References |
1. |
Adelstein, R. L., and
E. Eisenberg.
Regulation and kinetics of the actin‐myosin‐ATP interaction.
Annu. Rev. Biochem.
49:
921–956,
1980.
|
2. |
Albery, W. J., and
J. R. Knowles.
Efficiency and evolution of enzyme catalysis.
Angew. Chem. Int. Ed. Engl.
16:
285–293,
1977.
|
3. |
Bagshaw, C. R.
The kinetic mechanism of the manganous ion‐dependent adenosine triphosphatase of myosin subfragment 1.
FEBS Lett.
58:
197–201,
1975.
|
4. |
Bagshaw, C. R.,
J. F. Eccleston,
F. Eckstein,
R. S. Goody,
H. Gutfreund, and
D. R. Trentham.
The magnesium ion‐dependent adenosine triphosphatase of myosin. Two‐step processes of adenosine triphosphate association and adenosine diphosphate dissociation.
Biochem. J.
141:
351–364,
1974.
|
5. |
Bagshaw, C. R.,
J. F. Eccleston,
D. R. Trentham,
D. W. Yates, and
R. S. Goody.
Transient kinetic studies of the Mg++‐dependent ATPase of myosin and its proteolytic subfragments.
Cold Spring Harbor Symp. Quant. Biol.
37:
127–135,
1972.
|
6. |
Bagshaw, C. R., and
G. H. Reed.
Investigations of equilibrium complexes of myosin subfragment 1 with the manganous ion and adenosine diphosphate using magnetic resonance techniques.
J. Biol. Chem.
251:
1975–1983,
1976.
|
7. |
Bagshaw, C. R., and
D. R. Trentham.
The reversibility of adenosine triphosphate cleavage by myosin.
Biochem. J.
133:
323–328,
1973.
|
8. |
Bagshaw, C. R., and
D. R. Trentham.
The characterization of myosin‐product complexes and of product‐release steps during the magnesium ion‐dependent adenosine triphosphatase reaction.
Biochem. J.
141:
331–349,
1974.
|
9. |
Bagshaw, C. R.,
D. R. Trentham,
R. G. Wolcott, and
P. D. Boyer.
Oxygen exchange in the γ‐phosphoryl group of protein‐bound ATP during Mg2+‐dependent adenosine triphosphatase activity of myosin.
Proc. Natl. Acad. Sci. USA
72:
2592–2596,
1975.
|
10. |
Boyer, P. D., and
D. M. Bryan.
The application of 18O methods to oxidative phosphorylation.
Methods Enzymol.
10:
60–71,
1967.
|
11. |
Bryant, F. R., and
S. J. Benkovic.
Stereochemical course of the reaction catalyzed by 5'‐nucleotide phosphodiesterase from snake venom.
Biochemistry
18:
2825–2828,
1979.
|
12. |
Burgers, P. M. J., and
F. Eckstein.
Absolute configuration of the diastereomers of adenosine 5'‐O‐(1‐thiotriphosphate): consequences for the stereochemistry of polymerization by DNA‐dependent RNA polymerase from Escherichia coli.
Proc. Natl. Acad. Sci. USA
75:
4798–4800,
1978.
|
13. |
Cardon, J. W., and
P. D. Boyer.
The rate of release of ATP from its complex with myosin.
Eur. J. Biochem.
92:
443–448,
1978.
|
14. |
Chock, S. P.
The mechanism of the skeletal muscle myosin ATPase. III. Relationship of the H+ release and the protein absorbance change induced by ATP to the initial Pi burst.
J. Biol. Chem.
254:
3244–3248,
1979.
|
15. |
Chock, S. P.,
P. B. Chock, and
E. Eisenberg.
Pre‐steady‐state kinetic evidence for a cyclic interaction of myosin subfragment one with actin during the hydrolysis of adenosine 5'‐triphosphate.
Biochemistry
15:
3244–3253,
1976.
|
16. |
Chock, S. P.,
P. B. Chock, and
E. Eisenberg.
The mechanism of the skeletal muscle myosin ATPase. II. Relationship between the fluorescence enhancement induced by ATP and the initial Pi burst.
