Comprehensive Physiology Wiley Online Library

Conformational Changes and Molecular Dynamics of Myosin

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Myosin Structure
1.1 Subunits
1.2 Actin Interaction Site
2 Myosin Interaction with ATP and its Analogues
2.1 Conformational Changes
2.2 Ultraviolet Spectral Changes
2.3 Electron Paramagnetic Resonance Spectra
2.4 Relation to ATPase Mechanism
2.5 Rod Conformational Changes
3 Chemical Modification
3.1 Cysteine Residue Modification
3.2 Lysine Modification
4 Two‐Headed Nature of Myosin
4.1 Are the Two Myosin Heads Identical?
4.2 Interactions of the Two Myosin Heads
5 Molecular Mechanism of Cross‐Bridge Cycle
5.1 Segmental Flexibility of Myosin
5.2 Measurement of Correlation Time
5.3 Local Fluctuations in Myosin Structure
6 Organized Systems
6.1 Motion of Myosin Heads
6.2 Orientation of Myosin Heads
7 Force Generation and Elasticity
7.1 Rotating‐Head Models
7.2 Helix‐Coil Melting Model
7.3 Actin Motions
7.4 X‐Ray Studies
7.5 Correlation Functions
Figure 1. Figure 1.

Myosin molecule showing points (broken lines) at which limited proteolysis results in formation of stable fragments. Elongated light chain subunits possibly interact with region of S1–S2 junction. Phosphorylatable light chain ℗ is LC2 of skeletal muscle or LC1 of smooth muscle. Hinge regions postulated at S1–S2 junction and S2‐LMM junction. Intertwined heavy chains, α‐helical regions. Not drawn to scale. [From Kendrick‐Jones and Scholey 79.]

Figure 2. Figure 2.

Alignment of proteolytic fragments of heavy chain in S1 region and adjacent rod portion. Putative localization of ATP‐ and actin‐binding sites and established location of reactive lysine, SH1 groups, and SH2 groups. The 37,000‐Mr fragment is subunit of shorter S2. The 22,000‐Mr fragment is putative hinge region lost in formation of short S2.

Figure 3. Figure 3.

Attachment of myosin head to 2 monomers in actin filaments.

From Mornet et al. 116. Reprinted by permission from Nature, copyright 1981 Macmillan Journals Limited
Figure 4. Figure 4.

Mechanism proposed for producing relative sliding movement of filaments. A: relaxed muscle. Cross bridges do not project far toward actin filament. B: during contraction or rigor, cross bridges attach to actin filament by bending at 2 flexible junctions. C: tilting of myosin head gives rise to movement of filaments past each other. [From H. E. Huxley 62. Copyright 1969 by the American Association for the Advancement of Science.]

Figure 5. Figure 5.

Thin‐filament structure permitting attachment of each myosin head to 2 actin monomers.

From Amos et al. 2. Reprinted by permission from Nature, copyright 1982 Macmillan Journals Limited
Figure 6. Figure 6.

Cross‐bridge model. Different orientation of myosin heads corresponds to different stable states resulting, in this simple model, from pairs of MiAi, Mi+1Ai+1 contacts. As originally proposed, link AB contains instantaneous elasticity. AB, S2; B, S1–S2 hinge. [From A. F. Huxley and Simmons 60.]

Figure 7. Figure 7.

Placing of force generator in hinge region between S2 and LMM with helix‐coil transition as molecular basis of force development. Model does not require myosin head tilt. Numbers attached by arrows, magnitude of first‐order rate constants of fragment formation under α‐chymotryptic cleavage. Highest rate in hinge region under activating conditions. [From Ueno and Harrington 175.]



Figure 1.

Myosin molecule showing points (broken lines) at which limited proteolysis results in formation of stable fragments. Elongated light chain subunits possibly interact with region of S1–S2 junction. Phosphorylatable light chain ℗ is LC2 of skeletal muscle or LC1 of smooth muscle. Hinge regions postulated at S1–S2 junction and S2‐LMM junction. Intertwined heavy chains, α‐helical regions. Not drawn to scale. [From Kendrick‐Jones and Scholey 79.]



Figure 2.

Alignment of proteolytic fragments of heavy chain in S1 region and adjacent rod portion. Putative localization of ATP‐ and actin‐binding sites and established location of reactive lysine, SH1 groups, and SH2 groups. The 37,000‐Mr fragment is subunit of shorter S2. The 22,000‐Mr fragment is putative hinge region lost in formation of short S2.



Figure 3.

Attachment of myosin head to 2 monomers in actin filaments.

From Mornet et al. 116. Reprinted by permission from Nature, copyright 1981 Macmillan Journals Limited


Figure 4.

Mechanism proposed for producing relative sliding movement of filaments. A: relaxed muscle. Cross bridges do not project far toward actin filament. B: during contraction or rigor, cross bridges attach to actin filament by bending at 2 flexible junctions. C: tilting of myosin head gives rise to movement of filaments past each other. [From H. E. Huxley 62. Copyright 1969 by the American Association for the Advancement of Science.]



Figure 5.

Thin‐filament structure permitting attachment of each myosin head to 2 actin monomers.

From Amos et al. 2. Reprinted by permission from Nature, copyright 1982 Macmillan Journals Limited


Figure 6.

Cross‐bridge model. Different orientation of myosin heads corresponds to different stable states resulting, in this simple model, from pairs of MiAi, Mi+1Ai+1 contacts. As originally proposed, link AB contains instantaneous elasticity. AB, S2; B, S1–S2 hinge. [From A. F. Huxley and Simmons 60.]



Figure 7.

