References |
1. |
Abbott, B. C, and
J. V. Howarth.
Heat studies in excitable tissues.
Physiol. Rev.
53:
120–158,
1973.
|
2. |
Adrian, R. H.,
W. K. Chandler, and
A. L. Hodgkin.
The kinetics of mechanical activation in frog muscle.
J. Physiol. London
204:
207–231,
1969.
|
3. |
Aickin, C. C, and
R. C. Thomas.
Micro‐electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres.
J. Physiol. London
267:
791–810,
1977.
|
4. |
Altschuld, R. A., and
G. P. Brierley.
Interaction between the creatine kinase of heat mitochondria and oxidative phosphorylation.
J. Mol. Cell. Cardiol.
9:
875–893,
1977.
|
5. |
Applegate, D. E., and
E. Homsher.
Calcium transport and ATPase activity in intact sarcoplasmic reticulum (Abstract).
Federation Proc.
39:
294,
1980.
|
6. |
Aubert, X.
Le Couplage energetique de la contraction musculaire.
Brussels:
Arscia,
1956.
|
7. |
Aubert, X., and
G. Maréchal.
La fraction labile de la thermogenese associée au maintien de la contraction isometrique.
Arch. Int. Physiol. Biochim.
71:
282–283,
1963.
|
8. |
BÁRÁNy, M.
ATPase activity of myosin correlated with speed of muscle shortening.
J. Gen. Physiol.
50:
197–216,
1967.
|
9. |
Bessman, S. P., and
A. Fonyo.
The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration.
Biochem. Biophys. Res. Commun.
22:
597–602,
1966.
|
10. |
Bessman, S. P., and
P. J. Geiger.
Transport of energy in muscle: the phosphorylcreatine shuttle.
Science
211:
448–452,
1981.
|
11. |
Blinks, J. R.,
R. Rudel, and
S. R. Taylor.
Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin.
J. Physiol. London
277:
291–323,
1978.
|
12. |
Blix, M.
Studien über Muskelwarme.
Skand. Arch. Physiol.
12:
52–126,
1902.
|
13. |
Blum, H. E.,
P. Lehky,
L. Kohler,
E. A. Stein, and
E. H. Fischer.
Comparative properties of vertebrate parvalbumin.
J. Biol. Chem.
252:
2834–2838,
1977.
|
14. |
Bowen, W. J., and
T. D. Kerwin.
The kinetics of myokinase. III. Studies of heat denaturation, the effects of salts and the state of equilibrium.
Arch. Biochem. Biophys.
64:
278–284,
1956.
|
15. |
Briggs, F. N.,
J. L. Poland, and
R. J. Solaro.
Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles.
J. Physiol. London
266:
587–594,
1977.
|
16. |
Brostrom, C. O.,
F. L. Hunkeler, and
E. G. Krebs.
The regulation of skeletal muscle Phosphorylase kinase by Ca++.
J. Biol. Chem.
246:
1961–1967,
1971.
|
17. |
Burt, C. T.,
T. Glonek, and
M. BÁRÁNy.
Analysis of phosphate metabolites, the intracellular pH and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance.
J. Biol. Chem.
251:
2584–2591,
1976.
|
18. |
Cain, D. F., and
R. E. Davies.
Breakdown of adenosine triphosphate during a single contraction of working muscle.
Biochem. Biophys. Res. Commun.
8:
361–366,
1962.
|
19. |
Canfield, P.,
J. Lebacq, and
G. Maréchal.
Energy balance in frog sartorius muscle during an isometric tetanus at 20°C.
J. Physiol. London
232:
467–483,
1973.
|
20. |
Canfield, P., and
G. Maréchal.
Equilibrium of nucleotides in frog sartorius muscle during an isometric tetanus at 20°C.
J. Physiol. London
232:
453–466,
1973.
|
21. |
Carlson, F. D.,
D. J. Hardy, and
D. R. Wilkie.
Total energy production and phosphocreatine hydrolysis in the isotonic twitch.
J. Gen. Physiol.
46:
851–882,
1963.
|
22. |
Carlson, F. D.,
D. Hardy, and
D. R. Wilkie.
The relation between heat produced and phosphorylcreatine split during isometric contraction of frog's muscle.
J. Physiol. London
189:
209–235,
1967.
|
23. |
Carlson, F. D., and
A. Siger.
The mechanochemistry of muscular contraction. I. The isometric twitch.
J. Gen. Physiol.
44:
33–60,
1960.
|
24. |
Chance, B.
Reaction of oxygen with the respiratory chain in cells and tissues.
J. Gen. Physiol.
49,
Suppl.:
163–188,
1965.
|
25. |
Chance, B., and
C. R. Williams.
The respiratory chain and oxidative phosphorylation.
Adv. Enzymol. Relat. Areas Mol. Biol.
17:
65–134,
1956.
|
26. |
Chapell, J. B.
Systems used for the transport of substrates into mitochondria.
Br. Med. Bull.
24:
150–157,
1968.
|
27. |
Collins, R. C,
J. B. Posner, and
F. Plum.
Cerebral energy metabolism during electroshock seizures in mice.
Am. J. Physiol.
218:
943–950,
1970.
|
28. |
Crank, J.
The Mathematics of Diffusion.
London:
Oxford Univ. Press,
1956.
|
29. |
Crompton, M.,
M. Capano, and
E. Carafoli.
Respiration‐dependent efflux of magnesium ions from heart mitochondria.
Biochem. J.
154:
735–742,
1976.
|
30. |
Crow, M. T., and
M. J. Kushmerick.
The relationship between initial chemical change and recovery chemical input in isolated hindlimb muscles of the mouse.
J. Gen. Physiol.
79:
147–166,
1982.
|
31. |
Curtin, N. A., and
R. E. Davies.
Chemical and mechanical changes during stretching of activated frog skeletal muscle.