J. Biol. Chem.
254:
3236–3243,
1979.
|
17. |
Chock, S. P., and
E. Eisenberg.
The mechanism of the skeletal muscle myosin ATPase. I. Identity of the myosin active sites.
J. Biol. Chem.
254:
3229–3235,
1979.
|
18. |
Cleland, W. W., and
A. S. Mildvan.
Chromium (III) and cobalt (III) nucleotides as biological probes.
Adv. Inorg. Chem.
1:
163–191,
1979.
|
19. |
Cohn, M.
Magnetic resonance studies of metal activation of enzymic reactions of nucleotides and other phosphate substrates.
Biochemistry
2:
623–629,
1963.
|
20. |
Cohn, M., and
A. Hu.
Isotopic (18O) shift in 31P nuclear magnetic resonance applied to a study of enzyme‐catalyzed phosphate‐phosphate exchange and phosphate (oxygen)‐water exchange reactions.
Proc. Natl. Acad. Sci. USA
75:
200–203,
1978.
|
21. |
Cohn, M., and
A. Hu.
Isotopic 18O shifts in 31P NMR of adenine nucleotides synthesized with 18O in various positions.
J. Am. Chem. Soc.
102:
913–916,
1980.
|
22. |
Connolly, B. A., and
F. Eckstein.
Structures of the mono‐and divalent metal nucleotide complexes in the myosin ATPase.
J. Biol. Chem.
256:
9450–9456,
1981.
|
23. |
Cornelius, R. D., and
W. W. Cleland.
Substrate activity of (adenosine triphosphato)tetraamminecobalt(III) with yeast hexokinase and separation of diastereomers using the enzyme.
Biochemistry
17:
3279–3286,
1978.
|
24. |
Cornelius, R. D.,
P. A. Hart, and
W. W. Cleland.
Phos‐phorus‐31 NMR studies of complexes of adenosine triphosphate, adenosine diphosphate, tripolyphosphate, and pyrophosphate with cobalt(III) ammines.
Inorg. Chem.
16:
2799–2805,
1977.
|
25. |
Curtin, N. A.,
C Gilbert,
K. M. Kretzchmar, and
D. R. Wilkie.
The effect of the performance of work on total energy output and metabolism during muscular contraction.
J. Physiol. London
238:
455–472,
1974.
|
26. |
Dawson, M. J.,
D. G. Gadian, and
D. R. Wilkie.
Contraction and recovery of living muscle studied by 31P nuclear magnetic resonance.
J. Physiol. London
267:
703–735,
1972.
|
27. |
Dempsey, M. E.,
P. D. Boyer, and
E. S. Benson.
Characteristics of an orthophosphate oxygen exchange catalyzed by myosin, actomyosin and muscle fibers.
J. Biol. Chem.
238:
2708–2715,
1963.
|
28. |
Dunaway‐Mariano, D., and
W. W. Cleland.
Investigations of substrate specificity and reaction mechanism of several kinases using chromium (III) adenosine 5'‐triphosphate and chromium(III) adenosine 5'‐diphosphate.
Biochemistry
19:
1506–1515,
1980.
|
29. |
Eargle, D. H.,
V. Licko, and
G. L. Kenyon.
Kinetic studies of 18O exchange of inorganic phosphate using mass spectral measurements on the tris‐(trimethylsilyl) derivative.
Anal. Biochem.
81:
186–195,
1977.
|
30. |
Eccleston, J. F., and
D. R. Trentham.
Studies of stable metal nucleotide complexes interacting with myosin subfragment 1.
In: Frontiers of Biological Energetics,
edited by P. L. Dutton,
J. S. Leigh, and
A. Scarpa.
New York:
Academic,
1978,
p. 707–714.
|
31. |
Eckstein, F.
Phosphorothioate analogues of nucleotides.
Ace. Chem. Res.
12:
204–210,
1979.
|
32. |
Eckstein, F.
Nucleotide analogues for the study of enzyme mechanism.
Trends Biochem. Sci.