Placing of force generator in hinge region between S2 and LMM with helix‐coil transition as molecular basis of force development. Model does not require myosin head tilt. Numbers attached by arrows, magnitude of first‐order rate constants of fragment formation under α‐chymotryptic cleavage. Highest rate in hinge region under activating conditions. [From Ueno and Harrington 175.]

References
 1. Ajtai, K., L. Szilagyi, and E. N. A. Biro. Study of the structure of HMM: vanadate complex. FEBS Lett. 141: 74–77, 1982.
 2. Amos, L. A., H. E. Huxley, K. C. Holmes, R. S. Goody, and K. A. Taylor. Structural evidence that myosin heads may interact with two sites on F‐actin. Nature London 299: 467–469, 1982.
 3. Arata, T., Y. Mukohata, and Y. Tonomura. Structure and function of the two heads of the myosin molecule. VI. ATP hydrolysis, shortening and tension development of myofibrils. J. Biochem. Tokyo 82: 801–812, 1977.
 4. Arata, T., and H. Shimizu. Spin‐label study of actin‐myosin‐nucleotide interactions in contracting glycerinated muscle fibers. J. Mol. Biol. 151: 411–437, 1981.
 5. Aronson, J. F., and M. F. Morales. Polarization of tryptophan fluorescence in muscle. Biochemistry 8: 4517–4522, 1969.
 6. Astbury, W. T. Croonian lecture on the structure of biological fibres and the problem of muscle. Proc. R. Soc. London Ser. B 134: 303–328, 1947.
 7. Bagshaw, C. R., J. F. Eccleston, F. Eckstein, R. S. Goody, H. Gutfreund, and D. R. Trentham. The magnesium ion‐dependent adenosine triphosphatase of myosin. Two‐step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem. J. 141: 351–364, 1974.
 8. Bagshaw, C. R., J. F. Eccleston, D. R. Trentham, B. W. Yates, and R. S. Goody. Transient kinetic studies of the Mg2+ dependent ATPase of myosin and its proteolytic subfragments. Cold Spring Harbor Symp. Quant. Biol. 37: 127–135, 1972.
 9. Bagshaw, C. R., and J. Kendrick‐Jones. Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy. J. Mol. Biol. 130: 317–336, 1979.
 10. Bagshaw, C. R., and G. H. Reed. The significance of the slow dissociation of divalent metal ions from myosin regulatory light chains. FEBS Lett. 81: 386–390, 1977.
 11. Balint, M., F. A. Sreter, I. Wolf, B. Nagy, and J. Gergely. The substructure of heavy meromyosin. The effect of Ca2+ and Mg2+ on the tryptic fragmentation of heavy meromyosin. J. Biol. Chem. 250: 6168–6177, 1975.
 12. BÁLint, M., L. Szilágyi, G. Fekete, M. Blazsó, and N. A. Biró. Studies on proteins and protein complexes of muscle by means of proteolysis. V. Fragmentation of light meromyosin by trypsin. J. Mol. Biol. 37: 317–330, 1968.
 13. Balint, M., I. Wolf, A. Tarcsafalvi, J. Gergely, and F. A. Sreter. Location of SH‐1 and SH‐2 in the heavy chain segment of heavy meromyosin. Arch. Biochem. Biophys. 190: 793–799, 1978.
 14. Borejdo, J., O. Assulin, T. Ando, and S. Putnam. Cross‐bridge orientation in skeletal muscle measured by linear dichroism of an extrinsic chromophore. J. Mol. Biol. 158: 391–414, 1982.
 15. Borejdo, J., S. Putnam, and M. F. Morales. Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction. Proc. Natl. Acad. Sci. USA 76: 6346–6350, 1979.
 16. Burke, M., S. Himmelfarb, and W. F. Harrington. Studies on the “hinge” region of myosin. Biochemistry 12: 701–710, 1973.
 17. Burke, M., E. Reisler, and W. F. Harrington. Effect of bridging the two essential thiols of myosin on its spatial and actin‐binding properties. Biochemistry 15: 1923–1927, 1976.
 18. Chalovich, J. M., P. B. Chock, and E. Eisenberg. Mechanism of action of troponin‐tropomyosin. Inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin. J. Biol. Chem. 256: 575–579, 1981.
 19. Chalovich, J. M., and E. Eisenberg. Inhibition of actomyosin ATPase activity by troponin‐tropomyosin without blocking the binding of myosin to actin. J. Biol. Chem. 257: 2432–2437, 1982.
 20. Chantler, P. D., J. R. Sellers, and A. G. Szent‐Györgyi. Cooperativity in scallop myosin. Biochemistry 20: 210–216, 1981.
 21. Chantler, P. D., and A. G. Szent‐Györgyi. Regulatory light chains and scallop myosin. Full dissociation, reversibility and cooperative effects. J. Mol. Biol. 138: 473–492, 1980.
 22. Chiao, Y.‐C. C., and W. F. Harrington. Cross‐bridge movement in glycerinated rabbit psoas muscle fibers. Biochemistry 18: 959–963, 1979.
 23. Cooke, R. Stress does not alter the conformation of a domain of the myosin cross‐bridge in rigor muscle fibres. Nature London 294: 570–571, 1981.
 24. Cooke, R., V. A. Barnett, and D. D. Thomas. Measuring crossbridge angles with paramagnetic probes in rigor, relaxed and contracting muscle fibers (Abstract). Biophys. J. 37: 117a, 1982.
 25. Cooke, R., and K. E. Franks. Generation of force by single‐headed myosin. J. Mol. Biol. 120: 361–373, 1978.
