References |
1. |
Adrian, R. H.
Internal chloride concentration and chloride efflux of frog muscle.
J. Physiol. London
156:
623–632,
1961.
|
2. |
Adrian, R. H.
The rubidium and potassium permeability of frog muscle membrane.
J. Physiol. London
175:
134–159,
1964.
|
3. |
Adrian, R. H.
Conduction velocity and gating current in the squid giant axon.
Proc. R. Soc. London Ser. B
189:
81–86,
1975.
|
4. |
Adrian, R. H.
Charge movement in the membrane of striated muscle.
Annu. Rev. Biophys. Bioeng.
7:
85–112,
1978.
|
5. |
Adrian, R. H., and
W. Almers.
Membrane capacity measurements on frog skeletal muscle in media of low ion content.
J. Physiol. London
237:
573–605,
1974.
|
6. |
Adrian, R. H., and
W. Almers.
Charge movement in the membrane of striated muscle.
J. Physiol. London
254:
339–360,
1976.
|
7. |
Adrian, R. H., and
S. H. Bryant.
On the repetitive discharge in myotonic muscle fibres.
J. Physiol. London
240:
505–515,
1974.
|
8. |
Adrian, R. H.,
W. K. Chandler, and
A. L. Hodgkin.
Kinetics of mechanical activation in frog muscle.
J. Physiol. London
204:
207–230,
1969.
|
9. |
Adrian, R. H.,
W. K. Chandler, and
A. L. Hodgkin.
Voltage clamp experiments in striated muscle fibres.
J. Physiol. London
208:
607–644,
1970.
|
10. |
Adrian, R. H.,
W. K. Chandler, and
A. L. Hodgkin.
Slow changes in potassium permeability in skeletal muscle.
J. Physiol. London
208:
645–668,
1970.
|
11. |
Adrian, R. H.,
L. L. Costantin, and
L. D. Peachey.
Radial spread of contraction in frog muscle fibres.
J. Physiol. London
204:
231–257,
1969.
|
12. |
Adrian, R. H., and
W. H. Freygang.
The potassium and chloride conductance of frog muscle membrane.
J. Physiol. London
163:
61–103,
1962.
|
13. |
Adrian, R. H., and
M. W. Marshall.
Action potentials reconstructed in normal and myotonic muscle fibres.
J. Physiol. London
258:
125–143,
1976.
|
14. |
Adrian, R. H., and
M. W. Marshall.
Sodium currents in mammalian muscle.
J. Physiol. London
268:
223–250,
1977.
|
15. |
Adrian, R. H., and
L. D. Peachey.
Reconstruction of the action potential in frog sartorius muscle.
J. Physiol. London
235:
103–131,
1973.
|
16. |
Adrian, R. H., and
A. Peres.
Charge movement and membrane capacity in frog muscle.
J. Physiol. London
289:
83–97,
1979.
|
17. |
Adrian, R. H., and
R. F. Rakowski.
Reactivation of membrane charge movement and delayed potassium conductance in skeletal muscle fibres.
J. Physiol. London
278:
533–557,
1978.
|
18. |
Adrian, R. H., and
C. L. Slayman.
Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle.
J. Physiol. London
184:
970–1014,
1966.
|
19. |
Almers, W.
Potassium conductance changes in skeletal muscle and the potassium concentration in the transverse tubules.
J. Physiol. London
225:
33–56,
1972.
|
20. |
Almers, W.
The decline of potassium permeability during extreme hyperpolarization in frog skeletal muscle.
J. Physiol. London
225:
57–83,
1972.
|
21. |
Almers, W.,
R. H. Adrian, and
S. R. Levinson.
Some dielectric properties of muscle membrane and their possible importance for excitation‐contraction coupling.
Ann. NY Acad. Sci.
264:
278–292,
1975.
|
22. |
Argibay, J. A., and
O. F. Hutter.
Voltage clamp experiments on the inactivation of the delayed potassium current in skeletal muscle fibres.
J. Physiol. London
232:
41P–43P,
1973.
|
23. |
Armstrong, C. M.
Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons.
J. Gen. Physiol.
58:
413–437,
1971.
|
24. |
Armstrong, C. M.,
F. M. Bezanilla, and
P. Horowicz.
Twitches in the presence of ethylene glycol bis(β‐aminoethylether)‐N,N′‐tetraacetic acid.
