Comprehensive Physiology Wiley Online Library

Reflexes Controlling Circulatory, Ventilatory and Airway Responses to Exercise

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Reflex Cardiovascular Responses to Muscular Contraction in Anesthetized and Decerebrate Animals
1.1 Sensory Innervation of Skeletal Muscle
1.2 Reflex Autonomic Responses to Stimulation of Muscle Afferents in Anesthetized Animals
1.3 Discharge Properties of Group III and IV Muscle Afferents
1.4 The Site of the First Synapse—The Dorsal Horn
1.5 Role of Spinal Neurotransmitters and Neuromodulators in the Exercise Pressor Reflex
1.6 Pathways Ascending from the Dorsal Horn
1.7 The Ventrolateral Medulla
1.8 Other Central Neural Structures
1.9 Final Common Pathways
1.10 Interaction Between the Arterial Baroreflex and the Exercise Pressor Reflex in Anesthetized and Decerebrate Animals
2 Evidence for the Exercise Pressor Reflex in Humans and Conscious Animals
2.1 Feedback from Contracting Limb Skeletal Muscle in Humans and Conscious Animals
2.2 The Nature of the Stimulus Evoking the Exercise Pressor Reflex
3 Contribution of Peripheral Afferents to the Exercise Hyperpnea
3.1 Afferents from the Exercising limbs
3.2 The Carotid Chemoreceptor Afferents
3.3 Role in Hyperventilation During Heavy Exercise
3.4 The Pulmonary Afferents
3.5 Cardiac Afferents
3.6 Respiratory Muscle Afferents
3.7 Mediation of the Exercise Hyperpnea by Multiple Mechanisms
4 Summary and Conclusions
4.1 Peripheral Afferent Contribution to Circulatory Responses to Exercise
4.2 Peripheral Afferent Contribution to Ventilatory Responses to Exercise
Figure 1. Figure 1.

Records of tidal volume, arterial blood pressure, and dorsal root compound action potential from three periods of static hindlimb contraction in a chloralos‐anesthetized cat. From above downward are shown a control period of exercise; a period of exercise that commenced 3 1/2 min after application of a few drops of 0.125% lidocaine solution to the dorsal roots. Note that this period of contraction produced no pressor or ventilatory response, although the A‐wave of the compound action potential was little, if at all, reduced; and in the bottom set of records, a further control period of exercise begun some minutes after the lidocaine had been washed away with warm saline.

Reprinted with permission from McCloskey and Mitchell 311
Figure 2. Figure 2.

Recordings of renal sympathetic nerve activity (RSNA) in a chloralose‐anesthetized cat showing changes in RSNA evoked by intermittent tetanic contractions of the triceps surae. This maneuver synchronized the sympathetic activity such that each increase in muscle tension caused a large burst of RSNA before but not after dorsal root section.

Reprinted with permission from Victor et al. 472
Figure 3. Figure 3.

Discharge patterns of four thin fiber muscle afferents that responded to static contraction. Contraction period depicted by black bar. A, Group III fiber (conduction velocity 17.8 m/s) discharged vigorously at onset of contraction, but then its firing rate decreased even though muscle continued to contract. B, Group III fiber (conduction velocity 9.6 m/s) discharged vigorously at start of contraction, adapted, and then fired again during contraction. C, Group IV fiber (conduction velocity 1.3 m/s) started to fire 10 s after onset of contraction and then gradually increased its firing rate during contraction period. Note that firing of fiber slowed even though muscle continued to contract. D, Group IV fiber (conduction velocity 1.1 m/s) fired irregularly 4 s after onset of static contraction.

Reprinted with permission from Kaufman et al. 255
Figure 4. Figure 4.

Stimulation of group IV muscle afferent (conduction velocity 0.5 m/s) by contraction of gastrocnemius muscle, induced by ventral root stimulation. Filled circle (•) has been placed over each impulse discharge by group IV afferent. A, At onset of muscular contraction, group IV fiber did not fire. B, 8 s after end of A, group IV fiber has increased its firing rate over control level, which averaged 0.6 imp/s. C, 21 s after end of B, fiber is firing at greater rate than in B. D, After the contraction period, which lasted 45 s, fiber discharged. Horizontal bar in AD represents 1 s. Note that chart recorder speed was slower in D than in A–C.

Reprinted with permission from Kaufman et al. 255
Figure 5. Figure 5.

Effect of ischemia on response to static contraction of a group IV afferent (conduction velocity 0.8 m/s) whose receptive field was in triceps surae. A, Stimulation of afferent by ischemic static contraction (represented by bar). Note maintained stimulation of afferent after end of contraction. B, Nonischemic contraction (represented by bar) had no effect on afferent. C, Recording of impulse activity of group IV afferent during period of time, depicted by bracket with C over it in A.

Reprinted with permission from Kaufman et al. 262
Figure 6. Figure 6.

Effects of static contraction (A) and arachidonic acid (1 mg in 1 ml) injection into femoral artery (B and C) on discharge of a group IV afferent (conduction velocity 1.1 m/s). ▪, Contraction period in A. Note that B and C are continuous in time. D, Recording of the impulse activity of afferent during period of time depicted by bracket with D over it in B. E, Recording of impulse activity of afferent during period of time depicted by the bracket with E over it in C.

Reprinted with permission from Rotto and Kaufman 399
Figure 7. Figure 7.

Response of a group III muscle afferent in triceps surae muscles to dynamic exercise. Afferent (conduction velocity 11.7 m/s) was strongly sensitive to exercise. A: Control period before and B, 5‐step cycles during walking evoked by stimulation of MLR.

Reprinted with permission from Pickar, Hill, and Kaufman 383
Figure 8. Figure 8.

Mean (± SEM) R‐R intervals from one decerebrate cat in response to an increase in carotid sinus pressure at time zero, at rest (•_____•), and during hindlimb contraction elicited by ventral root stimulation at 50 Hz (○—–○). Baroreceptor responses at rest and during contraction were tested in an alternating sequence. The third R‐R interval (marked by asterisk) and subsequent R‐R intervals after sinus pressure elevation were significantly longer at rest than during contraction (P<0.05). No error bar is visible if smaller than the symbol. The period of contraction is denoted by the bar. Neither the initial nor the final carotid sinus pressure were significantly different in the resting and contracting situations; similarly, systolic and diastolic arterial pressures and R‐R intervals immediately before sinus pressure elevation, were not significantly different in the two situations.

Reprinted with permission from McWilliam, Yang, and Chien 320
Figure 9. Figure 9.

Individual microneurographic record of MSNA, MAP, and HR (beats per minute) responses to 6 min of rhythmic handgrip to 50% of maximum voluntary contraction. In this subject, MSNA increased during 6 min of exercise, and this increase was maintained after exercise when arm cuff was inflated. MAP responses to exercise were similar during exercise in two trials, but MAP was lower during postexercise ischemia (cuff up) after suction. HR responses were similar throughout.

Reprinted with permission from Joyner and Wieling 240
Figure 10. Figure 10.

Heart rate (a) and systolic arterial pressure (b) at rest and as functions of external workload in the leg positive pressure (•) and control (Δ) conditions, all data referring to steady state. On the abscissa, workloads are given as a percentage of the peak load attained in the control condition, with WL o‐V representing 0%, 23%, 48%, 61%, 87%, and 100% of this load and WL III indicating the highest load that could be managed in the leg positive‐pressure condition. Values are means; (a) n = 7, (b) n = 8. Vertical bars: | SEM. *P<0.05, **P<0.01, ***P<0.001.

Reprinted with permission from Eiken and Bjurstedt 127
Figure 11. Figure 11.

Graphs of peak increases in total muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) caused by static handgrip at 15% MVC (open bars) and at 30% MVC (hatched bars) before curare infusion and by attempted handgrip during a high dose of curare (solid bars). During curare infusion, subjects used near‐maximal effort to attempt sustained handgrip but generated almost no force. Without sustained contraction, the intent to exercise alone (i.e., central command) caused much smaller increases in MSNA and arterial pressure than normally caused by an actual static handgrip at 30% MVC even though the effort was greater with the attempted than with the actual contraction. In contrast, heart rate increased as much with the attempted handgrip as with the actual handgrip at 30% MVC. Entries are mean ±SEM for eight subjects.

Reprinted with permission from Victor et al. 471
Figure 12. Figure 12.

Responses of forearm muscle cell pH (▪) as determined by 3P‐NMR and of peroneal muscle sympathetic nerve activity (□) during 4 min of rhythmic handgrip (2 min at 30% MVC followed by 2 min at 50% MVC). Data represent mean ±SE for seven subjects (*P<0.05 vs. control).

Reprinted with permission from Victor et al. 470
Figure 13. Figure 13.

Changes in forearm muscle pH and calf vascular resistance during static forearm exercise at 30% MVC. Base = 5 min of baseline data. Grip 1 and 2 represent each minute of static exercise; PHG‐CA, posthandgrip circulatory arrest, and represents the mean value of 3 min of data; Rec, recovery and represents data during the third minute of recovery. Measurements were made during exercise of dominant and non‐dominant forearms of six individuals. Bars represent ± SEM. This figure demonstrates the roughly inverse relationship between changes in pH and calf vascular resistance during forearm exercise.

Reprinted with permission from Sinoway et al. 435
Figure 14. Figure 14.

Original records of MSNA in two subjects showing peak responses during static handgrip at 30% MVC and during phases 2 and 3 of a Valsalva maneuver. Whereas MSNA responses evoked by static handgrip were markedly attenuated in the patient with myophosphorylase deficiency, increases in MSNA evoked by the Valsalva maneuver were comparable in the normal subject and patient.

Reprinted with permission from Pryor et al. 389
Figure 15. Figure 15.

The time course of pulmonary ventilation (VF), oxygen consumption (VO2) and the VF–VO2 and (VFO2) in a neural dog when the hindlimb muscles were induced electrically to contract and the venous blood from the hindlimbs was diverted to a humoral dog.

Reprinted with permission from Kao 248
Figure 16. Figure 16.

The relationship between pulmonary ventilation (E) and alveolar PCO2 (PACO2) to oxygen consumption (VO2) during voluntary (Δ) and electrically induced muscle contraction (•) in a single awake human subject.

Reprinted with permission from Asmussen and Nielsen 18
Figure 17. Figure 17.

The pulmonary ventilation (1) end tidal CO2 (PETCO2), the ratio of 1 to metabolic rate (O2), and blood lactate during several intensities of bicycle exercise in human subjects. Open triangles represent data with unobstructed leg blood flow and closed circles represent data when blood flow to the legs was reduced about 20% by increasing pressure around the legs to 50 mm Hg.

Reprinted with permission from Williamson et al. 505
Figure 18. Figure 18.

The relationship between the ratio of pulmonary ventilation to metabolic rate (F/O2) and the reduction in hand‐grip strength during neuromuscular blockade by tubocurarine. Note that as the degree of block increased the F/2 ratio increased.

Reprinted with permission from Asmussen 12
Figure 19. Figure 19.

response to two levels of treadmill exercise repeated in one pony on several different days before and 3 weeks after partial lesioning the dorsal lateral spinal columns at the L2 level. The different symbols represent separate days. Note the attenuated exercise hypocapnia following spinal lesioning.

Reprinted with permission from Pan et al. 375
Figure 20. Figure 20.

Average arterial and end‐tidal CO2 tensions ( and PACO2) respectively, arterial pH, and bicarbonate for control and carotid chemoreceptor‐resected (CBR) asthmatics below (left) and above (right) the anaerobic threshold.

Reprinted with permission from Wasserman et al. 490
Figure 21. Figure 21.

The temporal pattern of the change in alveolar PCO2 (ΔPACO2), pulmonary ventilation (Δ1), tidal volume (ΔVT), and breathing frequency (Δf) in a dog before (full lines) and after carotid chemodenervation (dashed line).

Reprinted with permission from Flandrois, Lacour, and Eclache 142
Figure 22. Figure 22.

The change in ) between rest and six levels of steady‐state treadmill exercise in carotid body intact and denervated ponies plotted against heart rate used as an index of work intensity. Note the inverse linear relationship between work intensity and ΔPaCo2, and that the exercise hypocapnia is accentuated by CBD.

Reprinted with permission from Pan et al. 373
Figure 23. Figure 23.

The effect on pulmonary ventilation (1) of reducing PCO2 at the carotid chemoreceptors (unilateral by 7.2 or 13.1 mm Hg in dogs). The perfusion to the carotid chemoreceptors on one side was isolated and PCO2 was reduced (time 0) using an extracorporeal exchange mechanism. Note that carotid chemoreceptor hypocapnia has a rapid and substantial depressant effect on breathing.

Reprinted with permission from Smith et al. 441
Figure 24. Figure 24.

Relationships between pulmonary ventilation (E) and rates of pulmonary CO2 excretion (CO2) and o2 uptake (o2) in awake sheep. Changes in CO2 and o2 were produced by removing CO2 from and adding O2 to venous blood through membrane lungs. Solid lines are calculated linear regressions; dashed lines are lines of identity.

Reprinted with permission from Phillipson, Duffin, and Cooper 381
Figure 25. Figure 25.

Effect of treadmill exercise on arterial PCO2 (Paco2) in five ponies before (closed symbols) and 2–4 weeks after (open symbols) hilar nerve denervation (HND). Note that the Paco2 responses to all three exercise protocols was not altered by HND.

Reprinted with permission from Flynn et al. 143
Figure 26. Figure 26.

Mean values for two 30 sec periods prior to and following the start of voluntary (continuous lines), and electrically (dotted lines) induced muscle contractions in the three patient groups (normal, heart transplant, and heart‐lung transplant). 1, ventilation; , oxygen consumption; , cardiac output, expressed as percentage change from the first resting value. The vertical bars indicate the Fisher's least‐significant difference at the P<0.05 level in each case.

Reprinted with permission from Banner et al. 28
Figure 27. Figure 27.

Pulmonary ventilation (1) and of goats at rest and during one level of mild treadmill exercise. The left panel was obtained with the goats wearing a conventional mask for obtaining V1 and the right panel was obtained with addition of 250 ml external dead space (D). Closed symbols are prior to drug treatment, while open symbols are after methysergide administration, which is an antagonist of serotonin. Note that methyserside attenuated 1 response to increased D resulting in exercise hypercapnia.

Reprinted with permission from Buch, Lutcavage, and Mitchell 23


Figure 1.

Records of tidal volume, arterial blood pressure, and dorsal root compound action potential from three periods of static hindlimb contraction in a chloralos‐anesthetized cat. From above downward are shown a control period of exercise; a period of exercise that commenced 3 1/2 min after application of a few drops of 0.125% lidocaine solution to the dorsal roots. Note that this period of contraction produced no pressor or ventilatory response, although the A‐wave of the compound action potential was little, if at all, reduced; and in the bottom set of records, a further control period of exercise begun some minutes after the lidocaine had been washed away with warm saline.

Reprinted with permission from McCloskey and Mitchell 311


Figure 2.

Recordings of renal sympathetic nerve activity (RSNA) in a chloralose‐anesthetized cat showing changes in RSNA evoked by intermittent tetanic contractions of the triceps surae. This maneuver synchronized the sympathetic activity such that each increase in muscle tension caused a large burst of RSNA before but not after dorsal root section.

Reprinted with permission from Victor et al. 472


Figure 3.

Discharge patterns of four thin fiber muscle afferents that responded to static contraction. Contraction period depicted by black bar. A, Group III fiber (conduction velocity 17.8 m/s) discharged vigorously at onset of contraction, but then its firing rate decreased even though muscle continued to contract. B, Group III fiber (conduction velocity 9.6 m/s) discharged vigorously at start of contraction, adapted, and then fired again during contraction. C, Group IV fiber (conduction velocity 1.3 m/s) started to fire 10 s after onset of contraction and then gradually increased its firing rate during contraction period. Note that firing of fiber slowed even though muscle continued to contract. D, Group IV fiber (conduction velocity 1.1 m/s) fired irregularly 4 s after onset of static contraction.

Reprinted with permission from Kaufman et al. 255


Figure 4.

Stimulation of group IV muscle afferent (conduction velocity 0.5 m/s) by contraction of gastrocnemius muscle, induced by ventral root stimulation. Filled circle (•) has been placed over each impulse discharge by group IV afferent. A, At onset of muscular contraction, group IV fiber did not fire. B, 8 s after end of A, group IV fiber has increased its firing rate over control level, which averaged 0.6 imp/s. C, 21 s after end of B, fiber is firing at greater rate than in B. D, After the contraction period, which lasted 45 s, fiber discharged. Horizontal bar in AD represents 1 s. Note that chart recorder speed was slower in D than in A–C.

