References |
1. |
Ajtai, K.,
L. Szilagyi, and
E. N. A. Biro.
Study of the structure of HMM: vanadate complex.
FEBS Lett.
141:
74–77,
1982.
|
2. |
Amos, L. A.,
H. E. Huxley,
K. C. Holmes,
R. S. Goody, and
K. A. Taylor.
Structural evidence that myosin heads may interact with two sites on F‐actin.
Nature London
299:
467–469,
1982.
|
3. |
Arata, T.,
Y. Mukohata, and
Y. Tonomura.
Structure and function of the two heads of the myosin molecule. VI. ATP hydrolysis, shortening and tension development of myofibrils.
J. Biochem. Tokyo
82:
801–812,
1977.
|
4. |
Arata, T., and
H. Shimizu.
Spin‐label study of actin‐myosin‐nucleotide interactions in contracting glycerinated muscle fibers.
J. Mol. Biol.
151:
411–437,
1981.
|
5. |
Aronson, J. F., and
M. F. Morales.
Polarization of tryptophan fluorescence in muscle.
Biochemistry
8:
4517–4522,
1969.
|
6. |
Astbury, W. T.
Croonian lecture on the structure of biological fibres and the problem of muscle.
Proc. R. Soc. London Ser. B
134:
303–328,
1947.
|
7. |
Bagshaw, C. R.,
J. F. Eccleston,
F. Eckstein,
R. S. Goody,
H. Gutfreund, and
D. R. Trentham.
The magnesium ion‐dependent adenosine triphosphatase of myosin. Two‐step processes of adenosine triphosphate association and adenosine diphosphate dissociation.
Biochem. J.
141:
351–364,
1974.
|
8. |
Bagshaw, C. R.,
J. F. Eccleston,
D. R. Trentham,
B. W. Yates, and
R. S. Goody.
Transient kinetic studies of the Mg2+ dependent ATPase of myosin and its proteolytic subfragments.
Cold Spring Harbor Symp. Quant. Biol.
37:
127–135,
1972.
|
9. |
Bagshaw, C. R., and
J. Kendrick‐Jones.
Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy.
J. Mol. Biol.
130:
317–336,
1979.
|
10. |
Bagshaw, C. R., and
G. H. Reed.
The significance of the slow dissociation of divalent metal ions from myosin regulatory light chains.
FEBS Lett.
81:
386–390,
1977.
|
11. |
Balint, M.,
F. A. Sreter,
I. Wolf,
B. Nagy, and
J. Gergely.
The substructure of heavy meromyosin. The effect of Ca2+ and Mg2+ on the tryptic fragmentation of heavy meromyosin.
J. Biol. Chem.
250:
6168–6177,
1975.
|
12. |
BÁLint, M.,
L. Szilágyi,
G. Fekete,
M. Blazsó, and
N. A. Biró.
Studies on proteins and protein complexes of muscle by means of proteolysis. V. Fragmentation of light meromyosin by trypsin.
J. Mol. Biol.
37:
317–330,
1968.
|
13. |
Balint, M.,
I. Wolf,
A. Tarcsafalvi,
J. Gergely, and
F. A. Sreter.
Location of SH‐1 and SH‐2 in the heavy chain segment of heavy meromyosin.
Arch. Biochem. Biophys.
190:
793–799,
1978.
|
14. |
Borejdo, J.,
O. Assulin,
T. Ando, and
S. Putnam.
Cross‐bridge orientation in skeletal muscle measured by linear dichroism of an extrinsic chromophore.
J. Mol. Biol.
158:
391–414,
1982.
|
15. |
Borejdo, J.,
S. Putnam, and
M. F. Morales.
Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction.
Proc. Natl. Acad. Sci. USA
76:
6346–6350,
1979.
|
16. |
Burke, M.,
S. Himmelfarb, and
W. F. Harrington.
Studies on the “hinge” region of myosin.
Biochemistry
12:
701–710,
1973.
|
17. |
Burke, M.,
E. Reisler, and
W. F. Harrington.
Effect of bridging the two essential thiols of myosin on its spatial and actin‐binding properties.
Biochemistry
15:
1923–1927,
1976.
|
18. |
Chalovich, J. M.,
P. B. Chock, and
E. Eisenberg.
Mechanism of action of troponin‐tropomyosin. Inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin.
J. Biol. Chem.
256:
575–579,
1981.
|
19. |
Chalovich, J. M., and
E. Eisenberg.
Inhibition of actomyosin ATPase activity by troponin‐tropomyosin without blocking the binding of myosin to actin.
J. Biol. Chem.
257:
2432–2437,
1982.
|
20. |
Chantler, P. D.,
J. R. Sellers, and
A. G. Szent‐Györgyi.
Cooperativity in scallop myosin.
Biochemistry
20:
210–216,
1981.
|
21. |
Chantler, P. D., and
A. G. Szent‐Györgyi.
Regulatory light chains and scallop myosin. Full dissociation, reversibility and cooperative effects.
J. Mol. Biol.
138:
473–492,
1980.
|
22. |
Chiao, Y.‐C. C., and
W. F. Harrington.
Cross‐bridge movement in glycerinated rabbit psoas muscle fibers.
Biochemistry
18:
959–963,
1979.
|
23. |
Cooke, R.
Stress does not alter the conformation of a domain of the myosin cross‐bridge in rigor muscle fibres.