 26. Cooke, R., K. Franks, and J. T. Stull. Myosin phosphorylation regulates the ATPase activity of permeable skeletal muscle fibers. FEBS Lett. 144: 33–37, 1982.
 27. Craig, R., A. G. Szent‐Györgyi, L. Beese, P. Flicker, P. Vibert, and C. Cohen. Electron microscopy of thin filaments decorated with a Ca2+‐regulated myosin. J. Mol. Biol. 140: 35–55, 1980.
 28. Crow, M. T., and M. Kushmerick. Phosphorylation of myosin light chains in mouse fast‐twitch muscle associated with reduced actomyosin turnover rate. Science 217: 835–837, 1982.
 29. De La Torre, J. G., and V. A. Bloomfield. Conformation of myosin as estimated from hydrodynamic properties. Biochemistry 19: 5118–5123, 1980.
 30. Dos Remedios, C. G., R. G. Yount, and M. F. Morales. Individual states in the cycle of muscle contraction. Proc. Natl. Acad. Sci. USA 69: 2542–2546, 1972.
 31. Duke, J., R. Takashi, K. Ue, and M. F. Morales. Reciprocal reactivities of specific thiols when actin binds to myosin. Proc. Natl. Acad. Sci. USA 73: 302–306, 1976.
 32. Eisenberg, E., and T. L. Hill. A cross‐bridge model of muscle contraction. Prog. Biophys. Mol. Biol. 33: 55–82, 1978.
 33. Eisenberg, E., T. L. Hill, and Y. Chen. Cross‐bridge model of muscle contraction. Quantitative analysis. Biophys. J. 29: 195–227, 1980.
 34. Elliott, A., and G. Offer. Shape and flexibility of the myosin molecule. J. Mol. Biol. 123: 505–509, 1978.
 35. Elzinga, M., and J. Collins. Amino acid sequence of a myosin fragment that contains SH‐1, SH‐2 and N‐methylhis‐tidine. Proc. Natl. Acad. Sci. USA 74: 4281–4284, 1977.
 36. Engelhardt, V. A., and M. N. Lyubimova. Myosine and adenosinetriphosphatase. Nature London 144: 668–669, 1939.
 37. Fujime, S., and S. Ishiwata. Dynamic study of F‐actin by quasielastic scattering of laser light. J. Mol. Biol. 62: 251–265, 1971.
 38. Furukawa, K. I., A. Inoue, and Y. Tonomura. Extra burst of Pi liberation and formation of the myosin‐phosphate‐ADP complex at various concentrations of Mg2+ ions. J. Biochem. Tokyo 89: 1283–1292, 1981.
 39. Gazith, J., S. Himmelfarb, and W. F. Harrington. Studies on the subunit structure of myosin. J. Biol. Chem. 245: 15–22, 1970.
 40. Gergely, J. Relation of ATPase and myosin (Abstract). Federation Proc. 9: 176, 1950.
 41. Gergely, J. Studies on myosin adenosine triphosphatase. J. Biol. Chem. 200: 543–550, 1953.
 42. Gergely, J. The interaction between actomyosin and adenosine triphosphate. Light scattering studies. J. Biol. Chem. 220: 917–926, 1956.
 43. Gergely, J., M. A. Gouvea, and D. Karibian. Fragmentation of myosin by chymotrypsin. J. Biol. Chem. 212: 165–177, 1955.
 44. Gershman, L. C., A. Stracher, and P. Dreizen. Subunit structure of myosin. III. A proposed model for rabbit skeletal myosin. J. Biol. Chem. 244: 2726–2736, 1969.
 45. Goody, R. S., F. Eckstein, and R. H. Schirmer. The enzymatic synthesis of thiophosphate analogs of nucleotide anhydrides. Biochim. Biophys. Acta 276: 155–161, 1972.
 46. Gratzer, W. B., and S. Lowey. Effect of substrate on the conformation of myosin. J. Biol. Chem. 244: 22–25, 1969.
 47. Harrington, W. F. A mechanochemical mechanism for muscle contraction. Proc. Natl. Acad. Sci. USA 68: 685–689, 1971.
 48. Harrington, W. F. Origin of the contractile force in skeletal muscle. Proc. Natl. Acad. Sci. USA 76: 5066–5070, 1979.
 49. Hasselbach, W. Die Wechselwirkung verschiedener Nukleo‐sidtriphosphate mit Aktomyosin in Gelzustand. Biochim. Biophys. Acta 20: 355–368, 1956.
 50. Highsmith, S. The dynamics of myosin and actin in solution are compatible with the mechanical features of the cross‐bridge hypothesis. Biochim. Biophys. Acta 639: 31–39, 1981.
 51. Highsmith, S., K. Akasaka, M. Konrad, R. Goody, K. Holmes, N. Wade‐Jardetzky, and O. Jardetzky. Internal motions in myosin. Biochemistry 18: 4238–4243, 1979.
 52. Highsmith, S., and O. Jardetzky. Internal motions in myosin. Biochemistry 20: 780–783, 1981.
 53. Highsmith, S., K. M. Kretzschmar, C T. O'Konski, and M. F. Morales. Flexibility of myosin rod, light meromyosin and myosin subfragment 2 in solution. Proc. Natl. Acad. Sci. USA 74: 4986–4990, 1977.
 54. Highsmith, S., C.‐C. Wang, K. Zero, R. Pecora, and O. Jardetzky. Bending motions and internal motions in myosin rod. Biochemistry 21: 1192–1196, 1982.
 55. Hiratsuka, T. Actin‐induced conformational changes around the reactive fluorescence‐labeled lysyl residues located in the subfragment‐1/subfragment‐2 link region of cardiac myosin. J. Biol. Chem. 256: 10645–10650, 1981.
 56. Hozumi, T., and A. Muhlrad. Reactive lysyl of myosin subfragment 1: location on the 27k fragment and labeling properties. Biochemistry 20: 2945–2949, 1981.
 57. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Chem. 7: 255–318, 1957.