Reprinted with permission from Kaufman et al. 255


Figure 5.

Effect of ischemia on response to static contraction of a group IV afferent (conduction velocity 0.8 m/s) whose receptive field was in triceps surae. A, Stimulation of afferent by ischemic static contraction (represented by bar). Note maintained stimulation of afferent after end of contraction. B, Nonischemic contraction (represented by bar) had no effect on afferent. C, Recording of impulse activity of group IV afferent during period of time, depicted by bracket with C over it in A.

Reprinted with permission from Kaufman et al. 262


Figure 6.

Effects of static contraction (A) and arachidonic acid (1 mg in 1 ml) injection into femoral artery (B and C) on discharge of a group IV afferent (conduction velocity 1.1 m/s). ▪, Contraction period in A. Note that B and C are continuous in time. D, Recording of the impulse activity of afferent during period of time depicted by bracket with D over it in B. E, Recording of impulse activity of afferent during period of time depicted by the bracket with E over it in C.

Reprinted with permission from Rotto and Kaufman 399


Figure 7.

Response of a group III muscle afferent in triceps surae muscles to dynamic exercise. Afferent (conduction velocity 11.7 m/s) was strongly sensitive to exercise. A: Control period before and B, 5‐step cycles during walking evoked by stimulation of MLR.

Reprinted with permission from Pickar, Hill, and Kaufman 383


Figure 8.

Mean (± SEM) R‐R intervals from one decerebrate cat in response to an increase in carotid sinus pressure at time zero, at rest (•_____•), and during hindlimb contraction elicited by ventral root stimulation at 50 Hz (○—–○). Baroreceptor responses at rest and during contraction were tested in an alternating sequence. The third R‐R interval (marked by asterisk) and subsequent R‐R intervals after sinus pressure elevation were significantly longer at rest than during contraction (P<0.05). No error bar is visible if smaller than the symbol. The period of contraction is denoted by the bar. Neither the initial nor the final carotid sinus pressure were significantly different in the resting and contracting situations; similarly, systolic and diastolic arterial pressures and R‐R intervals immediately before sinus pressure elevation, were not significantly different in the two situations.

Reprinted with permission from McWilliam, Yang, and Chien 320


Figure 9.

Individual microneurographic record of MSNA, MAP, and HR (beats per minute) responses to 6 min of rhythmic handgrip to 50% of maximum voluntary contraction. In this subject, MSNA increased during 6 min of exercise, and this increase was maintained after exercise when arm cuff was inflated. MAP responses to exercise were similar during exercise in two trials, but MAP was lower during postexercise ischemia (cuff up) after suction. HR responses were similar throughout.

Reprinted with permission from Joyner and Wieling 240


Figure 10.

Heart rate (a) and systolic arterial pressure (b) at rest and as functions of external workload in the leg positive pressure (•) and control (Δ) conditions, all data referring to steady state. On the abscissa, workloads are given as a percentage of the peak load attained in the control condition, with WL o‐V representing 0%, 23%, 48%, 61%, 87%, and 100% of this load and WL III indicating the highest load that could be managed in the leg positive‐pressure condition. Values are means; (a) n = 7, (b) n = 8. Vertical bars: | SEM. *P<0.05, **P<0.01, ***P<0.001.

Reprinted with permission from Eiken and Bjurstedt 127


Figure 11.

Graphs of peak increases in total muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate (HR) caused by static handgrip at 15% MVC (open bars) and at 30% MVC (hatched bars) before curare infusion and by attempted handgrip during a high dose of curare (solid bars). During curare infusion, subjects used near‐maximal effort to attempt sustained handgrip but generated almost no force. Without sustained contraction, the intent to exercise alone (i.e., central command) caused much smaller increases in MSNA and arterial pressure than normally caused by an actual static handgrip at 30% MVC even though the effort was greater with the attempted than with the actual contraction. In contrast, heart rate increased as much with the attempted handgrip as with the actual handgrip at 30% MVC. Entries are mean ±SEM for eight subjects.

Reprinted with permission from Victor et al. 471


Figure 12.

Responses of forearm muscle cell pH (▪) as determined by 3P‐NMR and of peroneal muscle sympathetic nerve activity (□) during 4 min of rhythmic handgrip (2 min at 30% MVC followed by 2 min at 50% MVC). Data represent mean ±SE for seven subjects (*P<0.05 vs. control).

Reprinted with permission from Victor et al. 470


Figure 13.

Changes in forearm muscle pH and calf vascular resistance during static forearm exercise at 30% MVC. Base = 5 min of baseline data. Grip 1 and 2 represent each minute of static exercise; PHG‐CA, posthandgrip circulatory arrest, and represents the mean value of 3 min of data; Rec, recovery and represents data during the third minute of recovery. Measurements were made during exercise of dominant and non‐dominant forearms of six individuals. Bars represent ± SEM. This figure demonstrates the roughly inverse relationship between changes in pH and calf vascular resistance during forearm exercise.

Reprinted with permission from Sinoway et al. 435


Figure 14.

Original records of MSNA in two subjects showing peak responses during static handgrip at 30% MVC and during phases 2 and 3 of a Valsalva maneuver. Whereas MSNA responses evoked by static handgrip were markedly attenuated in the patient with myophosphorylase deficiency, increases in MSNA evoked by the Valsalva maneuver were comparable in the normal subject and patient.

Reprinted with permission from Pryor et al. 389


Figure 15.

The time course of pulmonary ventilation (VF), oxygen consumption (VO2) and the VF–VO2 and (VFO2) in a neural dog when the hindlimb muscles were induced electrically to contract and the venous blood from the hindlimbs was diverted to a humoral dog.

Reprinted with permission from Kao 248


Figure 16.

The relationship between pulmonary ventilation (E) and alveolar PCO2 (PACO2) to oxygen consumption (VO2) during voluntary (Δ) and electrically induced muscle contraction (•) in a single awake human subject.

Reprinted with permission from Asmussen and Nielsen 18


Figure 17.

The pulmonary ventilation (1) end tidal CO2 (PETCO2), the ratio of 1 to metabolic rate (O2), and blood lactate during several intensities of bicycle exercise in human subjects. Open triangles represent data with unobstructed leg blood flow and closed circles represent data when blood flow to the legs was reduced about 20% by increasing pressure around the legs to 50 mm Hg.

Reprinted with permission from Williamson et al. 505


Figure 18.

The relationship between the ratio of pulmonary ventilation to metabolic rate (F/O2) and the reduction in hand‐grip strength during neuromuscular blockade by tubocurarine. Note that as the degree of block increased the F/2 ratio increased.

Reprinted with permission from Asmussen 12


Figure 19.

response to two levels of treadmill exercise repeated in one pony on several different days before and 3 weeks after partial lesioning the dorsal lateral spinal columns at the L2 level. The different symbols represent separate days. Note the attenuated exercise hypocapnia following spinal lesioning.

Reprinted with permission from Pan et al. 375


Figure 20.

Average arterial and end‐tidal CO2 tensions ( and PACO2) respectively, arterial pH, and bicarbonate for control and carotid chemoreceptor‐resected (CBR) asthmatics below (left) and above (right) the anaerobic threshold.

Reprinted with permission from Wasserman et al. 490


Figure 21.

The temporal pattern of the change in alveolar PCO2 (ΔPACO2), pulmonary ventilation (Δ1), tidal volume (ΔVT), and breathing frequency (Δf) in a dog before (full lines) and after carotid chemodenervation (dashed line).

Reprinted with permission from Flandrois, Lacour, and Eclache 142


Figure 22.

The change in ) between rest and six levels of steady‐state treadmill exercise in carotid body intact and denervated ponies plotted against heart rate used as an index of work intensity. Note the inverse linear relationship between work intensity and ΔPaCo2, and that the exercise hypocapnia is accentuated by CBD.

Reprinted with permission from Pan et al. 373


Figure 23.

The effect on pulmonary ventilation (1) of reducing PCO2 at the carotid chemoreceptors (unilateral by 7.2 or 13.1 mm Hg in dogs). The perfusion to the carotid chemoreceptors on one side was isolated and PCO2 was reduced (time 0) using an extracorporeal exchange mechanism. Note that carotid chemoreceptor hypocapnia has a rapid and substantial depressant effect on breathing.

Reprinted with permission from Smith et al. 441


Figure 24.

Relationships between pulmonary ventilation (E) and rates of pulmonary CO2 excretion (CO2) and o2 uptake (o2) in awake sheep. Changes in CO2 and o2 were produced by removing CO2 from and adding O2 to venous blood through membrane lungs. Solid lines are calculated linear regressions; dashed lines are lines of identity.

Reprinted with permission from Phillipson, Duffin, and Cooper 381


Figure 25.

Effect of treadmill exercise on arterial PCO2 (Paco2) in five ponies before (closed symbols) and 2–4 weeks after (open symbols) hilar nerve denervation (HND). Note that the Paco2 responses to all three exercise protocols was not altered by HND.

Reprinted with permission from Flynn et al. 143


Figure 26.

Mean values for two 30 sec periods prior to and following the start of voluntary (continuous lines), and electrically (dotted lines) induced muscle contractions in the three patient groups (normal, heart transplant, and heart‐lung transplant). 1, ventilation; , oxygen consumption; , cardiac output, expressed as percentage change from the first resting value. The vertical bars indicate the Fisher's least‐significant difference at the P<0.05 level in each case.

Reprinted with permission from Banner et al. 28


Figure 27.

Pulmonary ventilation (1) and of goats at rest and during one level of mild treadmill exercise. The left panel was obtained with the goats wearing a conventional mask for obtaining V1 and the right panel was obtained with addition of 250 ml external dead space (D). Closed symbols are prior to drug treatment, while open symbols are after methysergide administration, which is an antagonist of serotonin. Note that methyserside attenuated 1 response to increased D resulting in exercise hypercapnia.