Nature London
294:
570–571,
1981.
|
24. |
Cooke, R.,
V. A. Barnett, and
D. D. Thomas.
Measuring crossbridge angles with paramagnetic probes in rigor, relaxed and contracting muscle fibers (Abstract).
Biophys. J.
37:
117a,
1982.
|
25. |
Cooke, R., and
K. E. Franks.
Generation of force by single‐headed myosin.
J. Mol. Biol.
120:
361–373,
1978.
|
26. |
Cooke, R.,
K. Franks, and
J. T. Stull.
Myosin phosphorylation regulates the ATPase activity of permeable skeletal muscle fibers.
FEBS Lett.
144:
33–37,
1982.
|
27. |
Craig, R.,
A. G. Szent‐Györgyi,
L. Beese,
P. Flicker,
P. Vibert, and
C. Cohen.
Electron microscopy of thin filaments decorated with a Ca2+‐regulated myosin.
J. Mol. Biol.
140:
35–55,
1980.
|
28. |
Crow, M. T., and
M. Kushmerick.
Phosphorylation of myosin light chains in mouse fast‐twitch muscle associated with reduced actomyosin turnover rate.
Science
217:
835–837,
1982.
|
29. |
De La Torre, J. G., and
V. A. Bloomfield.
Conformation of myosin as estimated from hydrodynamic properties.
Biochemistry
19:
5118–5123,
1980.
|
30. |
Dos Remedios, C. G.,
R. G. Yount, and
M. F. Morales.
Individual states in the cycle of muscle contraction.
Proc. Natl. Acad. Sci. USA
69:
2542–2546,
1972.
|
31. |
Duke, J.,
R. Takashi,
K. Ue, and
M. F. Morales.
Reciprocal reactivities of specific thiols when actin binds to myosin.
Proc. Natl. Acad. Sci. USA
73:
302–306,
1976.
|
32. |
Eisenberg, E., and
T. L. Hill.
A cross‐bridge model of muscle contraction.
Prog. Biophys. Mol. Biol.
33:
55–82,
1978.
|
33. |
Eisenberg, E.,
T. L. Hill, and
Y. Chen.
Cross‐bridge model of muscle contraction. Quantitative analysis.
Biophys. J.
29:
195–227,
1980.
|
34. |
Elliott, A., and
G. Offer.
Shape and flexibility of the myosin molecule.
J. Mol. Biol.
123:
505–509,
1978.
|
35. |
Elzinga, M., and
J. Collins.
Amino acid sequence of a myosin fragment that contains SH‐1, SH‐2 and N‐methylhis‐tidine.
Proc. Natl. Acad. Sci. USA
74:
4281–4284,
1977.
|
36. |
Engelhardt, V. A., and
M. N. Lyubimova.
Myosine and adenosinetriphosphatase.
Nature London
144:
668–669,
1939.
|
37. |
Fujime, S., and
S. Ishiwata.
Dynamic study of F‐actin by quasielastic scattering of laser light.
J. Mol. Biol.
62:
251–265,
1971.
|
38. |
Furukawa, K. I.,
A. Inoue, and
Y. Tonomura.
Extra burst of Pi liberation and formation of the myosin‐phosphate‐ADP complex at various concentrations of Mg2+ ions.
J. Biochem. Tokyo
89:
1283–1292,
1981.
|
39. |
Gazith, J.,
S. Himmelfarb, and
W. F. Harrington.
Studies on the subunit structure of myosin.
J. Biol. Chem.
245:
15–22,
1970.
|
40. |
Gergely, J.
Relation of ATPase and myosin (Abstract).
Federation Proc.
9:
176,
1950.
|
41. |
Gergely, J.
Studies on myosin adenosine triphosphatase.
J. Biol. Chem.
200:
543–550,
1953.
|
42. |
Gergely, J.
The interaction between actomyosin and adenosine triphosphate. Light scattering studies.
J. Biol. Chem.
220:
917–926,
1956.
|
43. |
Gergely, J.,
M. A. Gouvea, and
D. Karibian.
Fragmentation of myosin by chymotrypsin.
J. Biol. Chem.
212:
165–177,
1955.
|
44. |
Gershman, L. C.,
A. Stracher, and
P. Dreizen.
Subunit structure of myosin. III. A proposed model for rabbit skeletal myosin.
J. Biol. Chem.
244:
2726–2736,
1969.
|
45. |
Goody, R. S.,
F. Eckstein, and
R. H. Schirmer.
The enzymatic synthesis of thiophosphate analogs of nucleotide anhydrides.
Biochim. Biophys. Acta
276:
155–161,
1972.
|
46. |
Gratzer, W. B., and
S. Lowey.
Effect of substrate on the conformation of myosin.
J. Biol. Chem.
244:
22–25,
1969.
|
47. |
Harrington, W. F.
A mechanochemical mechanism for muscle contraction.
Proc. Natl. Acad. Sci. USA
68:
685–689,
1971.
|
48. |
Harrington, W. F.
Origin of the contractile force in skeletal muscle.
Proc. Natl. Acad. Sci. USA
76:
5066–5070,
1979.
|
49. |
Hasselbach, W.
Die Wechselwirkung verschiedener Nukleo‐sidtriphosphate mit Aktomyosin in Gelzustand.
Biochim. Biophys. Acta
20:
355–368,
1956.
|
50. |
Highsmith, S.
The dynamics of myosin and actin in solution are compatible with the mechanical features of the cross‐bridge hypothesis.
