References |
1. |
Amemiya, Y.,
H. Sugi, and
H. Hashizume.
Effect of slow stretch on the cross‐bridges in active frog skeletal muscle.
In: Proc. Int. Symp. Biophys., 4th, Ibaraki, 1978.
Ibaraki, Japan:
Taniguchi Found.,
1978,
p. 152–163.
|
2. |
April, E. W.
Liquid‐crystalline characteristics of the thick filament lattice of striated muscle.
Nature London
257:
139–141,
1975.
|
3. |
April, E. W.
The myofilament lattice: studies on isolated fibers. IV. Lattice equilibria in striated muscle.
J. Mechanochem. Cell Motil.
3:
111–121,
1975.
|
4. |
April, E. W., and
P. W. Brandt.
The myofilament lattice: studies on isolated fibers. 3. The effect of myofilament spacing upon tension.
J. Gen. Physiol.
61:
490–508.
1973.
|
5. |
April, E. W.,
P. W. Brandt, and
G. F. Elliott.
The myofilament lattice: studies on isolated fibers. II. The effects of osmotic strength, ionic concentration, and pH upon the unit‐cell volume.
J. Cell Biol.
53:
53–65,
1972.
|
6. |
April, E. W., and
D. Wong.
Non‐isovolumetric behavior of the unit cell of skinned striated muscle fibers.
J. Mol. Biol.
101:
107–114,
1976.
|
7. |
Armitage, P.,
A. Miller,
C. D. Rodger, and
R. T. Tregear.
The structure and function of insect muscle.
Cold Spring Harbor Symp. Quant. Biol.
37:
379–387,
1972.
|
8. |
Armitage, P. M.,
R. T. Tregear, and
A. Miller.
Effect of activation on the X‐ray diffraction pattern from insect flight muscle.
J. Mol. Biol.
92:
39–53,
1975.
|
9. |
Astbury, W. T.
On the structure of biological fibres and the problem of muscle.
Proc. R. Soc. London
134:
303–328,
1947.
|
10. |
Barrington‐Leigh, J.,
R. S. Goody,
W. Hofman,
K. Holmes,
H. G. Mannhertz,
G. Rosenbaum, and
R. T. Tregear.
The interpretation of X‐ray diffraction from glycerinated flight muscle fibre bundles: new theoretical and experimental approaches.
In: Insect Flight Muscle,
edited by R. T. Tregear.
Amsterdam:
Elsevier/North‐Holland,
1977,
p. 137–146.
|
11. |
Barrington‐Leigh, J.,
K. C. Holmes,
H. G. Mannhertz,
F. Eckstein, and
R. Goody.
Effects of ATP analogues on the low‐angle X‐ray diffraction pattern of insect flight muscle.
Cold Spring Harbor Symp. Quant. Biol.
37:
443–448,
1972.
|
12. |
Bear, R. S.
Small‐angle X‐ray diffraction studies on muscle.
J. Am. Chem. Soc.
67:
1625,
1945.
|
13. |
Bear, R. S., and
C. C. Selby.
The structure of paramyosin fibrils according to X‐ray diffraction.
J. Biophys. Biochem. Cytol.
2:
55–69,
1956.
|
14. |
Bernal, J. D., and
I. Fankuchen.
X‐ray and crystallographic studies of plant virus preparations.
J. Gen. Physiol.
25:
111–146,
1941.
|
15. |
Blinks, J. R.
Influence of osmotic strength on cross section and volume of isolated single muscle fibres.
J. Physiol. London
177:
42–47,
1965.
|
16. |
Carlson, F. D.,
R. Bonner, and
A. Fraser.
Intensity fluctuation autocorrelation studies of contracting frog sartorius muscle.
Cold Spring Harbor Symp. Quant. Biol.
37:
389–396,
1972.
|
17. |
Cohen, C., and
J. Hanson.
An X‐ray diffraction study of F actin.
Biochim. Biophys. Acta
21:
177–178,
1956.
|
18. |
Craig, R.
Structure of A‐segments from frog and rabbit skeletal muscle.
J. Mol. Biol.
109:
69–81,
1977.
|
19. |
Craig, R., and
G. Offer.
Axial arrangement of crossbridges in thick filaments of vertebrate skeletal muscle.
J. Mol. Biol.
102:
325–332,
1976.
|
20. |
Craig, R., and
G. Offer.
The location of C‐protein in rabbit skeletal muscle.
Proc. R. Soc. London Ser. B
192:
451–461,
1976.
|
21. |
Craig, R.,
A. G. Szent‐Gyorgyi,
L. Beese,
P. Flicker,
P. Vibert, and
C. Cohen.
Electron microscopy of thin filaments decorated with a Ca2+‐regulated myosin.