Cold Spring Harbor Symp. Quant. Biol.
37:
619–626,
1973.
|
32. |
Curtin, N. A., and
R. E. Davies.
Very high tension with very little ATP breakdown by active skeletal muscle.
J. Mechanochem. Cell Motil.
3:
147–154,
1975.
|
33. |
Curtin, N. A.,
C Gdlbert,
D. M. Kretzschmar, and
D. R. Wilkie.
The effect of the performance of work on total energy output and metabolism during muscular contraction.
J. Physiol. London
238:
455–472,
1974.
|
34. |
Curtin, N. A., and
R. C Woledge.
Energetics of relaxation in frog muscle.
J. Physiol. London
238:
437–446,
1974.
|
35. |
Curtin, N. A., and
R. C. Woledge.
Energy balance in DNFB‐treated and untreated frog muscle.
J. Physiol. London
246:
737–752,
1975.
|
36. |
Curtin, N. A., and
R. C. Woledge.
A comparison of the energy balance in two successive isometric tetani of frog muscle.
J. Physiol. London
270:
455–471,
1977.
|
37. |
Curtin, N. A., and
R. C Woledge.
Energy changes and muscular contraction.
Physiol. Rev.
58:
690–761,
1978.
|
38. |
Curtin, N. A., and
R. C Woledge.
Chemical change and energy production during contraction of frog muscle: how are their time courses related?
J. Physiol. London
288:
353–366,
1979.
|
39. |
Curtin, N. A., and
R. C Woledge.
Chemical change, production of tension and energy following stretch of active muscle of frog.
J. Physiol. London
297:
539–550,
1979.
|
40. |
Danforth, W. H.,
E. Helmreich, and
C. F. Cori.
The effect of contraction and of epinephrine on the Phosphorylase activity of frog sartorius muscle.
Proc. Natl. Acad. Sci. USA
48:
1191–1199,
1962.
|
41. |
Davies, R. E.
Molecular theory of muscle contraction: calcium‐dependent contractions with hydrogen bond formation plus ATP‐dependent extensions of part of the myosin‐actin cross‐bridges.
Nature London
199:
1068–1074,
1963.
|
42. |
Davies, R. E.,
D. Cain, and
A. M. Delluva.
The energy supply for muscular contraction.
Ann. NY Acad. Sci.
81:
468–476,
1959.
|
43. |
Dawson, M. J.,
D. G. Gadian, and
D. R. Wilkie.
Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance.
J. Physiol. London
267:
703–735,
1977.
|
44. |
Dawson, M. J.,
D. G. Gadian, and
D. R. Wilkie.
Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance.
J. Physiol. London
299:
465–485,
1980.
|
45. |
Dawson, J.,
D. Gower,
K. M. Kretzschmar, and
D. R. Wilkie.
Heat production and chemical change in frog sartorius: a comparison R. pipiens with R. temporaria.
J. Physiol. London
254:
41P–42P,
1975.
|
46. |
Defuria, R. R., and
M. J. Kushmerick.
ATP utilization associated with recovery metabolism in anaerobic frog muscle.
Am. J. Physiol.
232
(Cell Physiol. 1):
C30–C36,
1977.
|
47. |
Deweer, P., and
A. G. Lowe.
Myokinase equilibrium.
J. Biol. Chem.
248:
2829–2835,
1973.
|
48. |
Dixon, M., and
E. C. Webb.
Enzymes.
New York:
Academic,
1964,
p. 274–275.
|
49. |
Ebashi, S. E., and
M. Endo.
Calcium ion and muscle contraction.
Prog. Biophys. Mol. Biol.
18:
123–183,
1968.
|
50. |
Edman, K. A. P.,
G. Elzinga, and
M. I. M. Noble.
Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres.
J. Physiol. London
281:
139–155,
1978.
|
51. |
Eggleston, L. V., and
R. Hems.
Separation of adenosine phosphates by paper chromatography and the equilibrium constant of the myokinase system.
Biochem. J.
52:
156–160,
1952.
|
52. |
Eggleton, G. P., and
P. Eggleton.
A method of estimating Phosphagen and some other phosphorus compounds in muscle tissue.
J. Physiol. London
68:
193,
1929‐30.
|
53. |
Eggleton, P., and
G. P. Eggleton.
The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog.
Biochem. J.
21:
190–195,
1927.
|
54. |
Eisenberg, E., and
L. E. Greene.
The relation of muscle biochemistry to muscle physiology.
Annu. Rev. Physiol.
42:
293–309,
1980.
|
55. |
Eisenberg, E.,
T. Hill, and
Y. Chen.
Cross‐bridge model of muscle contraction.
Biophys. J.
29:
195–226,
1980.
|
56. |
Endo, M.
Calcium release from the sarcoplasmic reticulum.
Physiol. Rev.
57:
71–108,
1977.
|
57. |
Engelhardt, V. A., and
M. N. Lyubimova.
Myosin and adenosinetriphosphatase.
Nature London
144:
668,
1939.
|
58. |
Erecińska, M.,
R. L. Veech, and
D. F. Wilson.
Thermodynamic relationships between the oxidation‐reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria.
Arch. Biochem. Biophys.
160:
412–421,
1974.
|
59. |
Erecińska, M.,
D. F. Wilson, and
K. Nishiki.
Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model.
Am. J. Physiol.
234
(Cell Physiol. 3):
C82–C89,
1978.
|
60. |
Feng, T. P.
The heat tension ratio in prolonged tetanic contractions.
Proc. R. Soc. London Ser. B
108:
522–537,
1931.
|
61. |
Feng, T. P.
The effect of length on the resting metabolism of muscle.
J. Physiol. London
74:
441–454,
1932.
|
62. |
Fenn, W. O.
A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog.
J. Physiol. London
58:
175–203,
1923.
|
63. |
Fenn, W. O.