Reprinted with permission from Buch, Lutcavage, and Mitchell 23
References
 1. Abrahams, V. C., B. Lynn, and F. J. R. Richmond. Organization and sensory properties of small myelinated fibres in the dorsal cervical rami of the cat. J. Physiol. (Lond.) 347: 177–187, 1984.
 2. Adams, L., H. Frankel, J. Garlick, A. Guz, K. Murphy, and S. J. G. Semple. The role of spinal cord transmission in the ventilatory response to exercise in man. J. Physiol. (Lond.) 355: 85–97, 1984.
 3. Adams, L., J. Garlick, A. Guz, K. Murphy, and S. J. G. Semple. Is the voluntary control of exercise in man necessary for the ventilatory response? J. Physiol. (Lond.) 355: 71–83, 1984.
 4. Answorth, D. M., C. A. Smith, S. W. Eicker, K. S. Henderson, and J. A. Dempsey. The effects of chemical versus locomotory stimuli on respiratory muscle activity in the awake dog. Respir. Physiol. 78: 163–176, 1989.
 5. Ainsworth, D. M., C. A. Smith, B. D. Johnson, S. W. Eicker, K. S. Henderson, and J. A. Dempsey. Vagal modulation of respiratory muscle activity in awake dogs during exercise and hypercapnia. J. Appl. Physiol. 72: 1362–1367, 1992.
 6. Alam, M., and F. H. Smirk. Observation in man upon a blood pressure raising reflex arising from the voluntary muscles. J. Physiol. (Lond.) 89: 372–383, 1937.
 7. Alam, M., and F. H. Smirk. Observations in man on a pulse‐accelerating reflex from the voluntary muscles of the legs. J. Physiol. (Lond.) 3: 247–252, 1938.
 8. Andres, K. H., M. Von During, and R. F. Schmidt. Sensory innervation of the Achilles tendon by group III and IV afferent fibers. Anat. Histol. Embryol. 172: 145–156, 1985.
 9. Armour, J. A., R. D. Wurster, and W. C. Randall. Cardiac reflexes. In: Neural Regulation of the Heart, edited by W. C. Randall. New York: Oxford University Press, 1977, p. 157–186.
 10. Armstrong, B. W., H. H. Hurt, R. W. Blide, and J. M. Workman. The humoral regulation of breathing. Science 133: 1897–1906, 1961.
 11. Art, T., D. Desmecht, H. Amory, and P. Lekeux. Synchronization of locomotion and respiration in trotting ponies. J. Vet. Med. A. 37: 95–103, 1990.
 12. Asmussen, E. Exercise and the regulation of ventilation. In: Physiology of Muscular Exercise, New York: American Heart Association, 1967, p. 132–145.
 13. Asmussen, E. Ventilation at transition from rest to exercise. Acta Physiol. Scand. 89: 68–78, 1973.
 14. Asmussen, E., E. H. Christensen, and M. Nielsen. Humoral or nervous control of respiration during muscular work? Acta Physiol. Scand. 6: 160–167, 1943.
 15. Asmussen, E., and M. Nielsen. Studies on the regulation of respiration in heavy work. Acta Physiol. Scand. 12: 171–188, 1946.
 16. Asmussen, E., and M. Nielsen. Ventilatory responses to CO2 during work at normal and at low oxygen tensions. Acta Physiol. Scand. 39: 27–35, 1957.
 17. Asmussen, E., and M. Nielsen. Pulmonary ventilation and effect of oxygen breathing in heavy exercise. Acta Physiol. Scand. 43: 365–378, 1958.
 18. Asmussen, E., and M. Nielsen. Experiments on nervous factors controlling respiration and circulation during exercise employing blocking of the blood flow. Acta Physiol. Scand. 60: 103–111, 1964.
 19. Asmussen, E., M. Nielsen, and G. Welth‐Pedersen. Cortical or reflex control of respiration during muscular work? Acta Physiol. Scand. 6: 168–175, 1943.
 20. Aung‐Din, R., J. H. Mitchell, and J. C. Longhurst. Reflex α‐adrenergic coronary vasoconstriction during hindlimb static exercise in dogs. Circ. Res. 48: 502–509, 1981.
 21. Aviado, D. M., T. H. Li, W. Kalow, C. F. Schmidt, G. L. Turnbull, G. W. Peskin, M. E. Hess, and A. J. Weiss. Respiratory and circulatory reflexes from the perfused heart and pulmonary circulation of the dog. Am. J. Physiol. 165: 261–277, 1951.
 22. Azerad, J., C. C. Hunt, Y. Laporte, B. Pollin, and D. Thiesson. Afferent fibres in cat ventral roots: electrophysiological and histological evidence. J. Physiol. (Lond.) 379: 229–243, 1986.
 23. Bach, K. B., M. E. Lutcavage, and G. S. Mitchell. Serotonin is necessary for short‐term modulation of the exercise ventilatory response. Respir. Physiol. 91: 57–70, 1993.
 24. Bainton, C. R. Canine ventilation after acid–base infusion, exercise, and carotid body denervation. J. Appl. Physiol. 44: 28–35, 1978.
 25. Band, D. M., I. R. Cameron, and S. J. G. Semple. Oscillations in arterial pH with breathing in the cat. J. Appl. Physiol. 26: 261–267, 1969.
 26. Band, D. M., R. A. F. Linton, R. Kent, and F. L. Kurer. The effect of peripheral chemodenervation on the ventilatory response to potassium. Respir. Physiol. 60: 217–225, 1985.
 27. Band, D. M., P. Willshaw, and C. B. Wolff. The speed of response of the carotid body chemoreceptor. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan Press, Ltd., 1976, p. 197–207.
 28. Banner, N., A. Guz, R. Heaton, J. A. Innes, K. Murphy, and M. Yacoub. Ventilatory and circulatory responses at the onset of exercise in man following heart or heart‐lung transplantation. J. Physiol. (Lond.) 399: 437–449, 1988.
 29. Bannister, R. G., and D. J. C. Cunningham. The effects on the respiration and performance during exercise of the addition of oxygen to the inspired air. J. Physiol. (Lond.) 125: 118–137, 1954.
 30. Barman, J. M., M. F. Moreira, and F. Consolazio. The effective stimulus for increased pulmonary ventilation during muscular exertion. J. Clin. Invest. 22: 53–56, 1943.
 31. Barr, P. O., M. Beckman, H. Bjurstedt, J. Brismar, C. M. Hessler, and G. Matell. Time course of blood gas changes provoked by light and moderate exercise in man. Acta Physiol. Scand. 60: 1–17, 1964.
 32. Bartoli, A., B. A. Cross, A. Guz, A. K. Jain, M. I. M. Nobel, and D. W. Trenchard. The effect of carbon dioxide in the airways and alveoli on ventilation. A vagal reflex studies in the dog. J. Physiol. (Lond.) 240: 91–109, 1974.
 33. Bauer, R. M., G. A. Iwamoto, and T. G. Waldrop. Ventrolateral medullary neurons modulate the pressor reflex to muscular contraction. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R1154–R1161, 1989.
 34. Bauer, R. M., G. A. Iwamoto, and T. G. Waldrop. Discharge patterns of ventrolateral medullary neurons during muscular contraction. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R606–R611, 1990.
 35. Bauer, R. M., P. C. Nolan, E. M. Horn, and T. G. Waldrop. An excitatory amino acid synapse in the thoracic spinal cord is involved in the pressor response to muscular contraction. Brain Res. Bull. 32: 673–679, 1993.
 36. Bauer, R. M., T. G. Waldrop, G. A. Iwamoto, and M. A. Holzwarth. Properties of ventrolateral medullary neurons that respond to muscular contraction. Brain Res. Bull. 28: 167–178, 1992.
 37. Bayly, W. M., B. D. Grant, R. G. Breeze, and J. W. Kramer. The effects of maximal exercise on acid–base balance and arterial blood gas tensions in thoroughbred horses. In: Equine Exercise Physiology, edited by D. H. Snow, S. G. Persson, and R. J. Rose. Cambridge: Granta Editions, 1983, p. 400–404.
 38. Bayly, W. M., D. R. Hodgson, D. A. Schulz, J. A. Dempsey, and P. D. Gollnick. Exercise induced hypercapnia in the horse. J. Appl. Physiol. 67: 1958–1966, 1989.
 39. Bazil, M. K., and F. J. Gordon. Spinal NMDA receptors mediate pressor responses evoked from the rostral ventrolateral medulla. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H265–H274, 1991.
 40. Bechbache, R. R., and J. Duffin. The entrainment of breathing frequency by exercise rhythm. J. Physiol. (Lond.) 272: 553–561, 1977.
 41. Bennett, F. M. A role for neural pathways in exercise hyperpnea. J. Appl. Physiol. 56: 1559–1564, 1984.
 42. Bennett, F. M., and W. E. Fordyce. Gain of the ventilatory exercise stimulus: definition and meaning. J. Appl. Physiol. 65: 2011–2017, 1988.
 43. Bennett, F. M., R. D. Tallman, and F. S. Grodins. Role of Vco2 in control of breathing of awake exercising dogs. J. Appl. Physiol. 56: 1335–1337, 1984.
 44. Bennett, J. A., C. Kidd, A. B. Latif, and P. N. McWilliam. A horseradish peroxidase study of vagal motoneurons with axons in cardiac and pulmonary branches of the cat and dog. Q. J. Exp. Physiol. 66: 145–154, 1981.
 45. Bessou, P., P. Dejours, and Y. Lapote. Effets ventilatoires reflexes de la stimulation de fibres afferentes de grand diamètre, d'origine musculaire, chez le chat. C. R. Soc. Biol. (Paris) 153: 477–481, 1959.
 46. Bessou, P., and Y. Laporte. Activation des fibres afferentes amyelinisees de petit calibre, d'origine musculaire (fibre du groupe III). C. R. Soc. Biol. (Paris) 152: 1587–1590, 1958.
 47. Biscoe, T. J., and M. J. Purves. Factors affecting the cat carotid chemoreceptor and cervical sympathetic activity with special reference to passive hind‐limb movements. J. Physiol. (Lond.) 190: 425–441, 1967.
 48. Bisgard, G. E., and H. V. Forster. Ventilatory responses to acute and chronic hypoxia. In: Handbook of Physiology, Adaptation to the Environment, edited by D. B. Dills. Washington, DC: Am. Physiol. Soc., 1995.
 49. Bisgard, G. E., H. V. Forster, B. Byrnes, K. Stanek, J. Klein, and M. Manohar. Cerebrospinal fluid acid–base balance during muscular exercise. J. Appl. Physiol. 45: 94–101, 1978.
 50. Bisgard, G. E., H. V Forster, J. Messina, and R. G. Sarazin. Role of the carotid body in hyperpnea of moderate exercise in goats. J. Appl. Physiol. 52: 1216–1222, 1986.
 51. Black, A. M. S., N. W. Goodman, B. S. Nail, P. S. Rao, and R. W. Torrance. The significance of the timing of chemoreceptor impulses for their effect upon respiration. Acta Neurobiol. Exp. 33: 139–147, 1973.
 52. Black, A. M. S. and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in control of breathing. Respir. Physiol. 13: 221–237, 1971.
 53. Bonde‐Petersen, F., L. B. Rowell, R. G. Murray, G. G. Blomqvist, R. White, E. Karlsson, W. Campbell, and J. H. Mitchell. Role of cardiac output in the pressor responses to graded muscle ischemia in man. J. Appl. Physiol. 45 (4): 574–580, 1978.
 54. Bonham, A. C., and I. Jeske. Cardiorespiratory effects of DL‐homocysteic acid in caudal ventrolateral medulla. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H688–H696, 1989.
 55. Boyd, I. A., and M. R. Davy. Composition of Peripheral Nerves. Edinbugh: Livingstone, 1968.
 56. Bradley, G. W., M. I. M. Noble, and D. Trenchard. The direct effect on pulmonary stretch receptor discharge produced by changing lung carbon dioxide concentration in dogs on cardiopulmonary bypass and its action on breathing. J. Physiol. (Lond.) 261: 359–373, 1976.
 57. Bramble, D. B., and D. R. Carrier. Running and breathing in mammals. Science 219: 251–256, 1983.
 58. Brice, A. G., H. V. Forster, L. G. Pan, D. R. Brown, A. L. Forster, and T. F. Lowry. Effect of cardiac denervation on cardiorespiration responses to exercise in goats. J. Appl. Physiol. 70: 1113–1120, 1991.
 59. Brice, A. G., H. V. Forster, L. G. Pan, A. Funahashi, M. D. Hoffman, T. F. Lowry, and C. L. Murphy. Is the hyperpnea of muscle contractions critically dependent on spinal afferents? J. Appl. Physiol. 64: 223–226, 1988.
 60. Brice, A. G., H. V. Forster, L. G. Pan, A. Funahashi, T. F. Lowry, C. L. Murphy, and M. D. Hoffman. Ventilatory and Paco2 response to voluntary and electrically‐induced leg exercise. J. Appl. Physiol. 64: 218–225, 1988.
 61. Brown, D. L., and P. G. Guyenet. Cardiovascular neurons of the brainstem with projections to the spinal cord. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R1009–R1016, 1984.
 62. Brown, D. R., H. V. Forster, L. G. Pan, A. G. Brice, C. L. Murphy, T. F. Lowry, S. M. Gutting, A. Funahashi, M. D. Hoffman, and S. Powers. Ventilatory response of spinal‐cord lesioned subjects to electrically induced exercise. J. Appl. Physiol. 68: 2312–2321, 1990.
 63. Brown, H. V, K. Wasserman, and B. J. Whipp. Effect of beta‐adrenergic blockade during exercise on ventilation and gas exchange. J. Appl. Physiol. 41: 886–892, 1976.
 64. Brunner, M. J., M. S. Sussman, A. S. Greene, C. H. Kullman, and A. A. Shoukas. Carotid sinus baroreflex control of respiration. Circ. Res. 51: 624–636, 1982.
 65. Burger, R. E., J. A. Estavillo, P. Kumar, P. L. G. Nye, and D. J. Patterson. Effects of potassium, oxygen, and carbon dioxide on the steady state discharge of cat carotid body chemoreceptors. J. Physiol. (Lond.) 401: 519–531, 1988.
 66. Cameron, A. A., J. D. Leah, and P. J. Snow. The coexistence of neuropeptides in feline sensory neurons. Neuroscience 81: 969–979, 1988.
 67. Carcassi, A. M., A. Concu, M. Decandia, M. Onnis, G. P. Orani, and M. B. Piras. Respiratory responses to stimulation of large fibers afferent from muscle receptors in cats. Pflugers Arch. 399: 309–314, 1983.
 68. Carcassi, A. M., A. Concu, M. Decandia, M. Onnis, G. P. Orani, and M. B. Piras. Effects of long‐lasting stimulation of extensor muscle nerves on pulmonary ventilation in cats. Pflugers Arch. 400: 409–412, 1984.
 69. Casaburi, R., J. Daly, J. E. Hansen, and R. M. Effros. Abrupt changes in mixed venous blood gas composition after the onset of exercise. J. Appl. Physiol. 67: 1106–1112, 1989.
 70. Casaburi, R., R. W. Stremel, B. J. Whipp, W. L. Beaver, and K. Wasserman. Alteration by hyperoxis of ventilatory dynamics during sinusoidal work. J. Appl. Physiol. 48: 1083–1091, 1980.
 71. Casaburi, R., B. J. Whipp, S. N. Koyal, and K. Wasserman. Coupling of ventilation to CO2 production during constant load ergometry with sinusoidally varying pedal rate. J. Appl. Physiol. 44: 97–103, 1978.
 72. Ciriello, J., and F. R. Calaresu. Lateral reticular nucleus: A site of somatic and cardiovascular integration in the cat. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 4): R100–R109, 1977.
 73. Ciriello, J., M. M. Caverson, and D. H. Park. Immunohistochemical identification of noradrenaline and adrenaline synthesizing neurons in the cat ventrolateral medulla. J. Comp. Neurol. 253: 216–230, 1986.
 74. Ciriello, J., M. M. Caverson, and C. Polosa. Function of the ventrolateral medulla in the control of circulation. Brain Res. Bull. 11: 359–391, 1986.
 75. Clark, J. M., R. D. Sinclair, and J. B. Lenox. Chemical and nonchemical components of ventilation during hypercapnic exercixe in man. J. Appl. Physiol. 48: 1065–1076, 1980.
 76. Cleland, C. L., and W. Z. Rymer. Functional properties of spinal interneurons activated by muscular free nerve endings and their potential contributions to the clasp‐knife reflex. J. Neurophysiol. 69: 1181–1191, 1993.
 77. Clement, D. L. Neurogenic influences on blood pressure and vascular tone from peripheral receptors during muscular contraction. Cardiology 61: 65–68, 1976.
 78. Clement, D. L., and J. L. Plannier. Cardiac output distribution during induced static muscular contractions in the dog. Eur. J. Appl. Physiol. 45: 199–207, 1980.
 79. Clement, D. L., C. L. Pelletier, and J. T. Shepherd. Role of muscular contraction in the reflex vascular responses to stimulation of muscle afferents in the dog. Circ. Res. 33: 386–392, 1973.
 80. Clifford, P. S., J. T. Litzow, and R. L. Coon. Arterial hypocapnia during exercise in beagle dogs. J. Appl. Physiol. 61: 599–602, 1986.
 81. Clifford, P. S., J. T. Litzow, J. H. Von Colditz, and R. L. Coon. Effect of chronic pulmonary denervation on ventilatory resonse to exercise. J. Appl. Physiol. 61: 603–610, 1986.
 82. Coggeshall, R. E., and H. Ito. Sensory fibres in ventral roots L7 and S1 in the cat. J. Physiol. (Lond.) 267: 215–235, 1977.