 58. Huxley, A. F. Review lecture: muscular contraction. J. Physiol. London 243: 1–43, 1974.
 59. Huxley, A. F., and R. Niedergerke. Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature London 173: 971–973, 1954.
 60. Huxley, A. F., and R. M. Simmons. Proposed mechanism of force generation in striated muscle. Nature London 233: 533–538, 1971.
 61. Huxley, A. F., and R. M. Simmons. Mechanical transients and the origin of muscular force. Cold Spring Harbor Symp. Quant. Biol. 37: 669–680, 1972.
 62. Huxley, H. E. The mechanism of muscular contraction. Science 164: 1356–1366, 1969.
 63. Huxley, H. E., and W. Brown. X‐ray diffraction of vertebrate striated muscle during contraction and in rigor. J. Mol. Biol. 30: 383–434, 1967.
 64. Huxley, H. E., A. R. Faruqi, M. Kress, J. Bordas, and M. H. Koch. Time resolved X‐ray diffraction studies of the myosin layer line reflected during muscle contraction. J. Mol. Biol. 158: 637–684, 1982.
 65. Huxley, H. E., and J. Hanson. Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation. Nature London 173: 973–976, 1954.
 66. Huxley, H. E., R. M. Simmons, A. R. Faruqi, M. Kress, J. Bordas, and M. H. Koch. Millisecond time resolved changes in X‐ray reflections from contracting muscle during rapid mechanical transients recorded using synchroton radiation. Proc. Natl. Acad. Sci. USA 78: 2297–2301, 1981.
 67. Inoue, A., K. Kikuchi, and Y. Tonomura. Structure and function of the two heads of the myosin molecule. V. Enzymatic properties of heads B and A. J. Biochem. Tokyo 82: 783–800, 1977.
 68. Inoue, A., H. Takenaka, T. Arata, and Y. Tonomura. Functional implications of the two‐headed structure of myosin. Adv. Biophys. 13: 1–194, 1979.
 69. Inoue, A., and Y. Tonomura. Separation of subfragment‐1 of heavy meromyosin into two equimolar fractions with and without formation of the reactive enzyme‐phosphate‐ADP complex. J. Biochem. Tokyo 79: 419–434, 1976.
 70. Ishiwata, S., J. Seidel, and J. Gergely. Regulation by calcium ions of crossbridge attachment in myofibrils studied by saturation transfer EPR spectroscopy (Abstract). Biophys. J. 25: 1900a, 1979.
 71. Johnson, K. A., and E. W. Taylor. Intermediate states of subfragment 1 and acto‐subfragment 1 ATPase: reevaluation of the mechanism. Biochemistry 17: 3432–3442, 1978.
 72. Kamayama, T. Actin induced local conformational change in the myosin molecule. III. Reactivity of S2 thiol and DTNB reactive thiols of porcine cardiac myosin. J. Biochem. Tokyo 87: 581–586, 1980.
 73. Kamayama, T., T. Katori, and T. Serine. Actin induced local conformational change in the myosin molecule. I. Effect of metal ions and nucleotides on the conformational change around a specific thiol group (S2) of heavy meromyosin. J. Biochem. Tokyo 81: 709–714, 1977.
 74. Karplus, M., B. R. Gelin, and J. A. Mccammon. Internal dynamics of proteins: short time and long time motions of aromatic sidechains in PTI. Biophys. J. 32: 603–618, 1980.
 75. Karplus, M., and J. A. Mccammon. Dynamics of folded proteins. Nature London 267: 585–590, 1977.
 76. Karplus, M., and J. A. Mccammon. The internal dynamics of globular proteins. Crit. Rev. Biochem. 9: 293–349, 1981.
 77. Kassab, R., D. Mornet, P. Pantel, R. Bertrand, and E. Audemard. Structural aspects of actomyosin interaction. Biochimie 63: 273–289, 1981.
 78. Kendrick‐Jones, J. Role of myosin light chains in calcium regulation. Nature London 249: 631–634, 1974.
 79. Kendrick‐Jones, J., and J. M. Scholey. Myosin‐linked regulatory systems. J. Muscle Res. Cell Motility 2: 347–372, 1981.
 80. Kendrick‐Jones, J., E. M. Szentkiralyi, and A. G. Szent‐Györgyi. Regulatory light chains in myosin. J. Mol. Biol. 104: 747–775, 1976.
 81. Kominz, D. R., E. R. Mitchell, T. Nihei, and C. M. Kay. The papain digestion of skeletal myosin. Biochemistry 4: 2373–2382, 1965.
 82. Kubo, S., S. Tokura, and Y. Tonomura. On the active site of myosin A‐adenosine triphosphatase. I. Reaction of the enzyme with trinitrobenzenesulfonate. J. Biol. Chem. 235: 2835–2839, 1960.
 83. Lehman, W., and A. G. Szent‐Györgyi. Regulation of muscular contraction: distribution of actin control and myosin control in the animal kingdom. J. Gen. Physiol. 66: 1–30, 1975.
 84. Lowey, S. Myosin substructure: isolation of a helical subunit from heavy meromyosin. Science 145: 597–599, 1964.
 85. Lowey, S., and C. Cohen. Studies on the structure of myosin. J. Mol. Biol. 4: 293–308, 1962.
 86. Lowey, S., and S. M. Luck. Equilibrium binding of adenosine diphosphate to myosin. Biochemistry 8: 3195–3199, 1969.
 87. Lowey, S., and D. Risby. Light chains from fast and slow muscle myosin. Nature London 234: 81–85, 1971.
