Comprehensive Physiology Wiley Online Library

Clearance Mechanisms in the Respiratory Tract

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Conducting Airways
1.1 Ciliated Cells
1.2 Goblet Cells and Mucus
1.3 Serous Cells and Water
1.4 Transport and Clearance Dynamics
2 Fluid Absorption and Mucociliary Clearance
2.1 null
2.2 Other Physical Mechanisms
2.3 Leukocyte Recruitment and Endocytosis in Conducting Airways
3 Alveolar Ducts and Alveoli
3.1 Physical Removal
3.2 Solubility and Permeability
3.3 Digestion
3.4 Retention
4 Implications for Environmental Diseases
4.1 Pulmonary
4.2 Systemic Disorders
Figure 1. Figure 1.

The two distal zones of the lung appear to have different modes of clearance of particles. The alveolar zone depends upon digestion by macrophages and clearance via lymph and blood. The terminal bronchioles have ciliary clearance of particles attached to mucus and recruitment of polymorphonuclear leukocytes to their lumens.

From Mangos and Talamo (editors) with permission of Academic Press
Figure 2. Figure 2.

Several tall columnar ciliated cells are attached to the basal lamina and extend to the bronchial lumen. Interspersed are secretory cells, some of which contain mucous vacuoles, Golgi apparatus, and endoplasmic reticulum. A few flattened basal cells with scanty cytoplasm form an incomplete layer beneath the columnar cells. The lamina propria beneath the basal lamina has collagen and elastin fibrils and fibroblasts. Not shown are the capillaries and smooth muscle of the deeper lamina propria. Hamster bronchus fixed with OsO4, stained with uranyl acetate and lead citrate. x 4,400.

Figure 3. Figure 3.

Pseudostratified ciliated columnar epithelium of the human trachea. In addition to basal cells there are intermediate cells which differentiate into either ciliated or goblet cells. They form an incomplete layer of less differentiated cells.

From Rhodin 143
Figure 4. Figure 4.

The ciliated cell as it appears by light microscopy, upper left, contrasts with a drawing based on electron microscopy. The proximity of mitochondria to rootlets and basal bodies of cilia is important for ciliary energetics. The filaments of the ciliary stalk have been shown to be microtubules. RNP, ribosomes.

From Satir 153 by permission of Scientific American.
Figure 5. Figure 5.

Resolution of this cross‐section of flagellar axoneme of a blowfly sperm has been enhanced by rotational and translational image reinforcement of positive and negative images which show important details. The nine pairs of doublet microtubules (mt A and B) with their side arms appear to be linked to the central sheath. It has a wide y portion opposed by a narrow x portion. The x portion is linked to doublet tubule 1. Details of transitional links are still only tentative as are details of the coarse outer fibers.

Adapted from Warner 177
Figure 6. Figure 6.

Drawing of a goblet cell based on electron photomicrographs and biochemical studies. It shows the synthesis pathway of mucin from precursors entering the cell from the blood (1), proteins assembled from amino acids on ribosomes (2) move up rough endoplasmic reticulum (3) to enter Golgi saccules (4). Meanwhile simple sugars enter the saccules to combine with proteins by glycosylation and sulfate is added (5). The saccules of glycoprotein are transformed and hydrated into globules of mucus (6). Mucin lobules move toward the cell apex (7) for subsequent release from the cell into the lumen (8).

From Neutra and Leblond 127 by permission of Scientific American.
Figure 7. Figure 7.

Stages in formation and rupture of a meniscus of mucus in a small airway reflect the viscosity of the mucus. Retraction and thinning occur in the third dimension as well.

From Besarab & Litt 15
Figure 8. Figure 8.

This section from a small bronchiole shows cuboidal ciliated cells and secretory cells with apical knobs packed with small Golgi vesicles and occasional lysosomes. Such cells resemble the serous or albuminous cells of bronchial glands and salivary glands and presumably secrete watery serous fluids. Osmium tetroxide‐fixed hamster lung, stained with uranyl acetate and lead citrate. x 5,250.

Figure 9. Figure 9.

Polymorphonuclear leukocyte recruitment from capillaries into the lamina propria (1) and across the epithelium (2) into airway lumens (3) appears to be an important early response of the lung and upper airways to particle deposition. The leukocyte in the center is crossing the basal lamina. The one on the left is in the intercellular space. Vacuoles often appear in the cytoplasm when the leukocytes reach the lumenal surface. Osmium tetroxide fixation, uranyl acetate, and lead citrate. x 8,500.

Figure 10. Figure 10.

This latticework pattern represents a phospholipid array on the alveolar surface of an epithelial cell fixed by osmium tetroxide. This is an artifact due to surface forces during fixation and dehydration.



Figure 1.

The two distal zones of the lung appear to have different modes of clearance of particles. The alveolar zone depends upon digestion by macrophages and clearance via lymph and blood. The terminal bronchioles have ciliary clearance of particles attached to mucus and recruitment of polymorphonuclear leukocytes to their lumens.

From Mangos and Talamo (editors) with permission of Academic Press


Figure 2.

Several tall columnar ciliated cells are attached to the basal lamina and extend to the bronchial lumen. Interspersed are secretory cells, some of which contain mucous vacuoles, Golgi apparatus, and endoplasmic reticulum. A few flattened basal cells with scanty cytoplasm form an incomplete layer beneath the columnar cells. The lamina propria beneath the basal lamina has collagen and elastin fibrils and fibroblasts. Not shown are the capillaries and smooth muscle of the deeper lamina propria. Hamster bronchus fixed with OsO4, stained with uranyl acetate and lead citrate. x 4,400.



