Comprehensive Physiology Wiley Online Library

Action of Environmental Agents on Nucleic Acids and Their Metabolism

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Chemical Reactions That Modify Nucleic Acids
1.1 Noncovalent Interactions
1.2 Covalent Interactions
1.3 Chemical Consequences of Modification
2 Biological Consequences of Modification
2.1 Mutagenesis: Carcinogenesis
2.2 DNA Repair Synthesis
3 Examples of Environmental Chemicals that React with Nucleic Acids
3.1 Chemicals Requiring No Prior Activation
3.2 Chemicals Requiring Prior Activation
Figure 1. Figure 1.

Base pairing of double‐stranded DNA.

Adapted from Pauling & Corey 37
Figure 2. Figure 2.

Chemical formula of a polyribonucleotide.

From James D. Watson, Molecular Biology of the Gene, copyright © 1965 by J. D. Watson; W. A. Benjamin, Inc., Menlo Park, California 55
Figure 3. Figure 3.

Nucleotide sequence of yeast alanine tRNA presented in cloverleaf form. A, adenosine; G, guanosine; C, cytidine; U, uridine; I, inosine; T, thymine riboside; ψ, pseudouridine; D, dihydrouridine; IMe, 1‐methylinosine; MeG, 1‐methylguanosine; GDiMe,N2N2‐dimethylguanosine.

Adapted from Letham 27
Figure 4. Figure 4.

The four most common bases found in DNA.

From Fishbein et al. 7
Figure 5. Figure 5.

Reactions of bisulfite with cytosine and uracil.

From Shapiro et al. 44
Figure 6. Figure 6.

Base pairing of O6‐methylguanine with thymine.

Figure 7. Figure 7.

Activation and reactions in rat liver of 2‐acetylamino‐fluorene.

From Heidelberger 14
Figure 8. Figure 8.

Scheme of metabolism of benz[a]anthracene.

From Heidelberger 14


Figure 1.

Base pairing of double‐stranded DNA.

Adapted from Pauling & Corey 37


Figure 2.

Chemical formula of a polyribonucleotide.

From James D. Watson, Molecular Biology of the Gene, copyright © 1965 by J. D. Watson; W. A. Benjamin, Inc., Menlo Park, California 55


Figure 3.

Nucleotide sequence of yeast alanine tRNA presented in cloverleaf form. A, adenosine; G, guanosine; C, cytidine; U, uridine; I, inosine; T, thymine riboside; ψ, pseudouridine; D, dihydrouridine; IMe, 1‐methylinosine; MeG, 1‐methylguanosine; GDiMe,N2N2‐dimethylguanosine.

Adapted from Letham 27


Figure 4.

The four most common bases found in DNA.

From Fishbein et al. 7


Figure 5.

Reactions of bisulfite with cytosine and uracil.

From Shapiro et al. 44


Figure 6.

Base pairing of O6‐methylguanine with thymine.



Figure 7.

Activation and reactions in rat liver of 2‐acetylamino‐fluorene.

From Heidelberger 14


Figure 8.

Scheme of metabolism of benz[a]anthracene.