 88. Lowey, S., H. S. Slayter, A. G. Weeds, and H. Baker. Substructure of the myosin molecule. I. Subfragments of myosin by enzymatic degradation. J. Mol. Biol. 42: 1–29, 1969.
 89. Lu, R. C. Identification of a region susceptible to proteolysis in myosin subfragment 2. Proc. Natl. Acad. Sci. USA 77: 2010–2013, 1980.
 90. Lu, R. C., L. Nyitray, M. Balint, and J. Gergely. Localization of a region responsible for the low ionic strength insolubility of myosin (Abstract). Biophys. J. 41: 228a, 1983.
 91. Lymn, R. W. Low‐angle x‐ray diagrams from skeletal muscle: the effect of AMP‐PNP, a non hydrolyzed analogue of ATP. J. Mol. Biol. 99: 567–582, 1975.
 92. Lymn, R. W., and E. W. Taylor. Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. Biochemistry 9: 2975–2983, 1970.
 93. Mandelkow, E. M., and E. Mandelkow. Fluorometric studies on the influence of metal ions and chelators on the interaction between myosin and ATP. FEBS Lett. 33: 161–166, 1973.
 94. Margossian, S. S., and S. Lowey. Substructure of the myosin molecule. III. Preparation of single headed derivatives of myosin. J. Mol. Biol. 74: 301–311, 1973.
 95. Margossian, S. S., and S. Lowey. Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F‐actin. J. Mol. Biol. 74: 313–330, 1973.
 96. Marsh, D. J., and S. Lowey. Fluorescence energy transfer in myosin subfragment‐1. Biochemistry 19: 774–784, 1980.
 97. Marsh, D. J., L. A. Stein, E. Eisenberg, and S. Lowey. Fluorescently labelled myosin subfragment 1. Identification of the kinetic step associated with the adenosine 5'‐triphosphate induced fluorescence decrease. Biochemistry 21: 1925–1928, 1982.
 98. Marston, S. B., C. D. Rodger, and R. T. Tregear. Changes in muscle crossbridges when β, γ‐imido‐ATP binds to myosin. J. Mol. Biol. 104: 263–276, 1976.
 99. Marston, S. B., R. T. Tregear, C. D. Rodger, and M. L. Clarke. Coupling between the enzymatic site of myosin and the mechanical output of muscle. J. Mol. Biol. 128: 111–126, 1979.
 100. Mendelson, R. A., and P. Cheung. Myosin crossbridges: absence of direct effect of calcium on movement away from the thick filaments. Science 194: 190–192, 1976.
 101. Mendelson, R. A., and P. Cheung. Intrinsic segmental flexibility of the S‐1 moiety of myosin using single‐headed myosin. Biochemistry 17: 2139–2148, 1978.
 102. Mendelson, R. A., M. F. Morales, and J. Botts. Segmental flexibility of the S‐1 moiety of myosin. Biochemistry 12: 2250–2255, 1973.
 103. Mendelson, R. A., and M. G. A. Wilson. Three dimensional disorders of dipolar probes in a helical array. Application to muscle crossbridges. Biophys. J. 39: 221–228, 1982.
 104. Michnicka, M., K. Kasman, and I. Kakol. The binding of actin to phosphorylated and dephosphorylated myosin. Biochim. Biophys. Acta 704: 470–475, 1982.
 105. Mihalyi, E., and A. G. Szent‐Györgyi. Trypsin digestion of muscle proteins. III. Adenosine triphosphatase activity and actin‐binding capacity of the digested myosin. J. Biol. Chem. 201: 211–219, 1953.
 106. Miyanishi, T., A. Inoue, and Y. Tonomura. Differential modification of specific lysine residues in the two kinds of subfragment‐1 of myosin with 2,4,6‐trinitrobenzenesulfonate. J. Biochem. Tokyo 85: 747–753, 1979.
 107. Miyanishi, T., and Y. Tonomura. Location of the nonidentical two reactive lysine residues in the myosin molecule. J. Biochem. Tokyo 89: 831–839, 1981.
 108. MÓCz, G., R. C. Lu, and J. Gergely. Nucleotide and metal effects on the structure of myosin subfragment 1 (Abstract). Biophys. J. 37: 38a, 1982.
 109. Monad, J., J. Wyman, and J. P. Changeux. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12: 88–118, 1965.
 110. Morales, M. F., J. Borejdo, J. Botts, R. Cooke, R. A. Mendelson, and R. Takashi. Some physical studies of the contractile mechanism in muscle. Ann. Rev. Phys. Chem. 33: 319–351, 1982.
 111. Morales, M. F., and J. Botts. Molecular basis for chemo‐mechanical energy transduction in muscle. Proc. Natl. Acad. Sci. USA 76: 3857–3859, 1979.
 112. Morgan, M., S. V. Perry, and J. Ottaway. Myosin light‐chain phosphatase. Biochem. J. 157: 687–697, 1976.
 113. Morita, F. Interaction of HMM with Substrate. I. Difference in ultraviolet absorption spectrum between HMM and its Michaelis‐Menten complex. J. Biol. Chem. 242: 4501–4506, 1967.
 114. Morita, F., and K. J. Yagi. Spectral shift in heavy meromyosin induced by substrate. Biochem. Biophys. Res. Commun. 22: 297–301, 1966.
 115. Mornet, D., R. Bertrand, P. Pantel, E. Audemard, and R. Kassab. Proteolytic approach to structure and function of actin recognition sites in myosin heads. Biochemistry 20: 2110–2120, 1981.
 116. Mornet, D., R. Bertrand, P. Pantel, E. Audemard, and R. Kassab. Structure of the actin‐myosin interface. Nature London 292: 301–306, 1981.
