References |
1. |
Adrian, E. D.
The relation between the stimulus and the electric response in a single muscle fibre.
Arch. Neerl. Physiol.
7:
330–332,
1922.
|
2. |
Adrian, R. H.,
W. K. Chandler, and
A. L. Hodgkin.
The kinetics of mechanical activation in frog muscle.
J. Physiol. London
204:
207–230,
1969.
|
3. |
Adrian, R. H.,
W. K. Chandler, and
A. L. Hodgkin.
Voltage clamp experiments in striated muscle fibres.
J. Physiol. London
208:
607–644,
1970.
|
4. |
Adrian, R. H.,
L. L. Costantin, and
L. D. Peachey.
Radial spread of contraction in frog muscle fibres.
J. Physiol. London
204:
231–257,
1969.
|
5. |
Adrian, R. H., and
W. H. Freygang.
Potassium conductance of frog muscle membrane under controlled voltage.
J. Physiol. London
163:
104–114,
1962.
|
6. |
Adrian, R. H., and
L. D. Peachey.
Reconstruction of the action potential of frog sartorius muscle.
J. Physiol. London
235:
103–131,
1973.
|
7. |
Andersson‐Cedergren, E.
Ultrastructure of motor end plate and sarcoplasmic components of mouse skeletal muscle fiber as revealed by three‐dimensional reconstructions from serial sections.
J. Ultrastruct. Res. Suppl.
1:
5–191,
1959.
|
8. |
Bastian, J., and
S. Nakajima.
Action potential in the transverse tubules and its role in the activation of skeletal muscle.
J. Gen. Physiol.
63:
257–278,
1974.
|
9. |
Bay, Z.,
M. C. Goodall, and
A. Szent‐Györgyi.
The transmission of excitation from the membrane to actomyosin.
Bull. Math. Biophys.
15:
1–13,
1953.
|
10. |
Baylor, S. M., and
W. K. Chandler.
Optical indications of excitation‐contraction coupling in striated muscle. In:
Biophysical Aspects of Cardiac Muscle,
edited by M. Morad and
S. Smith.
New York:
Academic,
1978,
p. 207–228.
|
11. |
Bennett, H. S., and
K. R. Porter.
An electron microscope study of sectioned breast muscle of the domestic fowl.
Am. J. Anat.
93:
61–105,
1953.
|
12. |
Bezanilla, F.,
C. Caputo,
H. Gonzalez‐Serratos, and
R. A. Venosa.
Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog.
J. Physiol. London
223:
507–523,
1972.
|
13. |
Biedermann, W.
Elektrophysiologie.
Jena:
Fischer,
1895,
p. 149–272.
|
14. |
Bozler, E., and
K. S. Cole.
Electric impedance and phase angle of muscle in rigor.
J. Cell. Comp. Physiol.
6:
229–241,
1935.
|
15. |
Brown, D. E. S., and
F. J. M. Sichel.
The isometric contraction of isolated muscle fibers.
J. Cell. Comp. Physiol.
8:
315–328,
1936.
|
16. |
Brown, L. M.,
H. Gonzalez‐Serratos, and
A. F. Huxley.
Electron microscopy of frog muscle fibres in extreme passive shortening.
J. Physiol. London
208:
86P–88P,
1970.
|
17. |
Caputo, C., and
R. Dipolo.
Ionic diffusion delays in the transverse tubules of frog twitch muscle fibres.
J. Physiol. London
229:
547–557,
1973.
|
18. |
Cole, K. S.
Membranes, Ions and Impulses: A Chapter of Classical Biophysics.
Berkeley:
Univ. of California Press,
1968.
|
19. |
Cole, K. S., and
H. J. Curtis.
Electric impedance of nerve and muscle.
Cold Spring Harbor Symp. Quant. Biol.
4:
73–89,
1936.
|
20. |
Costantin, L. L.
The effect of calcium on contraction and conductance thresholds in frog skeletal muscle.
J. Physiol. London
195:
119–132,
1968.
|
21. |
Costantin, L. L.
The role of sodium currents in the radial spread of contraction in frog muscle fibers.
J. Gen. Physiol.
55:
703–715,
1970.
|
22. |
Csapo, A., and
T. Suzuki.
The effectiveness of the longitudinal field, coupled with depolarization in activating frog twitch muscles.
J. Gen. Physiol.
41:
1083–1098,
1958.
|
23. |
Eisenberg, R. S., and
P. W. Gage.
Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.
J. Gen. Physiol.
53:
279–297,
1969.
|
24. |
Eisenberg, R. S., and
E. A. Johnson.
Three‐dimensional electrical field problems in physiology.