From Heidelberger 14
References
 1. Air Pollution Control Administration, U.S. Dept. Health, Education, and Welfare., Air Quality for Sulfur Oxides. Washington, D. C.: 1969. (Publ. No. AP‐50.).
 2. Bannon, P., and W. Verly. Alkylation of phosphates and stability of triesters in DNA. European J. Biochem. 31: 103–111, 1972.
 3. Bergmann, E. D., and B. Pullman (editors)., Physico‐Chemical Mechanisms of Carcinogenesis. New York: Academic Press, 1969. (Proc. Intern. Symp., Jerusalem, 1969.).
 4. Brakier, L., and W. G. Verly. The lethal actions of ethyl methanesulfonate, nitrogen mustard, or myleran on the T7 coliphage. Biochim. Biophys. Acta 213: 296–311, 1970.
 5. Cleaver, J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc. Natl. Acad. Sci. US 63: 428–435, 1969.
 6. Dipple, A., P. Brooks, D. S. Mackintosh, and M. P. Rayman. Reaction of 7‐bromomethylbenz(a)anthracene with nucleic acids, polynucleotides, and nucleosides. Biochemistry 10: 4323–4330, 1971.
 7. Fishbein, L., W. G. Flamm, and H. I. Falk. Chemical Mutagens: Environmental Effects on Biological Systems. New York: Academic Press, 1970.
 8. Gelboin, H. V. A microsome‐dependent binding of benzo‐(a)pyrene to DNA. Cancer Res. 29: 1272–1276, 1969.
 9. Grover, P. L., and P. Sims. Enzyme‐catalysed reactions of polycyclic hydrocarbons with deoxyribonucleic acid and protein in vitro. Biochem. J. 110: 159–160, 1968.
 10. Grunberger, D., and I. B. Weinstein. Modification of RNA by chemical carcinogens. III. Template activity of polynucleotides modified by N‐acetoxy‐2‐acetylaminofluorene. J. Biol. Chem. 246: 1123–1128, 1971.
 11. Grunberger, G., Yu. Fu‐Li, D. Grunberger, and P. Feigelson. Mechanism of N‐hydroxy‐2‐acetylaminofluorene inhibition of rat hepatic ribonucleic acid synthesis. J. Biol. Chem. 248: 6278–6281, 1973.
 12. Hahn, F. E. (editor)., Research Symposium on Complexes of Biologically Active Substances With Nucleic Acids and Their Modes of Action. New York: Springer‐Verlag, 1971. (Progress in Molecular and Subcellular Biology.).
 13. Hayatsu, H., Y. Wataya, K. Kai, and S. Iida. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9: 2858–2865, 1970.
 14. Heidelberger, C. Current trends in chemical carcinogenesis. Federation Proc. 32: 2154–2161, 1973.
 15. Hendler, S., E. Furer, and P. Srinivasan. Synthesis and chemical properties of monomers and polymers containing 7‐methylguanine and an investigation of their substrate or template properties for bacterial deoxyribonucleic acid or ribonucleic acid polymerases. Biochemistry 9: 4141–4152, 1970.
 16. Ikemura, T., and J. E. Dahlberg. Small ribonucleic acids of E. coli. I. Characterization by polyacrylamide gel electrophoresis and fingerprint analysis. J. Biol. Chem. 248: 5024–5032, 1973.
 17. Inoue, M., H. Hayatsu, and H. Tanooka. Concentration effect of bisulfite on the inactivation of the transforming activity of DNA. Chem.‐Biol. Interact. 5: 85–95, 1972.
 18. Irving, C. C. Interaction of chemical carcinogens with DNA. Methods Cancer Res. 7: 189–244, 1973.
 19. Jacob, F., and J. Monod. Genetic regulatory mechanism in the synthesis of proteins. J. Mol. Biol. 3: 318–356, 1961.
 20. Kim, S. H., F. J. Quigley, S. L. Suddath, A. McPherson, D. Sneden, J. J. Kim, J. Weinzierl, and A. Rich. Three dimensional structure of yeast phenylalanine transfer RNA: Folding of the polynucleotide chain. Science 179: 285–288, 1973.
 21. King, C. M., and B. Phillips. Instability of fluorenylamine‐substituted polynucleotides: loss of carcinogen and production of an altered nucleic acid. Chem.‐Biol. Interact. 2: 267–271, 1970.
 22. Kochetkov, N. K., and E. I. Budovskii (editors)., Organic Chemistry of Nucleic Acids. Parts A and B. (Transl. from Russian by B. Haigh.) London: Plenum Press, 1971, 1972.
 23. Lawley, P. D. Effects of some chemical mutagens and carcinogens on nucleic acids. Progr. Nucleic Acid Res. Mol. Biol. 5: 89–131, 1966.
 24. Lawley, P. D., J. H. Lethbridge, P. A. Edwards, and K. V. Shotter. Inactivation of bacteriophage by mono‐ and difunctional sulfur mustards in relation to cross‐linking and depurination of bacteriophage DNA. J. Mol. Biol. 39: 181–198, 1969.
 25. Lawley, P. D., D. J. Orr, S. A. Shah, P. B. Farmer, and M. Jarman. Reaction products from N‐methyl‐N‐nitrosourea and deoxyribonucleic acid containing thymidine residues. Biochem. J. 135: 193–201, 1973.
 26. Legator, H. S., and W. G. Flamm. Environmental mutagenesis and repair. Ann. Rev. Biochem. 42: 684–704, 1973.
 27. Letham, D. S., Transfer RNA and cytokinins. In: The Ribonucleic Acids, edited by P. R. Stewart and D. S. Letham. New York: Springer‐Verlag, 1973, p. 81‐106.
 28. Lindahl, T., and B. Nyberg. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11: 3610–3618, 1972.
 29. Loveless, A. Possible relevance of O‐6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature 223: 206–207, 1969.
