References |
1. |
Abbott, R. H., and
G. J. Steiger.
Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle.
J. Physiol. London
266:
13–42,
1977.
|
2. |
Chock, S. P.,
P. B. Chock, and
E. Eisenberg.
Pre‐steady state kinetic evidence for a cyclic interaction of myosin subfragment‐1 with actin during the hydrolysis of ATP.
Biochemistry
15:
3224–3253,
1976.
|
3. |
Civan, M. M., and
R. J. Podolsky.
Contraction kinetics of striated muscle fibres following quick changes in load.
J. Physiol. London
184:
511–534,
1966.
|
4. |
Craig, R.,
A. G. Szent‐Gyorgyi,
L. Beese,
P. Flicker,
P. Vibert, and
C. Cohen.
Electron microscopy of thin filaments decorated with a Ca2+‐regulated myosin.
J. Mol. Biol.
140:
35–55,
1980.
|
5. |
Curtin, N. A., and
R. E. Davies.
Chemical and mechanical changes during stretching of activated frog skeletal muscle.
Cold Spring Harbor Symp. Quant. Biol.
37:
619–626,
1972.
|
6. |
Eastwood, A. B.,
D. S. Wood,
K. L. Bock, and
M. M. Sorenson.
Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas.
Tissue Cell
11:
553–566,
1979.
|
7. |
Ebashi, S., and
M. Endo.
Calcium ion and muscle contraction.
Prog. Biophys. Mol. Biol.
18:
123–183,
1968.
|
8. |
Edman, K. A. P.
The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres.
J. Physiol. London
291:
143–159,
1979.
|
9. |
Eisenberg, E., and
L. E. Greene.
The relation of muscle biochemistry to muscle physiology.
Annu. Rev. Physiol.
42:
293–309,
1980.
|
10. |
Eisenberg, E., and
T. L. Hill.
A cross‐bridge model of muscle contraction.
Prog. Biophys. Mol. Biol.
33:
55–82,
1978.
|
11. |
Eisenberg, E.,
T. L. Hill, and
Y. Chen.
Cross‐bridge model of muscle contraction. Quantitative analysis.
Biophys. J.
29:
195–227,
1980.
|
12. |
Eisenberg, E., and
W. W. Kielley.
Evidence for a refractory state of heavy meromyosin and subfragment‐1 unable to bind to actin in the presence of ATP.
Cold Spring Harbor Symp. Quant. Biol.
37:
145–152,
1972.
|
13. |
Fenn, W. O.
A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog.
J. Physiol. London
58:
175–203,
1923.
|
14. |
Fenn, W. O.
The relation between the work performed and the energy liberated in muscular contraction.
J. Physiol. London
58:
373–395,
1924.
|
15. |
Ford, L. E.,
A. F. Huxley, and
R. M. Simmons.
Tension responses to sudden length change in stimulated frog muscle fibres near slack length.
J. Physiol. London
269:
441–515,
1977.
|
16. |
Ford, L. E.,
A. F. Huxley, and
R. M. Simmons.
The relation between stiffness and filament overlap in stimulated frog muscle fibres.
J. Physiol. London
311:
219–249,
1981.
|
17. |
Goldman, Y., and
R. M. Simmons.
Active and rigor muscle stiffness.
J. Physiol. London
269:
55P–57P,
1977.
|
18. |
Gordon, A. M.,
A. F. Huxley, and
F. J. Julian.
The variation in isometric tension with sarcomere length in vertebrate muscle fibres.
J. Physiol. London
184:
170–192,
1966.
|
19. |
Greene, L. E., and
E. Eisenberg.
Cooperative binding of myosin subfragment‐1 to the actin‐troponin‐tropomyosin complex.
Proc. Natl. Acad. Sci. USA
77:
2616–2620,
1980.
|
20. |
Gulati, J., and
R. J. Podolsky.
Contraction transients of skinned muscle fibers: effects of calcium and ionic strength.