5:
157–159,
1980.
|
33. |
Eckstein, F., and
R. S. Goody.
Synthesis and properties of diastereoisomers of adenosine 5'‐O‐(1‐thiotriphosphate) and adenosine 5'‐O‐(2‐thiotriphosphate).
Biochemistry
15:
1685–1691,
1976.
|
34. |
Eisenberg, E.,
L. Dobkin, and
W. W. Kielley.
Heavy meromyosin: evidence for a refractory state unable to bind to actin in the presence of ATP.
Proc. Natl. Acad. Sci. USA
69:
667–671,
1972.
|
35. |
Eisenberg, E., and
L. E. Greene.
The relation of muscle biochemistry to muscle physiology.
Annu. Rev. Physiol.
42:
293–309,
1980.
|
36. |
Eisenberg, E.,
T. L. Hill, and
Y. Chen.
Cross‐bridge model of muscle contraction.
Biophys. J.
29:
195–227,
1980.
|
37. |
Eisenberg, E., and
W. W. Kielley.
Evidence for a refractory state of heavy meromyosin and subfragment 1 unable to bind actin in the presence of ATP.
Cold Spring Harbor Symp. Quant. Biol.
37:
145–152,
1972.
|
38. |
Ferenczi, M. A.,
E. Homsher,
R. M. Simmons, and
D. R. Trentham.
Reaction mechanism of the magnesium ion‐dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
Biochem. J.
171:
165–175,
1978.
|
39. |
Finlayson, B., and
E. W. Taylor.
Hydrolysis of nucleoside triphosphate by myosin during the transient state.
Biochemistry
8:
802–810,
1969.
|
40. |
Fraser, A. B.,
E. Eisenberg,
W. W. Kielley, and
F. D. Carson.
The interaction of heavy meromyosin and subfragment 1 with actin. Physical measurements in the presence and absence of adenosine triphosphate.
Biochemistry
14:
2207–2214,
1975.
|
41. |
Geeves, M. A., and
D. R. Trentham.
Protein‐bound adenosine 5'‐triphosphate: properties of a key intermediate of the magnesium‐dependent subfragment 1 adenosinetriphosphatase from rabbit skeletal muscle.
Biochemistry
21:
2782–2789,
1982.
|
42. |
Geeves, M. A.,
M. R. Webb,
C. F. Midelfort, and
D. R. Trentham.
Mechanism of adenosine 5'‐triphosphate cleavage by myosin: studies with oxygen 18‐labeled adenosine 5'‐triphosphate.
Biochemistry
19:
4748–4754,
1980.
|
43. |
Goodman, B. A., and
J. B. Raynor.
Electron spin resonance of transition metal complexes.
Adv. Inorg. Chem. Radiochem.
13:
135–362,
1970.
|
44. |
Goody, R. S., and
W. Hofmann.
Stereochemical aspects of the interaction of myosin and actomyosin with nucleotides.
J. Muscle Res. Cell Motil.
1:
101–115,
1980.
|
45. |
Goody, R. S.,
W. Hofmann, and
M. Konrad.
On the structure of the myosin‐ADP‐Mg complex.
FEBS Lett.
129:
169–172,
1981.
|
46. |
Goody, R. S.,
W. Hofmann, and
H. G. Mannherz.
The binding constant of ATP to myosin S1 fragment.
Eur. J. Biochem.
78:
317–324,
1977.
|
47. |
Goody, R. S.,
K. C. Holmes,
H. G. Mannherz,
J. Barrington‐Leigh, and
G. Rosenbaum.
Cross‐bridge conformation as revealed by X‐ray diffraction studies of insect flight muscles with ATP analogues.
Biophys. J.
15:
687–705,
1975.
|
48. |
Hill, T. L.
Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I.
Prog. Biophys. Mol. Biol.
28:
267–340,
1974.
|
49. |
Hill, T. L.
Free Energy Transduction in Biology.
New York:
Academic,
1977.
|
50. |
Huxley, A. F.
Muscle structure and theories of contraction.
Prog. Biophys. Biophys. Chem.
7:
255–318,
1957.
|
51. |
Huxley, A. F., and
R. Niedergerke.
Interference microscopy of living muscle fibres.