Biochim. Biophys. Acta
639:
31–39,
1981.
|
51. |
Highsmith, S.,
K. Akasaka,
M. Konrad,
R. Goody,
K. Holmes,
N. Wade‐Jardetzky, and
O. Jardetzky.
Internal motions in myosin.
Biochemistry
18:
4238–4243,
1979.
|
52. |
Highsmith, S., and
O. Jardetzky.
Internal motions in myosin.
Biochemistry
20:
780–783,
1981.
|
53. |
Highsmith, S.,
K. M. Kretzschmar,
C T. O'Konski, and
M. F. Morales.
Flexibility of myosin rod, light meromyosin and myosin subfragment 2 in solution.
Proc. Natl. Acad. Sci. USA
74:
4986–4990,
1977.
|
54. |
Highsmith, S.,
C.‐C. Wang,
K. Zero,
R. Pecora, and
O. Jardetzky.
Bending motions and internal motions in myosin rod.
Biochemistry
21:
1192–1196,
1982.
|
55. |
Hiratsuka, T.
Actin‐induced conformational changes around the reactive fluorescence‐labeled lysyl residues located in the subfragment‐1/subfragment‐2 link region of cardiac myosin.
J. Biol. Chem.
256:
10645–10650,
1981.
|
56. |
Hozumi, T., and
A. Muhlrad.
Reactive lysyl of myosin subfragment 1: location on the 27k fragment and labeling properties.
Biochemistry
20:
2945–2949,
1981.
|
57. |
Huxley, A. F.
Muscle structure and theories of contraction.
Prog. Biophys. Chem.
7:
255–318,
1957.
|
58. |
Huxley, A. F.
Review lecture: muscular contraction.
J. Physiol. London
243:
1–43,
1974.
|
59. |
Huxley, A. F., and
R. Niedergerke.
Structural changes in muscle during contraction. Interference microscopy of living muscle fibres.
Nature London
173:
971–973,
1954.
|
60. |
Huxley, A. F., and
R. M. Simmons.
Proposed mechanism of force generation in striated muscle.
Nature London
233:
533–538,
1971.
|
61. |
Huxley, A. F., and
R. M. Simmons.
Mechanical transients and the origin of muscular force.
Cold Spring Harbor Symp. Quant. Biol.
37:
669–680,
1972.
|
62. |
Huxley, H. E.
The mechanism of muscular contraction.
Science
164:
1356–1366,
1969.
|
63. |
Huxley, H. E., and
W. Brown.
X‐ray diffraction of vertebrate striated muscle during contraction and in rigor.
J. Mol. Biol.
30:
383–434,
1967.
|
64. |
Huxley, H. E.,
A. R. Faruqi,
M. Kress,
J. Bordas, and
M. H. Koch.
Time resolved X‐ray diffraction studies of the myosin layer line reflected during muscle contraction.
J. Mol. Biol.
158:
637–684,
1982.
|
65. |
Huxley, H. E., and
J. Hanson.
Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation.
Nature London
173:
973–976,
1954.
|
66. |
Huxley, H. E.,
R. M. Simmons,
A. R. Faruqi,
M. Kress,
J. Bordas, and
M. H. Koch.
Millisecond time resolved changes in X‐ray reflections from contracting muscle during rapid mechanical transients recorded using synchroton radiation.
Proc. Natl. Acad. Sci. USA
78:
2297–2301,
1981.
|
67. |
Inoue, A.,
K. Kikuchi, and
Y. Tonomura.
Structure and function of the two heads of the myosin molecule. V. Enzymatic properties of heads B and A.
J. Biochem. Tokyo
82:
783–800,
1977.
|
68. |
Inoue, A.,
H. Takenaka,
T. Arata, and
Y. Tonomura.
Functional implications of the two‐headed structure of myosin.
Adv. Biophys.
13:
1–194,
1979.
|
69. |
Inoue, A., and
Y. Tonomura.
Separation of subfragment‐1 of heavy meromyosin into two equimolar fractions with and without formation of the reactive enzyme‐phosphate‐ADP complex.
J. Biochem. Tokyo
79:
419–434,
1976.
|
70. |
Ishiwata, S.,
J. Seidel, and
J. Gergely.
Regulation by calcium ions of crossbridge attachment in myofibrils studied by saturation transfer EPR spectroscopy (Abstract).
Biophys. J.
25:
1900a,
1979.
|
71. |
Johnson, K. A., and
E. W. Taylor.
Intermediate states of subfragment 1 and acto‐subfragment 1 ATPase: reevaluation of the mechanism.
Biochemistry
17:
3432–3442,
1978.
|
72. |
Kamayama, T.
Actin induced local conformational change in the myosin molecule. III. Reactivity of S2 thiol and DTNB reactive thiols of porcine cardiac myosin.
J. Biochem. Tokyo
87:
581–586,
1980.
|
73. |
Kamayama, T.,
T. Katori, and
T. Serine.
Actin induced local conformational change in the myosin molecule. I. Effect of metal ions and nucleotides on the conformational change around a specific thiol group (S2) of heavy meromyosin.
J. Biochem. Tokyo
81:
709–714,
1977.
|
74. |
Karplus, M.,
B. R. Gelin, and
J. A. Mccammon.
Internal dynamics of proteins: short time and long time motions of aromatic sidechains in PTI.
Biophys. J.
32:
603–618,
1980.
|
75. |
Karplus, M., and
J. A. Mccammon.
Dynamics of folded proteins.