Figure 3.

Pseudostratified ciliated columnar epithelium of the human trachea. In addition to basal cells there are intermediate cells which differentiate into either ciliated or goblet cells. They form an incomplete layer of less differentiated cells.

From Rhodin 143


Figure 4.

The ciliated cell as it appears by light microscopy, upper left, contrasts with a drawing based on electron microscopy. The proximity of mitochondria to rootlets and basal bodies of cilia is important for ciliary energetics. The filaments of the ciliary stalk have been shown to be microtubules. RNP, ribosomes.

From Satir 153 by permission of Scientific American.


Figure 5.

Resolution of this cross‐section of flagellar axoneme of a blowfly sperm has been enhanced by rotational and translational image reinforcement of positive and negative images which show important details. The nine pairs of doublet microtubules (mt A and B) with their side arms appear to be linked to the central sheath. It has a wide y portion opposed by a narrow x portion. The x portion is linked to doublet tubule 1. Details of transitional links are still only tentative as are details of the coarse outer fibers.

Adapted from Warner 177


Figure 6.

Drawing of a goblet cell based on electron photomicrographs and biochemical studies. It shows the synthesis pathway of mucin from precursors entering the cell from the blood (1), proteins assembled from amino acids on ribosomes (2) move up rough endoplasmic reticulum (3) to enter Golgi saccules (4). Meanwhile simple sugars enter the saccules to combine with proteins by glycosylation and sulfate is added (5). The saccules of glycoprotein are transformed and hydrated into globules of mucus (6). Mucin lobules move toward the cell apex (7) for subsequent release from the cell into the lumen (8).

From Neutra and Leblond 127 by permission of Scientific American.


Figure 7.

Stages in formation and rupture of a meniscus of mucus in a small airway reflect the viscosity of the mucus. Retraction and thinning occur in the third dimension as well.

From Besarab & Litt 15


Figure 8.

This section from a small bronchiole shows cuboidal ciliated cells and secretory cells with apical knobs packed with small Golgi vesicles and occasional lysosomes. Such cells resemble the serous or albuminous cells of bronchial glands and salivary glands and presumably secrete watery serous fluids. Osmium tetroxide‐fixed hamster lung, stained with uranyl acetate and lead citrate. x 5,250.



Figure 9.

Polymorphonuclear leukocyte recruitment from capillaries into the lamina propria (1) and across the epithelium (2) into airway lumens (3) appears to be an important early response of the lung and upper airways to particle deposition. The leukocyte in the center is crossing the basal lamina. The one on the left is in the intercellular space. Vacuoles often appear in the cytoplasm when the leukocytes reach the lumenal surface. Osmium tetroxide fixation, uranyl acetate, and lead citrate. x 8,500.



Figure 10.

This latticework pattern represents a phospholipid array on the alveolar surface of an epithelial cell fixed by osmium tetroxide. This is an artifact due to surface forces during fixation and dehydration.

