Comprehensive Physiology Wiley Online Library

Pulmonary Excretion of Absorbed Gases

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Factors Involved in Inert Gas Exchange
1.1 Solubility Effect
1.2 Interaction of Ventilation, Blood Flow, and Solubility
1.3 Measurements
2 Transport of Carbon Monoxide
3 Exposure to Exogenous Carbon Monoxide
4 Endogenous Production of Carbon Monoxide
5 Elimination of Carbon Monoxide
5.1 Theory: Steady State
5.2 Theory: Unsteady State
5.3 Experimental Verification
6 Carbon Monoxide Poisoning
6.1 Treatment
6.2 Physiological Alterations
Figure 1. Figure 1.

Effects of ventilation and perfusion on clearance of a poorly soluble gas (xenon) and a highly soluble gas (ether). Abscissa indicates perfusion (1/min); ordinate represents ventilation (1/min). Dotted isopleths indicate xenon clearance; solid isopleths indicate ether clearance.

From Farhi 23
Figure 2. Figure 2.

Relation between inert gas retention, , and blood : gas partition coefficient. Ventilation‐perfusion ratios are indicated next to each isopleth. Blood : gas partition coefficients of some common inert gases are indicated by arrows.

From Wagner et al. 59
Figure 3. Figure 3.

Effects of endogenous and exogenous variables on blood carboxyhemoglobin saturation. Unless otherwise noted, , 4 1·min−1; Dl, 30 ml · min−1 · mmHg−1; , 100 mmHg. Left panel, effects of changes on HbCO saturation resulting from endogenous production: , alveolar ventilation; Dl, diffusing capacity; , mean capillary oxygen tension, Right panel, effect of inspired CO concentration from exogenous sources on carboxyhemoglobin saturation.

From Coburn et al. 12
Figure 4. Figure 4.

Effect of alveolar ventilation and mean pulmonary capillary oxygen tension on calculated half times. Half time is time required to reach a point midway between the new and old steady state. , 4 1 · min−1; Dl, 30 ml · min−1 · mmHg−1; , 100 mmHg; blood volume, 5,000 ml; [HbO2], total hemoglobin concentration less [HbCO], unless otherwise noted.

From Coburn et al. 12


Figure 1.

Effects of ventilation and perfusion on clearance of a poorly soluble gas (xenon) and a highly soluble gas (ether). Abscissa indicates perfusion (1/min); ordinate represents ventilation (1/min). Dotted isopleths indicate xenon clearance; solid isopleths indicate ether clearance.

From Farhi 23


Figure 2.

Relation between inert gas retention, , and blood : gas partition coefficient. Ventilation‐perfusion ratios are indicated next to each isopleth. Blood : gas partition coefficients of some common inert gases are indicated by arrows.

From Wagner et al. 59


Figure 3.

Effects of endogenous and exogenous variables on blood carboxyhemoglobin saturation. Unless otherwise noted, , 4 1·min−1; Dl, 30 ml · min−1 · mmHg−1; , 100 mmHg. Left panel, effects of changes on HbCO saturation resulting from endogenous production: , alveolar ventilation; Dl, diffusing capacity; , mean capillary oxygen tension, Right panel, effect of inspired CO concentration from exogenous sources on carboxyhemoglobin saturation.

From Coburn et al. 12


Figure 4.

Effect of alveolar ventilation and mean pulmonary capillary oxygen tension on calculated half times. Half time is time required to reach a point midway between the new and old steady state. , 4 1 · min−1; Dl, 30 ml · min−1 · mmHg−1; , 100 mmHg; blood volume, 5,000 ml; [HbO2], total hemoglobin concentration less [HbCO], unless otherwise noted.