J. Gen. Physiol.
72:
701–716,
1978.
|
21. |
Gulati, J., and
R. J. Podolsky.
Isotonic contraction of skinned muscle fibers on a slow time base. Effects of ionic strength and calcium.
J. Gen. Physiol.
78:
233–257,
1981.
|
22. |
Haselgrove, J. C., and
H. E. Huxley.
X‐ray evidence for radial cross‐bridge movement and for the sliding filament model in actively contracting muscle.
J. Mol. Biol.
77:
549–568,
1973.
|
23. |
Hellam, D. C., and
R. J. Podolsky.
Force measurements in skinned muscle fibres.
J. Physiol. London
200:
807–819,
1969.
|
24. |
Herzig, J. W.,
T. Yamamoto, and
J. C. Ruegg.
Dependence of force and immediate stiffness on sarcomere length and Ca2+ activation in frog muscle fibres.
Pfluegers Arch.
389:
97–103,
1981.
|
25. |
Hill, A. V.
The maximum work and mechanical efficiency of human muscles and their most economical speed.
J. Physiol. London
56:
19–41,
1922.
|
26. |
Hill, A. V.
The heat of shortening and the dynamic constants of muscle.
Proc. R. Soc. London Ser. B
126:
136–195,
1938.
|
27. |
Hill, D. K.
Tension due to interaction between the sliding filaments in resting striated muscle: the effect of stimulation.
J. Physiol. London
199:
637–684,
1968.
|
28. |
Hill, T. L.
Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I.
Prog. Biophys. Mol. Biol.
28:
267–340,
1974.
|
29. |
Hill, T. L.
Theoretical formalism for the sliding filament model of contraction of striated muscle. Part II.
Prog. Biophys. Mol. Biol.
29:
105–159,
1974.
|
30. |
Huxley, A. F.
Muscle structure and theories of contraction.
Prog. Biophys. Biophys. Chem.
7:
255–318,
1957.
|
31. |
Huxley, A. F.
Muscular contraction.
J. Physiol. London
243:
1–43,
1974.
|
32. |
Huxley, A. F.
Reflections on Muscle.
Princeton, NJ:
Princeton Univ. Press,
1980.
|
33. |
Huxley, A. F., and
R. Niedergerke.
Interference microscopy of living muscle fibres.
Nature London
173:
971–973,
1954.
|
34. |
Huxley, A. F., and
L. D. Peachey.
The maximum length for contraction in vertebrate striated muscle.
J. Physiol. London
156:
150–165,
1961.
|
35. |
Huxley, A. F., and
R. M. Simmons.
Proposed mechanism of force generation in striated muscle.
Nature London
233:
533–538,
1971.
|
36. |
Huxley, H. E.
The double array of filaments in cross‐striated muscle.
J. Biophys. Biochem. Cytol.
3:
631–648,
1957.
|
37. |
Huxley, H. E.
The mechanism of muscular contraction.
Science
164:
1356–1366,
1969.
|
38. |
Huxley, H. E.,
Time resolved X‐ray diffraction studies on muscle.
In: Cross‐Bridge Mechanism in Muscle Contraction,
edited by H. Sugi and
G. H. Pollack.
Tokyo:
Univ. of Tokyo Press,
1979,
p. 391–401.
|
39. |
Huxley, H. E., and
J. Hanson.
Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation.
Nature London
173:
973,
1954.
|
40. |
Jewell, B. R., and
D. R. Wilkie.
An analysis of the mechanical components in frog's striated muscle.
J. Physiol. London
143:
515–540,
1958.
|
41. |
Julian, F. J.
The effect of calcium on the force‐velocity relation of briefly glycerinated frog muscle fibres.
J. Physiol. London
218:
117–145,
1971.
|
42. |
Julian, F. J., and
M. R. Sollins.
Variation of muscle stiffness with force at increasing speeds of shortening.
J. Gen. Physiol.
66:
287–302,
1975.
|
43. |
Kawai, M.
Head rotation or dissociation? A study of exponential rate processes in chemically skinned rabbit muscle fibers when MgATP concentration is changed.