References
 1. Adams, F. H., and T. Fujiwara. Surfactant in fetal lamb tracheal fluid. J. Pediat. 63: 537–542, 1963.
 2. Albert, R. E., and L. C. Arnett. Clearance of radioactive dust from the human lung. Arch. Ind. Health (Chicago) 12: 99–106, 1955.
 3. Albert, R. E., M. Lippmann, and W. Briscoe. The characteristics of bronchial clearance in humans and the effects of cigarette smoking. Arch. Environ. Health 18: 738–755, 1969.
 4. Albert, R. E., M. Lippmann, J. Spregelman, C. Strehlow, W. Briscoe, P. Wolfson, and N. Nelson. The clearance of radioactive particles from the human lung. In: Inhaled Particles and Vapours II, edited by C. N. Davies. New York: Pergamon Press, 1967, p. 361–377.
 5. Allison, A. C., On the role of macrophages in some pathological processes. In: Mononuclear Phagocytes, edited by R. Van Furth. Philadelphia: F. A. Davis Co., 1970, p. 422–444.
 6. Allison, A. C., J. S. Harington, and M. Birdbeck. An examination of the cytotoxic effects of silica on macrophages. J. Exptl. Med. 124: 141–152, 1966.
 7. Asmundsson, T., R. Johnson, J. Goofrich, and K. H. Kilburn. Aerosol deposition in lung. Am. Rev. Respirat. Diseases 108: 506–512, 1973.
 8. Asmundsson, T., and K. H. Kilburn. Mucociliary clearance rates at various levels in dog lungs. Am. Rev. Respirat. Diseases 102: 388–397, 1970.
 9. Asmundsson, T., K. H. Kilburn, and W. McKenzie. Injury and metaplasia of airway cells due to SO2. Lab. Invest. 29: 41–53, 1973.
 10. Baetjer, A. M., and L. M. Bates. Measurement of ciliary activity in the intact trachea. Am. Rev. Respirat. Diseases 93 Suppl. 2: 79–82, 1966.
 11. Barclay, A. E., and K. J. Franklin. The rate of excretion of Indian ink injected into the lungs. J. Physiol., London 90: 482–484, 1937.
 12. Barclay, A. E., K. J. Franklin, and R. G. Macbeth. Roentgenographs studies of the excretion of dusts from the lung. Am. J. Roentgenol. Radium Therap. 39: 673–686, 1938.
 13. Battista, S. P., J. Dinunzio, and C. J. Kensler. A versatile apparatus for studying effects of gases, aerosols and drugs on ciliary activity in non‐immersed mammalian trachea. Federation Proc. 21: 453, 1962.
 14. Bernfeld, P., C. W. Nixon, and F. Homberger. Studies on the effect of irritant vapors on ciliary mucus transport. I. Phenol and cigarette smoke. Toxicol. Appl. Pharmacol. 6: 103–111, 1964.
 15. Besarab, A., and M. Litt. Model studies on the adhesive properties of mucus and similar polymer solutions. Ann. Internal Med. 126: 504–507, 1970.
 16. Beuchner, H. A., and A. Ansari. Acute silico‐proteinosis. Diseases Chest 55: 274–284, 1969.
 17. Boyd, E. M. Expectorants and respiratory tract fluid. Pharmacol. Rev. 6: 521–542, 1954.
 18. Boyd, E. M., J. W. Clark, and W. F. Perry. Estrogens and their effect on ciliated mucosa. Arch. Otolaryngol. 33: 909–915, 1941.
 19. Brain, J. D. Free cells in the lungs. Arch. Internal. Med. 126: 477–487, 1970.
 20. Brokaw, C. J. Flagellar movement: a sliding filament model. Science 178: 455–462, 1972.
 21. Brooks, R. E. Ruthenium red stainable surface layer on lung alveolar cells: electron microscopic interpretation. Lab. Invest. 44: 173–177, 1969.
 22. Brown, C. E., Human retention from single inhalations of Bacillus subtilis spore aerosols. In: Inhaled Particles and Vapours, edited by C. N. Davies, Oxford: Pergamon Press, 1961, p. 122–136.
 23. Brown, J. H., K. M. Cook, F. G. Ney, and T. Hatch. Influence of particle size upon the retention of particulate matter in the human lung. Am. J. Public Health 50: 450–458, 1950.
 24. Camner, P., and P. Philipson. K. Humanstudier av Trache obronchiell Clearance med Monodispersa Teflonpartiklar Markta med 18F och 99mTc. Nord. Hyg. Tidskr. 52: 1–9, 1971.
 25. Carson, S., R. Goldhamer, and R. Carpenter. Mucous transport in the respiratory tract. Am. Rev. Respirat. Diseases 93, Suppl. 2: 86–92, 1966.
 26. Chakrin, L. W., A. P. Baker, S. S. Spicer, J. R. Werdell, Jr., N. Desanctis, and C. Dries. Synthesis and secretion of macromolecules by canine trachea. Am. Rev. Respirat. Diseases 105: 368–381, 1972.
 27. Chasey, D. Observations on the central pair of microtubules from the cilia of Tetrahymena pyriformis. J. Cell Sci. 5: 453–458, 1969.
 28. Chodosh, S., C. W. Zaccheo, and M. S. Segal. The cytology and histochemistry of sputum cells. Am. Rev. Respirat. Diseases 85: 635–648, 1962.
 29. Cragg, J., and S. G. Smith. Some properties of respiratory tract mucus. Arch. Internal Med. 107: 81–87, 1961.
 30. Curran, P. F. Na, Cl, and water transport by rat ileum in vitro. J. Gen. Physiol. 43: 1137–1148, 1960.
 31. Curran, P. E., and A. K. Solomon. Ion and water fluxes in the ileum of rats. J. Gen. Physiol. 41: 143–168, 1957.
 32. Dalhamn, T. Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases. Acta Physiol. Scand. 36, Suppl. 123: 1–161, 1956.