Nature London
267:
585–590,
1977.
|
76. |
Karplus, M., and
J. A. Mccammon.
The internal dynamics of globular proteins.
Crit. Rev. Biochem.
9:
293–349,
1981.
|
77. |
Kassab, R.,
D. Mornet,
P. Pantel,
R. Bertrand, and
E. Audemard.
Structural aspects of actomyosin interaction.
Biochimie
63:
273–289,
1981.
|
78. |
Kendrick‐Jones, J.
Role of myosin light chains in calcium regulation.
Nature London
249:
631–634,
1974.
|
79. |
Kendrick‐Jones, J., and
J. M. Scholey.
Myosin‐linked regulatory systems.
J. Muscle Res. Cell Motility
2:
347–372,
1981.
|
80. |
Kendrick‐Jones, J.,
E. M. Szentkiralyi, and
A. G. Szent‐Györgyi.
Regulatory light chains in myosin.
J. Mol. Biol.
104:
747–775,
1976.
|
81. |
Kominz, D. R.,
E. R. Mitchell,
T. Nihei, and
C. M. Kay.
The papain digestion of skeletal myosin.
Biochemistry
4:
2373–2382,
1965.
|
82. |
Kubo, S.,
S. Tokura, and
Y. Tonomura.
On the active site of myosin A‐adenosine triphosphatase. I. Reaction of the enzyme with trinitrobenzenesulfonate.
J. Biol. Chem.
235:
2835–2839,
1960.
|
83. |
Lehman, W., and
A. G. Szent‐Györgyi.
Regulation of muscular contraction: distribution of actin control and myosin control in the animal kingdom.
J. Gen. Physiol.
66:
1–30,
1975.
|
84. |
Lowey, S.
Myosin substructure: isolation of a helical subunit from heavy meromyosin.
Science
145:
597–599,
1964.
|
85. |
Lowey, S., and
C. Cohen.
Studies on the structure of myosin.
J. Mol. Biol.
4:
293–308,
1962.
|
86. |
Lowey, S., and
S. M. Luck.
Equilibrium binding of adenosine diphosphate to myosin.
Biochemistry
8:
3195–3199,
1969.
|
87. |
Lowey, S., and
D. Risby.
Light chains from fast and slow muscle myosin.
Nature London
234:
81–85,
1971.
|
88. |
Lowey, S.,
H. S. Slayter,
A. G. Weeds, and
H. Baker.
Substructure of the myosin molecule. I. Subfragments of myosin by enzymatic degradation.
J. Mol. Biol.
42:
1–29,
1969.
|
89. |
Lu, R. C.
Identification of a region susceptible to proteolysis in myosin subfragment 2.
Proc. Natl. Acad. Sci. USA
77:
2010–2013,
1980.
|
90. |
Lu, R. C.,
L. Nyitray,
M. Balint, and
J. Gergely.
Localization of a region responsible for the low ionic strength insolubility of myosin (Abstract).
Biophys. J.
41:
228a,
1983.
|
91. |
Lymn, R. W.
Low‐angle x‐ray diagrams from skeletal muscle: the effect of AMP‐PNP, a non hydrolyzed analogue of ATP.
J. Mol. Biol.
99:
567–582,
1975.
|
92. |
Lymn, R. W., and
E. W. Taylor.
Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin.
Biochemistry
9:
2975–2983,
1970.
|
93. |
Mandelkow, E. M., and
E. Mandelkow.
Fluorometric studies on the influence of metal ions and chelators on the interaction between myosin and ATP.
FEBS Lett.
33:
161–166,
1973.
|
94. |
Margossian, S. S., and
S. Lowey.
Substructure of the myosin molecule. III. Preparation of single headed derivatives of myosin.
J. Mol. Biol.
74:
301–311,
1973.
|
95. |
Margossian, S. S., and
S. Lowey.
Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F‐actin.
J. Mol. Biol.
74:
313–330,
1973.
|
96. |
Marsh, D. J., and
S. Lowey.
Fluorescence energy transfer in myosin subfragment‐1.
Biochemistry
19:
774–784,
1980.
|
97. |
Marsh, D. J.,
L. A. Stein,
E. Eisenberg, and
S. Lowey.
Fluorescently labelled myosin subfragment 1. Identification of the kinetic step associated with the adenosine 5'‐triphosphate induced fluorescence decrease.
Biochemistry
21:
1925–1928,
1982.
|
98. |
Marston, S. B.,
C. D. Rodger, and
R. T. Tregear.
Changes in muscle crossbridges when β, γ‐imido‐ATP binds to myosin.
J. Mol. Biol.
104:
263–276,
1976.
|
99. |
Marston, S. B.,
R. T. Tregear,
C. D. Rodger, and
M. L. Clarke.
Coupling between the enzymatic site of myosin and the mechanical output of muscle.
J. Mol. Biol.
128:
111–126,
1979.
|
100. |
Mendelson, R. A., and
P. Cheung.
Myosin crossbridges: absence of direct effect of calcium on movement away from the thick filaments.
Science
194:
190–192,
1976.
|
101. |
Mendelson, R. A., and
P. Cheung.
Intrinsic segmental flexibility of the S‐1 moiety of myosin using single‐headed myosin.
Biochemistry
17:
2139–2148,
1978.
|
102. |
Mendelson, R. A.,
M. F. Morales, and
J. Botts.
Segmental flexibility of the S‐1 moiety of myosin.