 83. Coleridge, H. M., and J. C. G. Coleridge. Impulse activity in afferent vagal C‐fibres with endings in the intrapulmonary airways of dogs. Respir. Physiol. 29: 125–142, 1977.
 84. Coleridge, H. M., and J. C. G. Coleridge. Afferent vagal C‐fibers in the dog lung: their discharge during spontaneous breathing, and their stimulation by alloxan and pulmonary congestion. In: Krough Centenary Symposium on Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Vallabhbhai Patel Chest Institute, 1977, p. 396–406.
 85. Coleridge, H. M., J. C. G. Coleridge, and R. B. Banzett. Effect of CO2 on afferent vagal endings in the canine lung. Respir. Physiol. 34: 135–151, 1978.
 86. Coleridge, J. C. G., and H. M. Coleridge. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev. Physiol. Biochem. Pharmacol. 99: 2–110, 1984.
 87. Coleridge, J. C. G., H. M. Coleridge, A. M. Roberts, M. P. Kaufman, and D. G. Baker. Tracheal contraction and relaxation initiated by lung and somatic afferents in dogs. J. Appl. Physiol. 52: 984–990, 1982.
 88. Coles, D. R., F. Duff, W. H. T. Shepherd, and R. F. Whelan. The effect on respiration of infusions of adrenaline and noradrenaline into the carotid and vertebral arteries in man. Br. J. Pharmacol. 11: 346–350, 1956.
 89. Comroe, J. H. The location and function of the chemoreceptors in the aorta. Am. J. Physiol. 127: 176–191, 1939.
 90. Comroe, J. H., and C. F. Schmidt. Reflexes from the limbs as a factor in the hyperpnea of muscular exercise. Am. J. Physiol. 138: 536–547, 1943.
 91. Connelly, J. C., L. W. McCallister, and M. P. Kaufman. Stimulation of the caudal ventrolateral medulla decreases total lung resistance in dogs. J. Appl. Physiol. 63: 912–917, 1987.
 92. Conway, J., D. J. Paterson, E. S. Petersen, and P. A. Robbins. Changes in arterial potassium and ventilation in response to exercise in humans. J. Physiol. (Lond.) 374: 26P, 1986.
 93. Coote, J. H., and W. N. Dodds. The baroreceptor reflex and the cardiovascular changes associated with sustained muscular contraction in the cat. Pflugers Arch. 363: 167–173, 1976.
 94. Coote, J. H., S. M. Hilton, and J. F. Perez‐Gonzalez. The reflex nature of the pressor response to muscular exercise. J. Physiol. (Lond.) 215: 789–804, 1971.
 95. Coote, J. H., and J. F. Perez‐Gonzalez. The response of some sympathetic neurones to volleys in various afferent nerves. J. Physiol. (Lond.) 208: 261–278, 1970.
 96. Costa, F., and I. Biaggioni. Role of adenosine in the sympathetic activation produced by isometric exercise in humans. J. Clin. Invest. 93: 1654–1660, 1994.
 97. Craig, A. D., and S. Mense. The distribution of afferent fibers from the gastrocnemius‐soleus muscle in the dorsal horn of the cat as revealed by the transport of horseradish peroxidase. Neurosci. Lett. 41: 233–238, 1983.
 98. Crayton, S. C., R. Aung‐Din, D. E. Fixler, and J. H. Mitchell. Distribution of cardiac output during induced isometric exercise in dogs. Am. J. Physiol. 236: (Heart Circ. Physiol. 7): H218–H224, 1979.
 99. Crayton, S. C., J. H. Mitchell, and F. C. Payne, III.. Reflex cardiovascular response during the injection of capsaicin into skeletal muscle. Am. J. Physiol. 240 (Heart Circ. Physiol. 11): H315–H319, 1981.
 100. Cropp, G. J. A., and J. H. Comroe, Jr.. Role of mixed venous CO2 in respiratory control. J. Appl. Physiol. 16: 1029–1033, 1961.
 101. Cross, B. A., A. Davey, A. Guz, P. G. Katona, M. Maclean, K. Murphy, S. J. G. Semple, and R. Stidwell. The role of spinal cord transmission in the ventilatory response to electrically induced exercise in the anesthetized dog. J. Physiol. (Lond.) 329: 37–55, 1982.
 102. Cross, B. A., A. Davey, A. Guz, P. G. Katona, M. Maclean, K. Murphy, S. J. G. Semple, and R. Stidwell. The pH oscillations in arterial blood during exercise: a potential signal for the ventilatory response in the dog. J. Physiol. (Lond.) 329: 57–73, 1982.
 103. Cunningham, D. J. C., E. N. Hey, and B. B. Lloyd. The effect of intravenous infusion of noradenaline on the respiratory response to carbon dioxide. Q. J. Exp. Physiol. 43: 394–399, 1958.
 104. Cunningham, D. J. C., B. B. Lloyd, and J. M. Patrick. The relation between ventilation and end‐tidal Pco2 in man during moderate exercise with and without CO2 inhalation. J. Physiol. (Lond.) 169: 104–106, 1963.
 105. Cunningham, D. J. C., D. Spurr, and B. B. Lloyd. The drive to ventilation from arterial chemoreceptors in hypoxic exercise. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford: Blackwell, 1968, p. 301–323.
 106. Curtis, D. R., and G. A. R. Johnston. The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. (Lond.) 150: 656–682, 1960.
 107. Dahlstrom, A., and K. Fuxe. Evidence for the existence of monamine neurons in the central nervous II. Experimentally‐induced changes in interneuronal amine levels of bulbospinal neurone systems. Acta Physiol. Scand. 64: 247, 1964.
 108. Daristotle, L., A. D. Berssenbrugge, M. J. Engwall, and G. E. Bisgard. The effects of carotid body hypocapnia on ventilation in goats. Respir. Physiol. 79: 123–136, 1990.
 109. Davies, C. T. M., and D. W. Starkie. The pressor response to voluntary and electrically evoked isometric contractions in man. Eur. J. Appl. Physiol. 53: 359–363, 1985.
 110. Davy, K. P., W. G. Herbert, and J. H. Williams. Effect of indomethacin on the pressor responses to sustained handgrip contraction in humans. J. Appl. Physiol. 75: 273–278, 1993.
 111. Debiasi, S., and A. Rustioni. Glutamate and substance P co‐exist in primary afferent terminals in the superficial laminae of the spinal cord. Proc. Natl. Acad. Sci. U. S. A. 83: 7820–7824, 1988.
 112. Dejours, P. Control of respiration on muscular exercise. In: Handbook of Physiology, Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1974, p. 631–648.
 113. Dejours, P., J. C. Mithoefer, and A. Teillac. Essai de nise en evidence de chemorecepteurs veineux de ventilation. J. Physiol. (Paris) 47: 160–163, 1955.
 114. Dempsey, J. A., H. V. Forster, and D. M. Ainsworth. Regulation of hyperpnea, hyperventilation and respiratory muscle recruitment during exercise. In: Regulation of Breathing, edited by J. A. Dempsey and A. Pack. New York: Marcel Dekker, Inc., 1994, p. 1065–1134.
 115. Dempsey, J. A., H. V. Forster, M. L. Birnbaum, W. G. Red‐dan, J. Thoden, R. F. Grover, and J. Rankin. Control of exercise hyperpnea under varying durations of exposure to moderate hypoxia. Respir. Physiol. 16: 213–231, 1973.
 116. Dempsey, J. A., N. Gledhill, W. G. Reddan, H. V. Forster, P. G. Hanson, and A. D. Claremont. Pulmonary adaptation to exercise: effect of exercise type, duration, chronic hypoxia and physical training. In: The Marathon: Physiological, Medical, Epidemiological, and Psychological Studies, edited by P. Milvy. New York: Academy of Science, 1977, p. 243–261.
 117. Dempsey, J. A., and J. Rankin. Physiologic adaptations of gas transport systems to muscular work in health and disease. Am. J. Phys. Med. 46: 582–647, 1967.
 118. De Troyer, A. Respiratory muscles. In: The Lung: Scientific Eoundations, edited by R. G. Crystal and J. B. West. New York: Raven Press, 1991, p. 869–884.
 119. Dittmar, C. Ein neuer Beweis fur die Reizbarkeit der centripetalen Fasern des Rückenmarks. Ber. K. Sachs. Ges. Wiss., Math. Phys. KI. 22: 18–48, 1870.
 120. Donaldson, G. C., and C. G. Newstead. In man at rest undergoing haemodialysis reduction in arterial potassium does not influence minute ventilation. J. Physiol. (Lond.) 407: 29P, 1988 (Abstract).
 121. Douglas, C. G., and J. S. Haldane. The regulation of normal breathing. J. Physiol. (Lond.) 38: 420–440, 1909.
 122. Duffin, J., R. R. Bechbache, R. C. Gorda, and S. A. Chung. The ventilatory response to carbon dioxide in hyperoxic exercise. Respir. Physiol. 40: 93–105, 1980.
 123. Duggan, A. W., P. J. Hope, C. W. Lang, and C. A. Williams. Sustained isometric contraction of skeletal muscle results in release of immunoreactive neurokinins in the spinal cord of the anaesthetized cat. Neurosci. Lett. 122: 191–194, 1991.
 124. Dutia, M. B., and W. R. Ferrell. The effect of suxamethonium on the response to stretch of Golgi tendon organs in the cat. J. Physiol. (Lond.) 306: 511–518, 1980.
 125. Edwards, R. H. T., D. M. Denison, G. Jones, C. T. M. Davies, and E. J. M. Campbell. Changes in mixed venous gas tensions at start of exercise in man. J. Appl. Physiol. 32: 165–169, 1972.
 126. Ehrman, J., S. Keteyian, F. Fedel, K. Rhoads, T. B. Levine, and R. Shepard. Cardiovascular responses of heart transplant recipients to graded exercise testing. J. Appl. Physiol. 73: 260–264, 1992.
 127. Eiken, O., and H. Bjurstedt. Dynamic exercise in man as influenced by experimental restriction of blood flow in the working muscles. Acta Physiol. Scand. 131: 339–346, 1987.
 128. Eisele, J. H., B. C. Ritchie, and J. W. Severinghaus. Effect of stellate ganglion blockade on the hyperpnea of exercise. J. Appl. Physiol. 22: 966–969, 1967.
 129. Eldridge, F. L. Central integration of mechanisms in exercise hyperpnea. Med. Sci. Sports Exerc. 26: 319–327, 1994.
 130. Eldridge, F. L., P. Gill‐Kumar, D. E. Millhorn, and T. G. Waldrop. Spinal inhibition of phrenic motoneurons by stimulation of afferents from peripheral muscles. J. Physiol. (Lond.) 311: 67–79, 1981.
 131. Eldridge, F. L., D. E. Millhorn, J. P. Kiley, and T. G. Waldrop. Stimulation by central command of locomotion, respiration and circulation during exercise. Respir. Physiol. 59: 313–337, 1985.
 132. Ellaway, P. H., P. R. Murphy, and A. Tripathi. Closely coupled excitation of gamma‐motoneurons by group III muscle afferents with low mechanical threshold in a cat. J. Physiol. (Lond.) 331: 481–498, 1982.
 133. Ellenberger, H. H., J. L. Feldman, and H. G. Goshgarian. Ventral respiratory group projections to phrenic motoneurons: electron microscopic evidence for monosynaptic connections. J. Comp. Neurol. 302: 707–714, 1990.
 134. England, S. J., and D. Bartlett. Changes in respiratory movements of the human vocal chords during hyperpnea. J. Appl. Physiol. 52: 780–785, 1982.
 135. Erickson, B. K., H. V. Forster, L. G. Pan, T. F. Lowry, D. R. Brown, M. A. Forster, and A. L. Forster. Ventilatory compensation for lactacidosis in ponies: role of carotid chemoreceptors and lung afferents. J. Appl. Physiol. 70: 2619–2626, 1991.
 136. Ettinger, S., K. Gray, S. Whisler, and L. Sinoway. Dichloroacetate reduces sympathetic nerve responses to static exercise. Am. J. Physiol. 261 (Heart Circ. Physiol. 30): H1653–H1658, 1991.
 137. Euler, U. S., and S. Hellner. Excretion of noradrenaline and adrenaline in muscular work. Acta Physiol. Scand. 26: 193–191, 1952.
 138. Favier, R., G. Kepenekian, D. Desplanches, and R. Flandrois. Effects of chronic lung denervation on breathing pattern and respiratory gas exchange during hypoxia, hypercapnia and exercise. Respir. Physiol. 47: 107–119, 1982.
 139. Feigl, E. O. Parasympathetic control of coronary blood flow in dogs. Circ. Res. 25: 509–519, 1969.
 140. Fernandez, A., H. Galbo, M. Kjaer, J. H. Mitchell, N. H. Secher, and S. N. Thomas. Cardiovascular and ventilatory responses to dynamic exercise during epidural anesthesia in man. J. Appl. Physiol. 420: 281–293, 1990.
 141. Fisher, M. L., and D. O. Nutter. Cardiovascular reflex adjustments to static muscular contraction in the canine hind‐limb. Am. J. Physiol. 226: 648–655, 1974.
 142. Flandrois, R., J. F. Lacour, and J. P. Eclache. Control of respiration in exercising dog: interaction of chemical and physical humoral stimuli. Respir. Physiol. 21: 169–181, 1974.
 143. Flynn, C., H. V. Forster, L. G. Pan, and G. E. Bisgard. Role of hilar nerve afferents in hyperpnea of exercise. J. Appl. Physiol. 59: 798–806, 1985.
 144. Folgering, H., J. Ponte, and T. Sadig. Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J. Physiol. (Lond.) 325: 1–21, 1982.
 145. Fontana, G. A., T. Pantaleo, F. Bongianni, F. Gresci, F. Lavorini, C. Tostiguerra, and P. Panuccio. Prostaglandin synthesis blockade by ketoprofen attenuates the respiratory and cardiovascular responses to static handgrip. J. Appl. Physiol. 78: 449–457, 1995.
 146. Ford, T. W., J. A. Bennett, C. Kidd, and P. N. McWilliam. Neurones in the dorsal motor vagal nucleus of the cat with non‐myelinated axons projecting to the heart and lungs. Exp. Physiol. 75: 459–473, 1990.
 147. Ford, T. W., and P. N. McWilliam. The effects of electrical stimulation of myelinated and non‐myelinated vagal fibres on heart rate in the rabbit. J. Physiol. (Lond.) 380: 341–347, 1986.
 148. Fordyce, W. E., and F. S. Grodins. Ventilatory response to intravenous and airway CO2 administration in anesthetized dogs. J. Appl. Physiol. 48: 337–346, 1980.
 149. Foreman, R. D., R. F. Schmidt, and W. D. Willis. Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J. Physiol. (Lond.) 286: 215–231, 1979.
 150. Forster, H. V, M. B. Dunning, T. F. Lowry, B. K. Erickson, M. A. Forster, L. G. Pan, A. G. Brice, and R. M. Effros. Effect of asthma and ventilatory loading on PaCO2 during exercise in humans. J. Appl. Physiol. 75: 1385–1394, 1993.
 151. Forster, H. V, B. K. Erickson, T. F. Lowry, L. G. Pan, M. J. Korducki, and A. L. Forster. Effect of helium induced ventilatory unloading on breathing and diaphragm EMG in awake ponies. J. Appl. Physiol. 77: 452–462, 1994.
 152. Forster, H. V., and K. Klausen. The effect of chronic metabolic acidoses and alkalosis on ventilation during exercise and hypoxia. Respir. Physiol. 17: 336–346, 1973.
 153. Forster, H. V., T. F. Lowry, C. L. Murphy, and L. G. Pan. Role of elevated plasma [K+] and carotid chemoreceptors in hyperpnea of exercise in awake ponies. J. Physiol. (Lond.) 417: 112P, 1990.
 154. Forster, H. V., T. F. Lowry, L. G. Pan, B. K. Erickson, M. J. Korducki, and M. A. Forster. Diaphragm and lung afferents contribute to inspiratory load compensation in awake ponies. J. Appl. Physiol. 76: 1330–1339, 1994.
 155. Forster, H. V, L. G. Pan, G. E. Bisgard, C. Flynn, S. M. Dorsey, and M. S. Britton. Independence of exercise hypocapnia and limb movement frequency in ponies. J. Appl. Physiol. 57: 1885–1893 1984.
 156. Forster, H. V., L. G. Pan, G. E. Bisgard, R. P. Kaminski, S. C Dorsey, and M. A. Busch. The hyperpnea of exercise at various PIO2 in normal and carotid body denervated ponies. J. Appl. Physiol. 54: 1387–1393, 1983.
 157. Forster, H. V., L. G. Pan, C. Flynn, and G. E. Bisgard. Attenuated Hering‐Breuer inflation reflex 4 years after pulmonary vagal denervation in ponies. J. Appl. Physiol. 69: 2163–2167, 1990.
 158. Forster, H. V., L. G. Pan, and A. Funahashi. Temporal pattern of Paco2 during exercise in humans. J. Appl. Physiol. 60: 653–660, 1986.
 159. Freund, P. R., S. F. Hobbs, and L. B. Rowell. Cardiovascular responses to muscle ischemia in man—dependency on muscle mass. J. Appl. Physiol. 45: 762–767, 1978.
 160. Freund, P. R., L. B. Rowell, T. M. Murphy, S. F. Hobbs, and S. H. Butler. Blockade of pressor response to muscle ischemia by sensory nerve block in man. Am. J. Physiol. 236: (Heart Circ. Physiol. 7): H433–H439, 1979.
 161. Friedman, D. B., J. Brennum, F. Sztuk, O. B. Hansen, P. S. Clifford, F. W. Bach, L. Arendt‐Nielsen, J. H. Mitchell, and N. H. Secher. The effect of epidural anaesthesia with 1% lidocaine on the pressor response to dynamic exercise in man. J. Physiol. (Lond.) 470: 681–691, 1993.