Prog. Biophys. Mol. Biol.
20:
1–65,
1970.
|
25. |
Endo, M.
Entry of a dye into the sarcotubular system of muscle.
Nature London
202:
1115–1116,
1964.
|
26. |
Endo, M.
Staining of a single muscle fibre with fluorescent dyes.
J. Physiol. London
172:
11P,
1964.
|
27. |
Endo, M.
Entry of fluorescent dyes into the sarcotubular system of the frog muscle.
J. Physiol. London
185:
224–238,
1966.
|
28. |
Engelmann, T. W.
Mikroskopische Untersuchungen Fiber die quergestreifte Muskelsubstanz. Zweiter Articol. Die thatige Muskelsubstanz.
Pfluegers Arch. Gesamte Physiol. Menschen Tiere
7:
155–188,
1873.
|
29. |
Falk, G.
Predicted delays in the activation of the contractile system.
Biophys. J.
8:
608–625,
1968.
|
30. |
Falk, G., and
P. Fatt.
Linear electrical properties of striated muscle fibres observed with intracellular electrodes.
Proc. R. Soc. London Ser. B
160:
69–123,
1964.
|
31. |
Fatt, P.
An analysis of the transverse electrical impedance of striated muscle.
Proc. R. Soc. London Ser. B
159:
606–651,
1964.
|
32. |
Fatt, P., and
B. L. Ginsborg.
The ionic requirements for the production of action potentials in crustacean muscle fibres.
J. Physiol. London
142:
516–543,
1958.
|
33. |
Fatt, P., and
B. Katz.
An analysis of the end‐plate potential recorded with an intracellular electrode.
J. Physiol. London
115:
320–370,
1951.
|
34. |
Fatt, P., and
B. Katz.
The electrical properties of crustacean muscle fibres.
J. Physiol. London
120:
171–204,
1953.
|
35. |
Franzini‐Armstrong, C., and
K. R. Porter.
Sarcolemmal invaginations constituting the T system in fish muscle fibers.
J. Cell Biol.
22:
675–696,
1964.
|
36. |
Freygang, W. H.,
S. I. Rapoport, and
L. D. Peachey.
Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure.
J. Gen. Physiol.
50:
2437–2458,
1967.
|
37. |
Freygang, W. H., Jr.,
D. A. Goldstein,
D. C. Hellam, and
L. D. Peachey.
The relation between the late afterpotential and the size of the transverse tubular system of frog muscle.
J. Gen. Physiol.
48:
235–263,
1964.
|
38. |
Gelfan, S.
The submaximal responses of the single muscle fibre.
J. Physiol. London
80:
285–295,
1933.
|
39. |
Gonzalez‐Serratos, H.
Differential shortening of myofibrils during contractures of single muscle fibres.
J. Physiol. London
179:
12P–14P,
1965.
|
40. |
Gonzalez‐Serratos, H.
Inward spread of contraction during a twitch.
J. Physiol. London
185:
20P–21P,
1966.
|
41. |
Gonzalez‐Serratos, H.
Studies on the Inward Spread of Activation in Isolated Muscle Fibres.
London: London University,
1967.
PhD dissertation.
|
42. |
Gonzalez‐Serratos, H.
Inward spread of activation in vertebrate muscle fibres.
J. Physiol. London
212:
777–799,
1971.
|
43. |
Gonzalez‐Serratos, H.
Graded activation of myofibrils and the effect of diameter on tension development during contractures in isolated skeletal muscle fibres.
J. Physiol. London
253:
321–339,
1975.
|
44. |
Hagiwara, S., and
A. Watanabe.
The effect of tetraethyl‐ammonium chloride on the muscle membrane examined with an intracellular microelectrode.
J. Physiol. London
129:
513–527,
1955.
|
45. |
Heilbrunn, L. V., and
F. J. Wiercinski.
The action of various cations on muscle protoplasm.
J. Cell. Comp. Physiol.
29:
15–32,
1947.
|
46. |
Hill, A. V.
On the time required for diffusion and its relation to processes in muscle.
Proc. R. Soc. London Ser. B.
135:
446–453,
1948.
|
47. |
Hill, A. V.
The abrupt transition from rest to activity in muscle.
Proc. R. Soc. London Ser. B:
136:
399–420,
1949.
|
48. |
Hodgkin, A. L.
A note on conduction velocity.
J. Physiol. London
125:
221–224,
1954.
|
49. |
Hodgkin, A. L., and
P. Horowicz.
The differential action of hypertonic solutions on the twitch and action potential of a muscle fibre.
J. Physiol. London
136:
17P,
1957.
|
50. |
Hodgkin, A. L., and
P. Horowicz.
The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres.