Biochemistry
12:
2250–2255,
1973.
|
103. |
Mendelson, R. A., and
M. G. A. Wilson.
Three dimensional disorders of dipolar probes in a helical array. Application to muscle crossbridges.
Biophys. J.
39:
221–228,
1982.
|
104. |
Michnicka, M.,
K. Kasman, and
I. Kakol.
The binding of actin to phosphorylated and dephosphorylated myosin.
Biochim. Biophys. Acta
704:
470–475,
1982.
|
105. |
Mihalyi, E., and
A. G. Szent‐Györgyi.
Trypsin digestion of muscle proteins. III. Adenosine triphosphatase activity and actin‐binding capacity of the digested myosin.
J. Biol. Chem.
201:
211–219,
1953.
|
106. |
Miyanishi, T.,
A. Inoue, and
Y. Tonomura.
Differential modification of specific lysine residues in the two kinds of subfragment‐1 of myosin with 2,4,6‐trinitrobenzenesulfonate.
J. Biochem. Tokyo
85:
747–753,
1979.
|
107. |
Miyanishi, T., and
Y. Tonomura.
Location of the nonidentical two reactive lysine residues in the myosin molecule.
J. Biochem. Tokyo
89:
831–839,
1981.
|
108. |
MÓCz, G.,
R. C. Lu, and
J. Gergely.
Nucleotide and metal effects on the structure of myosin subfragment 1 (Abstract).
Biophys. J.
37:
38a,
1982.
|
109. |
Monad, J.,
J. Wyman, and
J. P. Changeux.
On the nature of allosteric transitions: a plausible model.
J. Mol. Biol.
12:
88–118,
1965.
|
110. |
Morales, M. F.,
J. Borejdo,
J. Botts,
R. Cooke,
R. A. Mendelson, and
R. Takashi.
Some physical studies of the contractile mechanism in muscle.
Ann. Rev. Phys. Chem.
33:
319–351,
1982.
|
111. |
Morales, M. F., and
J. Botts.
Molecular basis for chemo‐mechanical energy transduction in muscle.
Proc. Natl. Acad. Sci. USA
76:
3857–3859,
1979.
|
112. |
Morgan, M.,
S. V. Perry, and
J. Ottaway.
Myosin light‐chain phosphatase.
Biochem. J.
157:
687–697,
1976.
|
113. |
Morita, F.
Interaction of HMM with Substrate. I. Difference in ultraviolet absorption spectrum between HMM and its Michaelis‐Menten complex.
J. Biol. Chem.
242:
4501–4506,
1967.
|
114. |
Morita, F., and
K. J. Yagi.
Spectral shift in heavy meromyosin induced by substrate.
Biochem. Biophys. Res. Commun.
22:
297–301,
1966.
|
115. |
Mornet, D.,
R. Bertrand,
P. Pantel,
E. Audemard, and
R. Kassab.
Proteolytic approach to structure and function of actin recognition sites in myosin heads.
Biochemistry
20:
2110–2120,
1981.
|
116. |
Mornet, D.,
R. Bertrand,
P. Pantel,
E. Audemard, and
R. Kassab.
Structure of the actin‐myosin interface.
Nature London
292:
301–306,
1981.
|
117. |
Mornet, D.,
P. Pantel,
E. Audemard, and
R. Kassab.
The limited tryptic cleavage of chymotryptic S‐l; an approach to the characterization of the actin site in myosin heads.
Biochem. Biophys. Res. Commun.
89:
925–932,
1979.
|
118. |
Mornet, D.,
P. Pantel,
R. Bertrand,
E. Audemard, and
R. Kassab.
Localization of the reactive trinitrophenylated lysyl residue of myosin ATPase site in the NH2‐terminal (27k domain) of the S1 heavy chain.
FEBS Lett.
117:
183–188,
1980.
|
119. |
Moss, D. J., and
D. R. Trentham.
Interaction of chromophoric nucleotide and nucleoside analogues and distance measurements in myosin subfragment 1 (Abstract).
Federation Proc.
39:
1935,
1980.
|
120. |
Mueller, H., and
S. V. Perry.
The degradation of heavy meromyosin by trypsin.
Biochem. J.
85:
431–439,
1962.
|
121. |
Muhlrad, A., and
T. Hozumi.
Tryptic digestion as a probe of myosin S‐1 conformation.
Proc. Natl. Acad. Sci USA
79:
958–962,
1982.
|
122. |
Muhlrad, A.,
S. Srivastava,
G. Hollosi, and
J. Wikman‐Coffelt.
Studies on the amino groups of myosin ATPase. Trinitrophenylation of reactive lysyl residues in ventricular and atrial myosins.
Arch. Biochem. Biophys.
209:
304–313,
1981.
|
123. |
Naylor, G. R. S., and
R. J. Podolsky.
X‐ray diffraction of strained muscle fibers in rigor.
Proc. Natl. Acad. Sci. USA
78:
5559–5563,
1981.
|
124. |
Needham, J.,
S. Chen,
D. M. Needham, and
A. S. G. Lawrence.
Myosin birefringence and adenylpyrophosphate.
Nature London
147:
766–768,
1941.
|
125. |
Nihei, T.,
R. A. Mendelson, and
J. Botts.
The site of force generation in muscle contraction as deduced from fluorescence polarization studies.