Nature London
173:
971–973,
1954.
|
52. |
Huxley, H. E.
The mechanism of muscular contraction.
Science
164:
1356–1366,
1969.
|
53. |
Huxley, H. E., and
J. Hanson.
Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation.
Nature London
173:
973–976,
1954.
|
54. |
Inoue, A.,
H. Takenaka,
T. Arata, and
Y. Tonomura.
Functional implications of the two‐headed structure of myosin.
Adv. Biophys.
13:
1–194,
1979.
|
55. |
Jaffe, E. K., and
M. Cohn.
Divalent cation‐dependent stereospecificity of adenosine 5'‐O‐(2‐thiotriphosphate) in the hexokinase and pyruvate kinase reactions. The absolute stereochemistry of the diastereoisomers of adenosine 5'‐O‐(2‐thiotriphosphate).
J. Biol. Chem.
253:
4823–4825,
1978.
|
56. |
Jaffe, E. K., and
M. Cohn.
31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding.
Biochemistry
17:
652–657,
1978.
|
57. |
Jaffe, E. K., and
M. Cohn.
Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase.
J. Biol. Chem.
254:
10839–10845,
1979.
|
58. |
Jarvest, R. L., and
G. Lowe.
Synthesis of methyl (R)‐ and (S)‐[18O]phosphorothioates and determination of the absolute configuration at phosphorus of the diastereoisomers of adenosine 5'‐(1‐thiotriphosphate)
J. Chem. Soc. Chem. Commun.
364–366,
1979.
|
59. |
Jencks, W. P.
Binding energy, specificity, and enzymic catalysis: the circe effect.
Adv. Enzymol.
43:
219–410,
1975.
|
60. |
Jencks, W. P.
The utilization of binding energy in coupled vectorial processes.
Adv. Enzymol.
51:
75–106,
1980.
|
61. |
Johnson, K. A., and
E. W. Taylor.
The intermediate states of subfragment 1 and actosubfragment 1 ATPase—a reevaluation of the mechanism.
Biochemistry
17:
3432–3442,
1978.
|
62. |
Karandashov, E. A.,
N. A. Biro, and
N. S. Panteleeva.
18O‐exchange reactions catalyzed by subfragment 1 of myosin molecule.
Biochemistry USSR
41:
1185–1191,
1976.
|
63. |
Karn, J.,
L. Barnett, and
A. D. Mclachlan.
Unc 54 myosin heavy chain gene; genetic sequence structure.
In: The Molecular Control of Muscle Development,
edited by M. Pearson.
Cold Spring Harbor, NY:
Cold Spring Harbor,
in press.
|
64. |
Knowles, J. R.
Enzyme‐catalyzed phosphoryl transfer reactions.
Annu. Rev. Biochem.
49:
877–919,
1980.
|
65. |
Korman, E. F., and
J. Mclick.
Stereochemical reaction mechanism formulation for enzyme‐catalyzed pyrophosphate hydrolysis, ATP hydrolysis, and ATP synthesis.
Bioorg. Chem.
2:
179–190,
1973.
|
66. |
Kuleva, N. V.,
E. A. Karandashov, and
N. S. Pantaleeva.
Effect of trinitrophenylation of myosin on the isotopic exchange reaction of oxygen in the myosin‐ATP‐H2O18 system.
Biochemistry USSR
35:
33–37,
1970.
|
67. |
Levy, H. M., and
D. E. Koshland.
Mechanism of hydrolysis of adenosine triphosphate by muscle proteins.
J. Biol. Chem.
234:
1102–1107,
1959.
|
68. |
Levy, H. M.,
E. M. Ryan,
S. S. Springhorn, and
D. E. Koshland.
Further evidence for oxygen exchange at an inter‐mediate stage in myosin hydrolysis.
J. Biol. Chem.
237:
1730–1731,
1962.
|
69. |
Levy, H. M.,
N. Sharon,
E. Lindemann, and
D. E. Koshland.
Properties of the active site in myosin hydrolysis of adenosine triphosphate as indicated by the O18‐exchange reaction.