From Coburn et al. 12
References
 1. Albert, M. S., R. B. Dell, and R. W. Winters. Quantitative displacement of acid‐base equilibrium in metabolic acidosis. Ann. Internal Med. 66: 312–322, 1967.
 2. Allen, T. A., and W. S. Root. Partition of carbon monoxide and oxygen between air and whole blood of rats, dogs and men as affected by plasma pH. J. Appl. Physiol. 10: 186–190, 1957.
 3. Apthorp, G. H., D. V. Bates, R. Marshall, and D. Mendel. Effect of acute carbon monoxide poisoning on work capacity. Brit. Med. J. 2: 476–478, 1958.
 4. Aronow, W. S., C. N. Harris, M. W. Isbell, S. N. Rokaw, and B. Imparato. Effect of freeway travel on angina pectoris. Ann. Internal Med. 77: 669–676, 1972.
 5. Bond, J. H., Jr., R. R. Engel, and M. D. Levitt. Factors influencing pulmonary methane excretion in man. J. Exptl. Med. 133: 572–588, 1971.
 6. Bond, J. H., Jr., and M. D. Levitt. Use of pulmonary hydrogen (H2) measurements to quantitate carbohydrate absorption. J. Clin. Invest. 51: 1219–1225, 1972.
 7. Brody, J. S., and R. F. Coburn. Effects of elevated carboxyhemoglobin on gas exchange in the lung. Ann. NY Acad. Sci. 174: 255–260, 1970.
 8. Coburn, R. F. Endogenous carbon monoxide production and body CO stores. Acta Med. Scand. Suppl. 472: 269–282, 1967.
 9. Coburn, R. F. Enhancement by phenobarbital and diphenylhydantoin of carbon monoxide production in normal man. New Engl. J. Med. 283: 512–515, 1970.
 10. Coburn, R. F. Endogenous carbon monoxide metabolism. Ann. Rev. Med. 24: 241–250, 1973.
 11. Coburn, R. F., W. S. Blackmore, and R. E. Forster. Endogenous carbon monoxide production in man. J. Clin. Invest. 42: 1172–1178, 1963.
 12. Coburn, R. F., R. E. Forster, and P. B. Kane. Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man. J. Clin. Invest. 44: 1899–1910, 1965.
 13. Coburn, R. F., and L. B. Mayers. Myoglobin O2 tension determined from measurements of carboxymyoglobin in skeletal muscle. Am. J. Physiol. 220: 66–74, 1971.
 14. Coburn, R. F., W. J. Williams, and R. E. Forster. Effect of erythrocyte destruction on carbon monoxide production in man. J. Clin. Invest. 43: 1098–1103, 1964.
 15. Coburn, R. F., W. J. Williams, P. White, and S. B. Kahn. The production of carbon monoxide from hemoglobin in vivo. J. Clin. Invest. 46: 346–356, 1967.
 16. Cohen, E. N., J. W. Bellville, and B. W. Brown, Jr.. Anesthesia, pregnancy, and miscarriage: a study of operating room nurses and anesthetists. Anesthesiology 35: 343–347, 1971.
 17. Corbett, T. H., and G. L. Ball. Chronic exposure to methoxyflurane: a possible occupational hazard to anesthesiologists. Anesthesiology 34: 532–537, 1971.
 18. Corbett, T. H., and G. L. Ball. Respiratory excretion of halothane after clinical and occupational exposure. Anesthesiology 39: 342–345, 1973.
 19. Corbett, T. H., R. G. Cornell, K. Lieding, and J. L. Endres. Incidence of cancer among Michigan nurseanesthetists. Anesthesiology 38: 260–263, 1973.
 20. Donald, K. W., and W. D. M. Paton. Gases administered in artificial respiration. Brit. Med. J. 1: 313–318, 1955.
 21. Douglas, C. G., J. S. Haldane, and J. B. S. Haldane. The laws of combination of haemoglobin with carbon monoxide and oxygen. J. Physiol. London 44: 275–304, 1912.
 22. Epstein, R. M., H. Rackow, E. Salanitre, and G. L. Wolf. Influence of the concentration effect on the uptake of anesthetic mixtures: the second gas effect. Anesthesiology 25: 364–371, 1964.
 23. Farhi, L. E. Elimination of inert gas by the lung. Respiration Physiol. 3: 1–11, 1967.
 24. Farhi, L. E., and T. Yokoyama. Effects of ventilation‐perfusion inequality on elimination of inert gases. Respiration Physiol. 3: 12–20, 1967.
 25. Fink, B. R. Diffusion anoxia. Anesthesiology 16: 511–519, 1955.
 26. Forster, R. E. Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol. Rev. 37: 391–452, 1957.
 27. Forster, R. E. Carbon monoxide and the partial pressure of oxygen in tissue. Ann. NY Acad. Sci. 174: 233–241, 1970.
 28. Frank, N. R., R. E. Yoder, E. Yokoyama, and F. E. Speizer. The diffusion of 35SO2 from tissue fluids into the lungs following exposure of dogs to 35SO2. Health Phys. 13: 31–38, 1967.
 29. Friedemann, T. E., and K. M. Dubowski. Chemical testing procedures for the determination of ethyl alcohol. J. Am. Med. Assoc. 170: 47–71, 1959.
 30. Fry, B. J., T. Taylor, and D. E. Hathway. Pulmonary elimination of chloroform and its metabolite in man. Arch. Intern. Pharmacodyn. 196: 98–111, 1972.
 31. Goldsmith, J. R., and S. A. Landaw. Carbon monoxide and health. Science 162: 1352–1359, 1968.