Proc. Natl. Acad. Sci. USA
71:
274–277,
1974.
|
126. |
Ohnishi, H., and
T. Wakabayashi.
Electron microscopic studies of myosin molecules from chicken gizzard muscle: the formation of the intramolecular loop in the myosin tail.
J. Biochem.
92:
871–879,
1982.
|
127. |
Okamoto, Y., and
R. G. Yount.
Identification of the active site peptide of myosin after photoaffinity labeling (Abstract).
Biophys. J.
41:
298a,
1983.
|
128. |
Oosawa, F.
Dynamics of actin filament. In:
Muscle Contraction. Its Regulatory Mechanisms,
edited by S. Ebashi,
K. Maruyama, and
M. Endo.
Berlin:
Springer‐Verlag,
1980,
165–172.
|
129. |
Oosawa, F.,
S. Fujime,
S. Ishiwata, and
K. Mihashi.
Dynamic property of F‐actin and thin filament.
Cold Spring Harbor Symp. Quant. Biol.
37:
277–285,
1972.
|
130. |
Pemrick, S.
The phosphorylated L2 light chain of skeletal myosin is a modifier of the actomyosin ATPase.
J. Biol. Chem.
255:
8836–8841,
1980.
|
131. |
Perrie, W. T.,
L. B. Smillie, and
S. V. Perry.
A phosphorylated light‐chain component of myosin from skeletal muscle.
Biochem. J.
135:
151–164,
1973.
|
132. |
Perry, S. V.
The adenosinetriphosphatase activity of myofibrils isolated from skeletal muscle.
Biochem. J.
48:
257–263,
1951.
|
133. |
Persechini, A., and
D. J. Hartshorne.
Phosphorylation of smooth muscle myosin: evidence for cooperativity between the myosin heads.
Science
213:
1383–1385,
1981.
|
134. |
Prince, H. P.,
H. E. Trayer,
G. D. Henry,
I. P. Trayer,
D. C. Dalgarno,
B. A. Levine,
P. D. Cary, and
C. Turner.
Proton nuclear magnetic resonance spectroscopy of myosin subfragment 1 isozymes.
Eur. J. Biochem.
121:
213–219,
1981.
|
135. |
Reisler, E.
On the question of cooperative interaction of myosin heads with F‐actin in the presence of ATP.
J. Mol. Biol.
138:
93–108,
1980.
|
136. |
Sarkar, S.,
F. A. Sreter, and
J. Gergely.
Light chains of myosin from white, red, and cardiac muscles.
Proc. Natl. Acad. Sci. USA
68:
946–950,
1971.
|
137. |
Schaub, M. C., and
J. G. Watterson.
Symmetry and asymmetry in the contractile protein myosin.
Biochimie
63:
291–299,
1981.
|
138. |
Schaub, M. C.,
J. G. Watterson,
K. Loth, and
P. G. Waser.
Conformational relationships between distinct regions in the myosin molecule.
Biochimie
61:
791–802,
1979.
|
139. |
Schaub, M. C.,
J. G. Watterson, and
P. G. Waser.
Conformational differences in myosin. IV. Radioactive labelling of specific thiol groups as influenced by ligand binding.
Hoppe‐Seyler's Z. Physiol. Chem.
356:
325–339,
1975.
|
140. |
Schaub, M. C.,
J. G. Watterson, and
P. G. Waser.
Evidence for head‐head interactions for myosin and cardiac skeletal muscle.
Basic Res. Cardiol.
72:
124–132,
1977.
|
141. |
Scholey, J. M.,
K. A. Taylor, and
J. Kendrick‐Jones.
Regulation of non‐muscle myosin assembled by calmodulin‐dependent light chain kinase.
Nature London
287:
233–235,
1980.
|
142. |
Seidel, J. C.
The effects of ionic conditions, temperature and chemical modification on the fluorescence of myosin during the steady state of ATP hydrolysis.
J. Biol. Chem.
250:
5681–5687,
1975.
|
143. |
Seidel, J. C., and
J. Gergely.
The conformation of myosin during the steady state of ATP hydrolysis: studies with myosin spin labeled at the S1 thiol groups.
Biochem. Biophys. Res. Commun.
44:
826–830,
1971.
|
144. |
Seidel, J. C., and
J. Gergely.
Investigation of conformational changes in spin‐labeled myosin: implications for the molecular mechanism of muscle contraction.
Cold Spring Harbor Symp. Quant. Biol.
37:
187–213,
1972.
|
145. |
Seidel, J. C., and
J. Gergely.
Electron spin resonance of myosin spin labeled at the S1 thiol groups during hydrolysis of adenosine triphosphate.
Arch. Biochem. Biophys.
158:
853–863,
1973.
|
146. |
Sekine, T., and
M. Yamaguchi.
Effect of ATP on the binding of N‐ethylmaleimide to SH groups in the active site of myosin.
J. Biochem. Tokyo
54:
196–198,
1963.
|
147. |
Sellers, J. R.,
P. O. Chantler, and
A. G. Szent‐Györgyi.
Hybrid formation between scallop myofibrils and foreign regulatory light chains.
J. Mol. Biol.
144:
223–245,
1980.
|
148. |
Shriver, J. W., and
B. D. Sykes.
Phosphorus‐31 nuclear magnetic resonance evidence for two conformations of myosin subfragment‐1 · nucleotide complexes.