 30. Ludlum, D. B. Methylated polydeoxyribocytidylic acid templates for RNA polymerase. Biochim. Biophys. Acta 247: 412–418, 1971.
 31. Marmur, J., and P. Doty. Thermal renaturation of deoxyribonucleic acid. J. Mol. Biol. 3: 585–594, 1961.
 32. Miller, E. C., and J. A. Miller. Mechanism of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules. Pharmacol. Rev. 18: 805–838, 1966.
 33. Mukai, F., and W. Troll. The mutagenicity and initiating activity of some aromatic amine metabolites. Ann. NY Acad. Sci. 163: 828–836, 1969.
 34. Nass, M. M. K. Mitochondrial DNA: Advances, problems, and goals. Science 165: 25–35, 1969.
 35. Nomura, M. Assembly of bacterial ribosomes. Science 179: 864, 1973.
 36. O'Connor, P. J., M. J. Capps, A. M. Craig, P. D. Lawley, and S. A. Shah. Differences in the patterns of methylation in rat liver rRNA after reaction in vivo with methyl methane‐sulphonate and N,N‐dimethylnitrosamine. Biochem. J. 129: 519–528, 1972.
 37. Pauling, L., and R. B. Corey. Specific hydrogen‐bond formation between pyrimidines and purines in deoxyribonucleic acids. Arch Biochem. Biophys. 65: 164–181, 1956.
 38. Rhaese, H. J., and E. Freese. Chemical analysis of DNA alterations. I. Base liberation and backbone breakage of DNA and oligoadenylic acid induced by hydrogen peroxide and hydroxylamine. Biochim. Biophys. Acta 155: 476–490, 1968.
 39. Rupp, W. D., and P. Howard‐Flanders. Discontinuities in the DNA synthesized in an excision‐defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31: 291, 1968.
 40. Schulman, L. H., and J. P. Goddard. Loss of methionine acceptor activity resulting from a base change in the anticodon of E. coli formylmethionine tRNA. J. Biol. Chem. 248: 1341–1345, 1973.
 41. Shapiro, R. Chemistry of guanine and its biologically significant derivatives. Progr. Nucleic Acid Res. Mol. Biol. 8: 73–112, 1968.
 42. Shapiro, R. Reactions with purines and pyrimidines. Ann. NY Acad. Sci. 163: 624–630, 1969.
 43. Shapiro, R., and B. Braverman. Modification of polyuridylic acid by bisulfite: effect on double helix formation and coding properties. Biochem. Biophys. Res. Commun. 47: 544–550, 1972.
 44. Shapiro, R., B. Braverman, J. Louis, and R. E. Servis. Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J. Biol. Chem. 246: 4060–4064, 1973.
 45. Shapiro, R., R. E. Servis, and M. Welcher. Reactions of uracil and cytosine derivatives with sodium bisulfite. A specific deamination method. J. Am. Chem. Soc. 92: 422–425, 1970.
 46. Shapiro, R., and J. M. Weisgras. Bisulfite‐catalyzed transamination of cytosine and cytidine. Biochem. Biophys. Res. Commun. 40: 839–843, 1970.
 47. Stewart, P. R., and D. S. Letham (editors)., The Ribonucleic Acids. New York: Springer‐Verlag, 1973.
 48. Strauss, B., Physical‐chemical methods for the detection of the effect of mutagens on DNA. In: Chemical Mutagens, edited by A. Hollaender. New York: Plenum Press, 1971, vol. 1, p. 145‐174.
 49. Strauss, B., and T. Hill. The intermediate in the degradation of DNA alkylated with a monofunctional alkylating agent. Biochim. Biophys. Acta 213: 14–25, 1970.
 50. Troll, W., S. Belman, E. M. Berkowitz, Z. F. Chmielewicz, J. L. Ambrus, and T. J. Bardos. Differential responses of DNA and RNA polymerase to modifications of the template rat‐liver DNA caused by in vivo and in vitro action of the carcinogen acetylaminofluorene. Biochim. Biophys. Acta. 157: 16–24, 1968.
 51. Troll, W., S. Belman, and F. Mukai. Studies on the nature of the proximal bladder carcinogens. J. Natl. Cancer Inst. 43: 283–286, 1969.
 52. Troll, W., and E. M. Berkowitz. Modification of DNA and poly rG by carcinogenic agents assayed by physical and enzymatic methods. In: Physico‐Chemical Mechanisms of Carcinogenesis, edited by E. D. Bargmann and B. Pullman. New York: Academic Press, 1969, p. 166‐174. (Proc. Intern. Symp., Jerusalem, 1969.).
 53. Turchivsky, M. F., K. S. Kusova, and E. I. Budowsky. Conversion of non‐covalent interactions in nucleoproteins into covalent bonds: bisulfite‐induced formation of polynucleotide‐protein cross‐links in MS2 bacteriophage virions. FEBS Letters 38: 304–307, 1974.
 54. Walker, I. G. Intrastrand bifunctional alkylation in mammalian cells treated with mustard gas. Can. J. Biochem. 49: 322–331, 1971.
 55. Watson, J. D. Molecular Biology of the Gene. New York: Benjamin, 1965, p. 304.
 56. Watson, J. D., and F. H. C. Crick. Molecular structure for deoxyribonucleic acid. Nature 171: 737, 1953.
 57. Weinberg, R. A. Nuclear RNA metabolism. Ann. Rev. Biochem. 42: 329–354, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Walter Troll, Robert Shapiro. Action of Environmental Agents on Nucleic Acids and Their Metabolism. Compr Physiol 2011, Supplement 26: Handbook of Physiology, Reactions to Environmental Agents: 615-624. First published in print 1977. doi: 10.1002/cphy.cp090140