 162. Gaffney, E. R. Thal, W. F. Taylor, B. C. Bastian, J. A. Weigelt, J. M. Atkins, and G. G. Blomqvist. Hemodynamic effects of medical anti‐shock trousers (MAST Garment). J. Trauma 21: 931–937, 1981.
 163. Galbo, H., M. Kjaer, and N. J. Secher. Cardiovascular, ventilatory and catecholamine responses to maximal dynamic exercise in partially curarized man. J. Physiol. (Lond.) 389: 557–568, 1987.
 164. Gallagher, C. G., and M. Younes. Effect of pressure assist on ventilation and respiratory mechanics in heavy exercise. J. Appl. Physiol. 66: 1824–1837, 1989.
 165. Gandevia, S. C., and S. F. Hobbs. Cardiovascular responses to static exercise in man: central and reflex contributions. J. Physiol. (Lond.) 430: 105–117, 1990.
 166. Gandevia, S. C., K. Killian, D. K. McKenzie, M. Crawford, G. M. Allen, R. B. Gorman, and J. P. Hales. Respiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J. Physiol. (Lond.) 470: 85–107, 1993.
 167. Geis, G. S., and R. D. Wurster. Cardiac responses during stimulation of the dorsal motor nucleus and nucleus ambiguus in the cat. Circ. Res. 46: 606–611, 1980.
 168. Gerber, G., R. Cerne, and M. Randic. Participation of excitatory amino acid receptors in the slow excitatory synaptic transmission in rat spinal dorsal horn. Brain Res. 561: 236–251, 1991.
 169. Go, V. L. W., and T. L. Yaksh. Release of substance P from the cat spinal cord. J. Physiol. (Lond.) 391: 141–167, 1987.
 170. Goodman, N. W., B. S. Nail, and R. W. Torrance. Oscillations in the discharge of single carotid chemoreceptor fibres of the cat. Respir. Physiol. 20: 251–266, 1974.
 171. Gordon, F. J., and L. M. McCann. Pressor responses evoked by microinjection of l‐glutamate into the caudal ventrolateral medulla of the rat. Brain Res. 457: 251–281, 1988.
 172. Gordon, G. The mechanism of the vasomotor reflexes produced by stimulating mammalian sensory nerves. J. Physiol. (Lond.) 102: 95–107, 1943.
 173. Graham, L. T., R. P. Shank, R. Werman, and M. H. Aprison. Distribution of some synaptic transmitter suspects in cat spinal cord. J. Neurochem. 14: 465–472, 1967.
 174. Graham, R., Y. Jammes, S. Delpierre, C. Grimaud, and C. Roussos. The effects of ischemia, lactic acid and hypertonic sodium chloride on phrenic afferent discharge during spontaneous diaphragmatic contraction. Neurosci. Lett. 67: 257–262, 1986.
 175. Granit, R., S. Skoglund, and S. Thesleff. Activation of muscle spindles by succinylcholine and decamethonium. Acta Physiol. Scand. 28: 134–151, 1953.
 176. Grant, B., and S. J. G. Semple. Mechanisms whereby oscillations in arterial carbon dioxide tension might affect pulmonary ventilation. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi, India: Navchetan Press, Ltd. 1976.
 177. Grant, B. J. B., R. P. Stidweill, B. A. Cross, and S. J. G. Semple. Ventilatory response to inhaled and infused CO2: relationship to the oscillating signal. Respir. Physiol. 44: 365–380, 1981.
 178. Greco, E. D., W. E. Fordyce, F. Gonzalez, P. Reischl, and F. S. Grodins. Respiratory responses to intravenous and intrapulmonary CO2 in awake dogs. J. Appl. Physiol. 45: 109–114, 1978.
 179. Green, H. J., R. L. Hughson, G. W. Orr, and D. A. Ranney. Anaerobic threshold, blood lactate and muscle metabolites in progressive exercise. J. Appl. Physiol. 54: 1032–1038, 1983.
 180. Green, J. F., E. R. Schertel, H. M. Coleridge, and J. C. G. Coleridge. Effect of pulmonary arterial Pco2 on slowly adapting pulmonary stretch receptors. J. Appl. Physiol. 60: 2048–2055, 1986.
 181. Green, J. F., and M. I. Sheldon. Ventilatory changes associated with changes in pulmonary blood flow in dogs. J. Appl. Physiol. 54: 997–1102, 1983.
 182. Gregory, J. E., P. Kenins, and U. Proske. Can lacate‐evoked cardiovascular response be used to identify muscle ergoreceptors? Brain Res. 404: 375–378, 1987.
 183. Griffiths, T. L., L. C. Henson, D. Huntsman, K. Wasserman, and B. J. Whipp. The influence of inspired O2 partial pressure on ventilatory and gas exchange kinetics during exercise. J. Physiol. (Lond.) 306: 34P, 1980 (Abstract).
 184. Grunstein, M. M., J. P. Derenre, and J. Milic‐Emile. Control of depth and frequency of breathing during baroreceptor stimulation in cats. J. Appl. Physiol. 39: 395–404, 1975.
 185. Gutting, S. M., H. V. Forster, T. F. Lowry, A. G. Brice, and L. G. Pan. Respiratory muscle recruitment in awake ponies during exercise and CO2 inhalation. Respir. Physiol. 86: 315–332, 1991.
 186. Guyton, A. C. Organization of the nervous system, basic functions of synapsis and transmitter substances. In: Textbook of Medical Physiology. Philadelphia: W. B. Saunders Company, 1991, p. 447–494.
 187. Hagberg, J. M., E. F. Coyle, J. E. Carrol, J. M. Miller, W. H. Martin, and M. H. Brooke. Exercise hyperventilation in patients with McArdles disease. J. Appl. Physiol. 52: 991–994, 1982.
 188. Hagenhauser, G. J. T., J. R. Sutton, and N. L. Jones. Effect of glycogen depletion on the ventilatory response to exercise. J. Appl. Physiol. 54: 470–474, 1983.
 189. Haggendal, J., L. H. Harley, and B. Saltin. Arterial noradrenaline concentration during exercise in relation to the relative work loads. Scand. J. Clin. Lab. Invest. 26: 337–342, 1970.
 190. Hamalainen, R. P., and A. A. Viljanen. Modelling the respiratory air‐flow pattern by optimizing criteria. Biol. Cybern. 29: 143–149, 1978.
 191. Hanson, P., A. Claremont, J. Dempsey, and W. Reddan. Determinants and consequences of ventilatory responses to competitive endurance running. J. Appl. Physiol. 52: 615–623, 1982.
 192. Harrison, T. R., W. G. Harrison, J. A. Calhoun, and J. P. Marsh. Congestive heart failure. The mechanisms of dyspnea on exertion. Arch. Intern. Med. 50: 690–720, 1932.
 193. Haselton, J. R., P. A. Padrid, and M. P. Kaufman. Activation of neurons in the rostral ventrolateral medulla increases bronchomotor tone in dogs. J. Appl. Physiol. 71: 210–216, 1991.
 194. Haxhiu, M. A., E. Van Lunteren, J. Mitra, N. S. Cherniack, and K. P. Strohl. Comparison of the responses of the diaphragm and upper airway muscles to central stimulation of the sciatic nerve. Respir. Physiol. 58: 65–76, 1984.
 195. Hayward, L., U. Wesselmann, and W. Z. Rymer. Effects of muscle fatigue on mechanically sensitive afferents of slow conduction velocity in the cat triceps surae. J. Neurophysiol. 65: 360–370, 1991.
 196. Helke, C. J., J. J. Neil, V. J. Massari, and A. D. Loewy. Substance P Neurons project from the ventral medulla to the intermediolateral cell column and ventral horn in the rat. Brain Res. 243: 147–152, 1982.
 197. Henke, K. G., M. Sharratt, D. Pegelow, and J. A. Dempsey. Regulation of end‐expiratory lung volume during exercise. J. Appl. Physiol. 64: 135–146, 1988.
 198. Henneman, E., G. Somjen, and D. O. Carpenter. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28: 560–580, 1965.
 199. Henry, J. L. Effects of substance P on functionally identified units in cat spinal cord. Brain Res. 114: 439–451, 1976.
 200. Heymans, J. F., and C. Heymans. Sur les modifications directes et sur la regulation reflexes de l'activite du centre respiratoire de la tete isolie du chien. Arch. Int. Pharmacodyn. Ther. 33: 273–372, 1927.
 201. Hill, J. M., and M. P. Kaufman. Attenuation of reflex pressor and ventilatory responses to static muscular contraction by intrathecal opioids. J. Appl. Physiol. 68: 2466–2472, 1990.
 202. Hill, J. M., and M. P. Kaufman. Attenuating effects of intrathecal clonidine on the exercise pressor reflex. J. Appl. Physiol. 70: 516–522, 1991.
 203. Hill, J. M., and M. P. Kaufman. Intrathecal serotonin attenuates the pressor response to static contraction. Brain Res. 550: 157–160, 1991.
 204. Hill, J. M., J. G. Pickar, and M. P. Kaufman. Attenuation of reflex pressor and ventilatory responses to static contraction by an NK‐1 receptor antagonist. J. Appl. Physiol. 73: 1389–1395, 1992.
 205. Hill, J. M., J. G. Pickar, and M. P. Kaufman. Blockade of non‐NMDA receptors attenuates reflex pressor response to static contraction. Am. J. Physiol. 266 (Heart Circ. Physiol. 35): H1769–H1776, 1994.
 206. Hill, J. M., J. G. Pickar, M. Parrish, and M. P. Kaufman. Effects of hypoxia on the discharge on group III and IV muscle afferents in cats. J. Appl. Physiol. 73: 2524–2529, 1992.
 207. Hník, P., O. Hudlická, J. Kucera, and R. Payne. Activation of muscle afferents by nonproprioceptive stimuli. Am. J. Physiol. 217: 1451–1458, 1969.
 208. Hodgson, H. J. F., and P. B. C. Matthews. The ineffectiveness of excitation of the primary endings of the muscle spindle by vibration as a respiratory stimulate in the decerebrate cat. J. Physiol. (Lond.) 194: 555–563, 1968.
 209. Hoffer, J. A., G. E. Loeb, W. B. Marks, M. J. O'Donovan, C. A. Pratt, and N. Sugano. Cat hind limb motoneurons during locomotion. I. Destination, axonal conduction velocity, and recruitment threshold. J. Neurophysiol. 57: 510–529, 1987.
 210. Hoffer, J. A., M. J. O'Donovan, C. A. Pratt, and G. E. Loeb. Discharge patterns of hindlimb motoneurons during normal cat locomotion. Science 213: 466–468, 1981.
 211. Hoffer, J. A., N. Sugano, G. E. Loeb, W. B. Marks, M. J. O'Donovan, and C. A. Pratt. Cat hind limb motoneurons during locomotion. II. Normal activity patterns. J. Neurophysiol. 57: 530–553, 1987.
 212. Hoheisel, U., and S. Mense. Response behaviour of cat dorsal horn neurons receiving input from skeletal muscle and other deep somatic tissues. J. Physiol. (Lond.) 426: 265–280, 1990.
 213. Hökfelt, T., J. O. Kellerth, G. Nilsson, and B. Pernow. Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 100: 235–252, 1975.
 214. Hollander, A. P., and L. N. Bouman. Cardiac acceleration in man elicited by a muscle‐heart reflex. J. Appl. Physiol. 38: 272–278, 1975.
 215. Honda, Y., S. Myojo, S. Hasegawa, T. Hawegawa, and J. W. Severinghaus. Decreased exercise hyperpnea in patients with bilateral carotid chemoreceptor resection. J. Appl. Physiol. 46: 908–912, 1979.
 216. Hopkins, D. A., and J. A. Armour. Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res. Bull. 8: 359–365, 1982.
 217. Hornbein, T. F., S. C. Sorensen, and C. R. Parks. Role of muscle spindles in lower extremities in breathing during bicycle exercise. J. Appl. Physiol. 27: 476–479, 1969.
 218. Hornicke, J., R. Meixner, and U. Pollmann. Respiration in exercising horses. In: Equine Exercise Physiology, edited by D. H. Snow, S. G. Persson, and R. J. Rose. Cambridge: Grants Editions, 1982, p. 7–16.
 219. Hughes, E. F., S. C. Turner, and G. A. Brooks. Effect of glycogen depletion and pedaling speed on “anaerobic threshold.” J. Appl. Physiol. 52: 1598–1607, 1982.
 220. Hultman, E., and H. Sjoholm. Blood pressure and heart rate response to voluntary and non‐voluntary static exercise in man. Acta Physiol. Scand. 115: 499–501, 1982.
 221. Hunt, C. C. Relation of function to diameter in afferent fibers of muscle nerves. J. Gen. Physiol. 38: 117–131, 1954.
 222. Hussain, S. N. A., R. L. Pardy, and J. A. Dempsey. Mechanical impedance as determinant of inspiratory neural drive during exercise in humans. J. Appl. Physiol. 59: 365–375, 1985.
 223. Huszczuk, A., B. J. Whipp, T. D. Adams, A. G. Fisher, R. O. Crapo, C. G. Elliot, K. Wasserman, and D. B. Olsen. Ventilatory control during exercise in calves with artificial hearts. J. Appl. Physiol. 68: 2604–2611, 1990.
 224. Iggo, A. Non‐myelinated afferent fibers from mammalian skeletal muscle. J. Physiol. (Lond.) 155: 52–53 P, 1961.
 225. Innes, J. A., I. Solarte, A. Huszeyk, E. Yah, B. J. Whipp, and K. Wasserman. Respiration during recovery from exercise: effects of trapping and release of femoral blood flow. J. Appl. Physiol. 67: 2608–2613, 1989.
 226. Iwamoto, G. A., and B. R. Botterman. Peripheral factors influencing expression of pressor reflex evoked by muscular contraction. J. Appl. Physiol. 58: 1676–1682, 1985.
 227. Iwamoto, G. A., B. R. Botterman, and T. G. Waldrop. The exercise pressor reflex: evidence for an afferent pressor pathway outside the dorsolateral sulcus region. Brain Res. 292: 160–164, 1984.
 228. Iwamoto, G. A., R. D. Brtva, and T. G. Waldrop. Cardiorespiratory responses to chemical stimulation of the caudalmost ventrolateral medulla in the cat. Neurosci. Lett. 129: 86–90, 1991.
 229. Iwamoto, G. A., and M. P. Kaufman. Caudal ventrolateral medullary cells responsive to static muscular contraction. J. Appl. Physiol. 62: 149–157, 1987.
 230. Iwamoto, G. A., M. P. Kaufman, B. R. Botterman, and J. H. Mitchell. Effects of lateral reticular nucleus lesions on the exercise pressor reflex in cats. Circ. Res. 51: 400–403, 1982.
 231. Iwamoto, G. A., J. H. Mitchell, M. Mizuno, and N. H. Secher. Cardiovascular responses at the onset of exercise with partial neuromuscular blockade in cat and man. J. Physiol. (Lond.) 3842: 39–47, 1987.
 232. Iwamoto, G. A., J. H. Mitchell, M. Sadeq, and G. P. Kozlowski. Localization of tyrosine hydroxylase and phenylethanolamine N‐methyltransferase immunoreactive cells in the medulla of the dog. Neurosci. Lett. 107: 12–18, 1989.
 233. Iwamoto, G. A., J. G. Parnaveles, M. P. Kaufman, B. R. Botterman, and J. H. Mitchell. Activation of caudal brainstem cell groups during the exercise pressor reflex as elucidated by 2‐[14C] deoxyglucose. Brain Res. 304: 178–182, 1984.
 234. Iwamoto, G. A., T. G. Waldrop, M. P. Kaufman, B. R. Botterman, K. J. Rybicki, and J. H. Mitchell. Pressor reflex evoked by muscular contraction: contributions by neuraxis levels. J. Appl. Physiol. 59: 459–467, 1985.
 235. Johansson, B. Circulatory responses to stimulation of somatic afferents. Acta Physiol. Scand. 57: 1–91, 1962.
 236. Johnson, J. L., and M. H. Aprison. The distribution of glutamic acid, a transmitter candidate, and other amino acids in the dorsal sensory neuron of the cat. Brain Res. 24: 285–292, 1970.
 237. Jones, P. W., A. Huszczuk, and K. Wasserman. Cardiac output as a controller of ventilation through changes in right ventricular load. J. Appl. Physiol. 53: 218–224, 1982.
 238. Jordan, D., M. E. M. Khalid, N. Schneiderman, and K. M. Spyer. The location and properties of preganglionic vagal cardiomotor neurones in the rabbit. Pflugers Arch. 395: 244–250, 1982.
 239. Joyner, M. J. Does the pressor response to ischemic exercise improve blood flow to contracting muscles in humans? J. Appl. Physiol. 71: 1496–1501, 1991.
 240. Joyner, M. J., and W. Wieling. Increased muscle perfusion reduces muscle sympathetic nerve activity during handgrip‐ping. J. Appl. Physiol. 75: 2450–2455, 1993.
 241. Kaehny, W. D., and J. T. Jackson. Respiratory response to HCL acidosis in dogs after carotid body denervation. J. Appl. Physiol. 46: 1138–1142, 1979.
 242. Kagawa, J., and H. D. Kerr. Effects of brief graded exercise on specific airway conductance in normal subjects. J. Appl. Physiol. 28: 138–144, 1970.
 243. Kagerberg, G. S., and A. Bjorklund. Topographic principles in the spinal projections of serotonergic and non‐serotonergic brainstem neurons in the rat. Neuroscience 15: 445–480, 1985.
 244. Kai‐Kai, M. M., B. H. Anderton, and P. Keen. A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and those containing substance P, fluoride‐resistant acid phosphatase or neurofilament protein. Neuroscience 18: 475–486, 1986.