 33. Dalhamn, T. The determination in vivo of the rate of ciliary beat in the trachea. Acta Physiol. Scand. 49: 242–250, 1960.
 34. Dalhamn, T. Studies on tracheal ciliary activity: special reference to the effect of cigarette smoke in living animals. Am. Rev. Respirat. Diseases 89: 870–877, 1964.
 35. Darrah, H. K., J. Headley‐Whyte, and E. T. Headley‐Whyte. Radioautography of cholesterol in lung: an assessment of different tissue processing techniques. J. Cell Biol. 49: 345–361, 1971.
 36. Diamond, J. M., and J. M. Tormey. Role of long extracellular channels in fluid transport. Nature 210: 817–820, 1966.
 37. Dingle, J. T., The extracellular secretion of lysosomal enzymes. In: Lysosomes in Biology and Pathology, vol. 2, edited by J. T. Dingle and H. B. Fell. New York: Wiley, 1969, p. 421–436.
 38. Dominguez, E. A. M., A. A. Liebow, and K. G. Bensch. Studies on the pulmonary air tissue barrier. I. Absorption of albumin by the alveolar wall. Lab. Invest. 16: 905–911, 1967.
 39. Dowell, A. R., K. H. Kilburn, and P. C. Pratt. Effects of acute NO2 exposure on lung ultrastructure, compliance and the surfactant system. Arch. Internal Med. 128: 74–80, 1971.
 40. Eckert, R. Bioelectric control of ciliary activity. Science 176: 473–481, 1972.
 41. Engel, S. The Child's Lung. London: Edward Arnold and Co., 1947, p. 54–60.
 42. Ewart, G. On mucus flow rate in the human nose. Acta Otolaryngol. Suppl. 200: 1–62, 1965.
 43. Fawcett, D. W., Cilia and flagella. In: The Cell, vol. 2, edited by J. Brachet and A. E. Mirsky. New York: Academic, 1961, p. 217.
 44. Fawcett, D. W. Surface specializations of absorbing cells. J. Histochem. Cytochem. 13: 75–91, 1965.
 45. Fawcett, D. W., and K. R. Porter. A study of the fine structure of ciliated epithelia. J. Morphol. 94: 221–282, 1954.
 46. Finck, H., and H. Holtzer. Attempts to detect myosin and actin in cilia and flagella. Exptl. Cell Res. 23: 251–257, 1961.
 47. Fisher, M. W., P. E. Morrow, and C. L. Yuile. Effect of Freund's complete adjuvant upon clearance of iron‐59 oxide from rat lungs. J. Reticuloendothel. Soc. 13: 536–556, 1973.
 48. Fulton, C., Centrioles. In: Origin and Continuity of Cell Organelles, edited by J. Reinert and H. Ursprung. New York: Springer‐Verlag, 1971, p. 170–221.
 49. Gibbons, I. R. Biogenesis of motility‐related organelles. Presented at National Biological Congress, Nov. 6–10, 1970, Detroit, Michigan.
 50. Gibbons, I. R. Reactivation of glycerinated cilia from Tetrahymena pyriformis. J. Cell Biol. 25: 400–402, 1965.
 51. Gibbons, I. R. Studies on the adenosine triphosphatase activity of 14S and 30S dynein from cilia of Tetrahymena. J. Biol. Chem. 241: 5590–5596, 1966.
 52. Gibbons, I. R. Studies on the protein components of cilia from Tetrahymena pyriformis. Proc. Natl. Acad. Sci. US 50: 1002–1010, 1963.
 53. Gibbons, I. R., and A. V. Grimstone. On flagellar structure in certain flagellates. J. Biophys. Biochem. Cytol. 7: 697–716, 1960.
 54. Gibbons, I. R., and A. J. Rowe. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149: 424–426, 1965.
 55. Gibbons, R. A., and F. A. Glover. The flow birefringence of purified bovine cervical mucoid. In: Flow Properties of Blood and Other Biologic Systems, edited by A. L. Copley and G. Stamsby. New York: Pergamon Press, 1960.
 56. Gibbons, R. A., and F. A. Glover. The physicochemical properties of two mucoids from bovine cervical mucin. Biochem. J. 73: 217–225, 1959.
 57. Goldhamer, R., B. Barnett, and S. Carson. A new technique for the study of mucous flow in the intact animal. Federation Proc. 23: 406, 1964.
 58. Gray, J. Ciliary Movement. Cambridge: Cambridge Univ. Press, 1928, p. 47.
 59. Gray, J. The mechanism of ciliary movement. VI. Photographic and stroboscopic analysis of ciliary movement. Proc. Roy. Soc. London Ser. B. 107: 313–332, 1930.
 60. Green, G. M. Alveolobronchiolar transport mechanisms. Arch. Internal Med. 131: 109–114, 1973.
 61. Green, G. M. In defense of the lung. Am. Rev. Respirat. Diseases 102: 691–703, 1970.
 62. Green, G. M., and E. Goldstein. A method for quantitating intrapulmonary bacterial inactivation in individual animals. J. Lab. Clin. Med. 68: 669–677, 1966.
 63. Green, G. M., and E. H. Kass. The role of the alveolar macrophage in the clearance of bacteria from the lung. J. Exptl. Med. 119: 167–176, 1964.
 64. Gross, P., and J. H. U. Brown. The mobility of pneumoconiotic deposits. Am. J. Clin. Pathol. 22: 821–832, 1952.
 65. Gross, P., E. A. Pfitzer, and T. F. Hatch. Alveolar clearance: its relation to lesions of the respiratory bronchiole. In: Inhaled Particles and Vapours II, edited by C. N. Davies. New York: Pergamon Press, 1967, p. 167–177.