The relation between the work performed and the energy liberated in muscular contraction.
J. Physiol. London
58:
373–395,
1924.
|
64. |
Ferenczi, M. A.,
E. Homsher,
R. M. Simmons, and
D. R. Trentham.
Reaction mechanism of the magnesium ion‐dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
Biochem. J.
171:
165–175,
1978.
|
65. |
Fick, A.
Einige Bemerkungen zu Englemann's Abhandlung über den Ursprung der Muskelkraft.
Pfluegers Arch. Gesamte Physiol. Menschen Tiere
53:
606–615,
1893.
|
66. |
Fiske, C. H., and
Y. Subbarow.
The nature of inorganic phosphate in voluntary muscle.
Science
65:
401–403,
1927.
|
67. |
Fiske, C. H., and
Y. Subbarow.
The isolation and function of phosphocreatine.
Science
67:
169–170,
1928.
|
68. |
Fletcher, W. M., and
F. G. Hopkins.
Lactic acid in amphibian muscle.
J. Physiol. London
35:
247–309,
1907.
|
69. |
Fletcher, W. M., and
F. G. Hopkins.
The respiratory process in muscle and the nature of muscular motion.
Proc. R. Soc. London Ser. B
89:
444–467,
1917.
|
70. |
Folkow, B., and
H. D. Halicka.
A comparison between “red” and “white” muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and exercise.
Microvasc. Res.
1:
1–14,
1968.
|
71. |
Ford, L. E., and
R. J. Podolsky.
Calcium uptake and force development by skinned muscle fibres in EGT A buffered solutions.
J. Physiol. London
223:
1–19,
1972.
|
72. |
Foster, D. O., and
M. L. Frydman.
Tissue distribution of cold‐induced thermogenesis in conscious warm‐ or cold‐acclimated rats re‐evaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis.
Can. J. Physiol. Pharmacol.
57:
257–270,
1979.
|
73. |
Francis, S. H.,
B. P. Meriwether, and
J. H. Park.
Effects of photooxidation of Histidine‐38 on the various catalytic activities of glyceraldehyde‐3‐phosphate dehydrogenase.
Biochemistry
12:
346–355,
1973.
|
74. |
Frazer, A., and
F. D. Carlson.
Initial heat production in isometric frog muscles at 15°C.
J. Gen. Physiol.
62:
271–285,
1973.
|
75. |
Fry, D. M., and
M. F. Morales.
A reexamination of the effects of creatine on muscle protein synthesis in tissue culture.
J. Cell Biol.
84:
204–297,
1980.
|
76. |
Gadian, D. G.,
G. K. Radda,
T. R. Brown,
E. M. Chance,
M. J. Dawson, and
D. R. Wilkie.
The activity of creatine kinase in frog skeletal muscle studied by saturation‐transfer nuclear magnetic resonance.
Biochem. J.
195:
1–14,
1981.
|
77. |
George, P., and
R. J. Rutman.
The “high energy phosphate bond” concept.
Prog. Biophys. Biophys. Chem.
10:
2–53,
1960.
|
78. |
Gilbert, C,
K. M. Kretzschmar,
D. R. Wilkie, and
R. C. Woledge.
Chemical change and energy output during muscular contraction.
J. Physiol. London
218:
163–193,
1971.
|
79. |
Godfraind‐De Becker, A.
Heat production and fluorescence changes of toad sartorius muscle during aerobic recovery after a short tetanus.
J. Physiol. London
223:
719–734,
1972.
|
80. |
Gordon, A. M.,
A. F. Huxley, and
F. J. Julian.
The variation in isometric tension with sarcomere length in vertebrate muscle fibres.
J. Physiol. London
184:
170–192,
1966.
|
81. |
Gower, D., and
K. M. Kretzschmar.
Heat production and chemical change during isometric contraction of rat soleus muscle.
J. Physiol. London
258:
659–671,
1976.
|
82. |
Gupta, R. K., and
R. D. Moore.
31P NMR studies of intracellular free Mg++ in intact frog skeletal muscle.
J. Biol. Chem.
255:
3987–3992,
1980.
|
83. |
Hansford, R. G.
Control of mitochondrial substrate oxidation.
Curr. Top. in Bioenerg.
10:
217–278,
1980.
|
84. |
Harris, E. J.
The stoichiometry of sodium ion movement from frog muscle.
J. Physiol London
193:
455–458,
1967.
|
85. |
Harris, S. I.,
R. S. Balaban, and
L. J. Mandel.
Oxygen consumption and cellular ion transport: evidence for adenosine triphosphate to O2 ratio near 6 in intact cell.
Science
208:
1148–1150,
1980.
|
86. |
Harting, J., and
S. F. Velick.
Acetyl phosphate formation catalyzed by glyceraldehyde‐3‐phosphate dehydrogenase.
J. Biol. Chem.
207:
857–865,
1954.
|
87. |
Hartree, W., and
A. V. Hill.
The regulation of the supply of energy in muscular contraction.
J. Physiol. London
55:
133–158,
1921.
|
88. |
Hassinen, I. C.
Respiratory control in isolated perfused rat heart: role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system.
Biochim. Biophys. Acta
408:
319–330,
1975.
|
89. |
Heilbrunn, L. V., and
F. J. Wiercinski.
The action of various cations on muscle protoplasm.
J. Cell. Comp. Physiol.
29:
15–32,
1947.
|
90. |
Heilmeyer, L. M. G.,
F. Meyer,
R. H. Haschke, and
E. H. Fischer.
Control of Phosphorylase activity in a muscle glycogen particle II. Activation by calcium.
J. Biol. Chem.
245:
6649–6656,
1970.
|
91. |
Hellam, D. C, and
R. J. Podolsky.
Force measurements in skinned muscle fibres.
J. Physiol. London
200:
807–819,
1969.
|
92. |
Hill, A. V.