 245. Kalia, M., J. M. Senapati, B. Parida, and A. Panda. Reflex increase in ventilation by muscle receptors with nonmedullated fibers (C‐fibers). J. Appl. Physiol. 32: 189–193, 1972.
 246. Kangrga, I., and M. Randic. Tachykinins and calcitonin gene‐related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice. J. Neurosci. 10: 2026–2038, 1990.
 247. Kannan, H., H. Yamashita, K. Koizumi, and C. M. Brooks. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small‐diameter afferent (groups III and IV) receptors. Proc. Natl. Acad. Sci. U. S. A. 85: 5744–5748, 1988.
 248. Kao, F. F. An experimental study of the pathway involved in exercise hyperpnea employing cross‐circulation technique. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Oxford: Blackwell, 1963, p. 461–502.
 249. Kao, F. F., S. Lahiri, C. Wang, and S. S. Mei. Ventilation and cardiac output in exercise: interaction of chemical and work stimuli. Circ. Res. 20: 179–191, 1967.
 250. Kao, F. F., and L. H. Ray. Respiratory and circulatory responses of anesthetized dogs to induced muscular work. Am. J. Physiol. 179: 249–254, 1954.
 251. Kao, F. F., and L. H. Ray. Regulation of cardiac output in anesthetized dogs during induced muscular work. Am. J. Physiol. 179: 255–260, 1954.
 252. Karlsson, J. A., M. J. B. Finney, C. G. A. Persson, and C. Post. Substance P antagonists and the role of tachykinins in non‐cholinergic bronchoconstriction. Life Sci. 35: 2681–2691, 1984.
 253. Kaufman, M. P., G. A. Iwamoto, J. C. Longhurst, and J. H. Mitchell. Effects of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circ. Res. 50: 133–139, 1982.
 254. Kaufman, M. P., G. P. Kozlowski, and K. J. Rybicki. Attenuation of the reflex pressor response to muscular contraction by a substance P antagonist. Brain Res. 333: 182–184, 1985.
 255. Kaufman, M. P., J. C. Longhurst, K. J. Rybicki, J. H. Wallach, and J. H. Mitchell. Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J. Appl. Physiol. 55: 105–112, 1983.
 256. Kaufman, M. P., G. A. Ordway, J. C. Longhurst, and J. H. Mitchell. Reflex relaxation of tracheal smooth muscle by thin fiber muscle afferents in dogs. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 12): R383–R388, 1982.
 257. Kaufman, M. P., and K. J. Rybicki. Muscular contraction reflexly relaxes tracheal smooth muscle in dogs. Respir. Physiol. 56: 61–72, 1984.
 258. Kaufman, M. P., and K. J. Rybicki. Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli. Circ. Res. 61: 160–165, 1987.
 259. Kaufman, M. P., K. J. Rybicki, G. P. Kozlowski, and G. A. Iwamoto. Immunoneutralization of substance P attenuates the reflex pressor response to muscular contraction. Brain Res. 377: 199–203, 1986.
 260. Kaufman, M. P., K. J. Rybicki, and J. H. Mitchell. Hind‐limb muscular contraction reflexly decreases total pulmonary resistance. J. Appl. Physiol. 59: 1521–1526, 1985.
 261. Kaufman, M. P., K. J. Rybicki, T. G. Waldrop, and J. H. Mitchell. Effect on arterial pressure of rhythmically contracting the hindlimb of cats. J. Appl. Physiol. 56: 1265–1271, 1984.
 262. Kaufman, M. P., K. J. Rybicki, T. G. Waldrop, and G. A. Ordway. Effect of ischemia on responses of group III and IV afferents to contraction. J. Appl. Physiol. 57: 644–650, 1984.
 263. Kaufman, M. P., K. J. Rybicki, T. G. Waldrop, G. A. Ordway, and J. H. Mitchell. Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents. Cardiovasc. Res. 18: 663–668, 1984.
 264. Kelly, M. A., G. R. Owens, and A. P. Fishman. Hypercapnic ventilation during exercise: effects of exercise methods and inhalation techniques. Respir. Physiol. 50: 75–85, 1982.
 265. Kiely, J. M., and F. J. Gordon. Non‐NMDA receptors in the rostral ventrolateral medulla mediate somatosympathetic pressor responses. J. Auton. Nerv. Syst. 43: 231–240, 1993.
 266. Kjaer, M., N. H. Secher, F. W. Bach, H. Galbo, D. R. Reeves, Jr., and J. H. Mitchell. Hormonal, metabolic, and cardiovascular responses to static exercise in humans: influence of epidural anesthesia. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E214–E220, 1991.
 267. Klein, C. M., R. E. Coggeshall, S. M. Carlton, K. N. Westlund, and L. S. Sorkin. Changes in calcitonin gene‐related peptide immunoreactivity in the rat dorsal horn following electrical stimulation of the sciatic nerve. Neurosci. Lett. 115: 149–154, 1990.
 268. Kniffki, K., S. Mense, and R. F. Schmidt. Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimuli. Exp. Brain Res. 31: 511–522, 1978.
 269. Knill, R. L., and J. L. Clement. Ventilatory responses to acute metabolic acidemia in humans awake, sedated, and anesthetized with halothane. Anesthesiology 62: 733–745, 1985.
 270. Knuttgen, J. G., and K. Emersen. Physiological response to pregnancy at rest and during exercise. J. Appl. Physiol. 36: 546–553, 1974.
 271. Koizumi, K., J. Ushiyama, and C. M. Brooks. Muscle afferents and activity of respiratory neurons. Am. J. Physiol. 200: 679–684, 1961.
 272. Kostreva, D. R., F. A. Hopp, E. J. Zuperku, F. O. Ingler, F. L. Coon, and J. P. Kampine. Respiratory inhibition with sympathetic afferent stimulation in the canine and primate. J. Appl. Physiol. 44: 718–724, 1978.
 273. Kostreva, D. R., F. A. Hopp, E. J. Zuperku, and J. P. Kampine. Apnea, tachypnea, and hypotension elicited by cardiac vagal afferents. J. Appl. Physiol. 47: 312–318, 1979.
 274. Koterba, A. M., P. C. Kosch, J. Beech, and T. Whitlock. Breathing strategy of the adult horse (Equus caballus) at rest. J. Appl. Physiol. 64: 337–346, 1988.
 275. Kozelka, J. W., G. W. Christy, and R. D. Wurster. Somatoautonomic reflexes in anesthetised and unanesthetised dogs. J. Auton. Nerv. Syst. 5: 63–70, 1982.
 276. Kozelka, J. W., G. W. Christy, and R. D. Wurster. Ascending pathways mediating somatoautonomic reflexes in exercising dogs. J. Appl. Physiol. 62: 1186–1191, 1987.
 277. Kozelka, J. W., and R. D. Wurster. Ascending spinal pathways for somato‐autonomic reflexes in the anesthetized dogs. J. Appl. Physiol. 58: 1832–1839, 1985.
 278. Krasney, J. A., M. G. Levitzky, and R. C. Koehler. Sinoaortic contribution to the adjustment of systemic resistance in exercising dogs. J. Appl. Physiol. 36: 679–685, 1974.
 279. Kretz, R. Local cobalt injection: a method to discriminate presynaptic axonal from postsynaptic neuronal activity. J. Neurosci. Methods 11: 129–135, 1984.
 280. Krogh, A., and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. (Lond.) 47: 112–136, 1913.
 281. Kumada, M., K. Nogami, and K. Sagawa. Modulation of carotid sinus baroreceptor reflex by sciatic nerve stimulation. Am. J. Physiol. 228: 1535–1541, 1975.
 282. Kumazawa, T., and E. Tadaki. Two different inhibitory effects on respiration by thin‐fiber muscular afferents in cats. Brain Res. 272: 364–367, 1983.
 283. Kumazawa, T. N., and K. Mizumura. Thin‐fibre receptors responding to mechanical, chemical and thermal stimulation in the skeletal muscle of the dog. J. Physiol. (Lond.) 273: 179–194, 1977.
 284. Kunze, D. L. Reflex discharge patterns of cardiac vagal efferent fibres. J. Physiol. (Lond.) 222: 1–15, 1972.
 285. Lahiri, S. Physiologic responses: peripheral chemoreflexes. In: The Lung: Scientific Foundations, edited by R. G. Crystal, J. B. West, et al. New York: Raven Press, 1991, p. 1333–1340.
 286. Lamb, T. W. Ventilatory responses to intravenous and inspired carbon dioxide in anesthetized cats. Respir. Physiol. 2: 99–104, 1966.
 287. Lamb, T. W. Ventilatory responses to hind limb exercise in anesthetized cats and dogs. Respir. Physiol. 6: 88–104, 1968.
 288. Laporte, Y., P. Bessou, and S. Bouissett. Action reflexe des differents types de fibres afferents d'origine musculaire sur la pression sanguine. Arch. Ital. Biol. 98: 206–221, 1960.
 289. Lassen, A., J. H. Mitchell, D. R. Reeves, Jr., H. B. Rogers, and N. H. Secher. Cardiovascular responses to brief static contractions in man with topical nervous blockade. J. Physiol. (Lond.) 409: 333–341, 1989.
 290. Leonard, B., J. H. Mitchell, M. Mizuno, N. Rube, B. Saltin, and N. H. Secher. Partial neuromuscular blockade and cardiovascular resonses to static exercise in man. J. Physiol. (Lond.) 359: 365–379, 1985.
 291. Levine, S. Ventilatory response to muscular exercise: observations regarding a humoral pathway. J. Appl. Physiol. 47: 126–137, 1979.
 292. Lewis, S. M. Awake baboon's ventilatory response to venous and inhaled CO2 loading. J. Appl. Physiol. 39: 417–422, 1975.
 293. Light, A. R., and E. R. Perl. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186: 133–150, 1979.
 294. Linton, R. A. F., and D. M. Band. The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Respir. Physiol. 59: 65–70, 1985.
 295. Linton, R. A. F., M. Lim, C. B. Wolff, P. Wilmshurst, and D. M. Band. Arterial potassium measured continuously during exercise in man. Clin. Sci. 67: 427–431, 1984.
 296. Linton, R. A. F., R. Miller, and R. Cameron. Ventilatory response to CO2 inhalation and intravenous infusion of hypercapnic blood. Respir. Physiol. 26: 383–394, 1976.
 297. Liu, C. T., R. A. Huggins, and H. E. Hoff. Mechanisms of intra‐arterial K+‐induced cardiovascular and respiratory responses. Am. J. Physiol. 217: 969–973, 1969.
 298. Liu, G., J. L. Feldman, and J. C. Smith. Excitatory amino acid‐mediated transmission of inspiratory drive to phrenic motoneurons. J. Neurophysiol. 64: 423–436, 1990.
 299. Lloyd, T. C. Effect on breathing of acute pressure rise in pulmonary artery and right ventricle. J. Appl. Physiol. 57: 110–116, 1984.
 300. Longhurst, J. C. Static contraction of hind limb muscles in cats reflexly relaxes tracheal smooth muscle. J. Appl. Physiol. 57: 380–387, 1984.
 301. Maqbool, A., T. F. C. Batten, and P.N. McWilliam. Ultrastructural relationships between GABAergic terminals and cardiac vagal preganglionic motoneurons and vagal afferents in the cat: a combined HRP tracing and immuno‐gold labelling study. Eur. J. Neurosci. 3: 501–513, 1991.
 302. Marchettini, P. Muscle pain, animal and human experimental and clinical studies. Muscle Nerve 16: 1033–1039, 1993.
 303. Mark, A. L., R. G. Victor, C. Nerhed, and B. G. Wallin. Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans. Circ. Res. 57: 461–469, 1985.
 304. Martin, P. A., and G. S. Mitchell. Long‐term modulation of the exercise ventilatory response in goats. J. Physiol. (Land.) 470: 601–617, 1993.
 305. Matsukawa, K., P. T. Wall, L. B. Wilson, and J. H. Mitchell. Reflex responses of renal nerve activity during isometric muscle contraction in cats. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1380–H1388, 1990.
 306. Matsukawa, K., P. T. Wall, L. B. Wilson, and J. H. Mitchell. Reflex stimulation of cardiac sympathetic nerve activity during static muscle contraction in cats. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H821–H827, 1994.
 307. McAllen, R. M., and K. M. Spyer. The location of cardiac vagal preganglionic motoneurons projecting in the medulla of the cat. J. Physiol. (Lond.) 258: 187–204, 1976.
 308. McAllen, R. M., and K. M. Spyer. Two types of vagal preganglionic motoneurons projecting to the heart and lungs. J. Physiol. (Lond.) 292: 353–364, 1978.
 309. McClain, J., C. Hardy, B. Enders, M. Smith, and L. Sinoway. Limb congestion and sympathoexcitation during exercise. J. Clin. Invest. 92: 2353–2359, 1993.
 310. McClain, J., J. C. Hardy, and L. I. Sinoway. Forearm compression during exercise increases sympathetic nerve traffic. J. Appl. Physiol. 77: 2612–2617, 1994.
 311. McCloskey, D. I., and J. H. Mitchell. Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol. (Lond.) 224: 173–186, 1972.
 312. McCloskey, D. I., and K. A. Streatfeild. Muscular reflex stimuli to the cardiovascular system during isometric contractions of muscle groups of different mass. J. Physiol. (Lond.) 250: 431–441, 1975.
 313. McCoy, K. W., D. M. Rotto, K. J. Rybicki, and M. P. Kaufman. Attenuation of the reflex pressor response to muscular contraction by an antagonist to somatostatin. Circ. Res. 62: 18–24, 1988.
 314. McCoy, M., and M. Hargreaves. Potassium and ventilation during incremental exercise in trained and untrained men. J. Appl. Physiol. 73: 1287–1290, 1992.
 315. McCrimmon, D. R., J. C. Smith, and J. L. Feldman. Involvement of excitatory amino acids in neurotransmission of inspiratory drive to spinal respiratory motoneurons. J. Neurosci. 9: 1910–1921, 1989.
 316. McMahon, S. E., and P. N. McWilliam. Changes in R‐R interval at the start of muscle contraction in the decerebrate cat. J. Physiol. (Lond.) 447: 549–562, 1992.
 317. McMahon, S. E., P. N. McWilliam, and J. C. Kaye. Hind‐limb contraction inhibits evoked activity in baroreceptor‐sensitive neurones in the nucleus tractus solitarius (NTS) of the anaesthetized cat. J. Physiol. (Lond.) 467: 18P, 1993 (Abstract).
 318. McMurray, R. G., and S. W. Ahlborn. Respiratory responses to running and walking at the same metabolic rate. Respir. Physiol. 47: 257–265, 1982.
 319. McWilliam, P. N., and T. Yang. Inhibition of cardiac vagal component of baroreflex by group III and IV afferents. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H730–H734, 1991.
 320. McWilliam, P. N., T. Yang, and L. X. Chien. Changes in the baroreceptor reflex by muscle contraction in the decerebrate cat. J. Physiol. (Lond.) 436: 549–558, 1991.
 321. Mead, J. Control of respiratory frequency. J. Appl. Physiol. 49: 528–532, 1980.
 322. Melcher, A., and D. E. Donald. Maintained ability of carotid baroreflex to regulate arterial pressure during exercise. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H838–H849, 1981.
 323. Mense, S. Nervous outflow from skeletal muscle following chemical noxious stimulation. J. Physiol. (Lond.) 267: 75–88, 1977.
 324. Mense, S. Sensitization of group IV muscle receptors to bradykinin by 5‐hydroxytryptamine and prostaglandin E‐2. Brain Res. 225: 95–105, 1981.
 325. Mense, S., and A. D. I. Craig. Spinal and supraspinal terminations of primary afferent fibers from the gastrocnemius‐soleus muscle in the cat. Neuroscience 26: 1023–1035, 1988.
 326. Mense, S., and H. Meyer. Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J. Physiol. (Lond.) 363: 403–417, 1985.
 327. Mense, S., and H. Meyer. Bradykinin‐induced modulation of the response behaviour of different types of feline group III and IV muscle receptors. J. Physiol. (Lond.) 398: 49–63, 1988.
 328. Mense, S., and N. R. Prabhakar. Spinal termination of nociceptive afferent fibres from deep tissues in the cat. Neurosci. Lett. 66: 169–174, 1986.
 329. Mense, S., and R. F. Schmidt. Activation of group IV afferent units from muscle by algesic agents. Brain Res. 72: 305–310, 1974.
 330. Mense, S., and M. Stahnke. Responses in muscle afferent fibers of slow conduction velocity to contractions and ischemia in the cat. J. Physiol. (Lond.) 342: 383–397, 1983.
 331. Millan, M. J., M. H. Millan, A. Czlonkowski, and A. Herz. Vasopressin and oxytocin in the rat spinal cord: Distribution and origins in comparison to metenkephalin, dynorphin, and related opioids and their irresponsiveness to stimuli modulating neurohypophyseal secretion. Neuroscience 13: 179–187, 1984.
 332. Miller, K. E., and V S. Seybold. Comparison of metenkephalin, dynorphin A‐ and neurotension‐immuno‐reactive neurons in the cat and rat spinal cords. I. Lumbar cord. J. Comp. Neurol. 255: 293–304, 1984.