J. Mol. Biol.
140:
35–55,
1980.
|
22. |
Depue, R. H., and
R. Rice.
F‐actin is a right‐handed helix.
J. Mol. Biol.
12:
302–303,
1965.
|
23. |
Eames, C. H., and
A. J. Rowe.
Frictional properties and molecular weight of native and synthetic myosin filaments from vertebrate skeletal muscle.
Biochim. Biophys. Acta
537:
125–144,
1978.
|
24. |
Ebashi, S.,
M. Endo, and
I. Ohtsuki.
Control of muscle contraction.
Q. Rev. Biophys.
2:
351–384,
1969.
|
25. |
Elliott, A., and
J. Lowy.
A model for the coarse structure of paramyosin filaments.
J. Mol. Biol.
53:
181–203,
1970.
|
26. |
Elliott, A., and
G. Offer.
The shape and flexibility of the myosin molecule.
J. Mol. Biol.
123:
505–519,
1978.
|
27. |
Elliott, G. F.
X‐ray diffraction studies on striated and smooth muscles.
Proc. R. Soc. London Ser. B
160:
467–472,
1964.
|
28. |
Elliott, G. F.
Force‐balances and stability in hexagonallypacked polyelectrolyte systems.
J. Theor. Biol.
21:
71–87,
1968.
|
29. |
Elliott, G. F.,
J. Lowy, and
B. M. Millman.
X‐ray diffraction from living striated muscle during contraction.
Nature London
206:
1357–1358,
1965.
|
30. |
Elliott, G. F.,
J. Lowy, and
B. M. Millman.
Low‐angle x‐ray diffraction studies of living striated muscle during contraction.
J. Mol. Biol.
25:
31–45,
1967.
|
31. |
Elliott, G. F.,
J. Lowy, and
C. R. Worthington.
An x‐ray and light diffraction study of the filament lattice of striated muscle in the living state and in rigor.
J. Mol. Biol.
6:
295–305,
1963.
|
32. |
Elliott, G. F.,
E. M. Rome, and
M. Spencer.
A type of contraction hypothesis applicable to all muscles.
Nature London
226:
417–420,
1970.
|
33. |
Faruqi, A. R., and
H. E. Huxley.
A review of techniques for time‐resolved X‐ray studies on muscle.
In: Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems,
edited by S. H. Chem,
B. Chu, and
R. Nossall.
New York:
Plenum,
1981.
(Nato Adv. Study Inst. Ser. B Phys.).
|
34. |
Gayton, D. C., and
G. F. Elliott.
Structural and osmotic studies of single giant fibres of barnacle muscle.
J. Muscle Res. Cell Motil.
1:
391–407,
1980.
|
35. |
Gillis, J. M., and
E. J. O'brien.
The effect of calcium on the structure of reconstituted muscle thin filaments.
J. Mol. Biol.
99:
445–459,
1975.
|
36. |
Goody, R. S.,
J. Barrington‐Leigh,
H. G. Mannhertz,
R. T. Tregear, and
G. Rosenbaum.
X‐ray titration of binding of beta, gamma‐imido‐ATP to myosin in insect flight muscle.
Nature London
262:
613–615,
1976.
|
37. |
Goody, R. S., and
F. Eckstein.
Thiophosphate analogues of nucleoside di‐ and tri‐phosphates.
J. Am. Chem. Soc.
93:
6252,
1971.
|
38. |
Goody, R. S.,
K. C. Holmes,
H. G. Mannhertz,
J. Barrington‐Leigh, and
G. Rosenbaum.
Cross bridge conformation as revealed by X‐ray diffraction studies of insect flight muscles with ATP analogues.
Biophys. J.
15:
687–705,
1975.
|
39. |
Gordon, A. M.,
A. F. Huxley, and
F. J. Julian.
Tension development in highly stretched vertebrate muscle fibres.
J. Physiol. London
184:
143–169,
1966.
|
40. |
Hanson, J.
Axial period of actin filaments.
Nature London
213:
353–356,
1967.
|
41. |
Hanson, J.
Recent X‐ray diffraction studies of muscle.
Q. Rev. Biophys.
1:
177–216,
1968.
|
42. |
Hanson, J.,
V. Lednev,
E. J. O'Brien, and
P. M. Bennett.
Structure of the actin‐containing filaments in vertebrate skeletal muscle.
Cold Spring Harbor Symp. Quant. Biol.
37:
311–318,
1972.
|
43. |
Hanson, J., and
J. Lowy.
The structure of F‐actin and of actin filaments isolated from muscle.
J. Mol. Biol.
6:
46–60,
1963.
|
44. |
Haselgrove, J. C.
X‐ray diffraction studies on muscle.
Cambridge, UK: Univ. of Cambridge,
1970.
Dissertation.
|
45. |
Haselgrove, J. C.