 66. Hapke, E. J., and H. J. Pederson. Ultrastructural changes in rat lungs induced by radioactive macroaggregated albumin. Am. Rev. Respirat. Diseases 100: 194–205, 1969.
 67. Hatch, T. F., and P. Gross. Pulmonary Deposition and Retention of Inhaled Aerosols. New York: Academic, 1964, p. 82–84, 123.
 68. Heppleston, A. G., and J. A. Styles. Activity of a macrophage factor in collagen formation by silica. Nature 214: 521–522, 1967.
 69. Heppleston, A. G., N. A. Wright, and J. A. Steward. Experimental alveolar lipo‐proteinosis following the inhalation of silica. J. Pathol. 101: 293–307, 1970.
 70. Hilding, A. C. Ciliary streaming in the lower respiratory tract. Am. J. Physiol. 191: 404–410, 1957.
 71. Hilding, A. C. Experimental studies on some little understood aspects of the physiology of the respiratory tract and their clinical importance. Trans. Am. Acad. Ophthalmol. Otolaryngol. 65: 474–495, 1961.
 72. Hilding, A. C. Time‐lapse relation to changes in the respiratory epithelium after minimal trauma. Acta Oto‐laryngol. 57: 352–367, 1964.
 73. Hill, J. R. The influence of drugs on ciliary activity. J. Physiol., London 139: 157–166, 1957.
 74. Hill, L. The ciliary movement of the trachea studied in vitro. Lancet 2: 802–805, 1928.
 75. Holma, B. The initial lung clearance of di‐disperse (2μ and 7μ) polystyrene particles in rabbits. Arch. Environ. Health 17: 871–873, 1968.
 76. Hurst, D. J., K. H. Kilburn, and W. S. Lynn. Isolation and surface activity of soluble alveolar components. Respirat. Physiol. 17: 72–80, 1973.
 77. Huxley, H., and J. Hanson. Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation. Nature 173: 973–976, 1954.
 78. Ingelstedt, S., and B. Ivstam. The source of nasal secretion in the normal condition. Acta Oto‐laryngol. 37: 446–450, 1949.
 79. Iravani, J. Physiologic und Pathophysiologic der cilientä trgkeit und des schlermtransportes in tracheobronchialbaum. Pneumonologie 144: 93–112, 1971.
 80. Iravani, J., and A. van As. Mucus transport in the tracheobronchial tree of normal and bronchitic rats. J. Pathol. 106: 81–95, 1972.
 81. Jacques, P. J., Endocytosis. In: Lysosomes in Biology and Pathology, vol. 2, edited by J. T. Dingle and H. B. Fell. New York: Wiley, 1969, p. 395–420.
 82. Jakowska, S. (editor)., Mucous secretions. Ann. NY Acad. Sci. 106: 157–908, 1963.
 83. Janoff, A., and J. D. Zeligs. Vascular injury and lysis of basement membrane in vitro by neutral protease of human leukocytes. Science 161: 702–703, 1968.
 84. Karpick, R. J., P. C. Pratt, T. Asmundsson, and K. H. Kilburn. Pathological findings in respiratory failure. Ann. Internal Med. 72: 189–197, 1970.
 85. Kaye, G. I., H. O. Wheeler, R. T. Whitlock, and N. Lane. Fluid transport in the rabbit gallbladder. J. Cell Biol. 30: 237–268, 1966.
 86. Kensler, C. J., and S. P. Battista. Chemical and physical factors affecting mammalian ciliary activity. Am. Rev. Respirat. Diseases 93: 93–102, 1966.
 87. Kent, P. W., and A. Allen. The biosynthesis of intestinal mucins. Biochem. J. 106: 645–658, 1968.
 88. Kilburn, K. H. A hypothesis for pulmonary clearance and its implications. Am. Rev. Respirat. Diseases 98: 449–463, 1968.
 89. Kilburn, K. H. Alveolar clearance of particles. Arch. Environ. Health 18: 556–563, 1969.
 90. Kilburn, K. H. Cilia and mucus transport as determinants of the response of lung to air pollutants. Arch. Environ. Health 14: 77–90, 1967.
 91. Kilburn, K. H. Clearance zones in the distal lung. Ann. NY Acad. Sci. 221: 276–281, 1974.
 92. Kilburn, K. H., Mechanisms of pulmonary injury and repair. In: Fundamental Problems of Cystic Fibrosis and Related Diseases, edited by J. Mangos and R. C. Talamo. Miami: Symposia Specialists, 1973, p. 129–172.
 93. Kilburn, K. H. Mucociliary clearance from bullfrog (Rana Cantesbiana) lung. J. Appl. Physiol. 23: 804–810. 1967.
 94. Kilburn, K. H., W. S. Lynn, L. L. Tres, and W. N. McKenzie. Leukocyte recruitment through airway walls by condensed vegetable tannins and quercetin. Lab. Invest. 28: 55–59, 1973.
 95. Kistler, G. S., P. R. B. Caldwell, and E. R. Weibel. Development of fine structural damage to alveolar and capillary lining cells in oxygen‐poisoned rat lungs. J. Cell Biol. 32: 605–628, 1967.
 96. Krueger, A. P., and R. F. Smith. Effects of air ions on isolated rabbit trachea. Proc. Soc. Exptl. Biol. Med. 96: 807–809, 1957.
 97. Kurtz, S. M., The salivary glands. In: Electron Microscopic Anatomy, edited by S. M. Kurtz. New York: Academic, 1964, p. 97–122.
 98. Kwart, H., and V. E. Shashoua. The structure and constitution of a mucus. I. The polyelectrolyte nature of mucus solutions derived from Busycon canaliculatum. J. Am. Chem. Soc. 80: 2230–2236, 1958.