J, Biol. Chem.
235:
2628–2632,
1960.
|
70. |
Lowe, G.,
B. V. L. Potter,
B. S. Sproat, and
W. E. Hull.
The effect of 17O and the magnitude of 18O‐isotope shift in 31P nuclear magnetic resonance spectroscopy.
J. Chem. Soc. Chem. Commun.
733–735,
1979.
|
71. |
Lowe, G., and
B. S. Sproat.
18O‐isotope shifts on the 31P nuclear magnetic resonance of adenosine 5'‐phosphate and inorganic phosphate.
J. Chem. Soc. Chem. Commun.
565–566,
1978.
|
72. |
Lowey, S.,
H. S. Slayter,
A. G. Weeds, and
H. Baker.
Substructure of the myosin molecule. Subfragments of myosin by enzymatic degradation.
J. Mol. Biol.
42:
1–29,
1969.
|
73. |
Lutz, O.,
A. Nolle, and
D. Staschewski.
Oxygen isotope effect on 31P NMR spectra in the phosphateion.
Z. Natur‐forsch.
33a:
380–382,
1978.
|
74. |
Lymn, R. W.
Kinetic analysis of myosin and actomyosin ATPase.
Annu. Rev. Biophys. Bioeng.
8:
145–163,
1979.
|
75. |
Lymn, R. W., and
E. W. Taylor.
Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin.
Biochemistry
9:
2975–2983,
1970.
|
76. |
Lymn, R. W., and
E. W. Taylor.
Mechanism of adenosine triphosphate hydrolysis by actomyosin.
Biochemistry
10:
4617–4624,
1971.
|
77. |
Mandelkow, E. M., and
E. Mandelkow.
Fluorometric studies on the influence of metal ions and chelators on the interaction between myosin and ATP.
FEBS Lett.
33:
161–166,
1973.
|
78. |
Mannherz, H. G.,
H. Schenck, and
R. S. Goody.
Synthesis of ATP from ADP and inorganic phosphate at the myosin‐subfragment 1 active site.
Eur. J. Biochem.
48:
287–295,
1974.
|
79. |
Mendelson, R. A.,
M. F. Morales, and
J. Botts.
Segmental flexibility of the S‐1 moiety of myosin.
Biochemistry
12:
2250–2255,
1973.
|
80. |
Merritt, E. A.,
M. Sundaralingam,
R. D. Cornelius, and
W. W. Cleland.
X‐ray crystal and molecular structure and absolute configuration of (dihydrogen tripolyphosphato)‐tetraamminecobalt(III) monohydrate, Co(NH3)4H2P3O10. H2O. A model for a metal‐nucleoside polyphosphate complex.
Biochemistry
17:
3274–3278,
1978.
|
81. |
Midelfort, C. F.
On the mechanism of actomyosin ATPase from fast muscle.
Proc. Natl. Acad. Sci. USA
78:
2067–2071,
1981.
|
82. |
Midelfort, C. F., and
I. A. Rose.
A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions. Glutamine synthetase.
J. Biol. Chem.
251:
5881–5887,
1976.
|
83. |
Mornet, D.,
R. Bertrand,
P. Pantel,
E. Audermard, and
R. Kassab.
Structure of the actin‐myosin interface.
Nature London
292:
301–306,
1981.
|
84. |
Nihei, T.,
A. Mendelson, and
J. Botts.
Use of fluorescence polarization to observe changes in attitude of S‐1 moieties in muscle fibers.
Biophys. J.
14:
236–242,
1974.
|
85. |
Pantaleeva, N. S.,
N. A. Biro,
E. A. Karandashov,
F. Fabian,
I. E. Krasovskaya,
N. V. Kuleva, and
E. G. Skvortsevich.
18O‐exchange catalyzed by myosin, heavy meromyosin, heavy meromyosin subfragment 1 and their complexes with actin.
Acta Biochim. Biophys. Acad. Sci. Hung.
12:
37–44,
1977.
|
86. |
Phillips, R.
Adenosine and the adenine nucleotides. Ionization, metal complex formation and conformation in solution.