X‐ray evidence for a conformational change in the actin‐containing filaments of vertebrate striated muscles.
Cold Spring Harbor Symp. Quant. Biol.
37:
341–352,
1972.
|
46. |
Haselgrove, J. C.
X‐ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle.
J. Mol. Biol.
92:
113–143,
1975.
|
47. |
Haselgrove, J. C.
A model of myosin cross‐bridge structure consistent with the low‐angle X‐ray diffraction pattern from vertebrate muscle.
J. Muscle Res. Cell Motil.
2:
177–191,
1980.
|
48. |
Haselgrove, J. C.,
A. R. Faruqi,
H. E. Huxley, and
V. W. Arndt.
The design and use of a camera for low‐angle x‐ray diffraction experiments with synchrotron radiation.
J. Phys. E
10:
1035–1046,
1977.
|
49. |
Haselgrove, J. C., and
H. E. Huxley.
X‐ray evidence for radial cross‐bridge movement and for the sliding filament model in actively contracting muscle.
J. Mol. Biol.
77:
549–568,
1973.
|
50. |
Haselgrove, J. C., and
M. K. Reedy.
Modeling rigor cross‐bridge patterns in muscle: initial studies of the rigor lattice of insect flight muscle.
Biophys. J.
24:
713–728,
1978.
|
51. |
Haselgrove, J. C., and
C. Rodger.
The interpretation of X‐ray diffraction patterns from vertebrate striated muscle.
J. Muscle Res. Cell Motil.
1:
371–390,
1980.
|
52. |
Haselgrove, J. C.,
M. Stewart, and
H. E. Huxley.
Cross‐bridge movement during muscle contraction.
Nature London
261:
606–608,
1976.
|
53. |
Holmes, K. C.,
The myosin cross‐bridge as revealed by structure studies.
In: Myocardial Failure,
edited by G. Reiker,
A. Weber, and
J. Goodwin.
New York:
Springer‐Verlag,
1977,
p. 16–27.
|
54. |
Holmes, K. C., and
D. M. Blow.
The Use of X‐Ray Diffraction in the Study of Protein and Nucleic Acid Structure.
New York:
Wiley,
1966.
|
55. |
Holmes, K. C.,
R. S. Goody,
H. G. Mannhertz,
J. Barrington‐Leigh, and
G. Rosenbaum.
An investigation of the cross‐bridge cycle using ATP analogues and low‐angle X‐ray diffraction from glycerinated fibres of insect flight muscle.
In: Molecular Basis of Motility,
edited by L. Heilmeyer,
J. C. Ruegg, and
T. H. Wieland.
Heidelberg:
Springer‐Verlag,
1976,
p. 26–41.
(Ges. Biol. Chem., 26th, Mosbach, Germany, April 10–12, 1975.).
|
56. |
Holmes, K. C.,
R. T. Tregear, and
J. Barrington‐Leigh.
Interpretation of the low‐angle diffraction from insect flight muscle.
Proc. R. Soc. London Ser. B
207:
13–33,
1980.
|
57. |
Huxley, A. F.
Muscle structure and theories of contraction.
Prog. Biophys. Biophys. Chem.
7:
255–318,
1957.
|
58. |
Huxley, A. F.
Muscular contraction.
J. Physiol. London
243:
1–43,
1974.
|
59. |
Huxley, A. F., and
R. Niedergeerke.
Structural changes in muscle during contraction.
Nature London
173:
171–173,
1954.
|
60. |
Huxley, A. F., and
R. M. Simmons.
Proposed mechanism of force generation in striated muscle.
Nature London
233:
533–538,
1971.
|
61. |
Huxley, A. F., and
R. M. Simmons.
Mechanical transients and the origin of muscular force.
Cold Spring Harbor Symp. Quant. Biol.
37:
669–680,
1972.
|
62. |
Huxley, H. E.
X‐Ray Diffraction Studies on Muscle.
Cambridge, UK: Univ. of Cambridge,
1952.
Dissertation.
|
63. |
Huxley, H. E.
X‐ray analysis and the problem of muscle.
Proc. R. Soc. London Ser. B
141:
59–62,
1953.
|
64. |
Huxley, H. E.
The double array of filaments in cross‐striated muscle.
J. Biophys. Biochem. Cytol.
3:
631–647,
1957.
|
65. |
Huxley, H. E.
Electron microscope studies of the structure of natural and synthetic protein filaments from striated muscle.
J. Mol. Biol.
7:
281–308,
1963.
|
66. |
Huxley, H. E.
Structural difference between resting and rigor muscle: evidence from intensity changes in the low‐angle equatorial X‐ray diagram.
J. Mol. Biol.
37:
507–520,
1968.
|
67. |
Huxley, H. E.
The mechanism of muscle contraction.