 99. Lamb, D., and L. Reid. Histochemical types of acidic glycoprotein produced by mucous cells of the tracheobronchial glands in man. J. Pathol. 98: 213–229, 1969.
 100. Laurenzi, G. A., M. First, L. Berman, and E. H. Kass. A quantitative study of the deposition and clearance of bacteria in the murine lung. J. Clin. Invest. 43: 759–768, 1964.
 101. Laurenzi, G. A., and J. J. Guarneri. A study of the mechanism of pulmonary resistance to infection: the relationship of bacterial clearance to ciliary and alveolar macrophage function. Am. Rev. Respirat. Diseases 93, Suppl. 2: 134–141, 1966.
 102. Laurenzi, G. A., J. J. Guarneri, and R. B. Endriga. Important determinants in pulmonary resistance to bacterial infection. Med. Thorac. 22: 48–59, 1965.
 103. Laurenzi, G. A., J. J. Guarneri, R. B. Endriga, and J. P. Carey. Clearance of bacteria by the lower respiratory tract. Science 142: 1572–1573, 1963.
 104. Laurenzi, G. A., S. Yin, and J. J. Guarneri. Adverse effect of oxygen on tracheal mucus flow. New Engl. J. Med. 279: 333–339, 1968.
 105. Lauweryns, J. M., and L. Boussauw. The ultrastructure of pulmonary lymphatic capillaries of newborn rabbits and of human infants. Lymphology 2: 108–129, 1969.
 106. Lazarus, G. S., J. R. Daniels, R. S. Brown, H. A. Bladen, and H. M. Fullmer. Degradation of collagen by a human granulocyte collagenolytic system. J. Clin. Invest. 47: 2622–2629, 1968.
 107. Lierle, D. M., and P. M. Moore. Effects of drugs on ciliary activity of mucosa of upper respiratory tract. Arch. Otolaryngol. 19: 55–65, 1934.
 108. Litt, M. Flow behavior of mucus. Ann. Otol. Rhinol. Laryngol. 80: 330–335, 1971.
 109. Lourenco, R. V., M. F. Klimek, and C. J. Borowski. Deposition and clearance of 2μ particles in the tracheobronchial tree of normal subjects‐smokers and non‐smokers. J. Clin. Invest. 50: 1411–1420, 1971.
 110. Lucas, A. M., and L. C. Douglas. Principles underlying ciliary activity in the respiratory tract. Arch. Otolaryngol. 20: 518–541, 1934.
 111. Luchsinger, P. C., B. La Gorde, and J. E. Kilfeather. Particle clearance from the human tracheobronchial tree. Am. Rev. Respirat. Diseases 97: 1046–1050, 1968.
 112. Macklin, C. C. Pulmonary sumps, dust accumulations, alveolar fluid and lymph vessels. Acta Anat. 23: 1–23, 1955.
 113. Manton, I. The possible significance of some details of flagellar bases in plants. J. Roy. Microscop. Soc. 82: 279–285, 1964.
 114. Marin, M. G., and P. E. Morrow. Effect of changing inspired O2 and CO2 levels on tracheal mucociliary transport rate. J. Appl. Physiol. 27: 385–388, 1969.
 115. Martinez, J. R., and O. H. Petersen. The importance of extracellular calcium for acetylcholine‐evoked salivary secretion. Experientia 28: 167–168, 1972.
 116. McCarter, J. H., and J. J. Vazquez. The bronchial basement membrane is asthma. Arch. Pathol. 82: 328–335, 1966.
 117. McCrae, J. The ash of silicotic lung. Publ. S. African Inst. Med. Res. 1939.
 118. Mercer, T. T. On the role of particle size in the dissolution of lung burdens. Health Phys. 13: 1211–1221, 1967.
 119. Meyer, E. C., E. A. M. Dominguez, and K. G. Bensch. Pulmonary lymphatic and blood absorption of albumin from alveoli. Lab. Invest. 20: 1–8, 1969.
 120. Morris, B., T. Weinberg, and G. J. Spector. The carrageenin granuloma in the rat. A model for the study of the structure and function of macrophages. J. Exptl. Pathol. 49: 302–309, 1968.
 121. Morrow, P. Alveolar clearance of aerosols. Arch. Internal Med. 131: 101–108, 1973.
 122. Morrow, P. E., F. R. Gibb, and K. M. Gazioglu. A study of particulate clearance from the human lungs. Am. Rev. Respirat. Diseases 96: 1209–1221, 1967.
 123. Morrow, P. E., F. R. Gibb, and L. Johnson. Clearance of insoluble dust from the lower respiratory tract. Health Phys. 10: 543–555, 1964.
 124. Myrvik, Q. Adjuvants. Ann. NY Acad. Sci. 221: 324–330, 1974.
 125. Negus, V. E. The function of mucus. Acta Oto‐laryngol. 56: 204–214, 1963.
 126. Neutra, M., and C. P. Leblond. Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radiography of goblet cells from rats injected with glucose‐H3. J. Cell Biol. 30: 119–136, 1966.
 127. Neutra, M., and C. P. Leblond. The Golgi apparatus. Sci. Am. 220: 100–107, 1969.
 128. Newhouse, M. T., F. J. Wright, M. Dolovich, and O. L. Hopkins. Clearance of RISA aerosol from the human lung. In: Airway Dynamics, edited by A. Bouhuys. Springfield: Thomas, 1970, p. 313–317.
 129. Niden, A. H. Bronchiolar and large alveolar cell in pulmonary phospholipid metabolism. Science 158: 1323–1324, 1967.
 130. Palm, J. E., J. M. Mcnerney, and T. Hatch. Respiratory dust retention in small animals. Arch. Ind. Health. 13: 355–365, 1956.
 131. Papadimetriou, J. M., and W. G. Spector. The origin, properties and fate of epithelioid cells. J. Pathol. 105: 187–203, 1971.