Biochemistry
20:
2004–2012,
1981.
|
149. |
Shriver, J. W., and
B. D. Sykes.
Energetics and kinetics of interconversion of two myosin subfragment‐1 · adenosine 5'‐diphosphate complexes as viewed by phosphorus‐31 nuclear magnetic resonance.
Biochemistry
20:
6357–6362,
1981.
|
150. |
Simmons, R. M., and
A. G. Szent‐Györgyi.
Reversible loss of calcium control of tension in scallop striated muscle associated with the removal of regulatory light chains.
Nature London
273:
62–63,
1978.
|
151. |
Somlyo, A. V.,
T. M. Butler,
M. Bond, and
A. P. Somlyo.
Myosin filaments have non‐phosphorylated light chains in relaxed smooth muscle.
Nature London
294:
567–569.
|
152. |
Srivastava, S. K.,
Y. Tonomura, and
A. Inoue.
Modification of cardiac and smooth muscle myosins with 2,4,6‐trinitroben‐zenesulfonate.
J. Biochem. Tokyo
86:
725–731,
1979.
|
153. |
Straub, F. B.
Actin.
In: Studies from the Institute of Medical Chemistry, University of Szeged,
edited by A. Szent‐Györgyi.
Basel:
Karger,
1942,
vol. 2,
p. 3–16.
|
154. |
Sutoh, K.,
K. Sutoh,
T. Karr, and
W. F. Harrington.
Isolation and physico‐chemical properties of a high molecular weight subfragment‐2 of myosin.
J. Mol. Biol.
126:
1–22,
1978.
|
155. |
Suzuki, H.,
T. Kamata,
H. Ohnishi, and
S. Watanabe.
Adenosine‐triphosphate‐induced reversible change on the conformation of chicken gizzard myosin and heavy meromyosin.
J. Biochem. Tokyo
91:
1699–1706,
1982.
|
156. |
Suzuki, H.,
H. Onishi,
K. Takahashi, and
S. Watanabe.
Structure and function of chicken gizzard myosin.
J. Biochem. Tokyo
84:
1529–1542,
1978.
|
157. |
Szent‐Györgyi, A.
Studies on muscle.
Acta Physiol. Scand. Suppl.
25:
1–128,
1945.
|
158. |
Szent‐Györgyi, A. G.
Meromyosins, the subunits of myosin.
Arch. Biochem. Biophys.
42:
305–320,
1953.
|
159. |
Szent‐Györgyi, A. G.,
E. M. Szentkiralyi, and
J. Kendrick‐Jones.
The light chains of scallop myosin as regulatory subunits.
J. Mol. Biol.
74:
179–203,
1973.
|
160. |
Szilágyi, L.,
M. BÁLint,
F. A. Sréter, and
J. Gergely.
Photoaffinity labelling with an ATP analog of the N‐terminal peptide of myosin.
Biochem. Biophys. Res. Commun.
87:
936–945,
1979.
|
161. |
Szilágyi, L.,
I. Kurennoy,
M. BÁLint, and
E. N. A. Biro.
Influence of ions and of ATP on the conformation of HMM studied by proteolysis.
In: Proteins of Contractile Systems,
edited by E. N. A. Biro.
Budapest:
Akad. Kiado,
1975,
vol. 31,
p. 47–59.
(Proc. IX FEBS Meet.).
|
162. |
Takahashi, K.
Topography of the myosin molecule as visualized by an improved negative staining method.
J. Biochem. Tokyo
83:
905–908,
1978.
|
163. |
Takashi, R.,
A. Muhlrad, and
J. Botts.
Spatial relationship between a fast‐reacting thiol and a reactive lysine residue of myosin subfragment 1.
Biochemistry
21:
5661–5668,
1982.
|
164. |
Taylor, E. W.
Mechanism of actomyosin ATPase and the problem of muscle contraction.
Crit. Rev. Biochem.
6:
103–164,
1979.
|
165. |
Thomas, D. D., and
R. Cooke.
Orientation of spin‐labeled myosin heads in glycerinated muscle fibers.
Biophys. J.
32:
891–906,
1980.
|
166. |
Thomas, D. D.,
L. R. Dalton, and
J. S. Hyde.
Rotational diffusion studied by passage saturation transfer EPR.
J. Chem. Phys.
65:
3006–3024,
1976.
|
167. |
Thomas, D. D.,
S. Ishiwata,
J. C. Seidel, and
J. Gergely.
Submillisecond rotational dynamics of spin‐labeled myosin heads in myofibrils.
Biophys. J.
32:
873–889,
1980.
|
168. |
Thomas, D. D.,
J. C. Seidel, and
J. Gergely.
The quantitative measurement of rotational motion of the subfragment‐1 region of myosin by saturation transfer EPR spectroscopy.
J. Supramol. Struct.
3:
376–390,
1975.
|
169. |
Thomas, D. D.,
J. C. Seidel, and
J. Gergely.
Rotational dynamics of spin‐labeled F‐actin in the sub‐millisecond time range.
J. Mol. Biol.
132:
257–273,
1979.
|
170. |
Thomas, D. D.,
J. C. Seidel,
J. S. Hyde, and
J. Gergely.
Motion of subfragment‐1 in myosin and its supramolecular complex: saturation transfer electron paramagnetic resonance.
Proc. Natl. Acad. Sci. USA
72:
1729–1733,
1975.
|
171. |
Tokiwa, T., and
M. F. Morales.
Independent and comparative reactions of myosin heads with F‐actin in the presence of adenosine triphosphate.