Biochim. Biophys. Acta
267:
605–608,
1972.
|
25. |
Bastian, J., and
S. Nakajima.
Action potential in the transverse tubules and its role in the activation of skeletal muscle.
J. Gen. Physiol.
63:
257–278,
1974.
|
26. |
Beaty, G. N., and
E. Stefani.
Calcium dependent electrical activity in twitch muscle fibres of the frog.
Proc. R. Soc. London Ser. B
194:
141–150,
1976.
|
27. |
Bernard, C.,
J. C. Cardinaux, and
D. Potreau.
Long duration responses and slow inward current obtained from isolated skeletal muscle fibres with barium ions.
J. Physiol. London
256:
18P–19P,
1976.
|
28. |
Brooks, A. E., and
O. F. Hutter.
The influence of pH on the chloride conductance of skeletal muscle.
J. Physiol. London
163:
9P–10P,
1962.
|
29. |
Bryant, S. H.
The electrophysiology of myotonia, with a review of congenital myotonia of goats. In:
New Developments in Electromyography and Clinical Neurophysiology,
edited by J. E. Desmedt.
Basel:
Karger,
1972.
|
30. |
Campbell, D. T.
Ionic selectivity of the sodium channel of frog skeletal muscle.
J. Gen. Physiol.
67:
295–307,
1976.
|
31. |
Campbell, D. T., and
B. Hille.
Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle.
J. Gen. Physiol.
67:
309–323,
1976.
|
32. |
Carslaw, H. S., and
J. C. Jaeger.
Conduction of Heat in Solids
(2nd ed.).
Oxford:
Oxford Univ. Press,
1959.
|
33. |
Chandler, W. K.,
R. F. Rakowski, and
M. F. Schneider.
A non‐linear voltage dependent charge movement in frog skeletal muscle.
J. Physiol. London
254:
245–283,
1976.
|
34. |
Chandler, W. K.,
R. F. Rakowski, and
M. F. Schneider.
Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle.
J. Physiol. London
254:
285–316,
1976.
|
35. |
Cleemann, L., and
M. Morad.
Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation.
J. Physiol. London
286:
113–143,
1979.
|
36. |
Costantin, L. L.
The effect of calcium on contraction and conductance thresholds in frog skeletal muscle.
J. Physiol. London
195:
119–132,
1968.
|
37. |
Costantin, L. L.
The role of sodium current in the radial spread of contraction in frog muscle fibers.
J. Gen. Physiol.
55:
703–715,
1970.
|
38. |
Costantin, L. L.
Activation in striated muscle. In:
Handbook of Physiology. The Nervous System,
edited by J. M. Brookhart and
V. B. Mountcastle.
Bethesda, MD:
Am. Physiol. Soc.,
1977,
sect. 1,
vol. I,
pt. 1,
chapt. 7,
p. 215–259.
|
39. |
Crank, J.
The Mathematics of Diffusion.
Oxford:
Oxford Univ. Press,
1956.
|
40. |
Curtis, B. A.
Ca fluxes in single twitch muscle fibers.
J. Gen. Physiol.
50:
255–267,
1966.
|
41. |
Curtis, B. A.
Calcium efflux from frog twitch muscle fibers.
J. Gen. Physiol.
55:
243–253,
1970.
|
42. |
Davies, P. W.
Voltage clamp measurements on skeletal muscle fibers with low resistance internal electrodes (Abstract).
Federation Proc.
33:
401,
1974.
|
43. |
Dodge, F. A., and
B. Frankenhaeuser.
Membrane currents in isolated frog nerve fibre under voltage clamp conditions.
J. Physiol. London
143:
76–90,
1958.
|
44. |
Duval, A., and
C. Léoty.
Ionic currents in mammalian fast skeletal muscle.
J. Physiol. London
278:
403–423,
1978.
|
45. |
Duval, A., and
C. Léoty.
Ionic currents in slow twitch skeletal muscle in the rat.
J. Physiol. London
307:
23–41,
1980.
|
46. |
Duval, A., and
C. Léoty.
Comparison between the delayed outward current in slow and fast twitch skeletal muscle in the rat.
J. Physiol. London
307:
43–57,
1980.
|
47. |
Eisenberg, R. S., and
E. A. Johnson.
Three‐dimensional electrical field problems in physiology.