 132. Pattle, R. E., and D. A. W. Hopkinson. Lung lining in bird, reptile and amphibian. Nature 200: 894, 1963.
 133. Pearson, G. On the colouring matter of the black bronchial glands and of the black spots of the lungs. Phil. Trans. Roy. Soc. London, Ser. B. 103: 159–170, 1813.
 134. Peters, J., R. L. H. Murphy, L. D. Pagnotto, and J. L. Whittenberger. Respiratory impairment in workers exposed to “safe” levels of toluene diisocyanate (TDI). Arch. Environ. Health 20: 364–367, 1970.
 135. Pratt, P. C., and K. H. Kilburn. Extent of pulmonary pigmentation as an indicator of particulate environmental air pollution. In: Inhaled Particles III, edited by W. H. Walton. New York: Pergamon Press, 1970, p. 661–670.
 136. Proctor, D. F., D. L. Swift, M. Quinlau, S. Salman, Y. Takagi, and S. Evering. The nose and man's atmospheric environment. Arch. Environ. Health 18: 671–680, 1969.
 137. Proetz, A. W. Essays on the Applied Physiology of the Nose. St. Louis: Annals Publishing Co., 1953, p. 11–27.
 138. Proetz, A. W. Further observations of the effects of thyroid insufficiency on the nasal mucosa. Laryngoscope 60: 627–633, 1950.
 139. Quinlan, M. F., S. D. Salman, D. L. Swift, H. N. Wagner, Jr., and D. F. Proctor. Measurement of mucociliary function in man. Am. Rev. Respirat. Diseases 99: 13–23, 1969.
 140. Reid, L. Evaluation of model systems for study of airway epithelium, cilia and mucus. Arch. Internal Med. 126: 428–434, 1970.
 141. Reid, L. Natural history of mucus in the bronchial tree. Arch. Environ. Health 10: 265–273, 1965.
 142. Renaud, F. L., A. J. Rowe, and I. R. Gibbons. Some properties of the protein forming the outer fibers of cilia. J. Cell Biol. 36: 79–90, 1968.
 143. Rhodin, J. A. G. Ultrastructure and function of the human tracheal mucosa. Am. Rev. Respirat. Diseases 93: 1–15, 1966.
 144. Roberts, L. E., R. N. Taub, A. A. Liebow, and A. C. Aperia. Transpulmonary water exchange in newborn lambs under artificial placentation. Am. J. Physiol. 210: 478–486, 1966.
 145. Ronkin, R. R. Some physicochemical properties of mucus. Arch. Biochem. Biophys. 56: 76–89, 1955.
 146. Rubin, R. W., and W. P. Cunningham. Partial purification and phosphotungstate solubilization of basal bodies and kinetodesmal fibers from Tetrahymena pyriformis. J. Cell Biol. 57: 601–612, 1973.
 147. Rylander, R. Free lung cell studies in cigarette smoke inhalation experiments. Scand. J. Respirat. Diseases 52: 121–128, 1971.
 148. Rylander, R. Pulmonary defense mechanisms to airborne bacteria. Acta Physiol. Scand. 72, Suppl. 306: 1–89, 1968.
 149. Said, S. I. The lung in relation to vasoactive hormones. Federation Proc. 32: 1972–1976, 1973.
 150. Sakakwra, Y., Y. Sasaki, R. B. Hornick, Y. Togo, A. R. Schwartz, H. N. Wagner, Jr., and D. F. Proctor. Mucociliary function during experimentally induced rhinovirus infection in man. Ann. Oto‐Laryngol. 82: 203–211, 1973.
 151. Samchis, J., M. Dolovich, R. Chalmers, and M. Newhouse. Quantitation of regional aerosol clearance in the normal human lung. J. Appl. Physiol. 33: 757–762, 1972.
 152. Sanchis, J., M. Dolovich, C. Rossman, W. Wilson, and M. Newhouse. Pulmonary mucociliary clearance in cystic fibrosis. New Engl. J. Med. 288: 651–654, 1973.
 153. Satir, P. Cilia. Sci. Am. 204: 108–116, 1961.
 154. Satir, P. Studies on cilia. III. Further studies in the cilium tip and “sliding filament” model of ciliary motility. J. Cell Biol. 39: 77–94, 1968.
 155. Schneeberger‐Keeley, E. E., and M. J. Karnovsky. The ultrastructural basis of alveolar capillary membrane permeability to peroxidase used as a tracer. J. Cell Biol. 37: 781–793, 1968.
 156. Scott, K. G., D. Axelrod, J. Crowley, and J. G. Hamilton. Deposition and fate of plutonium, uranium and their fission products inhaled as aerosols by rats and man. Arch. Pathol. 48: 31–54, 1949.
 157. Scudi, J. V., E. T. Kimura, and J. F. Reinhard. Study of drug action on mammalian ciliated epithelium. J. Pharmacol. Exptl. Therap. 102: 132–137, 1951.
 158. Spector, W. G., N. Reichhold, and G. B. Ryan. Degradation of granuloma‐inducing micro‐organisms by macrophages. J. Pathol. 101: 339–354, 1970.
 159. Spencer, H. Pathology of the Lung (2nd ed.). New York: Pergamon Press, 1968, p. 363–368, 378–385.
 160. Spicer, S. S. A correlative study of the histochemical properties of rodent acid mucopolysaccharides. J. Histochem. Cytochem. 8: 18–34, 1960.
 161. Spritzer, A. A., and J. A. Watson. The measurement of ciliary clearance in the lungs of rats. Health Phys. 10: 1093–1097, 1964.
 162. Spritzer, A. A., J. A. Watson, J. A. Auld, and M. A. Guetthoff. Pulmonary macrophage clearance. Arch. Environ. Health 17: 726–730, 1968.