Science
164:
1356–1366,
1969.
|
68. |
Huxley, H. E.
Structural changes in the actin‐ and myosin‐containing filaments during contraction.
Cold Spring Harbor Symp. Quant. Biol.
37:
361–376,
1972.
|
69. |
Huxley, H. E.,
Time resolved X‐ray diffraction studies on muscle.
In: Cross‐Bridge Mechanism in Muscle Contraction,
edited by H. Sugi and
G.H. Pollack.
Tokyo:
Univ. of Tokyo Press,
1979,
p. 391–401.
|
70. |
Huxley, H. E., and
W. Brown.
The low‐angle x‐ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor.
J. Mol. Biol.
30:
383–434,
1967.
|
71. |
Huxley, H. E.,
W. Brown, and
K. C. Holmes.
Constancy of axial spacings in frog sartorius muscle during contraction.
Nature London
206:
1358,
1965.
|
72. |
Huxley, H. E.,
A. R. Faruqi,
J. Bordas,
M. H. J. Koch, and
J. R. Milch.
The use of synchrotron radiation in time‐resolved X‐ray diffraction studies of myosin layer‐line reflections during muscle contraction.
Nature London
284:
140–143,
1980.
|
73. |
Huxley, H. E., and
J. Hanson.
Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation.
Nature London
173:
973–974,
1954.
|
74. |
Huxley, H. E., and
J. C. Haselgrove.
The structural basis of contraction in muscle and its study by rapid X‐ray diffraction methods.
In: Myocardial Failure,
edited by G. Reiker,
A. Weber, and
J. Goodwin.
New York:
Springer‐Verlag,
1977,
p. 4–15.
|
75. |
Huxley, H. E.,
R. M. Simmons,
A. R. Faruqi,
M. Kress, and
J. Bordas.
Millisecond time‐resolved changes in X‐ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation.
Proc. Natl. Acad. Sci. USA
78:
2297–2301,
1981.
|
76. |
Katsura, I., and
H. Noda.
Assembly of myosin molecules into the structure of thick filaments of muscle.
Adv. Biophys.
5:
177–202,
1973.
|
77. |
Koretz, J. F.
Effects of C‐protein on synthetic myosin filament structure.
Biophys. J.
27:
433–446,
1979.
|
78. |
Lamvik, M. K.
Muscle thick filament mass measured by electron scattering.
J. Mol. Biol.
122:
55–68,
1978.
|
79. |
Lowy, J.,
F. R. Poulsen, and
P. J. Vibert.
Myosin filaments in vertebrate smooth muscle.
Nature London
225:
1053–1054,
1970.
|
80. |
Lowy, J., and
P. J. Vibert.
Structure and organisation of actin in a molluscan smooth muscle.
Nature London
215:
1254–1255,
1967.
|
81. |
Lowy, J., and
P. J. Vibert.
Studies of the low‐angle X‐ray diffraction patterns of a molluscan smooth muscle during tonic contraction and rigor.
Cold Spring Harbor Symp. Quant. Biol.
37:
353–359,
1972.
|
82. |
Lowy, J.,
P. J. Vibert,
J. C. Haselgrove, and
F. R. Poulsen.
The structure of the myosin elements in vertebrate smooth muscles.
Philos. Trans. R. Soc. London Ser. B
265:
191–196,
1973.
|
83. |
Luther, P. K., and
J. Squire.
Three‐dimensional structure of the vertebrate muscle A band.
J. Mol. Biol.
141:
409–439,
1980.
|
84. |
Lymn, R. W.
Equatorial X‐ray reflections and cross arm movement in skeletal muscle.
Nature London
258:
770–772,
1975.
|
85. |
Lymn, R. W.
Low‐angle x‐ray diagrams from skeletal muscle: the effect of AMP‐PNP, a non‐hydrolyzed analogue of ATP.
J. Mol. Biol.
99:
567–582,
1975.
|
86. |
Lymn, R. W.
Myosin subfragment‐1 attachment to actin. Expected effect on equatorial reflections.
Biophys. J.
21:
92–98,
1978.
|
87. |
Lymn, R. W., and
H. E. Huxley.
X‐ray diagrams from skeletal muscle in the presence of ATP analogues.
Cold Spring Harbor Symp. Quant. Biol.
37:
449–453,
1972.
|
88. |
Lymn, R. W., and
E. W. Taylor.
Mechanism of adenosine triphosphate hydrolysis by actomyosin.
Biochemistry
10:
4617–4624,
1971.
|
89. |
Maeda, Y.
X‐ray diffraction patterns from molecular arrangements with 38‐nm periodicities around muscle thin filaments.
Nature London
277:
670–672,
1979.
|
90. |
Maeda, Y.,
I. Matsubara, and
N. Yagi.
Structural changes in thin filaments of crab striated muscle.