The absolute mechanical efficiency of the contraction of an isolated muscle.
J. Physiol. London
46:
435–469,
1913.
|
93. |
Hill, A. V.
The heat of shortening and the dynamic constants of muscle.
Proc. R. Soc. London Ser. B
126:
136–195,
1938.
|
94. |
Hill, A. V.
Adenosine triphosphate and muscular contraction.
Nature London
163:
320,
1949.
|
95. |
Hill, A. V.
The heat of activation and the heat of shortening in a muscle twitch.
Proc. R. Soc. London Ser. B
136:
195–211,
1949.
|
96. |
Hill, A. V.
A challenge to biochemists.
Biochim. Biophys. Acta
4:
4–11,
1950.
|
97. |
Hill, A. V.
The effect of load on the heat of shortening of muscle.
Proc. R. Soc. London Ser. B
159:
297–318,
1964.
|
98. |
Hill, A. V., and
W. Hartree.
The four phases of heat production of muscle.
J. Physiol. London
54:
84–128,
1920.
|
99. |
Hill, A. V., and
J. V. Howarth.
The reversal of chemical reactions in contracting muscle during an applied stretch.
Proc. R. Soc. London Ser. B
151:
169–193,
1959.
|
100. |
Hill, A. V., and
R. C. Woledge.
An examination of absolute values in myothermic measurements.
J. Physiol. London
162:
311–333,
1962.
|
101. |
Hill, D. K.
The time course of the oxygen consumption of stimulated frog's muscle.
J. Physiol. London
98:
207–227,
1940.
|
102. |
Hill, D. K.
The location of creatine phosphate in frog's striated muscle.
J. Physiol. London
164:
31,
1962.
|
103. |
Hill, D. K.
The location of adenine nucleotide in the striated muscle of the toad.
J. Cell Biol.
20:
435–458,
1964.
|
104. |
Hill, L.
A‐band length, striation spacing and tension change on stretch of active muscle.
J. Physiol. London
266:
677–685,
1977.
|
105. |
Himms‐Hagen, J.
Cellular thermogenesis.
Annu. Rev. Physiol.
38:
315–351,
1976.
|
106. |
Hinkle, P. C, and
M. L. Yu.
The phosphorus/oxygen ratio of mitochondrial oxidative phosphorylation.
J. Biol. Chem.
254:
2450–2455,
1979.
|
107. |
Homsher, E.,
M. Irving, and
A. Wallner.
High‐energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle.
J. Physiol. London
321:
423–436,
1981.
|
108. |
Homsher, E., and
C. J. Kean.
Skeletal muscle energetics and metabolism.
Annu. Rev. Physiol.
40:
93–131,
1978.
|
109. |
Homsher, E.,
C. J. Kean,
A. Wallner, and
V. Garibian‐Sarian.
The time‐course of energy balance in an isometric tetanus.
J. Gen. Physiol.
73:
553–567,
1979.
|
110. |
Homsher, E., and
C. J. C. Kean.
Unexplained enthalpy production in isometric contractions and its relation to intracellular calcium movements.
In: The Regulation of Muscle Contraction: Excitation‐Contraction Coupling.
New York:
Academic,
1980,
pp. 337–347.
|
111. |
Homsher, E.,
W. F. H. M. Mommaerts, and
N. V. Ricchiuti.
Energetics of shortening muscles in twitches and tetanic contractions.
J. Gen. Physiol.
62:
677–692,
1973.
|
112. |
Homsher, E.,
W. F. H. M. Mommaerts,
N. V. Ricchiuti, and
A. Wallner.
Activation heat, activation metabolism and tension‐related heat in frog semitendinosus muscles.
J. Physiol. London
220:
601–625,
1972.
|
113. |
Homsher, E., and
J. A. Rall.
Energetics of shortening muscles in twitches and tetani contractions. I. A reinvestigation of Hill's concept of shortening heat.
J. Gen. Physiol.
62:
663–676,
1973.
|
114. |
Homsher, E.,
J. A. Rall,
A. Wallner, and
N. V. Ricchiuti.
Energy liberation and chemical change In frog skeletal muscle during single isometric tetanic contractions.
J. Gen. Physiol.
65:
1–21,
1975.
|
115. |
Hoppeler, H.,
D. Mathieu,
R. Krauer,
H. Cloasen,
R. B. Armstrong, and
E. R. Weibel.
Distribution of mitochondria and capillaries in various muscles.
Respir. Physiol.
44:
87–111,
1981.
|
116. |
Hoult, D. I.,
S. J. W. Busby,
D. G. Gadian,
G. K. Radda,
R. E. Richards, and
P. J. Seeley.
Observation of tissue metabolites using 31P nuclear magnetic resonance.
Nature London
252:
285–287,
1974.
|
117. |
Huxley, A. F.
Muscle structure and theories of contraction.
Prog. Biophys. Biophys. Chem.
7:
255–318,
1957.
|
118. |
Huxley, A. F., and
R. Niedergerke.
Structural changes in muscle during contraction.
Nature London
173:
971–973,
1954.
|
119. |
Huxley, H., and
J. Hanson.
Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation.
Nature London
173:
973–976,
1954.
|
120. |
Infante, A. A.,
D. Klaupiks, and
R. E. Davies.
Adenosine triphosphate: changes in muscles doing negative work.
Science
144:
1577–1578,
1964.
|
121. |
Infante, A. A.,
D. Klaupiks, and
R. E. Davies.
Phosphorylcreatine consumption during single working contractions of isolated muscle.
Biochim. Biophys. Acta
94:
504–515,
1965.
|
122. |
Ingwall, J. S.,
C. D. Weiner,
M. F. Morales,
E. S. Davis, and
F. E. Stockdale.
Specificity of creatine in the control of muscle protein synthesis.
J. Cell Biol.
63:
145–151,
1974.
|
123. |
Jacobus, W. E., and
J. S. Ingwall, (editors).,
Heart Creatine Kinase.