 163. Stein, O., and Y. Stein. Lipid synthesis, intracellular transport and secretion. II. Electron microscopic radioautographic studies of the mouse lactating mammary gland. J. Cell Biol. 34: 251–264, 1967.
 164. Stephans, R. J., G. Freeman, and M. J. Evans. Early response of lungs to low levels of nitrogen dioxide. Arch. Environ. Health 24: 160–179, 1972.
 165. Stevens, R. E., F. L. Renaud, and I. R. Gibbons. Guanine nucleotide associated with the protein of the outer fibers of flagella and cilia. Science 156: 1606–1608, 1967.
 166. Summers, K. E., and I. R. Gibbons. Effects of trypsin digestion on flagellar structures and their relationship to motility. J. Cell Biol. 58: 618–629, 1973.
 167. Taplin, G. V., N. D. Poe, and A. Greenberg. Lung scanning following radioaerosol inhalation. J. Nucl. Med. 7: 77–87, 1966.
 168. Tappan, V., and V. Zalar. The pathophysiology of bronchial mucus. Ann. NY Acad. Sci. 106: 722–745, 1963.
 169. Taylor, A. E., A. C. Guyton, and V. S. Bishop. Permeability of the alveolar membrane to solutes. Circulation Res. 16: 353–362, 1965.
 170. Thomson, M. L., and M. D. Short. Mucociliary function in health, chronic obstructive airway disease, and asbestosis. J. Appl. Physiol. 26: 535–539, 1969.
 171. Thyrlbeck, W. M., J. A. M. Henderson, R. G. Fraser, and D. V. Bates. Chronic obstructive lung disease: a comparison between clinical, roentgenologic, functional and morphologic criteria in chronic bronchitis, emphysema, asthma and bronchiectasis. Medicine, Baltimore 49: 81–145, 1970.
 172. Toigo, A., J. J. Imarisio, H. Murmall, and M. N. Lepper. Clearance of large carbon particles from the human tracheobronchial tree. Am. Rev. Respirat. Diseases 87: 487–492, 1963.
 173. Toremalm, N. G. The daily amount of tracheobronchial secretions in man, a method for continuous aspiration in laryngectomized and tracheotomized patients. Acta Oto‐Laryngol. Suppl. 158: 43–53, 1960.
 174. Van Dongen, K., and H. Leusink. The action of opiumalkaloids and expectorants on the ciliary movements in the air passages. Arch. Intern. Pharmacodyn. 93: 261–276, 1953.
 175. van Ree, J. H. L., and H. A. E. Van Dishoeck. Some investigations on nasal ciliary activity. Prac. Oto‐Rhino‐Laryngol. 24: 383–390, 1962.
 176. Vorhaus, E. F., and I. J. Deyrup. The effect of adenosine triphosphate on the cilia of the pharyngeal mucosa of the frog. Science 118: 553–554, 1953.
 177. Warner, F. D. New observations on flagellar fine structure. The relationship between matrix structure and the microtubule component of the axoneme. J. Cell Biol. 47: 159–182, 1970.
 178. Watson, J. A., J. A. Auld, and G. C. Meyer. Clearance and inactivation of the vegetative spore forms of Bacillus subtilis var niger in rat lungs. Am. Rev. Respirat. Diseases 107: 975–984, 1973.
 179. Weibel, E. R. Morphometry of the Human Lung. New York: Academic, 1963, p. 70–76.
 180. Weissmann, G., J. W. Uhr, and L. Thomas. Acute hypervitaminosis A in guinea pigs. I. Effects on acid hydrolases. Proc. Soc. Exptl. Biol. Med. 112: 284–287, 1963.
 181. Weissmann, G., I. Spilberg, and K. Krakauer. Arthritis induced in rabbits by granulocyte lysosomes. Arthritis Rheumat. 12: 103–116, 1969.
 182. Wentworth, P., J. Gough, and J. E. Wentworth. Pulmonary changes and cor pulmonale in mucovisicidosis. Thorax 23: 582–589, 1968.
 183. Whaley, W. G., M. Dauwalder, and J. E. Kephart. Golgi apparatus: influence on cell surfaces. Science 175: 596–599, 1972.
 184. Wilson, L., and I. Meza. The mechanism of action of colchicine. J. Cell Biol. 58: 709–719, 1973.
 185. Wolback, S. B., and P. R. Howe. Vitamin‐A deficiency in the guinea pig. Arch. Pathol. 5: 239–253, 1928.
 186. Wood, P. B., E. Nagy, F. G. Pearson, and S. Rae. Measurement of mucociliary clearance from the lower respiratory tract of normal dogs. Can. Anaesth. Soc. J. 20: 192–206, 1973.
 187. Young, R. W. The role of the Golgi complex in sulfate metabolism. J. Cell Biol. 57: 175–189, 1973.
 188. Zaidi, S. H., R. K. S. Dogra, R. Shanker, and S. V. Chandra. Experimental farmer's lung in guinea pigs. J. Pathol. 105: 41–48, 1971.
 189. Zaidi, S. H., R. Shanker, and R. K. S. Dogra. Experimental studies on early stages of the development of pulmonary silicosis in pups. Environ. Res. 4: 243–252, 1971.
 190. Zeidberg, L. D., and R. A. Prindle. The Nashville air pollution study. II. Pulmonary anthracosis as an index of air pollution. Am. J. Public Health 53: 185–199, 1963.
 191. Zimmerman, M. H. How sap moves in trees. Sci. Am. 208: 132–142, 1963.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kaye H. Kilburn. Clearance Mechanisms in the Respiratory Tract. Compr Physiol 2011, Supplement 26: Handbook of Physiology, Reactions to Environmental Agents: 243-262. First published in print 1977. doi: 10.1002/cphy.cp090116