 333. Mitchell, G. S. Ventilatory control during exercise with increased respiratory dead space in goats. J. Appl. Physiol. 69: 718–727, 1990.
 334. Mitchell, G. S., K. B. Bach, P. A. Martin, and K. T. Foley. Modulation and plasticity of the exercise ventilatory response. In: Respiration in Health and Disease, edited by P. Scheid. Stuttgart: Gustav Fischer Verlag, 1993, p. 269–277.
 335. Mitchell, G. S., M. A. Douse, and K. T. Foley. Receptor interactions in modulating ventilatory activity. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R911–R920, 1990.
 336. Mitchell, G. S., C. A. Smith, and J. A. Dempsey. Changes in the V1: VCO2 relationship during exercise: role of carotid body. J. Appl. Physiol. 57: 1894–1900, 1984.
 337. Mitchell, J. H., D. S. Mierzwiak, K. Wildenthal, W. D. J. Willis, and A. M. Smith. Effect on left ventricular performance of stimulation of an afferent nerve from muscle. Circ. Res. 22: 507–516, 1968.
 338. Mitchell, J. H., W. C. Reardon, and D. I. McCloskey. Reflex effects on circulation and respiration from contracting skeletal muscle. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H374–H378, 1977.
 339. Mitchell, J. H., D. R. Reeves, H. B. Rogers, and N. H. Secher. Epidural anesthesia and cardiovascular responses to static exercise in man. J. Physiol. (Lond.) 417: 13–24, 1989.
 340. Miyamura, J., T. Yamishina, and Y. Honda. Ventilatory response to CO2 rebreathing at rest and during exercise in untrained subjects and athletes. Jpn. J. Physiol. 26: 245–254, 1976.
 341. Moore, R. M., R. E. Moore, and A. O. Singleton, Jr.. Experiments on the chemical stimulation of pain‐endings associated with small blood‐vessels. Am. J. Physiol. 107: 594–602, 1934.
 342. Morikawn, T., Y. Ono, K. Sasaki, Y. Sakokibara, Y. Tonaka, R. Maruzama, Y. Nishibayashi, and Y. Honda. Afferent and cardiodynamic drives in the early phase of exercise hyperpnea in humans. J. Appl. Physiol. 67: 2006–2013, 1989.
 343. Morrison, S. F., and D. J. Reis. Reticulospinal vasomotor neurons in the RVL mediate the somatosympathetic reflex. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R1084–R1097, 1989.
 344. Murase, K., and M. Randic. Actions of substance P on rat spinal dorsal horn neurones. J. Physiol. (Lond.) 346: 203–217, 1984.
 345. Murphy, K., R. P. Stidwell, B. A. Cross, K. D. Leaver, E. Anastassiades, M. Phillips, A. Guz, and S. J. G. Semple. Is hypercapnia necessary for the ventilatory response to exercise in man. Clin. Sci. 73: 617–625, 1987.
 346. Mustafa, M. E. K. Y., and M. J. Purves. The effect of CO2 upon discharge from slowly adapting receptors in the lungs of rabbits. Respir. Physiol. 16: 197–212, 1972.
 347. Nattie, E. E. Ventilation during acute HCL infusion in intact and chemodenervated conscious rabbits. Respir. Physiol. 54: 97–107, 1983.
 348. Nattie, E. E., and S. M. Tenney. The ventilatory response to resistance unloading during muscular exercise. Respir. Physiol. 10: 249–262, 1970.
 349. Nery, L. E., K. Wasserman, J. D. Andrews, D. J. Huntsman, J. E. Hansen, and B. J. Whipp. Ventilatory and gas exchange kinetics during exercise in chronic airway obstruction. J. Appl. Physiol. 53: 1594–1602, 1982.
 350. Nielson, M., and E. Asmussen. Humoral and nervous control of breathing in exercise. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Philadelphia, PA: F. A. Davis Company, 1963, p. 504–513.
 351. Nòbrega, A. C. L., and C. G. S. Araùjo. Heart rate transient at the onset of active and passive dynamic exercise. Med. Sci. Sports Exerc. 25: 37–41, 1993.
 352. Nosaka, S., N. Nakase, and K. Murata. Somatosensory and hypothalamic inhibitions of baroreflex vagal bradycardia in rats. Eur. J. Pharmacol. 413: 656–666, 1989.
 353. Nosaka, S., K. Yasunaga, and M. Kawano. Vagus cardioinhibitory fibers in rats. Pflugers Arch. 379: 281–285, 1979.
 354. Nosaka, S., K. Yasunaga, and S. Tamai. Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 12): R92–R98, 1982.
 355. Nye, P. C. G. Identification of peripheral chemoreceptor stimuli. Med. Sci. Sports Exerc. 26: 311–318, 1994.
 356. O'Brien, C., C. J. Woolf, M. Fitzgerald, R. M. Lindsay, and C. Molander. Differences in the chemical expression of rat primary afferent neurons which innervate skin, muscle or joint. Neuroscience 32: 493–502, 1989.
 357. Ohki, M., M. Hasegawa, N. Kurita, and I. Wantanbe. Effects of exercise on nasal resistance and nasal blood flow. Acta Otolaryngol. 104: 328–333, 1987.
 358. Ohtake, P. J., and D. B. Jennings. Ventilation is stimulated by small reduction in arterial pressure in the awake dog. J. Appl. Physiol. 73: 1549–1557, 1992.
 359. Oldenburg, F. A., D. O. McCormack, J. L. C. Morse, and N. L. Jones. A comparison of exercise responses in stair‐climbing and cycling. J. Appl. Physiol. 46: 510–516, 1979.
 360. O'Leary, D. S. Autonomic mechanisms of muscle metabor‐eflex control of heart rate. J. Appl. Physiol. 74: 1748–1754, 1993.
 361. Orani, G. P., and M. Decandia. Group I afferent fibers: effects on cardiorespiratory system. J. Appl. Physiol. 68: 932–937, 1990.
 362. Oren, A., B. J. Whipp, and K. Wasserman. Effect of acid–base status on the kinetics of the ventilatory response to moderate exercise. J. Appl. Physiol. 52: 1013–1017, 1982.
 363. Orr, J. A., M. R. Fedde, H. Shams, H. Roskenbleck, and P. Scheid. Absence of CO2 sensitive venous chemoreceptors in the cat. Respir. Physiol. 73: 211–224, 1988.
 364. Otis, A. B., W. O. Fenn, and H. Rahn. Mechanics of breathing in man. J. Appl. Physiol. 2: 592–607, 1950.
 365. Overton, J. M., and R. W. Stremel. Hindlimb muscle contraction elicits depressor responses in anesthetized rats. Physiologist 35: 238, 1992.
 366. Padrid, P. A., J. R. Haselton, and M. P. Kaufman. Ischemia potentiates the reflex bronchodilation evoked by static muscular contraction in dogs. Respir. Physiol. 81: 51–62, 1990.
 367. Padrid, P. A., J. R. Haselton, and M. P. Kaufman. Role of caudal ventrolateral medulla in reflex and central control of airway caliber, J. Appl. Physiol. 71: 2274–2282, 1991.
 368. Paintal, A. S. Functional analysis of group III afferent fibres of mammalian muscles. J. Physiol. (Lond.) 152: 250–270, 1960.
 369. Pan, H.‐L., C. L. Stebbins, and J. C. Longhurst. Bradykinin contributes to the exercise pressor reflex: mechanism of action. J. Appl. Physiol. 75: 2061–2068, 1993.
 370. Pan, L. G., H. V. Forster, G. E. Bisgard, S. M. Dorsey, and M. A. Busch. Cardiodynamic variables and ventilation during treadmill exercise in ponies. J. Appl. Physiol. 57: 753–759, 1984.
 371. Pan, L. G., H. V. Forster, G. E. Bisgard, R. P. Kaminski, S. M. Dorsey, and M. A. Busch. Hyperventilation in ponies at the onset of and during steady‐state exercise. J. Appl. Physiol. 54: 1394–1402, 1983.
 372. Pan, L. G., H. V. Forster, G. E. Bisgard, T. F. Lowry, and C. L. Murphy. Role of carotid chemoreceptors and pulmonary vagal afferents during helium oxygen breathing in ponies. J. Appl. Physiol. 62: 1020–1027, 1987.
 373. Pan, L. G., H. V. Forster, G. E. Bisgard, C. L. Murphy, and T. F. Lowry. Independence of exercise hyperpnea and acidosis during high intensity exercise in ponies. J. Appl. Physiol. 60: 1016–1024, 1986.
 374. Pan, L. G., H. V. Forster, A. G. Brice, T. F. Lowry, C. L. Murphy, and R. D. Wurster. Effect of multiple denervations on the exercise hyperpnea in awake ponies. J. Appl. Physiol. 79: 302–311, 1995.
 375. Pan, L. G., H. V. Forster, R. D. Wurster, C. L. Murphy, A. G. Brice, and T. F. Lowry. Effect of partial spinal cord ablation on exercise hyperpnea in ponies. J. Appl. Physiol. 69: 1821–1827, 1990.
 376. Paterson, D. J. Potassium and ventilation in exercise. J. Appl. Physiol. 72: 811–820, 1992.
 377. Paterson, D. J., J. S. Friedland, D. O. Oliver, and P. A. Robbins. The ventilatory response to lowering potassium with dextrose and insulin in subjects with hyperkalemia. Respir. Physiol. 76: 393–398, 1989.
 378. Perez‐Gonzalez, J. F. Factors determining the blood pressure responses to isometric exercise. Circ. Res. 48: I‐76–I‐86, 1981.
 379. Pernoll, M. L., J. Metcalfe, P. A. Kovach, R. Wachtel, and M. Dunham. Ventilation during rest and exercise in pregnancy and postpartum. Respir. Physiol. 25: 295–310, 1975.
 380. Phillipson, E. A., G. Bowes, E. R. Townsend, J. Duffin, and J. D. Cooper. Role of metabolic CO2 production in ventilatory response to steady‐state exercise. J. Clin. Invest. 68: 768–774, 1981.
 381. Phillipson, E. A., J. Duffin, and J. D. Cooper. Critical dependence of respiratory rhythmicity on metabolic CO2 load. J. Appl. Physiol. 50: 45–54, 1981.
 382. Phillipson, E. A., R. F. Hickey, C. R. Bainton, and J. A. Nadel. Effect of vagal blockade on regulation of breathing in conscious dogs. J. Appl. Physiol. 29: 475–479, 1970.
 383. Pickar, J. G., J. M. Hill, and M. P. Kaufman. Stimulation of vagal afferents inhibits locomotion in mesencephalic cats. J. Appl. Physiol. 74: 103–110, 1993.
 384. Pickar, J. G., J. M. Hill, and M. P. Kaufman. Dynamic exercise stimulates group III muscle afferents. J. Neurophysiol. 71: 753–760, 1994.
 385. Pitetti, K. H., G. A. Iwamoto, J. H. Mitchell, and G. A. Ordway. Stimulating somatic afferent fibers alters coronary arterial resistance. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R1331–R1339, 1989.
 386. Pomeranz, B., P. D. Wall, and W. V. Weber. Cord cells responding to fine myelinated afferents from viscera, muscle, and skin. J. Physiol. (Lond.) 199: 511–532, 1968.
 387. Ponte, J., and M. J. Purves. Carbon dioxide and venous return and their interaction as stimuli to ventilation in the cat. J. Physiol. (Lond.) 274: 445–475, 1978.
 388. Poon, C.‐S. Ventilatory control in hypercapnia and exercise: optimization hypothesis. J. Appl. Physiol. 62: 2447–2459, 1987.
 389. Pryor, S. L., S. F. Lewis, R. G. Haller, L. A. Bertocci, and R. G. Victor. Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle's disease). J. Clin. Invest. 85: 1444–1449, 1990.
 390. Quest, J. A., and G. L. Gebber. Modulation of baroreceptor reflex by somatic afferent nerve stimulation. Am. J. Physiol. (Lond.) 222: 1251–1259, 1972.
 391. Radhakrishnan, V., and J. L. Henry. Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord. Neuroscience 55: 531–544, 1993.
 392. Randic, M., and V. Miletic. Effects of substance P in cat spinal dorsal horn neurones activated by noxious stimuli. Brain Res. 128: 164–169, 1977.
 393. Richard, C. A., T. G. Waldrop, R. M. Bauer, J. H. Mitchell, and R. W. Stremel. The nucleus reticularis gigantocellularis modulates the cardiopulmonary responses to central and peripheral drives related to exercise. Brain Res. 482: 49–56, 1989.
 394. Risling, M., C.‐J. Dalsgaard, A. Cukierman, and A. C. Cuello. Electron microscopic and immunohistochemical evidence that unmyelinated ventral root axons make u‐turns or enter the spinal pia mater. J. Comp. Neurol. 225: 53–63, 1984.
 395. Roberts, A. M., M. P. Kaufman, D. G. Baker, J. K. Brown, H. M. Coleridge, and J. C. G. Coleridge. Reflex tracheal contraction induced by stimulation of bronchial C‐fibers in dogs. J. Appl. Physiol. 51: 485–493, 1981.
 396. Roberts, P. J. The release of amino acids with proposed neurotransmitter function from the cuneate and gracile nuclei of the rat in vivo. Brain Res. 67: 419–428, 1974.
 397. Ross, C. A., D. A. Ruggiero, D. H. Park, and D. J. Reis. Rostral ventrolateral medulla: selective projection in the thoracic autonomic cell column from the region containing C1 autonomic neurons. J. Comp. Neurol. 228: 168–185, 1984.
 398. Rotto, D. M., J. M. Hill, H. D. Schultz, and M. P. Kaufman. Cyclooxygenase blockade attenuates the responses of group IV muscle afferents to static contraction. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H745–H750, 1990.
 399. Rotto, D. M., and M. P. Kaufman. Effects of metabolic‐products of muscular contraction on the discharge of group III and IV afferents. J. Appl. Physiol. 64: 2306–2313, 1988.
 400. Rotto, D. M., H. D. Schultz, J. C. Longhurst, and M. P. Kaufman. Sensitization of group III muscle afferents to static contraction by products of arachidonic acid metabolism. J. Appl. Physiol. 68: 861–867, 1990.
 401. Rotto, D. M., C. L. Stebbins, and M. P. Kaufman. Reflex cardiovascular and ventilatory responses to increasing H+ activity in cat hindlimb muscle. J. Appl. Physiol. 67: 256–263, 1989.
 402. Rowell, L. B., L. Hermansen, and J. R. Blackmon. Human cardiovascular and respiratory responses to graded muscle ischemia. J. Appl. Physiol. 41: 693–701, 1976.
 403. Rowell, L. B., M. V. Savage, J. Chambers, and J. R. Blackmon. Cardiovascular responses to graded reductions in leg perfusion in exercising humans. Am. J. Physiol. 261 (Heart Circ. Physiol. 30): H1545–H1553, 1991.
 404. Rowell, L. B., and D. D. Sheriff. Are muscle “chemoreflexes” functionally important? News Physiol. Sci. 3: 240–253, 1988.
 405. Ruggiero, D. A., P. Gatti, R. A. Gillis, W. P. Norman, M. Anwar, D. J. Reis, and D. H. Park. Adrenaline synthesizing neurons in the medulla of the cat. J. Comp. Neurol. 252: 532–542, 1986.
 406. Russell, J. A. Noradrenergic inhibitory innervation of canine airways. J. Appl. Physiol. 48: 16–22, 1980.
 407. Rybicki, K. J., and M. P. Kaufman. Stimulation of group III and IV muscle afferents reflexly decreases total pulmonary resistance in dogs. Respir. Physiol. 59: 185–195, 1985.
 408. Rybicki, K. J., M. P. Kaufman, J. L. Kenyon, and J. H. Mitchell. Arterial pressure responses to increasing interstitial potassium in hindlimb muscle of dogs. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R717–R721, 1984.
 409. Rybicki, K. J., T. G. Waldrop, and M. P. Kaufman. Increasing gracilis interstitial potassium concentrations stimulates group III and IV afferents. J. Appl. Physiol. 58: 936–941, 1985.
 410. Sacks, R. D., and R. R. Roy. Architecture of the hindlimb muscles of cats: functional significance. J. Morphol. 173: 185–195, 1982.
 411. Saito, M., M. Naito, and T. Mano. Different responses in skin and muscle sympathetic nerve activity to static muscle contraction. J. Appl. Physiol. 69: 2085–2090, 1990.
 412. Sakurai, M., W. Hiba, T. Chonan, Y. Kikuchi, and T. Takishima. Responses of upper airway muscles to gastrocnemius muscle contraction in dogs. Respir. Physiol. 84: 311–321, 1991.
 413. Sant'ambrogio, G., and F. B. Sant'ambrogio. Reflexes from the airway, lung, chest, wall, and limbs. In: The Lung: Scientific Foundation, edited by R. G. Crystal, J. B. West, et al. New York: Raven Press, 1991, p. 1383–1395.
 414. Sato, A., Y. Sato, and R. F. Schmidt. Heart rate changes reflecting modifications of efferent cardiac sympathetic outflow by cutaneous and muscle afferent volleys. J. Auton. Nerv. Syst. 4: 231–241, 1981.
 415. Sato, A., Y. Sato, and R. F. Schmidt. Changes in heart rate and blood pressure upon injection of algesic agents into skeletal muscle. Pflugers Arch. 393: 31–36, 1982.
 416. Sato, A., and R. F. Schmidt. Spinal and supraspinal components of the reflex discharges into lumbar and thoracic white rami. J. Physiol. (Lond.) 212: 839–850, 1971.
 417. Saunders, K. B. Oscillations of arterial CO2 tension in a respiratory model: some implications for the control of breathing in exercise. J. Theor. Biol. 84: 163–179, 1980.
 418. Savin, W. M., W. L. Haskell, J. S. Schroeder, and E. B. Stinson. Cardio‐respiratory responses of cardiac transplant patients to graded, symptom‐limited exercise. Circulation 45: 1183–1194, 1980.