Biochemistry
10:
1722–1727,
1971.
|
172. |
Tregear, R., and
R. A. Mendelson.
Polarization from a helix of fluorophores and its relation to that obtained from muscle.
Biophys. J.
15:
455–467,
1975.
|
173. |
Trybus, K. M.,
T. W. Huiatt, and
S. Lowey.
A bent monomeric conformation of myosin from smooth muscle.
Proc. Natl. Acad. Sci. USA
79:
6151–6155,
1982.
|
174. |
Tsong, T. Y.,
T. Karr, and
W. F. Harrington.
Rapid helix‐coil transitions in the S‐2 region of myosin.
Proc. Natl. Acad. Sci. USA
76:
1109–1113,
1979.
|
175. |
Ueko, H., and
W. F. Harrington.
Conformational transition in the myosin hinge upon activation of muscle.
Proc. Natl. Acad. Sci. USA
78:
6101–6105,
1981.
|
176. |
Ueno, H., and
W. F. Harrington.
Cross‐bridge movement and the conformational state of the myosin hinge in skeletal muscle.
J. Mol. Biol.
149:
619–640,
1981.
|
177. |
Vibert, P., and
R. Craig.
Three‐dimensional reconstruction of thin filaments decorated with a Ca2+‐regulated myosin.
J. Mol. Biol.
157:
299–320,
1982.
|
178. |
Watterson, J. G.,
L. Kohler, and
M. C. Schaub.
Evidence for two distinct affinities in the binding of divalent metal ions to myosin.
J. Biol. Chem.
254:
6470–6477,
1979.
|
179. |
Weber, A.
The ultracentrifugal separation of L‐meromyosin and actin in an actomyosin sol under the influence of ATP.
Biochim. Biophys. Acta
19:
345–351,
1956.
|
180. |
Weeds, A. G., and
G. Frank.
Structural studies on light chains of myosin.
Cold Spring Harbor Symp. Quant. Biol.
37:
9–17,
1982.
|
181. |
Weeds, A. G., and
S. Lowey.
Substructure of the myosin molecule. II. The light chains of myosin.
J. Mol. Biol.
61:
701–725,
1971.
|
182. |
Weeds, A. G., and
B. Pope.
Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility.
J. Mol. Biol.
111:
129–151,
1977.
|
183. |
Wells, J. A.,
M. Sheldon, and
R. G. Yount.
Magnesium nucleotide is stoichiometrically trapped at the active site of myosin and its proteolytic fragments by thiol crosslinking reagents.
J. Biol. Chem.
255:
1598–1602,
1980.
|
184. |
Wells, J. A.,
M. M. Werber, and
R. G. Yount.
Inactivation of myosin subfragment 1 by cobalt (II)/cobalt (III) phenanthroline complexes. 2. Cobalt chelation of two critical SH groups.
Biochemistry
18:
4800–4805,
1979.
|
185. |
Wells, J. A.,
M. M. Werber, and
R. G. Yount.
Mechanism of inactivation of myosin subfragment 1 by cobalt (III) phenATP. A reinvestigation.
J. Biol. Chem.
255:
7552–7555,
1980.
|
186. |
Wells, J. A., and
R. G. Yount.
Active site trapping of nucleotide crosslinking to sulfhydryl groups in myosin subfragment 1.
Proc. Natl. Acad. Sci. USA
76:
4966–4970,
1979.
|
187. |
Wells, J. A., and
R. G. Yount.
Reaction of 5,5'‐dithiobis(2‐nitrobenzoic acid) with myosin subfragment 1: evidence for formation of a single protein disulfide with trapping of metal nucleotide at the active site.
Biochemistry
19:
1711–1717,
1980.
|
188. |
Werber, M. W.,
A. G. Szent‐Györgyi, and
G. D. Fasman.
Fluorescence studies on heavy meromyosin substrate interaction.
Biochemistry
11:
2872–2883,
1972.
|
189. |
Yamamoto, K., and
T. Serine.
Interaction of myosin subfragment‐1 with actin. I. Effect of actin binding on the susceptibility of subfragment‐1 to trypsin.
J. Biochem. Tokyo
86:
1855–1862,
1979.
|
190. |
Yamamoto, K., and
T. Serine.
Interaction of myosin subfrag‐ment‐1 with actin. II. Location of the actin binding site in a fragment of subfragment‐1 heavy chain.
J. Biochem. Tokyo
86:
1863–1868,
1979.
|
191. |
Yamamoto, K., and
T. Serine.
Interaction of myosin subfragment‐1 with actin. III. Effect of cleavage of the subfragment‐1 heavy chain on its interaction with actin.
J. Biochem. Tokyo
86:
1869–1881,
1979.
|
192. |
Yanagida, T.
Angles of nucleotides bound to crossbridges in glycerinated muscle fibers at various concentrations of ɛ‐ATP, ɛ‐ADP and ɛ‐AMPPNP detected by polarized fluorescence.
J. Mol. Biol.
146:
539–560,
1981.
|
193. |
Yount, R. G.,
D. Babcocr,
W. Ballantyne, and
D. Ojala.
Adenyl imidodiphosphate, an adenosine triphosphate analog containing a P‐N‐P linkage.
Biochemistry
10:
2484–2489,
1971.
|
194. |
Yount, R. G.,
D. Ojala, and
D. Babcocr.
Interaction of P‐N‐P and P‐C‐P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin.
Biochemistry
10:
2490–2496,
1971.
|