Prog. Biophys. Mol. Biol.
20:
1–65,
1970.
|
48. |
Falk, G., and
P. Fatt.
Linear electrical properties of striated muscle fibres observed with intracellular electrodes.
Proc. R. Soc. London Ser. B
160:
69–123,
1964.
|
49. |
Fitzhugh, R.
Theoretical effect of temperature on threshold in the Hodgkin‐Huxley nerve model.
J. Gen. Physiol.
49:
989–1005,
1966.
|
50. |
Frankenhaeuser, B.
A method for recording resting and action potentials in the isolated myelinated nerve fibre of the frog.
J. Physiol. London
135:
550–559,
1957.
|
51. |
Frankenhaeuser, B.,
B. D. Lindley, and
R. S. Smith.
Potentiometrie measurement of membrane action potentials in frog muscle fibres.
J. Physiol. London
183:
152–166,
1966.
|
52. |
Gage, P. W., and
R. S. Eisenberg.
Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers.
J. Gen. Physiol.
53:
265–278,
1969.
|
53. |
Gage, P. W., and
R. S. Eisenberg.
Action potentials, after‐potentials, and excitation‐contraction coupling in frog sartorius fibers without transverse tubules.
J. Gen. Physiol.
53:
298–310,
1969.
|
54. |
Gay, L. A., and
P. R. Stanfield.
Cs+ causes a voltage‐dependent block of inward K currents in resting skeletal muscle fibres.
Nature London
267:
169–170,
1977.
|
55. |
Gilly, W. F., and
C. S. Hui.
Mechanical activation in slow and twitch skeletal muscle fibres of the frog.
J. Physiol. London
301:
137–156,
1980.
|
56. |
Gilly, W. F., and
C. S. Hui.
Membrane electrical properties of frog slow muscle fibres.
J. Physiol. London
301:
157–173,
1980.
|
57. |
Gilly, W. F., and
C. S. Hui.
Voltage‐dependent charge movement in frog slow muscle fibres.
J. Physiol. London
301:
175–190,
1980.
|
58. |
Goldman, D. E.
Potential, impedance, and rectification in membranes.
J. Gen. Physiol.
27:
37–60,
1943.
|
59. |
Hagiwara, S.,
S. Miyazaki,
W. Moody, and
J. Patlak.
Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg.
J. Physiol. London
279:
167–185,
1978.
|
60. |
Hagiwara, S.,
S. Miyazaki, and
N. P. Rosenthal.
Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish.
J. Gen. Physiol.
67:
621–638,
1976.
|
61. |
Hanson, J., and
A. Persson.
Changes in the action potential and contraction of isolated frog muscle after repetitive stimulation.
Acta Physiol. Scand.
81:
340–348,
1971.
|
62. |
Harris, E. J.
Anion interaction in frog muscle.
J. Physiol. London
141:
351–365,
1958.
|
63. |
Heistracher, P., and
C. C. Hunt.
The relation of membrane changes to contraction in twitch muscle fibres.
J. Physiol. London
201:
589–611,
1969.
|
64. |
Heistracher, P., and
C. C. Hunt.
Contractile repriming in snake twitch muscle fibres.
J. Physiol. London
201:
613–626,
1969.
|
65. |
Hille, B., and
D. T. Campbell.
An improved vaseline gap voltage clamp for skeletal muscle fibers.
J. Gen. Physiol.
67:
265–293,
1976.
|
66. |
Hodgkin, A. L., and
P. Horowicz.
The influence of potassium and chloride ions on the membrane potential of single muscle fibres.
J. Physiol. London
148:
127–160,
1959.
|
67. |
Hodgkin, A. L., and
P. Horowicz.
The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres.
J. Physiol. London
153:
370–385,
1960.
|
68. |
Hodgkin, A. L., and
A. F. Huxley.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol. London
117:
500–544,
1952.
|
69. |
Hodgkin, A. L., and
B. Katz.
The effect of sodium ions on the electrical activity of the giant axon of the squid.
J. Physiol. London
108:
37–77,
1949.
|
70. |
Hodgkin, A. L., and
S. Nakajima.
The effect of diameter on the electrical constants of frog skeletal muscle fibres.
J. Physiol. London
221:
105–120,
1972.
|
71. |
Hodgkin, A. L., and
W. A. H. Rushton.
The electrical constants of a crustacean nerve fibre.