Baltimore, MD:
Williams & Wilkins,
1980.
|
124. |
Jacobus, W. E., and
A. L. Lehninger.
Creatine kinase of rat heart mitochondria.
J. Biol. Chem.
248:
4803–4810,
1973.
|
125. |
JÖBsis, F. F.
Spectrophotometric studies on intact muscle. I. Components of the respiratory chain.
J. Gen. Physiol.
46:
905–928,
1963.
|
126. |
JÖBsis, F. F., and
J. C. Duffield.
Oxidative and glycolytic recovery metabolism in muscle.
J. Gen. Physiol.
50:
1009–1047,
1967.
|
127. |
Julian, F. J.
The effect of calcium on the force‐velocity relation of briefly glycerinated frog muscle fibres.
J. Physiol. London
218:
117–145,
1971.
|
128. |
Kennedy, B. G., and
P. Deweer.
Strophanthidin‐sensitive sodium fluxes in metabolically poisoned frog skeletal muscle.
J. Gen. Physiol.
68:
405–420,
1976.
|
129. |
Klingenberg, M., and
H. Rottenberg.
Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane.
Eur. J. Biochem.
73:
125–130,
1977.
|
130. |
Kodama, T., and
R. C. Woledge.
Enthalpy changes for intermediate steps of the ATP hydrolysis catalyzed by myosin subfragment‐1.
J. Biol. Chem.
254:
6382–6386,
1979.
|
131. |
Krebs, H. A., and
R. L. Veech.
Pyridine nucleotide control in Mitochondria.
In: The Energy Level and Metabolic Control in Mitochondria,
edited by S. Papa,
J. M. Tager,
E. Quagliariello, and
E. C. Slater.
Bari, Italy:
Adriatica Editrice,
1969,
p. 329–382.
|
132. |
Kretzschmar, K. M., and
D. R. Wilkie.
A new approach to freezing tissues rapidly.
J. Physiol. London
202:
66P–67P,
1969.
|
133. |
Kretzschmar, K. M., and
D. R. Wilkie.
The use of the Peltier effect for simple and accurate calibration of thermoelectric devices.
Proc. R. Soc. London Ser. B
190:
315–321,
1975.
|
134. |
Kuby, S. A.,
L. Noda, and
H. A. Lardy.
Adenosinetriphosphate‐creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle.
J. Biol. Chem.
209:
191–201,
1954.
|
135. |
Kuby, S. A.,
L. Noda, and
H. A. Lardy.
Adenosinetriphosphate‐creatine transphosphorylase III. Kinetic studies.
J. Biol. Chem.
210:
65–95,
1954.
|
136. |
Kushmerick, M. J.
Energy balance in muscle contraction: a biochemical approach.
Curr. Top. Bioenerg.
6:
1–37,
1977.
|
137. |
Kushmerick, M. J.,
T. Brown, and
M. Crow.
Rates of ATP: creatine phosphorytransferase reaction in skeletal muscle by 31P nuclear resonance spectroscopy (Abstract).
Federation Proc.
39:
1934,
1980.
|
138. |
Kushmerick, M. J., and
R. E. Davies.
The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles.
Proc. R. Soc. London Ser. B
1174:
315–353,
1969.
|
139. |
Kushmerick, M. J.,
R. E. Larson, and
R. E. Davies.
The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation‐relaxation processes.
Proc. R. Soc. London Ser. B
174:
293–313,
1969.
|
140. |
Kushmerick, M. J., and
R. J. Paul.
Aerobic recovery metabolism following a single isometric tetanus in frog sartorius muscle at 0°C.
J. Physiol. London
254:
693–709,
1976.
|
141. |
Kushmerick, M. J., and
R. J. Paul.
Relationship between initial chemical reactions and oxidative recovery metabolism for single isometric contractions of frog sartorius at 0°C.
J. Physiol. London
254:
711–727,
1976.
|
142. |
Kushmerick, M. J., and
R. J. Paul.
Chemical energetics in repeated contractions of frog sartorius muscle at 0°C.
J. Physiol. London
267:
249–260,
1977.
|
143. |
Kushmerick, M. J., and
R. J. Podolsky.
Ionic mobility in muscle cells.
Science
166:
1297–1298,
1969.
|
144. |
Lange, G.
Über die Dephosphorylierung von Adenosinetriphosphat zu Adenosinediphosphat während der Kontraktionphase von Froschrectus‐Muskel.
Biochem. Z.
326:
172,
1955.
|
145. |
Lawrie, R. A.
The activity of the cytochrome system in muscles and its relation to myoglobin.
Biochem. J.
55:
298–305,
1953.
|
146. |
Lawson, J. W. R., and
R. L. Veech.
Effects of pH and free Mg2+ on the Keq, of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions.
J. Biol. Chem.
254:
6528–6537,
1979.
|
147. |
Lee, Y. P.
5'‐Adenylic acid deaminase. HI. Properties and kinetic studies.
J. Biol. Chem.
227:
999–1007,
1957.
|
148. |
Lehningeh, A. L.,
A. Vercesi, and
E. A. Bababunmi.
Regulation of Ca++ release from mitochondria by the oxidation‐reduction state of pyridine nucleotides.
Proc. Natl. Acad. Sci. USA
75:
1690–1694,
1978.
|
149. |
Levy, R. M.,
Y. Umazume, and
M. J. Kushmerick.
Ca2+ dependence of tension and ADP production in segments of chemically skinned muscle fibers.
Biochim. Biophys. Acta
430:
352–365,
1976.
|
150. |
Lipmann, F.
Metabolic generation and utilization of phosphate band energy.
Adv. Enzymol. Relat. Areas Mol. Biol.
1:
99–162,
1941.
|
151. |
Lohmann, K.