Chem. Rev.
66:
501–527,
1966.
|
87. |
Pliura, D. H.,
D. Schomburg,
J. P. Richard,
P. A. Frey, and
J. R. Knowles.
Stereochemical course of a Phosphokinase using a chiral [18O]phosphorothioate. Comparison with the transfer of a chiral [16O, 17O, 18O]phosphoryl group.
Biochemistry
19:
325–329,
1980.
|
88. |
Reed, G. H., and
T. S. Leyh.
Identification of the six ligands to manganese(II) in transition‐state‐analogue complexes of creatine kinase: oxygen‐17 superhyperfine coupling from selectively labeled ligands.
Biochemistry
19:
5472–5480,
1980.
|
89. |
Richard, J. P.,
H.‐T. Ho, and
P. A. Frey.
Synthesis of nucleoside [18O]pyrophosphorothioates with chiral [18O]phosphorothioate groups of known configuration. Stereochemical orientations of enzymatic phosphorylations of chiral [18O]phosphorothioates.
J. Am. Chem. Soc.
100:
7756–7757,
1978.
|
90. |
Sartorelli, L.,
H. J. Fromm,
R. W. Benson, and
P. D. Boyer.
Direct and 18O‐exchange measurements relevant to possible activated or phosphorylated states of myosin.
Biochemistry
5:
2877–2884,
1966.
|
91. |
Sheu, K.‐F. R., and
P. A. Frey.
Enzymatic and 31P nuclear magnetic resonance study of adenylate kinase‐catalyzed stereospecific phosphorylation of adenosine 5'‐phosphorothioate.
J. Biol. Chem.
252:
4445–4448,
1977.
|
92. |
Shriver, J. W., and
B. D. Sykes.
Phosphorus‐31 nuclear magnetic resonance evidence for two conformations of myosin subfragment 1 nucleotide complex.
Biochemistry
20:
2004–2012,
1981.
|
93. |
Shukla, K. K., and
H. M. Levy.
Comparative studies of oxygen exchange catalyzed by myosin, heavy meromyosin, and subfragment 1. Evidence that the γ‐phosphoryl group of adenosine triphosphate binds to myosin in the region of the (subfragment 1)‐(subfragment 2) hinge.
Biochemistry
16:
5199–5206,
1977.
|
94. |
Shukla, K. K., and
H. M. Levy.
Evidence from oxygen exchange measurements for a cooperative interaction between the two heads of myosin.
Nature London
266:
190–191,
1977.
|
95. |
Shukla, K. K., and
H. M. Levy.
Mechanism of oxygen exchange in actin‐activated hydrolysis of adenosine triphosphate by myosin subfragment 1.
Biochemistry
16:
132–136,
1977.
|
96. |
Shukla, K. K., and
H. M. Levy.
Oxygen exchange by single‐headed myosin.
J. Biol. Chem.
253:
8362–8365,
1978.
|
97. |
Shukla, K. K.,
H. M. Levy,
F. Ramirez,
J. F. Marecek,
S. Meyerson, and
E. S. Kuhn.
Distribution of [18O]Pi species from [γ‐18O]ATP hydrolysis by myosin and heavy meromyosin.
J. Biol. Chem.
255:
11344–11350,
1980.
|
98. |
Sleep, J. A.
Single turnovers of ATP by myofibrils and actomyosin subfragment 1.
Biochemistry
20:
5043–5051,
1981.
|
99. |
Sleep, J. A., and
P. D. Boyer.
Effect of actin concentration on the intermediate oxygen exchange of myosin: relation to the refractory state and the mechanism of exchange.
Biochemistry
17:
5417–5422,
1978.
|
100. |
Sleep, J. A.,
D. D. Hackney, and
P. D. Boyer.
Characterization of phosphate oxygen exchange reactions catalyzed by myosin through measurement of the distribution of 18O‐labeled species.
J. Biol. Chem.
253:
5235–5238,
1978.
|
101. |
Sleep, J. A.,
D. D. Hackney, and
P. D. Boyer.
The equivalence of phosphate oxygens for exchange and the hydrolysis characteristics revealed by the distribution of [18O]Pi species formed by myosin and actomyosin ATPase.
