and D. A. Shumrick. Philadelphia: Saunders, 1973, vol. 2, p. 377–390.
 86. Ward, W. D. (editor). Proceedings of the International Congress on Noise as a Public Health Problem. Washington, D.C.: EPA, 1974. (EPA Document 550/9‐73‐008)
 87. Ward, W. D. Susceptibility to TTS and PTS. In: Proceedings of the International Congress on Noise as a Public Health Problem, edited by W. D. Ward. Washington, D.C.: EPA, 1974. (EPA Rept. 550/9‐73‐008)
 88. Ward, W. D., and A. J. Duvall, III. Behavioral and ultra‐structural correlates of acoustic trauma. Ann. Otol. Rhinol. Laryngol. 80: 881–896, 1971.
 89. Ward, W. D., and A. Glorig. A case of firecracker‐induced hearing loss. Laryngoscope 71: 1590–1596, 1961.
 90. Ward, W. D., A. Glorig, and D. L. Sklar. Dependence of temporary threshold shift at 4 kc on intensity and time. J. Acoust. Soc. Am. 30: 944–954, 1958.
 91. Ward, W. D., A. Glorig, and D. L. Sklar. Temporary threshold shift from octave‐band noise: applications to damage‐risk criteria. J. Acoust. Soc. Am. 31: 522–528, 1959.
 92. Ward, W. D., A. Glorig, and D. L. Sklar. Temporary threshold shift produced by intermittent exposure to noise. J. Acoust. Soc. Am. 31: 791–794, 1959.
 93. Ward, W. D., W. Selters, and A. Glorig. Exploratory studies on temporary threshold shift from impulses. J. Acoust. Soc. Am. 33: 781–793, 1961.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

W. Dixon Ward. Effects of Noise Exposure on Auditory Sensitivity. Compr Physiol 2011, Supplement 26: Handbook of Physiology, Reactions to Environmental Agents: 1-15. First published in print 1977. doi: 10.1002/cphy.cp090101