Über die enzymatische Aufspalturg der Kreatinephosphorsäure; zugleich ein Beitrag zum Chemismus der Muskelkontraktion.
Biochem. Z.
271:
264–277,
1934.
|
152. |
Lowenstehj, J. M.
Ammonia production in muscle and other tissues: the purine nucleotide cycle.
Physiol. Rev.
52:
382–414,
1972.
|
153. |
Lowry, O. H., and
J. V. Passonneau.
The relationships between substrates and enzymes of glycolysis in brain.
J. Biol. Chem.
239:
31–42,
1964.
|
154. |
Lowry, O. H., and
J. V. Passonneau.
A Flexible System of Enzymatic Analysis.
New York:
Academic,
1972.
|
155. |
Lowry, O. H.,
J. V. Passonneau,
F. X. Hasselberger, and
D. W. Schulz.
Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain.
J. Biol. Chem.
239:
18–30,
1964.
|
156. |
Loxdale, H. P.
A method for the continuous assay of picomole quantities of ADP released from glycerol‐extracted skeletal muscle fibres on MgATP activation.
J. Physiol. London
247:
71–89,
1975.
|
157. |
Luff, A. R., and
U. Proske.
Properties of motor units of the frog sartorius muscle.
J. Physiol. London
258:
673–685,
1976.
|
158. |
Lundsgaard, E.
Untersuchungen über Muskelkontraktion ohne Milchsaure.
Biochem. Z.
217:
162–177,
1930.
|
159. |
Lundsgaard, E.
The biochemistry of muscle.
Annu. Rev. Biochem.
7:
377–398,
1938.
|
160. |
Lundsgaard, E.
The ATP content of resting and active muscle.
Proc. R. Soc. London Ser. B
137:
73–76,
1950.
|
161. |
Maclennan, D. H., and
P. C. Holland.
Calcium transport in sarcoplasmic reticulum.
Annu. Rev. Biophys. Bioeng.
4:
377–404,
1975.
|
162. |
Mahler, M.
Diffusion and consumption of oxygen in the resting frog sartorius muscle.
J. Gen. Physiol.
71:
533–557,
1978.
|
163. |
Mahler, M.
Kinetics of oxygen consumption after a single isometric tetanus of frog sartorius muscle at 20°C.
J. Gen. Physiol.
71:
559–580,
1978.
|
164. |
Marban, E.,
T. J. Rink,
R. W. Tsien, and
R. Y. Tsien.
Free calcium in heart muscle at rest and during contraction measured with Ca++‐sensitive microelectrodes.
Nature London
286:
845–850,
1980.
|
165. |
Maréchal, G.
Le Metabolisme de la phosphorylcreatine et de l'adenosine triphosphate durant la contraction musculaire.
Brussels:
Arscia,
1962.
|
166. |
Marston, S. B., and
R. T. Tregear.
Evidence for a complex between myosin and ADP in relaxed muscle fibres.
Nature London New Biol.
235:
23–24,
1972.
|
167. |
Martonosi, A., and
R. Feretos.
Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca++ uptake.
J. Biol. Chem.
239:
659–668,
1964.
|
168. |
Mcgdlvery, R. W., and
T. W. Murray.
Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
J. Biol. Chem.
249:
5845–5850,
1974.
|
169. |
Mela, L.
Mechanism and physiological significance of calcium transport across mammalian mitochondrial membranes.
In: Current Topics in Membranes and Transport,
edited by F. Bronner and
A. Kleinzeller.
New York:
Academic,
1977,
vol. 9,
p. 321–366.
|
170. |
Mendelson, R. A., and
P. Cheung.
Muscle crossbridges: absence of direct effect of calcium on movement away from the thick filaments.
Science
194:
190–192,
1976.
|
171. |
Meyer, R. A.,
J. Ghaoteaux, and
R. L. Terjung.
Histochemical demonstration of differences in AMP deaminase activity in rat skeletal muscle fibers.
Experientia
36:
676–677,
1980.
|
172. |
Meyer, R. A., and
R. L. Terjung.
Differences in ammonia and adenylate metabolism in contracting fast and slow muscle.
Am. J. Physiol.
237
(Cell Physiol. 6):
C111–C118,
1979.
|
173. |
Meyer, R. A., and
R. L. Terjung.
AMP deamination and IMP reamination in working skeletal muscle.
Am. J. Physiol.
239
(Cell Physiol. 8):
C32–C38,
1980.
|
174. |
Meyerhof, O., and
W. Schulz.
Über die Energieverhältnisse bei der enzymatischen Milchsäurebildung und der Synthese der Phosphagene.
Biochem. Z.
281:
292–305,
1935.
|
175. |
Meyerhof, O.,
W. Schulz, and
P. Schuster.
Über die enzymatische Synthese der Kreatinephosphosäure und die biologische Reaktionsform des Zuckers.
Biochem. Z.
293:
309–337,
1937.
|
176. |
Millikan, G. A.
Experiments on muscle hemoglobin in vivo; the instantaneous measurement of muscle metabolism.
Proc. R. Soc. London Ser. B
123:
218–241,
1939.
|
177. |
Mommaerts, W. F. H. M.
Energetics of muscular contraction.
Physiol. Rev.
49:
427–508,
1969.
|
178. |
Mommaerts, W. F. H. M., and
J. C. Rupp.
Dephosphorylation of adenosinetriphosphate in muscular contraction.
Nature London
158:
957,
1951.
|
179. |
Mommaerts, W. F. H. M.,
K. Vegh, and
E. Homsher.
Activation of Phosphorylase in frog muscle as determined by contractile activity.
J. Gen. Physiol.
66:
657–669,
1975.
|
180. |
Munch‐Petersen, A.
Dephosphorylation of adenosinetriphosphate during the rising phase of a muscle twitch.
Acta Physiol. Scand.
29:
202–219,
1953.
|
181. |
Natori, R.