J. Biol. Chem.
255:
4094–4099,
1980.
|
102. |
Sleep, J. A., and
R. L. Hutton.
Actin mediated release of ATP from a myosin‐ATP complex.
Biochemistry
17:
5423–5430,
1978.
|
103. |
Sleep, J. A., and
S. J. Smith.
Actomyosin ATPase and muscle contraction.
Curr. Top. Bioenerg.
11:
239–286,
1981.
|
104. |
Stein, L. A.,
P. B. Chock, and
E. Eisenberg.
Mechanism of the actomyosin ATPase: effect of actin on the ATP hydrolysis step.
Proc. Natl. Acad. Sci. USA
78:
1346–1350,
1981.
|
105. |
Stein, L. A.,
R. P. Schwarz,
P. B. Chock, and
E. Eisenberg.
Mechanism of actomyosin adenosine triphosphatase. Evidence that adenosine 5'‐triphosphate hydrolysis can occur without dissociation of the actomyosin complex.
Biochemistry
18:
3895–3909,
1979.
|
106. |
Swanson, J. R., and
R. G. Yount.
The properties of heavy meromyosin and myosin catalyzed “medium” and “intermediate” 18O‐phosphate exchange.
Biochem. Z.
345:
395–409,
1966.
|
107. |
Szent‐Gyorgyi, A.
Discussion.
Stud. Inst. Med. Chem. Univ. Szeged. (1941–42),
1:
67–71,
1943.
|
108. |
Taylor, E. W.
Transient phase of adenosine triphosphate hydrolysis by myosin, heavy meromyosin, and subfragment 1.
Biochemistry
16:
732–740,
1977.
|
109. |
Taylor, E. W.
Mechanism of actomyosin ATPase and the problem of muscle contraction.
Crit. Rev. Biochem.
6:
103–164,
1979.
|
110. |
Taylor, R. S., and
A. G. Weeds.
Transient‐phase of ATP hydrolysis by myosin subfragment 1 isoenzymes.
FEBS Lett.
75:
55–60,
1977.
|
111. |
Thomas, D. D.,
J. C. Seidel,
J. S. Hyde, and
J. Gergely.
Motion of subfragment‐1 in myosin and its supramolecular complexes: saturation transfer electron paramagnetic resonance.
Proc. Natl. Acad. Sci. USA
72:
1729–1733,
1975.
|
112. |
Thomas, D. D.,
S. I. Shiwata,
J. C. Seidel, and
J. Gergely.
Submillisecond rotational dynamics of spin‐labeled myosin heads in myofibrils.
Biophys. J.
32:
873–890,
1980.
|
113. |
Trentham, D. R.
The adenosine triphosphatase reactions of myosin and actomyosin and their relation to energy transduction in muscle.
Biochem. Soc. Trans.
5:
5–22,
1977.
|
114. |
Trentham, D. R.,
R. G. Bardsley,
J. F. Eccleston, and
A. G. Weeds.
Elementary processes of the magnesium ion‐dependent adenosine triphosphatase activity of heavy meromyosin.
Biochem. J.
126:
635–644,
1972.
|
115. |
Trentham, D. R.,
J. F. Eccleston, and
C. R. Bagshaw.
Kinetic analysis of ATPase mechanisms.
Q. Rev. Biophys.
9:
217–281,
1976.
|
116. |
Trybus, K. M., and
E. W. Taylor.
Kinetics of ADP and AMP‐PNP binding to SF‐1.
Biophys. J.
25:
21a,
1979.
|
117. |
Tsai, M.‐D.
Use of phosphorqs‐31 nuclear magnetic resonance to distinguish bridge and nonbridge oxygens of oxygen‐17‐enriched nucleoside triphosphates. Stereochemistry of acetate activation by acetyl coenzyme A synthetase.
Biochemistry
18:
1468–1472,
1979.
|
118. |
Watterson, J. G., and
M. C. Schaub.
Conformational differences in myosin. II. Evidence for differences in the conformation induced by bound or hydrolyzed adenosine triphosphate.