J. Mol. Biol.
127:
191–201,
1979.
|
91. |
Magid, A., and
M. K. Reedy.
X‐ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method.
Biophys. J.
30:
27–40,
1980.
|
92. |
Mannhertz, H. G.,
J. Barrington‐Leigh,
K. Holmes, and
G. Rosenbaum.
Identification of the transitory complex myosin‐ATP by the use of α, β‐methylene‐ATP.
Nature London New Biol.
241:
226,
1973.
|
93. |
Marston, S. B.,
C. D. Rodger, and
R. T. Tregear.
Changes in muscle crossbridges when beta, gamma‐imido‐ATP binds to myosin.
J. Mol. Biol.
104:
263–276,
1976.
|
94. |
Marston, S. B., and
R. T. Tregear.
Evidence for a complex between myosin and ADP in relaxed muscle fibres.
Nature London New Biol.
235:
23–24,
1972.
|
95. |
Marston, S. B.,
R. T. Tregear,
C. D. Rodger, and
M. L. Clarke.
Coupling between the enzymatic site of myosin and the mechanical output of muscle.
J. Mol. Biol.
28:
111–126,
1979.
|
96. |
Maruyama, K., and
A. Weber.
Binding of ATP to myofibrils during contraction and relaxation.
Biochemistry
11:
2990–2998,
1972.
|
97. |
Matsubara, I.
X‐ray diffraction studies of the heart.
Annu. Rev. Biophys. Bioeng.
9:
81–105,
1980.
|
98. |
Matsubara, I., and
G. F. Elliott.
X‐ray diffraction studies on skinned single fibres of frog skeletal muscle.
J. Mol. Biol.
72:
657–669,
1972.
|
99. |
Matsubara, I.,
A. Kamiyama, and
H. Suga.
X‐ray diffraction study of contracting heart muscle.
J. Mol. Biol.
111:
121–128,
1977.
|
100. |
Matsubara, I., and
B. M. Millman.
X‐ray diffraction patterns from mammalian heart muscle.
J. Mol. Biol.
82:
527–536,
1974.
|
101. |
Matsubara, I.,
H. Suga, and
N. Yagi.
An X‐ray diffraction study of the cross‐circulated canine heart.
J. Physiol. London
270:
311–320,
1977.
|
102. |
Matsubara, I., and
N. Yagi.
A time‐resolved X‐ray diffraction study of muscle during twitch.
J. Physiol. London
278:
297–307,
1978.
|
103. |
Matsubara, I.,
N. Yagi, and
M. Endoh.
Behaviour of myosin projections during the staircase phenomenon of heart muscle.
Nature London
273:
67,
1978.
|
104. |
Matsubara, I.,
N. Yagi, and
M. Endoh.
Movement of myosin heads during a heart beat.
Nature London
278:
474–476,
1979.
|
105. |
Matsubara, I.,
N. Yagi, and
H. Hashizume.
Use of an X‐ray television for diffraction of the frog striated muscle.
Nature London
255:
728–729,
1975.
|
106. |
Maw, M. C., and
A. Rowe.
Fraying of A‐filaments into three subfilaments.
Nature London
286:
412–414,
1980.
|
107. |
Miller, A., and
R. T. Tregear.
Evidence concerning cross‐bridge attachment during muscle contraction.
Nature London
226:
1060–1061,
1970.
|
108. |
Miller, A., and
R. T. Tregear.
X‐ray studies on the structure and function of invertebrate muscle.
In: Contractility of Muscle Cells and Related Processes,
edited by R. J. Podolsky.
London:
Prentice‐Hall,
1971.
|
109. |
Miller, A., and
R. T. Tregear.
Structure of insect fibrillar flight muscle in the presence and absence of ATP.
J. Mol. Biol.
70:
85–104,
1972.
|
110. |
Miller, A., and
J. Woodhead‐Galloway.
Long range forces in muscle.
Nature London
229:
470–473,
1971.
|
111. |
Millman, B., and
P. M. Bennett.
Structure of the cross‐striated adducter muscle of the scallop.
J. Mol. Biol.
103:
439–467,
1976.
|
112. |
Millman, B. M.,
G. F. Elliott, and
J. Lowy.
Axial period of actin filaments: X‐ray diffraction studies.
Nature London
213:
356–358,
1967.
|
113. |
Millman, B. M.,
T. J. Racey, and
I. Matsubara.
Effects of hyperosmotic solutions on the filament lattice of intact frog skeletal muscle.
Biophys. J.
33:
189–202,
1981.
|
114. |
Moore, P. B.,
H. E. Huxley, and
D. J. DeRosier.
Three‐dimensional reconstruction of F‐actin, thin filaments and decorated thin filaments.