The property and contraction process of isolated myofibrils.
Jikeikai Med. J.
1:
119–126,
1954.
|
182. |
Nichols, D. G.
The bioenergetics of brown adipose tissue mitochondria.
FEBS Lett.
61:
103–110,
1976.
|
183. |
Nichols, D. G.
Hamster brown adipose mitochondria.
Eur. J. Biochem.
62:
223–228,
1976.
|
184. |
Nihei, T.,
R. A. Mendelson, and
J. Botts.
The site of force generation in muscle contraction as deduced from fluorescence polarization studies.
Proc. Natl. Acad. Sci. USA
71:
274–277,
1974.
|
185. |
Noda, L.
Adenosine triphosphate‐adenosine monophosphate transphosphorylase. III. Kinetic studies.
J. Biol. Chem.
232:
237,
1958.
|
186. |
Noda, L.,
S. A. Kuby, and
H. A. Lardy.
Adenosinetriphosphate‐creatine transphosphorylase. II. Homogeneity and physiochemical properties.
J. Biol. Chem.
209:
203–210,
1954.
|
187. |
Noda, L.,
S. A. Kuby, and
H. A. Lardy.
Adenosinetriphosphate‐creatine transphosphorylase. IV. Equilibrium studies.
J. Biol. Chem.
210:
83–95,
1954.
|
188. |
Owen, C. S., and
D. F. Wilson.
Control of respiration by mitochondrial phosphorylation state.
Arch. Biochem. Biophys.
161:
581–591,
1974.
|
189. |
Page, E.
Quantitative ultrastructural analysis in cardiac membrane physiology.
Am. J. Physiol.
235
(Cell Physiol. A):
C147–C158,
1978.
|
190. |
Parnas, J. K., and
W. Mozolowski.
Über die Ammoniakgehalt und die Ammoniakbildung in Muskel und deren Zusammenhang mit Funktion und Zustandsanderung.
Biochem. Z.
184:
399–441,
1927.
|
191. |
Paul, R. J., and
M. J. Kushmerick.
Apparent P/O ratio and chemical energy balance in frog sartorius muscle in vitro.
Biochim. Biophys. Acta
347:
483–490,
1974.
|
192. |
Peachey, L. D.
The sarcoplasmic reticulum and transverse tubules of the frog's sartorius.
J. Cell Biol.
25:
209–231,
1965.
|
193. |
Peter, J. B.,
R. J. Barnard,
V. R. Edgerton,
C. A. Gillespie, and
K. E. Stengel.
Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits.
Biochemistry
11:
2627–2633,
1972.
|
194. |
Pfaff, E., and
M. Klingenberg.
Adenosine nucleotide translocation of mitochondria.
Eur. J. Biochem.
6:
66–70,
1968.
|
195. |
Rall, J. A.
Effects of temperature on tension, tension‐dependent heat, and activation heat in twitches of frog skeletal muscle.
J. Physiol. London
291:
265–275,
1979.
|
196. |
Rall, J. A.,
E. Homsher,
A. Wallner, and
W. F. H. M. Mommaerts.
A temporal dissociation of energy liberation and high energy phosphate splitting during shortening in frog skeletal muscles.
J. Gen Physiol.
68:
13–27,
1976.
|
197. |
Robertson, S. P.,
J. D. Johnson, and
J. D. Potter.
The time course of Ca++ exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increases in Ca++.
Biophys. J.
34:
559–569,
1981.
|
198. |
Romanul, F. C. A.
Capillary supply and metabolism of muscle fibers.
Arch. Neurol.
12:
497–509,
1965.
|
199. |
Roos, A.
Intracellular pH and buffering power of rat muscle.
Am. J. Physiol.
221:
182–188,
1971.
|
200. |
Roos, A.
Intracellular pH and distribution of weak acids across cell membranes. A study of D‐ and L‐lactate and of DMO in rat diaphragm.
J. Physiol. London
249:
1–25,
1975.
|
201. |
Rose, I. A.
The state of magnesium in cells as estimated from the adenylate kinase equilibrium.
Proc. Natl. Acad. Sci. USA.
61:
1079–1086,
1968.
|
202. |
Saks, V. A.,
G. B. Chernousova,
R. Vetter,
V. N. Smirnov, and
E. I. Chazov.
Kinetic properties and the functional role of particulate mm‐isoenzyme of creatine Phosphokinase bound to heart muscle myofibrils.
FEBS Lett.
62:
293–296,
1976.
|
203. |
Sandberg, J. A., and
F. D. Carlson.
The length dependence of phosphorylcreatine hydrolysis during an isometric tetanus.
Biochem. Z.
345:
212–231,
1966.
|
204. |
Saris, N.‐E., and
K. E. D. Akerman.
Uptake and release of bivalent cations in mitochondria.
Curr. Top. in Bioenerg.
10:
103–179,
1980.
|
205. |
Scholte, H. R.
On the triple localization of creatine kinase in heart and skeletal muscle cells of the rat: evidence for the existence of myofibrillar and mitochondrial isoenzymes.
Biochim. Biophys. Acta
305:
413–427,
1973.
|
206. |
Scopes, R. K.
Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by anaerobic glycolysis.
Biochem. J.
134:
197–208,
1973.
|
207. |
Scopes, R. K.
Studies with a reconstituted glycolytic system. The anaerobic glycolytic response to simulated tetani contraction.
Biochem. J.
138:
119–123,
1974.
|
208. |
Skoog, C,
U. Kromer,
R. W. Mitchell,
J. Hoogstraten, and
N. L. Stephens.
Characterization of frog muscle mitochondria.
Am. J. Physiol.
234
(Cell Physiol. 3):
C1–C6,
1978.
|
209. |
Smith, I. C. H.
Energetics of activation frog and toad muscle.
J. Physiol. London
220:
583–599,
1972.
|
210. |
Solandt, D. Y.