Hoppe‐Seyler's Z. Physiol. Chem.
354:
1619–1625,
1973.
|
119. |
Webb, M. R.
A method for determining the positional isotope exchange in a nucleoside triphosphate: cyclization of nucleoside triphosphate by dicyclohexylcarbodiimide.
Biochemistry
19:
4744–4748,
1980.
|
120. |
Webb, M.R.
The stereochemical course of nucleoside triphosphatase reactions.
Methods Enzymol. In press.
|
121. |
Webb, M. R.,
D. E. Ash,
T. S. Leyh,
D. R. Trentham, and
G. H. Reed.
Electron paramagnetic resonance studies of Mn(II) complexes with myosin subfragment 1 and oxygen‐17 labeled ligands.
J. Biol. Chem.
257:
3068–3072,
1982.
|
122. |
Webb, M. R.,
G. G. Mcdonald, and
D. R. Trentham.
Kinetics of oxygen‐18 exchange between inorganic phosphate and water catalyzed by myosin subfragment 1, using the 18O shift in 31P NMR.
J. Biol. Chem.
253:
2908–2911,
1978.
|
123. |
Webb, M. R., and
D. R. Trentham.
Analysis of chiral inorganic [16O, 17O, 18O]thiophosphate and the stereochemistry of the 3‐phosphoglycerate kinase reaction.
J. Biol. Chem.
255:
1775–1779,
1980.
|
124. |
Webb, M. R., and
D. R. Trentham.
The stereochemical course of phosphoric residue transfer during the myosin ATPase reaction.
J. Biol. Chem.
255:
8629–8632,
1980.
|
125. |
Webb, M. R., and
D. R. Trentham.
The stereochemical course of phosphoric residue transfer catalyzed by sarcoplasmic reticulum ATPase.
J. Biol. Chem.
256:
4884–4887,
1981.
|
126. |
Webb, M. R., and
D. R. Trentham.
The mechanism of ATP hydrolysis catalyzed by myosin and actomyosin using rapid reaction techniques to study oxygen exchange.
J. Biol. Chem.
256:
10910–10916,
1981.
|
127. |
Westheimer, F. H.
Pseudorotation in the hydrolysis of phosphate esters.
Ace. Chem. Res.
1:
70–78,
1968.
|
128. |
White, D. C. S., and
J. Thorson.
The kinetics of muscle contraction.
Prog. Biophys. Mol. Biol.
27:
175–255,
1973.
|
129. |
White, H. D., and
E. W. Taylor.
Energetics and mechanism of actomyosin adenosine triphosphatase.
Biochemistry
15:
5818–5826,
1976.
|
130. |
Wolcott, R. G., and
P. D. Boyer.
On the nature of p‐nitrothiophenylated myosin.
Biochim. Biophys. Acta
303:
292–297,
1973.
|
131. |
Wolcott, R. G., and
P. D. Boyer.
The reversal of the myosin and actomyosin ATPase reactions and the free energy of ATP binding to myosin.
Biochem. Biophys. Res. Commun.
57:
709–716,
1974.
|
132. |
Wolcott, R. G., and
P. D. Boyer.
Isotopic probes of catalytic steps of myosin adenosine triphosphatase.
J. Supramol. Struct.
3:
154–161,
1975.
|
133. |
Yee, D., and
F. Eckstein.
Phosphorothioate analogues of ATP as substrates for myosin ATPase.
Hoppe‐Seyler's Z. Physiol. Chem.
361:
353–354,
1980.
|
134. |
Yee, D., and
F. Eckstein.
Structure of the metal‐nucleotide chelate in the myosin‐product complex.
FEBS Lett.
112:
10–12,
1980.
|
135. |
Young, J. J.,
M. Mclick, and
E. F. Korman.
Pseudorotation mechanism of ATP hydrolysis in muscle contraction.
Nature London
249:
474–476,
1974.
|
136. |
Yount, R. G., and
D. E. Koshland.
Properties of O18 exchange reaction catalyzed by heavy meromyosin.
J. Biol. Chem.
238:
1708–1713,
1963.
|