Proc. R. Soc. London Ser. B
133:
444–479,
1946.
|
72. |
Hutter, O. F., and
D. Noble.
The chloride conductance of frog skeletal muscle.
J. Physiol. London
151:
89–102,
1960.
|
73. |
Hutter, O. F., and
S. M. Padsha.
Effect of nitrate and other anions on the membrane resistance of frog skeletal muscle.
J. Physiol. London
146:
117–132,
1959.
|
74. |
Hutter, O. F., and
A. E. Warner.
The pH sensitivity of the chloride conductance of frog skeletal muscle.
J. Physiol. London
189:
403–425,
1967.
|
75. |
Hutter, O. F., and
A. E. Warner.
The effect of pH on the 36Cl efflux from frog skeletal muscle.
J. Physiol. London
189:
427–460,
1967.
|
76. |
Hutter, O. F., and
A. E. Warner.
The voltage dependence of the chloride conductance of frog muscle.
J. Physiol. London
227:
275–290,
1972.
|
77. |
Huxley, A. F., and
R. E. Taylor.
Local activation of striated muscle fibres.
J. Physiol. London
144:
426–441,
1958.
|
78. |
Ildefonse, M., and
O. Rougier.
Voltage‐clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose‐gap method.
J. Physiol. London
222:
373–395,
1972.
|
79. |
Ildefonse, M., and
G. Roy.
Kinetic properties of the sodium current in striated muscle fibres on the basis of the Hodgkin‐Huxley theory.
J. Physiol. London
227:
419–431,
1972.
|
80. |
Jack, J. J. B.,
D. Noble, and
R. W. Tsien.
Electrical Current Flow in Excitable Cell.
London:
Oxford Univ. Press,
1975.
|
81. |
Kao, C. Y., and
P. R. Stanfield.
Action of some anions on the electrical properties and mechanical threshold of frog twitch muscle.
J. Physiol. London
198:
291–309,
1968.
|
82. |
Kass, R. S.,
S. A. Siegelbaum, and
R. W. Tsien.
Three micro‐electrode voltage clamp experiments in calf cardiac Purkinje fibres: is slow inward current adequately measured?
J. Physiol. London
290:
201–225,
1979.
|
83. |
Katz, B.
Les constantes électriques de la membrane du muscle.
Arch. Sci. Physiol.
3:
285–300,
1949.
|
84. |
Kirsch, G. E.,
R. A. Nichols, and
S. Nakajima.
Delayed rectification in the transverse tubules. Origin of late after‐potential in frog skeletal muscle.
J. Gen. Physiol.
70:
1–21,
1977.
|
85. |
Kootsey, J. M.
Voltage clamp simulation.
Federation Proc.
34:
1343–1349,
1975.
|
86. |
Kovács, L.,
E. Ríos, and
M. F. Schneider.
Calcium transients and intramembrane charge movement in skeletal muscle fibres.
Nature London
279:
391–396,
1979.
|
87. |
Kovács, L., and
M. F. Schneider.
Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres.
J. Physiol. London
277:
483–506,
1978.
|
88. |
Léoty, C., and
J. Alix.
Some technical improvements for the voltage clamp with the double sucrose gap.
Pfluegers Arch.
365:
95–97,
1976.
|
89. |
Lorcovic, H., and
C. Edwards.
Threshold for contraction and delayed rectification in muscle.
Life Sci.
7:
367–370,
1968.
|
90. |
Lynch, C.
Kinetic and biochemical separation of delayed rectifier currents in frog striated muscle.
Biophys. J.
21:
55a,
1978.
|
91. |
Mathias, R. T.,
R. S. Eisenberg, and
R. Valdiosera.
Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tubular system.
Biophys. J.
17:
57–93,
1977.
|
92. |
Meech, R. W., and
N. B. Standen.
Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx.
J. Physiol. London
249:
211–239,
1975.
|
93. |
Meyer, K. H., and
J. F. Sievers.
La perméabilité des membranes. I. Théorie de la perméabilité ionique.
Helv. Chim. Acta
19:
649–664,
1936.
|
94. |
Moore, L. E.
Voltage clamp experiments on single muscle fibers of Rana pipiens.
J. Gen. Physiol.
60:
1–19,
1972.
|
95. |
Nakajima, S.,
S. Iwasaki, and
K. Obata.
Delayed rectification and anomalous rectification in frog's skeletal muscle membrane.