The effect of potassium on the excitability and resting metabolism of frog's muscle.
J. Physiol. London
86:
162–170,
1936.
|
211. |
Somlyo, A. V.,
H. Gonzalez‐Serratos,
H. Shuman,
G. Mcclellan, and
A. P. Somlyo.
Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study.
J. Cell Biol.
90:
577–594,
1981.
|
212. |
Sréter, F. A.
Temperature, pH and seasonal dependence of Ca‐uptake and ATPase activity of white and red muscle microsomes.
Arch. Biochem. Biophys.
134:
25–33,
1969.
|
213. |
Steinberg, I. Z.,
A. Optalka, and
A. Katchalsky.
Mechanochemical engines.
Nature London
210:
568–571,
1966.
|
214. |
Sugden, P. H., and
E. A. Newsholme.
The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinase from muscle and nervous tissue of vertebrates and invertebrates.
Biochem. J.
150:
113–122,
1975.
|
215. |
Takashi, R., and
S. Putnam.
A fluorimetric method for continuously assaying ATPase: application to small specimens of glycerol‐extracted muscle fibers.
Anal. Biochem.
92:
375–382,
1979.
|
216. |
Thames, M. D.,
L. E. Teichholz, and
R. J. Podolsky.
Ionic strength and the contraction kinetics of skinned muscle fibers.
J. Gen. Physiol.
63:
509–530,
1974.
|
217. |
Thayer, W. S., and
P. C. Hinkle.
Stoichiometry of adenosine triphosphate‐driven proton translocation in bovine heart submitochondrial particles.
J. Biol. Chem.
248:
5395–5402,
1973.
|
218. |
Thomas, R. C.
Electrogenic sodium pump in nerve and muscle cells.
Physiol. Rev.
52:
563–594,
1972.
|
219. |
Veech, R. L.,
J. W. R. Lawson,
N. W. Cornell, and
H. A. Krebs.
Cytosolic phosphorylation potential.
J. Biol. Chem.
254:
6538–6547,
1979.
|
220. |
Venosa, R. A.
Inward movement of sodium ions in resting and stimulated frog's sartorius muscle.
J. Physiol. London
241:
155–173,
1974.
|
221. |
Vial, C,
C. Godinot, and
D. Gautheron.
Creatine kinase (E.C.2.7.3.2.) in pig heart mitochondria. Properties and role in phosphate potential regulation.
Biochimie
54:
843–852,
1972.
|
222. |
Vincent, A., and
J. McD. Blair.
The coupling of the adenylate kinase and creatine kinase equilibria. Calculation of substrate and feedback signal levels in muscle.
FEBS Lett.
7:
239–244,
1970.
|
223. |
Wajzer, J.,
R. Weber,
J. Lerique, and
J. Nekhorochiff.
Reversible degradation of adenosine triphosphate to inosine acid during a single muscle twitch.
Nature London
178:
1287–1288,
1956.
|
224. |
Weber, A.
Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis.
J. Gen. Physiol.
57:
50–63,
1971.
|
225. |
Wikström, M., and
K. Krab.
Respiration‐linked H+ translocation in mitochondria: stoichiometry and mechanism.
Curr. Top. Bioenerg.
10:
51–101,
1980.
|
226. |
Wilkie, D. R.
Thermodynamics and the interpretation of biological heat measurements.
Prog. Biophys. Biophys. Chem.
10:
260–298,
1960.
|
227. |
Wilkie, D. R.
Heat work and phosphorylcreatine breakdown in muscle.
J. Physiol. London
195:
157–183,
1968.
|
228. |
Wilson, D. F.,
M. Erecinska,
C. Drown, and
I. A. Silver.
Effect of oxygen tension on cellular energetics.
Am. J. Physiol.
233
(Cell Physiol. 2):
C135–C140,
1977.
|
229. |
Wilson, D. F.,
M. Stubbs,
N. Ohsino, and
M. Erecinska.
Thermodynamic relationships between the mitochondrial oxidation‐reduction reactions and cellular ATP levels in ascites tumor cells and perfused rat liver.
Biochemistry
13:
5305–5311,
1974.
|
230. |
Wilson, D. F.,
M. Stubbs,
R. L. Veech,
M. Erecinska, and
H. A. Krebs.
Equilibrium relations between the oxidation‐reduction reactions and the ATP triphosphate synthesis in suspensions of isolated liver cells.
Biochem. J.
140:
57–64,
1974.
|
231. |
Winegrad, S.
The intracellular site of calcium activation of contraction in frog skeletal muscle.
J. Gen. Physiol.
55:
77–88,
1970.
|
232. |
Wittenberg, J. B.
Myoglobin‐facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle.
Physiol. Rev.
50:
559–636,
1970.
|
233. |
Woledge, R. C.
The thermoelastic effect of change of tension in active muscle.
J. Physiol. London
155:
187–208,
1961.
|
234. |
Woledge, R. C.
The energetics of tortoise muscle.
J. Physiol. London
197:
685–707,
1968.
|
235. |
Woledge, R. C.
Heat production and chemical change in muscle.
In: Progress in Biophysics and Molecular Biology,
edited by J.A.V. Butler and
D. Noble.
New York:
Pergamon,
1971,
vol. 22,
p. 37–72.
|
236. |
Woledge, R. C.
In vitro calorimetric studies relating to the interpretation of muscle heat experiments.
Cold Spring Harbor Symp. Quant. Biol.
37:
629–634,
1972.
|
237. |
Wollenberger, E.,
G. Krause, and
B. E. Wahler.
Orthophosphat und Phosphokreatingeholt des Herzmuskels.
Naturwissenschaften
45:
294,
1958.
|
238. |
Yagi, N., and
I. Matsubara.
Myosin heads do not move on activation in highly stretched vertebrate striated muscle.
Science
207:
307–308,
1980.
|