J. Physiol. London
153:
370–385,
1960.
|
51. |
Hodgkin, A. L., and
P. Horowicz.
Potassium contractures in single muscle fibres.
J. Physiol. London
153:
386–403,
1960.
|
52. |
Hodgkin, A. L., and
S. Nakajima.
The effect of diameter on the electrical constants of frog skeletal muscle fibres.
J. Physiol. London
221:
105–120,
1972.
|
53. |
Hodgkin, A. L., and
S. Nakajima.
Analysis of the membrane capacity in frog muscle.
J. Physiol. London
221:
121–136,
1972.
|
54. |
Howell, J. N., and
D. J. Jenden.
T‐tubules of skeletal muscle: morphological alterations which interrupt excitation‐contraction coupling (Abstract).
Federation Proc.
26:
553,
1967.
|
55. |
Huxley, A. F.
A high‐power interference microscope.
J. Physiol. London
125:
11P–13P,
1954.
|
56. |
Huxley, A. F.
Local activation of striated muscle from the frog and the crab.
J. Physiol. London
135:
17P–18P,
1956.
|
57. |
Huxley, A. F.
Das Interferenz‐Mikroskop und seine Anwendung in der biologischung.
Naturwissenschaften
7:
189–196,
1957.
|
58. |
Huxley, A. F.
Local activation in muscle.
Ann. NY Acad. Sci.
81:
446–452,
1959.
|
59. |
Huxley, A. F.
The links between excitation and contraction.
Proc. R. Soc. London Ser. B
160:
486–488,
1964.
|
60. |
Huxley, A. F.
The Croonian Lecture, 1967. The activation of striated muscle and its mechanical response.
Proc. R. Soc. London Ser. B:
178:
1–27,
1971.
|
61. |
Huxley, A. F., and
A. M. Gordon.
Striation patterns in active and passive shortening of muscle.
Nature London
193:
280–281,
1962.
|
62. |
Huxley, A. F., and
R. Niedergerke.
Measurement of the striation of isolated muscle fibres with the interference microscope.
J. Physiol. London
144:
403–425,
1958.
|
63. |
Huxley, A. F., and
R. W. Straub.
Local activation and inter‐fibrillar structures in striated muscle.
J. Physiol. London
143:
40P–41P,
1958.
|
64. |
Huxley, A. F., and
R. E. Taylor.
Function of Krause's membrane.
Nature London
176:
1068,
1955.
|
65. |
Huxley, A. F., and
R. E. Taylor.
Local activation of striated muscles from the frog and the crab.
J. Physiol. London
135:
17P–18P,
1956.
|
66. |
Huxley, A. F., and
R. E. Taylor.
Local activation of striated muscle fibres.
J. Physiol. London
144:
426–441,
1958.
|
67. |
Huxley, H. E.
Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle.
Nature London
202:
1067–1071,
1964.
|
68. |
Katz, B.
The electrical properties of the muscle fibre membrane.
Proc. R. Soc. London Ser. B
135:
506–534,
1948.
|
69. |
Katz, B.
Nerve, Muscle and Synapse.
New York:
McGraw‐Hill,
1966.
|
70. |
Kuffler, S. W.
The relation of electric potential changes to contracture in skeletal muscle.
J. Neurophysiol.
9:
367–377,
1946.
|
71. |
Landowne, D.
Changes in fluorescence of skeletal muscle stained with merocyanine associated with excitation‐contraction coupling.
J. Gen. Physiol.
64:
5a,
1974.
|
72. |
Nakajima, S., and
A. Gilai.
Action potentials of isolated single muscle fibers recorded by potential‐sensitive dyes.
J. Gen. Physiol.
76:
729–750,
1980.
|
73. |
Nakajima, S., and
A. Gilai.
Radial propagation of muscle action potential along the tubular system examined by potential‐sensitive dyes.
J. Gen. Physiol.
76:
751–762,
1980.
|
74. |
Nakajima, S.,
A. Gilai, and
D. Dingeman.
Dye absorption changes in single muscle fibers: an application of an automatic balancing circuit.
Pfluegers Arch.
362:
285–287,
1976.
|
75. |
Nakajima, S., and
A. L. Hodgkin.
Effect of diameter on the electrical constants of frog skeletal muscle fibers.
Nature London
227:
1053–1055,
1970.
|
76. |
Nakajima, S.,
S. Iwasaki, and
K. Obata.
Delayed rectification and anomalous rectification in frog's skeletal muscle membrane.