 117. Mornet, D., P. Pantel, E. Audemard, and R. Kassab. The limited tryptic cleavage of chymotryptic S‐l; an approach to the characterization of the actin site in myosin heads. Biochem. Biophys. Res. Commun. 89: 925–932, 1979.
 118. Mornet, D., P. Pantel, R. Bertrand, E. Audemard, and R. Kassab. Localization of the reactive trinitrophenylated lysyl residue of myosin ATPase site in the NH2‐terminal (27k domain) of the S1 heavy chain. FEBS Lett. 117: 183–188, 1980.
 119. Moss, D. J., and D. R. Trentham. Interaction of chromophoric nucleotide and nucleoside analogues and distance measurements in myosin subfragment 1 (Abstract). Federation Proc. 39: 1935, 1980.
 120. Mueller, H., and S. V. Perry. The degradation of heavy meromyosin by trypsin. Biochem. J. 85: 431–439, 1962.
 121. Muhlrad, A., and T. Hozumi. Tryptic digestion as a probe of myosin S‐1 conformation. Proc. Natl. Acad. Sci USA 79: 958–962, 1982.
 122. Muhlrad, A., S. Srivastava, G. Hollosi, and J. Wikman‐Coffelt. Studies on the amino groups of myosin ATPase. Trinitrophenylation of reactive lysyl residues in ventricular and atrial myosins. Arch. Biochem. Biophys. 209: 304–313, 1981.
 123. Naylor, G. R. S., and R. J. Podolsky. X‐ray diffraction of strained muscle fibers in rigor. Proc. Natl. Acad. Sci. USA 78: 5559–5563, 1981.
 124. Needham, J., S. Chen, D. M. Needham, and A. S. G. Lawrence. Myosin birefringence and adenylpyrophosphate. Nature London 147: 766–768, 1941.
 125. Nihei, T., R. A. Mendelson, and J. Botts. The site of force generation in muscle contraction as deduced from fluorescence polarization studies. Proc. Natl. Acad. Sci. USA 71: 274–277, 1974.
 126. Ohnishi, H., and T. Wakabayashi. Electron microscopic studies of myosin molecules from chicken gizzard muscle: the formation of the intramolecular loop in the myosin tail. J. Biochem. 92: 871–879, 1982.
 127. Okamoto, Y., and R. G. Yount. Identification of the active site peptide of myosin after photoaffinity labeling (Abstract). Biophys. J. 41: 298a, 1983.
 128. Oosawa, F. Dynamics of actin filament. In: Muscle Contraction. Its Regulatory Mechanisms, edited by S. Ebashi, K. Maruyama, and M. Endo. Berlin: Springer‐Verlag, 1980, 165–172.
 129. Oosawa, F., S. Fujime, S. Ishiwata, and K. Mihashi. Dynamic property of F‐actin and thin filament. Cold Spring Harbor Symp. Quant. Biol. 37: 277–285, 1972.
 130. Pemrick, S. The phosphorylated L2 light chain of skeletal myosin is a modifier of the actomyosin ATPase. J. Biol. Chem. 255: 8836–8841, 1980.
 131. Perrie, W. T., L. B. Smillie, and S. V. Perry. A phosphorylated light‐chain component of myosin from skeletal muscle. Biochem. J. 135: 151–164, 1973.
 132. Perry, S. V. The adenosinetriphosphatase activity of myofibrils isolated from skeletal muscle. Biochem. J. 48: 257–263, 1951.
 133. Persechini, A., and D. J. Hartshorne. Phosphorylation of smooth muscle myosin: evidence for cooperativity between the myosin heads. Science 213: 1383–1385, 1981.
 134. Prince, H. P., H. E. Trayer, G. D. Henry, I. P. Trayer, D. C. Dalgarno, B. A. Levine, P. D. Cary, and C. Turner. Proton nuclear magnetic resonance spectroscopy of myosin subfragment 1 isozymes. Eur. J. Biochem. 121: 213–219, 1981.
 135. Reisler, E. On the question of cooperative interaction of myosin heads with F‐actin in the presence of ATP. J. Mol. Biol. 138: 93–108, 1980.
 136. Sarkar, S., F. A. Sreter, and J. Gergely. Light chains of myosin from white, red, and cardiac muscles. Proc. Natl. Acad. Sci. USA 68: 946–950, 1971.
 137. Schaub, M. C., and J. G. Watterson. Symmetry and asymmetry in the contractile protein myosin. Biochimie 63: 291–299, 1981.
 138. Schaub, M. C., J. G. Watterson, K. Loth, and P. G. Waser. Conformational relationships between distinct regions in the myosin molecule. Biochimie 61: 791–802, 1979.
 139. Schaub, M. C., J. G. Watterson, and P. G. Waser. Conformational differences in myosin. IV. Radioactive labelling of specific thiol groups as influenced by ligand binding. Hoppe‐Seyler's Z. Physiol. Chem. 356: 325–339, 1975.
 140. Schaub, M. C., J. G. Watterson, and P. G. Waser. Evidence for head‐head interactions for myosin and cardiac skeletal muscle. Basic Res. Cardiol. 72: 124–132, 1977.
 141. Scholey, J. M., K. A. Taylor, and J. Kendrick‐Jones. Regulation of non‐muscle myosin assembled by calmodulin‐dependent light chain kinase. Nature London 287: 233–235, 1980.
 142. Seidel, J. C. The effects of ionic conditions, temperature and chemical modification on the fluorescence of myosin during the steady state of ATP hydrolysis. J. Biol. Chem. 250: 5681–5687, 1975.
 143. Seidel, J. C., and J. Gergely. The conformation of myosin during the steady state of ATP hydrolysis: studies with myosin spin labeled at the S1 thiol groups. Biochem. Biophys. Res. Commun. 44: 826–830, 1971.