J. Mol. Biol.
50:
279–295,
1970.
|
115. |
Moos, C.,
G. Offer,
R. Starr, and
P. Bennett.
Interaction of C‐protein with myosin, myosin rod and light meromyosin.
J. Mol. Biol.
97:
1–9,
1975.
|
116. |
Morimoto, K., and
W. F. Harrington.
Substructure of the thick filament of vertebrate striated muscle.
J. Mol. Biol.
83:
83–97,
1974.
|
117. |
Namba, K.,
K. Wakabayashi, and
T. Mitsui.
X‐ray structure analysis of the thin filament of crab striated muscle in the rigor state.
J. Mol. Biol.
138:
1–26,
1980.
|
118. |
O'Brien, E. J.,
P. M. Bennett, and
J. Hanson.
Optical diffraction studies of myofibrillar structure.
J. Mol. Biol.
83:
83–97,
1971.
|
119. |
Offer, G.
C‐protein and periodicity in the thick filaments of vertebrate skeletal muscle.
Cold Spring Harbor Symp. Quant. Biol.
37:
87–95,
1972.
|
120. |
Offer, G., and
A. Elliott.
Can a myosin molecule bind to two actin filaments?
Nature London
271:
325–329,
1978.
|
121. |
Offer, G.,
C. Moss, and
R. Starr.
A new protein of the thick filaments of vertebrate skeletal myofibrils.
J. Mol. Biol.
74:
653–676,
1973.
|
122. |
Ohtsuki, I. T.,
Y. Masaki,
Y. Nonomura, and
S. Ebashi.
Periodic distribution of troponin along the thin filament.
J. Biochem. Tokyo
61:
817–819,
1967.
|
123. |
Page, S., and
H. E. Huxley.
Filament lengths in striated muscle.
J. Cell Biol.
19:
369–370,
1963.
|
124. |
Parry, D. A. D., and
J. M. Squire.
Structural role of tropomyosin in muscle regulation: analysis of the X‐ray diffraction patterns from relaxed and contracting muscles.
J. Mol. Biol.
75:
33–55,
1973.
|
125. |
Pepe, F. A.
The myosin filament. I. Structural organization from antibody staining observed in electron microscopy.
J. Mol. Biol.
27:
203–225,
1967.
|
126. |
Pepe, F. A.,
F. T. Ashton,
P. Dowben, and
M. Stewart.
The myosin filament. VII. Changes in internal structure along the length of the filament.
J. Mol. Biol.
145:
421–440,
1981.
|
127. |
Pepe, F. A., and
B. Druker.
The myosin filament.
J. Mol. Biol.
130:
379–393,
1979.
|
128. |
Podolsky, R. J., and
A. C. Nolan.
Muscle contraction transients, cross‐bridge kinetics and the Fenn effect.
Cold Spring Harbor Symp. Quant. Biol.
37:
661–668,
1972.
|
129. |
Podolsky, R. J.,
H. St. Onge,
L. Yu, and
R. W. Lymn.
X‐ray diffraction of actively shortening muscle.
Proc. Natl. Acad. Sci. USA
73:
813–817,
1976.
|
130. |
Potter, J.
The content of troponin, tropomyosin, actin and myosin in rabbit skeletal muscle myofibrils.
Arch. Biochem. Biophys.
162:
436–441,
1974.
|
131. |
Pringle, J. W. S.,
The mechanical characteristics of insect fibrillar muscle.
In: Insect Flight Muscle,
edited by R. T. Tregear.
Amsterdam:
Elsevier/North‐Holland,
1977,
p. 177–196.
|
132. |
Reedy, M. K.
Ultrastructure of insect flight muscle.
J. Mol. Biol.
31:
155–176,
1968.
|
133. |
Reedy, M. K.,
G. F. Bahr, and
D. A. Fischman.
How many myosins per cross bridge? I. Flight muscle myofibrils from the blowfly.
Cold Spring Harbor Symp. Quant. Biol.
37:
397–422,
1972.
|
134. |
Reedy, M. K.,
K. C. Holmes, and
R. T. Tregear.
Induced changes in orientation of the cross‐bridges of glycerinated insect flight muscle.
Nature London
207:
1276–1280,
1965.
|
135. |
Rodger, C. D., and
R. T. Tregear.
Crossbridge angle when ADP is bound to myosin.
J. Mol. Biol.
86:
495–497,
1974.
|
136. |
Rome, E.
Light and X‐ray diffraction studies of the filament lattice of glycerol‐extracted rabbit psoas muscle.
J. Mol. Biol.
27:
591–602,
1967.
|
137. |
Rome, E.
X‐ray diffraction studies of the filament lattice of striated muscle in various bathing media.
J. Mol. Biol.
37:
331–344,
1968.
|
138. |
Rome, E.
Relaxation of glycerinated muscles: low‐angle X‐ray diffraction studies.