Biophys. J.
22:
97–103,
1978.
|
44. |
Kawai, M., and
P. W. Brandt.
Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog, and crayfish.
J. Muscle Res. Cell Motil.
1:
279–303,
1980.
|
45. |
Lowey, S.,
H. S. Slayter,
A. G. Weeds, and
H. Baker.
Substructure of the myosin molecule.
J. Mol. Biol.
43:
1–29,
1969.
|
46. |
Lymn, R. W., and
E. W. Taylor.
Mechanism of adenosine triphosphate hydrolysis by actomyosin.
Biochemistry
10:
4617–4624,
1971.
|
47. |
Marston, S. B.,
C. D. Rodger, and
R. T. Tregear.
Changes in muscle cross bridges when β, γ‐imido‐ATP binds to myosin.
J. Mol. Biol.
104:
263–276,
1976.
|
48. |
Marston, S. B.,
R. T. Tregear,
C. D. Rodger, and
M. L. Clark.
Coupling between the enzymatic site of myosin and the mechanical output of muscle.
J. Mol. Biol.
128:
111–126,
1979.
|
49. |
Natori, R.
The property and contraction process of isolated myofibrils.
Jikeikai Med. J.
1:
119–126,
1954.
|
50. |
Podolsky, R. J.
Kinetics of muscular contraction: the approach to the steady state.
Nature London
188:
666–668,
1960.
|
51. |
Podolsky, R. J.
The maximum sarcomere length for contraction of isolated myofibrils.
J. Physiol. London
170:
110–123,
1964.
|
52. |
Podolsky, R. J., and
A. C. Nolan.
Cross‐bridge properties derived from physiological studies of frog muscle fibers.
In: Contractility of Muscle Cells,
edited by R. J. Podolsky.
Engle‐wood Cliffs, NJ:
Prentice‐Hall,
1971,
p. 247–260.
|
53. |
Podolsky, R. J.,
R. St. Onge,
L. Yu, and
R. W. Lymn.
X‐ray diffraction of actively shortening muscle.
Proc. Natl. Acad. Sci. USA
73:
813–817,
1976.
|
54. |
Podolsky, R. J., and
L. E. Teichholz.
The relation between calcium and contraction in skinned muscle fibres.
J. Physiol. London
211:
19–35,
1970.
|
55. |
Pringle, J. W. S.
The contractile mechanism of insect fibrillar muscle.
Prog. Biophys. Biophys. Chem.
17:
1–60,
1967.
|
56. |
Ramsey, R. W., and
S. F. Street.
The isometric length‐tension diagram of isolated skeletal muscle fibers of the frog.
J. Cell. Comp. Physiol.
15:
11–34,
1940.
|
57. |
Reedy, M. K.,
K. C. Holmes, and
R. T. Tregear.
Induced changes in orientation of the cross bridges of glycerinated insect flight muscle.
Nature London
207:
1276–1280,
1965.
|
58. |
Sleep, J. A., and
R. L. Hutton.
Actin mediated release of ATP from a myosin‐ATP complex.
Biochemistry
17:
5423–5430,
1978.
|
59. |
Stein, L. A.,
R. P. Schwarz,
P. B. Chock, and
E. Eisenberg.
The mechanism of actomyosin ATPase: evidence that ATP hydrolysis can occur without dissociation of the actomyosin complex.
Biochemistry
18:
3894–3909,
1979.
|
60. |
Szent‐Gyorgyi, A.
Free‐energy relations and contractions of actomyosin.
Biol. Bull. Woods Hole Mass.
96:
140–161,
1949.
|
61. |
Taylor, S. R., and
R. Rudel.
Striated muscle fibers: inactivation of contraction induced by shortening.
Science
167:
882–884,
1970.
|
62. |
Yu, L. C.,
J. E. Hartt, and
R. J. Podolsky.
Equatorial X‐ray intensities and isometric force levels in frog sartorius muscle.
J. Mol. Biol.
132:
53–67,
1979.
|