 32. Haggard, H. W. The absorption, distribution, and elimination of ethyl ether. J. Biol. Chem. 59: 795–802, 1924.
 33. Haggard, H., and Y. Henderson. The treatment of carbon monoxide asphyxia by means of oxygen + CO2 inhalation. J. Am. Med. Assoc. 79: 1137–1145, 1922.
 34. Jaffe, L. S. Sources, characteristics, and fate of atmospheric carbon monoxide. Ann. NY Acad. Sci. 174: 76–88, 1970.
 35. Joels, N., and L. G. C. E. Pugh. The carbon monoxide dissociation curve of human blood. J. Physiol. London 142: 63–77, 1958.
 36. Kety, S. S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3: 1–41, 1951.
 37. Killick, E. M., and J. V. Marchant. Resuscitation of dogs from severe acute carbon monoxide poisoning. J. Physiol. London 147: 274–298, 1959.
 38. Klocke, R. A., G. H. Gurtner, and L. E. Farhi. Gas transfer across the skin in man. J. Appl. Physiol. 18: 311–316, 1963.
 39. Levitt, M. D. Production and excretion of hydrogen gas in man. New Engl. J. Med. 281: 122–127, 1969.
 40. Levitt, M. D., and D. G. Levitt. Use of inert gases to study the interaction of blood flow and diffusion during passive absorption from the gastrointestinal tract of the rat. J. Clin. Invest. 52: 1852–1862, 1973.
 41. Luomanmäki, K., and R. F. Coburn. Effects of metabolism and distribution of carbon monoxide on blood and body stores. Am. J. Physiol. 217: 354–363, 1969.
 42. Marriott, H. L. Gases in artificial respiration. Brit. Med. J. 1: 664–665, 1955.
 43. Marriott, H. L. Carbon monoxide poisoning. Brit. Med. J. 2: 1591–1592, 1958.
 44. Noehren, T. H. Pulmonary clearance of inert gases with particular reference to ethyl ether. J. Appl. Physiol. 17: 795–798, 1962.
 45. Norman, J. N., T. A. Douglas, and G. Smith. Respiratory and metabolic changes during carbon monoxide poisoning. J. Appl. Physiol. 21: 848–852, 1966.
 46. Norman, J. N., and I. McA. Ledingham. Carbon monoxide poisoning: investigations and treatment. Prog. Brain Res. 24: 101–122, 1967.
 47. Peterson, J. E., and R. D. Stewart. Absorption and elimination of carbon monoxide by inactive young men. Arch. Environ. Health 21: 165–171, 1970.
 48. Peterson, J. E., and R. D. Stewart. Predicting the carboxyhemoglobin levels resulting from carbon monoxide exposure. J. Appl. Physiol. 39: 633–638, 1975.
 49. Pitts, R. F. Physiology of the Kidney and Body Fluids (2nd ed.). Chicago, III.: Year Book Med., 1968, p. 195‐197.
 50. Rackow, H., E. Salanitre, and M. J. Frumin. Dilution of alveolar gases during nitrous oxide excretion in man. J. Appl. Physiol. 16: 723–728, 1961.
 51. Robin, E. D., D. M. Travis, P. A. Bromberg, C. E. Forkner, Jr., and J. M. Tyler. Ammonia excretion by mammalian lung. Science 129: 270–271, 1959.
 52. Rodkey, F. L., J. D. O'Neal, and H. A. Collison. Oxygen and carbon monoxide equilibria of human adult hemoglobin at atmospheric and elevated pressure. Blood 33: 57–65, 1969.
 53. Roughton, F. J. W., Transport of oxygen and carbon dioxide. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, D.C.: Am. Physiol. Soc., 1964, sect. 3, vol. i, chapt. 31, p. 767‐825.
 54. Roughton, F. J. W. and R. C. Darling. The effect of carbon monoxide on the oxyhemoglobin dissociation curve. Am. J. Physiol. 141: 17–31, 1944.
 55. Roughton, F. J. W., and W. S. Root. The fate of CO in the body during recovery from mild carbon monoxide poisoning in man. Am. J. Physiol. 145: 239–252, 1945.
 56. Severinghaus, J. W., Role of lung factors. In: Uptake and Distribution of Anesthetic Agents, by the New York Academy of Medicine. E. M. Pepper and J. Kitz, editors. New York: McGraw‐Hill, 1963, p. 59‐71.
 57. Stewart, R. D., H. H. Gay, A. W. Schaffer, D. S. Esley, and V. K. Rowe. Experimental human exposure to methyl chloroform vapor. Arch. Environ. Health 19: 467–472, 1969.
 58. Summerskill, W. H. J., and E. Wolpert. Ammonia metabolism in the gut. Am. J. Clin. Nutr. 23: 633–639, 1970.
 59. Wagner, P. D., H. A. Saltzman, and J. B. West. Measurement of continuous distribution of ventilation‐perfusion ratios: theory. J. Appl. Physiol. 36: 588–599, 1974.
 60. Whitcher, C. E., E. N. Cohen, and J. R. Trudell. Chronic exposure to anesthetic gases in the operating room. Anesthesiology 35: 348–353, 1971.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert A. Klocke. Pulmonary Excretion of Absorbed Gases. Compr Physiol 2011, Supplement 26: Handbook of Physiology, Reactions to Environmental Agents: 555-562. First published in print 1977. doi: 10.1002/cphy.cp090135