J. Mol. Biol.
65:
331–345,
1972.
|
139. |
Rome, E.
Structural studies by X‐ray diffraction of striated muscle permeated with certain ions and proteins.
Cold Spring Harbor Symp. Quant. Biol.
37:
331–339,
1972.
|
140. |
Rome, E. M.,
T. Hirabayashi, and
S. V. Perry.
X‐ray diffraction of muscle labelled with antibody to troponin‐C.
Nature London New Biol.
244:
154–155,
1973.
|
141. |
Rome, E. M.,
G. Offer, and
F. A. Pepe.
X‐ray diffraction of muscle labelled with antibody to C‐protein.
Nature London New Biol.
244:
152–154,
1973.
|
142. |
Rüdel, R., and
F. Zite‐Ferenczy.
Interpretation of light diffraction by cross‐striated muscle as Bragg reflection of light by the lattice of contractile proteins.
J. Physiol. London
290:
317–330,
1979.
|
143. |
Selby, C., and
R. S. Bear.
The structure of actin‐rich filaments of muscles according to X‐ray diffraction.
J. Biophys. Biochem. Cytol.
2:
71–85,
1956.
|
144. |
Seymour, J., and
E. J. O'Brien.
The position of tropomyosin in muscle thin filaments.
Nature London
283:
680–681,
1980.
|
145. |
Shear, D. B.
Electrostatic forces in muscle contraction.
J. Theor. Biol.
28:
531–546,
1970.
|
146. |
Shoenberg, C. F., and
J. C. Haselgrove.
Filaments and ribbons in vertebrate smooth muscle.
Nature London
249:
152–154,
1974.
|
147. |
Sjöström, M., and
J. M. Squire.
Fine structure of the A‐band in cryo‐sections. The structure of the A‐band of human skeletal muscle fibres from ultra‐thin cryo‐sections negatively stained.
J. Mol. Biol.
109:
49–68,
1977.
|
148. |
Slayter, H. S., and
S. Lowey.
Substructure of the myosin molecule as visualized by electron microscopy.
Proc. Natl. Acad. Sci. USA
58:
1611–1618,
1967.
|
149. |
Spudich, J. A.,
H. E. Huxley, and
J. T. Finch.
Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin‐troponin complex with actin.
J. Mol. Biol.
72:
619–632,
1972.
|
150. |
Spudich, J. A., and
S. Watt.
The regulation of rabbit skeletal muscle contraction.
J. Biol. Chem.
246:
4866–4871,
1971.
|
151. |
Squire, J. M.
General model for the structure of all myosin‐containing filaments.
Nature London
233:
457–462,
1971.
|
152. |
Squire, J. M.
General model of myosin filament structure. II. Myosin filaments and cross‐bridge interactions in vertebrate striated and insect flight muscles.
J. Mol. Biol.
72:
125–138,
1972.
|
153. |
Squire, J. M.
General model of myosin filament structure. III. Molecular packing arrangements in myosin filaments.
J. Mol. Biol.
77:
291–323,
1973.
|
154. |
Squire, J. M.
Muscle filament structure and muscle contraction.
Annu. Rev. Biophys. Bioeng.
4:
137–163,
1975.
|
155. |
Sugi, H.,
Y. Amemiya, and
H. Hashizume.
Time‐resolved X‐ray diffraction from skeletal muscle during the course of an after‐loaded isotonic twitch.
In: Proc. Int. Symp. Biophys., 4th, Ibaraki, 1978.
Ibaraki, Japan:
Taniguchi Found.,
1978,
p. 164–176.
|
156. |
Szent‐Gyorgyi, A. G.,
C. Cohen, and
D. E. Philpott.
Light meromyosin fraction I: a helical molecule from myosin.
J. Mol. Biol.
2:
133–142,
1960.
|
157. |
Taylor, K. A., and
L. A. Amos.
A new model for the geometry of the binding of the myosin crossbridges to muscle thin filaments.
J. Mol. Biol.
147:
297–324,
1981.
|
158. |
Thomas, D. D., and
R. Cooke.
The measurement of myosin head orientation in muscle fibers using nitroxide spin labels.
Biophys. J.
25:
19a,
1979.
|
159. |
Thomas, D. D., and
R. Cooke.
Orientation of spin labelled myosin heads in glycerinated muscle fibers.
Biophys. J.
32:
891–906,
1980.
|
160. |
Tregear, R. T. (editor).
Insect Flight Muscle.
Amsterdam:
Elsevier/North‐Holland,
1977.
|
161. |
Tregear, R. T.,
J. R. Milch,
R. S. Goody,
K. C. Holmes, and
C. D. Rodger.
The use of some novel X‐ray diffraction techniques to study the effect of nucleotides on cross‐bridges in insect flight muscle.