J. Gen. Physiol.
46:
97–115,
1962.
|
96. |
Noble, D., and
R. W. Tsien.
Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres.
J. Physiol. London
200:
205–231,
1969.
|
97. |
Ohmori, H.
Inactivation kinetics and steady‐state current noise in the anomalous rectifier of tunicate egg cell membranes.
J. Physiol. London
281:
77–99,
1978.
|
98. |
Pappone, P. A.
Voltage clamp experiments in normal and denervated mammalian skeletal muscle fibres.
J. Physiol. London
307:
377–410,
1980.
|
99. |
Peskoff, A.
Green's function for Laplace's equation in an infinite cylindrical cell.
J. Math. Phys.
15:
2112–2120,
1974.
|
100. |
Peskoff, A., and
R. S. Eisenberg.
A point source in a cylindrical cell: potential for a step‐function of current inside an infinite cylindrical cell in a medium of finite conductivity.
Los Angeles, CA:
UCLA,
1974.
(Tech. Rep. UCLA‐ENG‐7421.)
|
101. |
Peskoff, A.,
R. S. Eisenberg, and
J. P. Cole.
Potential induced by a point source of current inside an infinite cylindrical cell.
Los Angeles, CA:
UCLA,
1973.
(Tech. Rep. UCLA‐ENG‐7303.)
|
102. |
Poindessault, P. J.,
A. Duval, and
C. Léoty.
Voltage clamp with double sucrose gap technique. External series resistance compensation.
Biophys. J.
16:
105–120,
1976.
|
103. |
Rougier, O.,
G. Vassort, and
R. Stämpfli.
Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique.
Pfluegers Arch.
301:
91–108,
1968.
|
104. |
Sanchez, J. A., and
E. Stefani.
Inward calcium current in twitch muscle fibres of the frog.
J. Physiol. London
283:
197–209,
1978.
|
105. |
Schneider, M. F.
Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers.
J. Gen. Physiol.
56:
640–671,
1970.
|
106. |
Schneider, M. F., and
W. K. Chandler.
Effects of membrane potential on the capacitance of skeletal muscle fibers.
J. Gen. Physiol.
67:
125–163,
1976.
|
107. |
Standen, N. B., and
P. R. Stanfield.
A potential‐ and time‐dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions.
J. Physiol. London
280:
169–191,
1978.
|
108. |
Standen, N. B., and
P. R. Stanfield.
Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle.
J. Physiol. London
294:
497–520,
1979.
|
109. |
Stanfield, P. R.
The effect of tetraethylammonium ion on the delayed currents of frog skeletal muscle.
J. Physiol. London
209:
209–229,
1970.
|
110. |
Stanfield, P. R.
A calcium dependent inward current in frog skeletal muscle fibres.
Pfluegers Arch.
368:
267–270,
1977.
|
111. |
Stanfield, P. R.,
F. M. Ashcroft, and
T. D. Plant.
Gating of a muscle K+ channel and its dependence on the permeating ion species.
Nature London
289:
509–511,
1981.
|
112. |
Taylor, R. E.
Cable theory. In:
Physical Techniques in Biological Research. Electrophysiological Methods,
edited by W. L. Nastuk.
New York:
Academic,
1963,
vol. 6,
pt. B.
|
113. |
Taylor, R. E.,
J. W. Moore, and
K. S. Cole.
Analysis of certain errors in squid axon voltage clamp measurements.
Biophys. J.
1:
161–202,
1960.
|
114. |
Thomsen, J.
Tonische Krämpfe in willkürlich beweglichen Muskeln in Folge von erebter psychischer Disposition (Ataxis muscularis?).
Arch. Psychiatr. Nervenkr.
6:
702–718,
1876.
|
115. |
Thomson, W.
(Lord Kelvin). On the theory of the electric telegraph.
Proc. R. Soc. London
7:
382–399,
1855.
|
116. |
Valdiosera, R.,
C. Clausen, and
R. S. Eisenberg.
Impedance of frog skeletal muscle fibers in various solutions.
J. Gen. Physiol.
63:
460–491,
1974.
|
117. |
Warner, A. E.
Kinetic properties of the chloride conductance of frog muscle.
J. Physiol. London
227:
291–312,
1972.
|