 144. Seidel, J. C., and J. Gergely. Investigation of conformational changes in spin‐labeled myosin: implications for the molecular mechanism of muscle contraction. Cold Spring Harbor Symp. Quant. Biol. 37: 187–213, 1972.
 145. Seidel, J. C., and J. Gergely. Electron spin resonance of myosin spin labeled at the S1 thiol groups during hydrolysis of adenosine triphosphate. Arch. Biochem. Biophys. 158: 853–863, 1973.
 146. Sekine, T., and M. Yamaguchi. Effect of ATP on the binding of N‐ethylmaleimide to SH groups in the active site of myosin. J. Biochem. Tokyo 54: 196–198, 1963.
 147. Sellers, J. R., P. O. Chantler, and A. G. Szent‐Györgyi. Hybrid formation between scallop myofibrils and foreign regulatory light chains. J. Mol. Biol. 144: 223–245, 1980.
 148. Shriver, J. W., and B. D. Sykes. Phosphorus‐31 nuclear magnetic resonance evidence for two conformations of myosin subfragment‐1 · nucleotide complexes. Biochemistry 20: 2004–2012, 1981.
 149. Shriver, J. W., and B. D. Sykes. Energetics and kinetics of interconversion of two myosin subfragment‐1 · adenosine 5'‐diphosphate complexes as viewed by phosphorus‐31 nuclear magnetic resonance. Biochemistry 20: 6357–6362, 1981.
 150. Simmons, R. M., and A. G. Szent‐Györgyi. Reversible loss of calcium control of tension in scallop striated muscle associated with the removal of regulatory light chains. Nature London 273: 62–63, 1978.
 151. Somlyo, A. V., T. M. Butler, M. Bond, and A. P. Somlyo. Myosin filaments have non‐phosphorylated light chains in relaxed smooth muscle. Nature London 294: 567–569.
 152. Srivastava, S. K., Y. Tonomura, and A. Inoue. Modification of cardiac and smooth muscle myosins with 2,4,6‐trinitroben‐zenesulfonate. J. Biochem. Tokyo 86: 725–731, 1979.
 153. Straub, F. B. Actin. In: Studies from the Institute of Medical Chemistry, University of Szeged, edited by A. Szent‐Györgyi. Basel: Karger, 1942, vol. 2, p. 3–16.
 154. Sutoh, K., K. Sutoh, T. Karr, and W. F. Harrington. Isolation and physico‐chemical properties of a high molecular weight subfragment‐2 of myosin. J. Mol. Biol. 126: 1–22, 1978.
 155. Suzuki, H., T. Kamata, H. Ohnishi, and S. Watanabe. Adenosine‐triphosphate‐induced reversible change on the conformation of chicken gizzard myosin and heavy meromyosin. J. Biochem. Tokyo 91: 1699–1706, 1982.
 156. Suzuki, H., H. Onishi, K. Takahashi, and S. Watanabe. Structure and function of chicken gizzard myosin. J. Biochem. Tokyo 84: 1529–1542, 1978.
 157. Szent‐Györgyi, A. Studies on muscle. Acta Physiol. Scand. Suppl. 25: 1–128, 1945.
 158. Szent‐Györgyi, A. G. Meromyosins, the subunits of myosin. Arch. Biochem. Biophys. 42: 305–320, 1953.
 159. Szent‐Györgyi, A. G., E. M. Szentkiralyi, and J. Kendrick‐Jones. The light chains of scallop myosin as regulatory subunits. J. Mol. Biol. 74: 179–203, 1973.
 160. Szilágyi, L., M. BÁLint, F. A. Sréter, and J. Gergely. Photoaffinity labelling with an ATP analog of the N‐terminal peptide of myosin. Biochem. Biophys. Res. Commun. 87: 936–945, 1979.
 161. Szilágyi, L., I. Kurennoy, M. BÁLint, and E. N. A. Biro. Influence of ions and of ATP on the conformation of HMM studied by proteolysis. In: Proteins of Contractile Systems, edited by E. N. A. Biro. Budapest: Akad. Kiado, 1975, vol. 31, p. 47–59. (Proc. IX FEBS Meet.).
 162. Takahashi, K. Topography of the myosin molecule as visualized by an improved negative staining method. J. Biochem. Tokyo 83: 905–908, 1978.
 163. Takashi, R., A. Muhlrad, and J. Botts. Spatial relationship between a fast‐reacting thiol and a reactive lysine residue of myosin subfragment 1. Biochemistry 21: 5661–5668, 1982.
 164. Taylor, E. W. Mechanism of actomyosin ATPase and the problem of muscle contraction. Crit. Rev. Biochem. 6: 103–164, 1979.
 165. Thomas, D. D., and R. Cooke. Orientation of spin‐labeled myosin heads in glycerinated muscle fibers. Biophys. J. 32: 891–906, 1980.
 166. Thomas, D. D., L. R. Dalton, and J. S. Hyde. Rotational diffusion studied by passage saturation transfer EPR. J. Chem. Phys. 65: 3006–3024, 1976.
 167. Thomas, D. D., S. Ishiwata, J. C. Seidel, and J. Gergely. Submillisecond rotational dynamics of spin‐labeled myosin heads in myofibrils. Biophys. J. 32: 873–889, 1980.
 168. Thomas, D. D., J. C. Seidel, and J. Gergely. The quantitative measurement of rotational motion of the subfragment‐1 region of myosin by saturation transfer EPR spectroscopy. J. Supramol. Struct. 3: 376–390, 1975.
 169. Thomas, D. D., J. C. Seidel, and J. Gergely. Rotational dynamics of spin‐labeled F‐actin in the sub‐millisecond time range. J. Mol. Biol. 132: 257–273, 1979.