In: Cross‐Bridge Mechanism in Muscle Contraction,
edited by H. Sugi and
G. H. Pollack.
Tokyo:
Univ. of Tokyo Press,
1979,
p. 391–401.
|
162. |
Tregear, R. T., and
A. Miller.
Evidence of crossbridge movement during contraction of insect flight muscle.
Nature London
222:
1184–1185,
1969.
|
163. |
Tregear, R. T., and
J. M. Squire.
Myosin content and filament structure in smooth and striated muscle.
J. Mol. Biol.
77:
279–290,
1973.
|
164. |
Ullrick, W.
A theory of contraction for striated muscle.
J. Theor. Biol.
15:
53–69,
1976.
|
165. |
Vainshtein, B. K.
Diffraction of X‐Rays by Chain Molecules.
Amsterdam:
Elsevier,
1966.
|
166. |
Vibert, P. J.,
J. C. Haselgrove,
J. Lowy, and
F. R. Poulsen.
Structural changes in actin‐containing filaments of muscle.
J. Mol Biol.
71:
757–767,
1972.
|
167. |
Vibert, P. J.,
J. Lowy,
J. C. Haselgrove, and
F. R. Poulsen.
Structural changes in actin filaments of muscle.
Nature London New Biol.
236:
182–183,
1972.
|
168. |
Vibert, P.,
A. G. Szent‐Gyorgyi,
R. Craig,
J. Wray, and
C. Cohen.
Changes in crossbridge attachment in a myosin‐regulated muscle.
Nature London
273:
64–66,
1978.
|
169. |
Wakabayashi, T.,
H. E. Huxley,
L. A. Amos, and
A. Klug.
Three‐dimensional image reconstruction of actin‐tropomyosin complex and actin‐tropomyosin‐troponin T‐troponin I complex.
J. Mol. Biol.
93:
477–497,
1975.
|
170. |
Weber, A., and
R. D. Bremel.
Regulation of contraction and relaxation in the myofibril.
In: Contractility of Muscle Cells and Related Processes,
edited by R.J. Podolsky.
London:
Prentice‐Hall,
1971,
p. 37–53.
|
171. |
Worthington, C. R.
Large axial spacings in striated muscle.
J. Mol. Biol.
1:
398–401,
1959.
|
172. |
Wray, J. S.
Structure of the backbone in myosin filaments of muscle.
Nature London
277:
37–40,
1979.
|
173. |
Wray, J. S.
Filament geometry and the activation of flight muscles.
Nature London
280:
325–326,
1980.
|
174. |
Wray, J. S.,
P. J. Vibert, and
C. Cohen.
Cross‐bridge arrangements in Limulus muscle.
J. Mol. Biol.
88:
343–348,
1974.
|
175. |
Wray, J. S.,
P. J. Vibert, and
C. Cohen.
Diversity of cross‐bridge configurations in invertebrate muscles.
Nature London
257:
561–564,
1975.
|
176. |
Wray, J.,
P. J. Vibert, and
C. Cohen.
Actin filaments in muscle: pattern of myosin and tropomyosin/troponin attachments.
J. Mol. Biol.
124:
501–521,
1978.
|
177. |
Yagi, N.,
M. H. Ito,
H. Nakajima,
T. Izumi, and
I. Matsubara.
Return of myosin heads to thick filaments after muscle contraction.
Science
197:
685–687,
1977.
|
178. |
Yagi, N., and
I. Matsubara.
Recent progress in fast X‐ray diffraction of muscle.
In: Proc. Int. Symp. Biophys., 4th, Ibaraki, 1978.
Ibaraki, Japan:
Taniguchi Found.,
1978,
p. 142–151.
|
179. |
Yagi, N., and
I. Matsubara.
Myosin heads do not move on activation in highly stretched vertebrate striated muscle.
Science
207:
307–308,
1980.
|
180. |
Yagi, N.,
E. J. O'Brien, and
I. Matsubara.
Changes of thick filament structure during contraction of frog striated muscle.
Biophys. J.
33:
121–138,
1981.
|
181. |
Yount, R. G.,
D. Ojala, and
D. Babcock.
Interaction of P‐N‐P and P‐C‐P analogues of adenosine triphosphate with heavy meromyosin, myosin and actomyosin.
Biochemistry
10:
2490–2496,
1971.
|
182. |
Yu, L. C.,
J. E. Hartt, and
R. J. Podolsky.
Equatorial X‐ray intensities and isometric force levels in frog sartorius muscle.
J. Mol. Biol.
132:
53–67,
1979.
|
183. |
Yu, L. C.,
R. W. Lymn, and
R. J. Podolsky.
Characterization of a non‐indexable equatorial X‐ray reflection from frog sartorius muscle.
J. Mol. Biol.
115:
455–464,
1977.
|