J. Gen. Physiol.
46:
97–115,
1962.
|
77. |
Nakajima, S.,
Y. Nakajima, and
J. Bastian.
Effects of sudden changes in external sodium concentration on twitch tension in isolated muscle fibers.
J. Gen. Physiol.
65:
459–482,
1975.
|
78. |
Nakajima, S.,
Y. Nakajima, and
L. D. Peachey.
Speed of repolarization and morphology of glycerol‐treated frog muscle fibres.
J. Physiol. London
234:
465–480,
1973.
|
79. |
Nastuk, W. L., and
A. L. Hodgkin.
The electrical activity of single muscle fibers.
J. Cell. Comp. Physiol.
35:
39–73,
1950.
|
80. |
Natori, R.
The property and contraction process of isolated myofibrils.
Jikeikai Med. J.
1:
119–126,
1954.
|
81. |
Natori, R., and
C. Isojima.
Excitability of isolated myofibrils.
Jikeikai Med. J.
9:
1–8,
1962.
|
82. |
Niedergerke, R.
Local muscular shortening by intracellularly applied calcium.
J. Physiol. London
128:
12P,
1955.
|
83. |
Oetliker, H.,
S. M. Baylor, and
W. K. Chandler.
Simultaneous changes in fluorescence and optimal retardation in single muscle fibers during activity.
Nature London
257:
693–696,
1975.
|
84. |
Page, S.
The organization of the sarcoplasmic reticulum in frog muscle.
J. Physiol. London
175:
10P–11P,
1964.
|
85. |
Peachey, L. D.
The sarcoplasmic reticulum and transverse tubules of the frog's sartorius.
J. Cell Biol.
25,
Suppl. 3:
209–231,
1965.
|
86. |
Peachey, L. D., and
R. H. Adrian.
Electrical properties of the transverse tubular system. In:
The Structure and Function of Muscle. Physiology and Biochemistry
(2nd ed.),
edited by G. H. Bourne.
New York:
Academic,
1973,
vol. 3.
|
87. |
Peachey, L. D., and
S. F. Huxley.
Transverse tubules in crab muscle.
J. Cell Biol.
23:
70A–71A,
1964.
|
88. |
Porter, K. R., and
G. E. Palade.
Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells.
J. Biophys. Biochem. Cytol.
3:
269–300,
1957.
|
89. |
Retzius, G.
Zur Kenntnis der quergentreiften Muskelfaser.
Biol. Untersuch.
1:
1–26,
1881.
|
90. |
Robertson, J. D.
Some features of the ultrastructure of a reptilian skeletal muscle.
J. Biophys. Biochem. Cytol.
2:
369–380,
1956.
|
91. |
Sakai, T., and
A. Csapo.
Contraction without membrane potential change. In:
The Structure and Function of Muscle
(1st ed.),
edited by G. H. Bourne.
New York:
Academic,
1960,
p. 228.
|
92. |
Sandow, A.
Excitation‐contraction coupling in skeletal muscle.
Pharmacol. Rev.
17:
265–320,
1965.
|
93. |
Selverston, A.
Structure and function of the transverse tubular system in crustacean muscle fibers.
Am. Zool.
7:
515–525,
1967.
|
94. |
Smith, D. S.
The structure of insect fibrillar fly muscle. Study made with special reference to the membrane system of the fibre.
J. Biophys. Biochem. Cytol.
10,
Suppl. 4:
123–159,
1961.
|
95. |
Sten‐Knudsen, O.
The ineffectiveness of the “window field” in the initiation of muscle contraction.
J. Physiol. London
125:
396–404,
1954.
|
96. |
Sten‐Knudsen, O.
Is muscle contraction initiated by internal current flow?
J. Physiol. London
151:
363–384,
1960.
|
97. |
Strickholm, A.
Local sarcomere contraction in fast muscle fibres.
Nature London
212:
835–836,
1966.
|
98. |
Sugi, H., and
R. Ochi.
The mode of transverse spread of contraction initiated by local activation in single frog muscle fibers.
J. Gen. Physiol.
50:
2167–2176,
1967.
|
99. |
Valdiosera, R.,
C. Clausen, and
R. S. Eisenberg.
Circuit models of the passive electrical properties of frog skeletal muscle fibers.
J. Gen. Physiol.
63:
432–459,
1974.
|
100. |
Veratti, E.
Ricerche Zulla fine struttura della fibra muscolare striata Memorie 1st lomb.
Sci. Lett. (Ll. Sci. Math. Nat.)
19,
97–133,
1902.
|
101. |
Vergara, J., and
F. Bezanilla.
Fluorescence changes during electrical activity in frog muscle stained with merocyanine.
Nature London
259:
684–686,
1976.
|