 170. Thomas, D. D., J. C. Seidel, J. S. Hyde, and J. Gergely. Motion of subfragment‐1 in myosin and its supramolecular complex: saturation transfer electron paramagnetic resonance. Proc. Natl. Acad. Sci. USA 72: 1729–1733, 1975.
 171. Tokiwa, T., and M. F. Morales. Independent and comparative reactions of myosin heads with F‐actin in the presence of adenosine triphosphate. Biochemistry 10: 1722–1727, 1971.
 172. Tregear, R., and R. A. Mendelson. Polarization from a helix of fluorophores and its relation to that obtained from muscle. Biophys. J. 15: 455–467, 1975.
 173. Trybus, K. M., T. W. Huiatt, and S. Lowey. A bent monomeric conformation of myosin from smooth muscle. Proc. Natl. Acad. Sci. USA 79: 6151–6155, 1982.
 174. Tsong, T. Y., T. Karr, and W. F. Harrington. Rapid helix‐coil transitions in the S‐2 region of myosin. Proc. Natl. Acad. Sci. USA 76: 1109–1113, 1979.
 175. Ueko, H., and W. F. Harrington. Conformational transition in the myosin hinge upon activation of muscle. Proc. Natl. Acad. Sci. USA 78: 6101–6105, 1981.
 176. Ueno, H., and W. F. Harrington. Cross‐bridge movement and the conformational state of the myosin hinge in skeletal muscle. J. Mol. Biol. 149: 619–640, 1981.
 177. Vibert, P., and R. Craig. Three‐dimensional reconstruction of thin filaments decorated with a Ca2+‐regulated myosin. J. Mol. Biol. 157: 299–320, 1982.
 178. Watterson, J. G., L. Kohler, and M. C. Schaub. Evidence for two distinct affinities in the binding of divalent metal ions to myosin. J. Biol. Chem. 254: 6470–6477, 1979.
 179. Weber, A. The ultracentrifugal separation of L‐meromyosin and actin in an actomyosin sol under the influence of ATP. Biochim. Biophys. Acta 19: 345–351, 1956.
 180. Weeds, A. G., and G. Frank. Structural studies on light chains of myosin. Cold Spring Harbor Symp. Quant. Biol. 37: 9–17, 1982.
 181. Weeds, A. G., and S. Lowey. Substructure of the myosin molecule. II. The light chains of myosin. J. Mol. Biol. 61: 701–725, 1971.
 182. Weeds, A. G., and B. Pope. Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility. J. Mol. Biol. 111: 129–151, 1977.
 183. Wells, J. A., M. Sheldon, and R. G. Yount. Magnesium nucleotide is stoichiometrically trapped at the active site of myosin and its proteolytic fragments by thiol crosslinking reagents. J. Biol. Chem. 255: 1598–1602, 1980.
 184. Wells, J. A., M. M. Werber, and R. G. Yount. Inactivation of myosin subfragment 1 by cobalt (II)/cobalt (III) phenanthroline complexes. 2. Cobalt chelation of two critical SH groups. Biochemistry 18: 4800–4805, 1979.
 185. Wells, J. A., M. M. Werber, and R. G. Yount. Mechanism of inactivation of myosin subfragment 1 by cobalt (III) phenATP. A reinvestigation. J. Biol. Chem. 255: 7552–7555, 1980.
 186. Wells, J. A., and R. G. Yount. Active site trapping of nucleotide crosslinking to sulfhydryl groups in myosin subfragment 1. Proc. Natl. Acad. Sci. USA 76: 4966–4970, 1979.
 187. Wells, J. A., and R. G. Yount. Reaction of 5,5'‐dithiobis(2‐nitrobenzoic acid) with myosin subfragment 1: evidence for formation of a single protein disulfide with trapping of metal nucleotide at the active site. Biochemistry 19: 1711–1717, 1980.
 188. Werber, M. W., A. G. Szent‐Györgyi, and G. D. Fasman. Fluorescence studies on heavy meromyosin substrate interaction. Biochemistry 11: 2872–2883, 1972.
 189. Yamamoto, K., and T. Serine. Interaction of myosin subfragment‐1 with actin. I. Effect of actin binding on the susceptibility of subfragment‐1 to trypsin. J. Biochem. Tokyo 86: 1855–1862, 1979.
 190. Yamamoto, K., and T. Serine. Interaction of myosin subfrag‐ment‐1 with actin. II. Location of the actin binding site in a fragment of subfragment‐1 heavy chain. J. Biochem. Tokyo 86: 1863–1868, 1979.
 191. Yamamoto, K., and T. Serine. Interaction of myosin subfragment‐1 with actin. III. Effect of cleavage of the subfragment‐1 heavy chain on its interaction with actin. J. Biochem. Tokyo 86: 1869–1881, 1979.
 192. Yanagida, T. Angles of nucleotides bound to crossbridges in glycerinated muscle fibers at various concentrations of ɛ‐ATP, ɛ‐ADP and ɛ‐AMPPNP detected by polarized fluorescence. J. Mol. Biol. 146: 539–560, 1981.
 193. Yount, R. G., D. Babcocr, W. Ballantyne, and D. Ojala. Adenyl imidodiphosphate, an adenosine triphosphate analog containing a P‐N‐P linkage. Biochemistry 10: 2484–2489, 1971.
 194. Yount, R. G., D. Ojala, and D. Babcocr. Interaction of P‐N‐P and P‐C‐P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin. Biochemistry 10: 2490–2496, 1971.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John Gergely, John C. Seidel. Conformational Changes and Molecular Dynamics of Myosin. Compr Physiol 2011, Supplement 27: Handbook of Physiology, Skeletal Muscle: 257-274. First published in print 1983. doi: 10.1002/cphy.cp100109