 419. Schaefer, S. L., and G. S. Mitchell. Ventilatory control during exercise with peripheral chemoreceptor stimulation: hypoxia versus domperidome. J. Appl. Physiol. 67: 2438–2446, 1989.
 420. Scherrer, U., S. L. Pryor, L. A. Bertocci, and R. G. Victor. Arterial baroreflex buffering of sympathetic activation during exercise‐induced elevations in arterial pressure. J. Clin. Invest. 86: 1855–1861, 1990.
 421. Schmidt, R. F., and E. Weller. Reflex activity in the cervical and lumbar sympathetic trunk induced by unmyelinated somatic afferents. Brain Res. 24: 207–218, 1970.
 422. Schneider, S. P., and E. R. Perl. Selective excitation of neurons in the mammalian spinal dorsal horn by asparate and glutamate in vitro: correlation with location and excitatory input. Brain Res. 360: 339–343, 1985.
 423. Schneider, S. P., and E. R. Perl. Comparison of primary afferent and glutamate excitation of neurons in the mammalian spinal dorsal horn. J. Neurosci. 8: 2062–2073, 1988.
 424. Schoener, E. P., and H. M. Frankel. Effect of hyperthermia and Paco2 on the slowly adapting pulmonary stretch receptor. Am. J. Physiol. 222: 62–72, 1972.
 425. Schwarcz, R., T. Hökfelt, K. Fuxe, G. Jonsson, M. Goldstein, and L. Terenius. Ibotenic acid–induced neuronal degeneration: a morphological and neurochemical study. Exp. Brain Res. 37: 199–216, 1979.
 426. Seals, D. R. Sympathetic neural discharge and vascular resistance during exercise in humans. J. Appl. Physiol. 66: 2472–2478, 1989.
 427. Senapati, J. M. Effect of stimulation of muscle afferents on ventilation of dogs. J. Appl. Physiol. 21: 242–246, 1966.
 428. Sharratt, M. T., K. G. Henke, D. F. Pegelow, E. Aaron, and J. Dempsey. Exercise‐induced changes in functional residual capacity. Respir. Physiol. 70: 313–326, 1988.
 429. Sheldon, J. I., and J. F. Green. Evidence for pulmonary CO2 chemosensitivity: effects on ventilation. J. Appl. Physiol. 52: 1192–1197, 1982.
 430. Sheriff, D. D., D. S. O'Leary, A. M. Scher, and L. B. Rowell. Baroreflex attenuates pressor response to graded muscle ischemia in exercising dogs. Am. J. Physiol. 258 (Heart Circ. Physiol. 27): H305–H310, 1990.
 431. Sheriff, D. D., C. R. Wyss, L. B. Rowell, and A. M. Scher. Does inadequate oxygen delivery trigger pressor response to muscle hypoperfusion during exercise? Am. J. Physiol. 253 (Heart Circ. Physiol. 22): H1199–H1207, 1987.
 432. Shin, H. K., J. Kim, S. C. Nam, K. S. Paik, and J. M. Chung. Spinal entry route for ventral root afferent fibers in the cat. Exp. Neurol. 94: 714–725, 1986.
 433. Silverman, L., G. Lee, T. Plotkin, L. A. Sawyers, and A. R. Yancy. Airflow measurements on human subjects with and without respiratory resistance at several work rates. Arch. Indust. Hygiene 3: 461–478, 1951.
 434. Simone, D. A., P. Marchettini, G. Caputi, and J. L. Ochoa. Identification of muscle afferents subserving sensation of deep pain in humans. J. Neurophysiol. 72: 883–889, 1994.
 435. Sinoway, L., S. Prophet, I. Gorman, T. J. Mosher, J. Shenberger, M. Dolecki, R. Briggs, and R. Zelis. Muscle acidosis during static exercise is associated with calf vasoconstriction. J. Appl. Physiol. 66: 429–436, 1989.
 436. Sinoway, L. I., J. M. Hill, J. G. Pickar, and M. P. Kaufman. Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. J. Neurophysiol. 69: 1053–1059, 1993.
 437. Sinoway, L. I., R. F. Rea, T. J. Mosher, M. B. Smith, and A. L. Mark. Hydrogen ion concentration is not the sole determinant of muscle metaboreceptor responses in humans. J. Clin. Invest. 89: 1875–1884, 1992.
 438. Sinoway, L. I., M. B. Smith, B. Enders, U. Leuenberger, T. Dzwonczyk, K. Gray, S. Whisier, and R. L. Moore. Role of diprotonated phosphate in evoking muscle reflex responses in cats and humans. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H770–H778, 1994.
 439. Sinoway, L. I., K. J. Wroblewski, S. A. Prophet, S. M. Ettinger, K. S. Gray, S. K. Whisier, G. Miller, and R. L. Moore. Glycogen depletion‐induced lactate reductions attenuate reflex responses in exercising humans. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H1499–H1505, 1992.
 440. Skoglund, C. R. Vasomotor reflexes from muscle. Acta Physiol. Scand. 50: 311–327, 1960.
 441. Smith, C. A., K. W. Saupe, K. S. Henderson, and J. A. Dempsey. Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. J. Appl. Physiol. 79: 689–699, 1995.
 442. Smullin, D. H., S. R. Skilling, and A. A. Larson. Interactions between substance P, calcitonin gene‐related peptide, taurine and excitatory amino acids in the spinal cord. Pain 42: 93–101, 1990.
 443. Solomon, I. C., A. M. Motekaitis, M. K. C. Wong, and M. P. Kaufman. NMDA receptors in the caudal ventrolateral medulla mediate the reflex airway dilation arising from the hindlimb. J. Appl. Physiol. 77: 1697–1704, 1994.
 444. Somjen, G. G. The missing error signal—regulation beyond negative feedback. News Physiol. Sci. 7: 184–185, 1992.
 445. Stebbins, C. L., B. Brown, D. Levin, and J. C. Longhurst. Reflex effect of skeletal muscle mechanoreceptor stimulation on the cardiovascular system. J. Appl. Physiol. 65: 1539–1547, 1988.
 446. Stebbins, C. L., O. A. Carretero, T. Mindroiu, and J. C. Longhurst. Bradykinin release from contracting skeletal muscle of the cat. J. Appl. Physiol. 69: 1225–1230, 1990.
 447. Stebbins, C. L., and J. C. Longhurst. Bradykinin‐induced chemoreflexes from skeletal muscle: implications for the exercise reflex. J. Appl. Physiol. 59: 56–63, 1985.
 448. Stebbins, C. L., and J. C. Longhurst. Potentiation of the exercise pressor reflex by muscle ischemia. J. Appl. Physiol. 66: 1046–1053, 1989.
 449. Stebbins, C. L., A. Ortiz‐Acevedo, and J. M. Hill. Spinal vasopressin modulates the reflex cardiovascular response to static contraction. J. Appl. Physiol. 72: 731–738, 1992.
 450. Steinbrook, R. A., S. Javaheri, R. A. Gabel, J. C. Donovan, D. E. Leith, and V. Fencl. Regulation of chemodenervated goats in acute metabolic acidosis. Respir. Physiol. 56: 51–60, 1984.
 451. Stornetta, R., S. F. Morrison, D. A. Ruggiero, and D.J. Reis. Neurons of the rostral ventrolateral medulla mediate somatic pressor reflex. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R448–R462, 1989.
 452. Strange, S., N. H. Secher, J. A. Pawelczyk, J. Karpakka, N. J. Christensen, J. H. Mitchell, and B. Saltin. Neural control of cardiovascular responses and of ventilation during dynamic exercise in man. J. Physiol. (Lond.) 470: 693–704, 1993.
 453. Streatfeild, K. A., N. S. Davidson, and D. I. McCloskey. Muscular reflex and baroreflex influences on heart rate during isometric contractions. Cardiovasc. Res. 11: 87–93, 1977.
 454. Stremel, R. W., B. J. Whipp, R. Casaburi, D. J. Huntsman, and K. Wasserman. Hypopnea consequent to reduced pulmonary blood flow in the dog. J. Appl. Physiol. 46: 1171–1177, 1979.
 455. Strohl, K. P., M. P. Norcia, A. D. Wolin, M. A. Haxhiu, E. Vanlunteren, and E. C. Deal, Jr.. Nasal and tracheal responses to chemical and somatic afferent stimulation in anesthetized cats. J. Appl. Physiol. 65: 870–877, 1988.
 456. Swett, J., and C. J. Woolf. The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J. Comp. Neurol. 231: 66–77, 1985.
 457. Takahashi, E., K. Tejima, and K.‐I. Yamakoshi. Entrainment of respiratory rhythm to respiratory oscillations of arterial pco2 in vagotomized dogs. J. Appl. Physiol. 73: 1052–1057, 1992.
 458. Tallarida, G., F. Baldoni, G. Peruzzi, F. Brindisi, G. Raimondi, and M. Sangiorgi. Cardiovascular and respiratory chemoreflexes from the hindlimb sensory receptors evoked by intra‐arterial injection of bradykinin and other chemical agents in the rabbit. J. Pharmacol. Exp. Ther. 208: 319–329, 1979.
 459. Tallarida, G., F. Baldoni, G. Peruzzi, G. Raimondi, P. Di Nardo, M. Massaro, G. Visigalli, G. Franconi, and M. Sangiorgi. Cardiorespiratory reflexes from muscles during dynamic and static exercise in the dog. J. Appl. Physiol. 58: 844–852, 1985.
 460. Tallarida, G., F. Baldoni, G. Peruzzi, G. Raimondi, M. Massaro, A. Abate, and M. Sangiorgi. Different patterns of respiratory responses to chemical stimulation of muscle receptors in the rabbit. J. Pharmacol. Exp. Ther. 223: 552–559, 1982.
 461. Tallarida, G., F. Baldoni, G. Peruzzi, G. Raimondi, M. Massaro, A. Abate, and M. Sangiorgi. Different patterns of respiratory reflexes originating in exercising muscle. J. Appl. Physiol. 55: 84–91, 1983.
 462. Tallarida, G., F. Baldoni, G. Peruzzi, G. Raimondi, M. Massaro, and M. Sangiorgi. Cardiovascular and respiratory reflexes from muscles during dynamic and static exercise. J. Appl. Physiol. 50: 784–791, 1981.
 463. Teppema, L. J. P. W., J. A. Barts, and J. A. M. Evers. The effect of the phase relationship between the arterial blood gas oscillations and central neural respiratory activity on phrenic motoneuronone output in cats. Respir. Physiol. 61: 301–316, 1985.
 464. Teppema, L. J. P., W. J. A. Barts, H. T. Folgering, and J. A. M. Evers. Effects of respiratory and (isocapnic) metabolic arterial acid–base disturbances on medullary extra‐cellular fluid pH and ventilation in cats. Respir. Physiol. 53: 379–395, 1983.
 465. Thames, M. D., and F. M. Abboud. Interaction of somatic and cardiopulmonary receptors in control of renal circulation. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H560–H565, 1979.
 466. Thimm, F., and K. Baum. Response of chemosensitive nerve fibers of group III and IV to metabolic changes in rat muscles. Pflugers Arch. 410: 143–152, 1987.
 467. Thimm, F., M. Carvalho, M. Babka, and E. M. Zu Verl. Reflex increases in heart rate induced by perfusing the hind leg of the rat with solutions containing lactic acid. Pflugers Arch. 400: 286–293, 1984.
 468. Tibes, U. Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles: Some evidence for involvement of group HI or IV nerve fibers. Circ. Res. 41: 332–341, 1977.
 469. Uchida, Y. Tachypnea after stimulation of afferent cardiac sympathetic nerve fibers. Am. J. Physiol. 230: 1003–1007, 1976.
 470. Victor, R. G., L. A. Bertocci, S. L. Pryor, and R. L. Nunnally. Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J. Clin. Invest. 82: 1301–1305, 1988.
 471. Victor, R. G., S. L. Pryor, N. H. Secher, and J. H. Mitchell. Effects of partial neuromuscular blockade on sympathetic nerve responses to static exercise in humans. Circ. Res. 65: 468–476, 1989.
 472. Victor, R. G., D. M. Rotto, S. L. Pryor, and M. P. Kaufman. Stimulation of renal sympathetic activity by static contraction: evidence for mechanoreceptor‐induced reflexes from skeletal muscle. Circ. Res. 64: 592–599, 1989.
 473. Victor, R. G., and D. R. Seals. Reflex stimulation of sympathetic outflow during rhythmic exercise in humans. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H2017–H2024, 1989.
 474. Victor, R. G., D. R. Seals, and A. L. Mark. Differential control of heart rate and sympathetic nerve activity during dynamic exercise. J. Clin. Invest. 79: 508–516, 1987.
 475. Vissing, J., L. B. Wilson, J. H. Mitchell, and R. G. Victor. Static muscle contraction reflexly increases adrenal sympathetic nerve activity in rats. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 30): R1307–R1312, 1991.
 476. Vissing, S. F., U. Scherrer, and R. G. Victor. Stimulation of skin sympathetic nerve discharge by central command. Circ. Res. 69: 228–238, 1991.
 477. Von During, M., and K. H. Andres. Topography and ultrastructure of group III and IV nerve terminals of cat's gastrocnemius‐soleus muscle. In: The Primary Afferent Neuron: A Survey of Recent Morpho‐functional Aspects, edited by W. Zenker and W. L. Neuhuber. New York: Plenum Press, 1990, p. 35–41.
 478. Waldrop, T. G., M. C. Henderson, G. A. Iwamoto, and J. H. Mitchell. Regional blood flow responses to stimulation of the subthalamic locomotor region. Respir. Physiol. 64: 93–102, 1986.
 479. Waldrop, T. G., and J. H. Mitchell. Effects of barodenervation on cardiovascular response to static muscular contraction. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H710–H714, 1985.
 480. Waldrop, T. G., D. C. Mullins, and M. C. Henderson. Effects of hypothalamic lesions on the cardiorespiratory responses to muscular contraction. Respir. Physiol. 66: 215–224, 1986.
 481. Waldrop, T. G., K. J. Rybicki, and M. P. Kaufman. Chemical activation of group I and II muscle afferents has no cardiorespiratory effects. J. Appl. Physiol. 56: 1223–1228, 1984.
 482. Waldrop, T. G., and R. W. Stremel. Muscular contraction stimulates posterior hypothalamic neurons. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R348–R356, 1989.
 483. Walgenbach, S. C., and D. E. Donald. Inhibition by carotid baroreflex of exercise‐induced increases in arterial pressure. Circ. Res. 52: 253–262, 1983.
 484. Ward, S. A., and B. J. Whipp. Phase‐coupling of arterial blood‐gas oscillations and ventilatory dynamics during exercise in humans. FASEB J. 7: 3664, 1993.
 485. Warner, M. M., and G. S. Mitchell. Ventilatory responses to hyperkalemia and exercise in normoxic and hypoxic goats. Respir. Physiol. 82: 239–250, 1990.
 486. Warren, J. B., S. J. Jennings, and T. J. H. Clark. Effect of adrenergic and vagal blockade on the normal human airway response to exercise. Clin. Sci. 66: 79–85, 1984.
 487. Wasserman, K., B. J. Whipp, R. Casaburi, M. Golden, and W. L. Beaver. Ventilatory control during exercise in man. Bull. Eur. Physiopathol. Respir. 15: 27–47, 1979.
 488. Wasserman, K., B. J. Whipp, R. Casaburi, D. J. Huntsman, J. Castagna, and R. Lugliani. Regulation of arterial PCO2 during intravenous CO2 loading. J. Appl. Physiol. 38: 651–656, 1975.
 489. Wasserman, K., B. J. Whipp, and J. Castagna. Cardiohydynamic hyperpnea: hyperpnea secondary to cardiac output increase. J. Appl. Physiol. 36: 457–464, 1974.
 490. Wasserman, K., B. J. Whipp, S. N. Koyal, and M. G. Geary. Effect of carotid body resection on ventilatory and acid–base control during exercise. J. Appl. Physiol. 39: 354–358, 1975.
 491. Webb‐Peploe, M. M., D. Brender, and J. T. Shepherd. Vascular responses to stimulation of receptors in muscle by capsaicin. Am. J. Physiol. 222: 189–195, 1972.
 492. Weil, J. V., E. Byrne‐Quinn, I. E. Sodal, J. S. Kline, R. E. McCullough, and G. F. Filley. Augmentation of chemosensitivity during mild exercise in normal man. J. Appl. Physiol. 33: 813–819, 1972.
 493. Weissman, M. L., B. J. Whipp, D. J. Huntsman, and K. Wasserman. Role of neural afferents from working limbs in exercise hyperpnea. J. Appl. Physiol. 49: 239–248, 1980.
 494. Wetzel, M. C., and D. G. Stuart. Ensemble characteristics of cat locomotion and its neural control. Prog. Neurobiol. 7: 1–98, 1976.
 495. Wheatley, J. R., T. C. Amis, and L. A. Engel. Oro‐nasal partitioning of ventilation during exercise in man. J. Appl. Physiol. 71: 546–551, 1991.
 496. Whipp, B. J. Control of exercise hyperpnea. In: Regulation of Breathing Part II, edited by T. F. Hornbein. New York: Marcel Dekker, Inc., 1981, p. 1069–1140.
 497. Widdicombe, J. B., and J. A. Nadel. Airway volume, airway resistance, and work and force of breathing: theory. J. Appl. Physiol. 18: 863–868, 1963.
 498. Widdicombe, J. G. Action potentials in parasympathetic and sympathetic efferent fibres to trachea and lungs of dogs and cats. J. Physiol. (Lond.) 186: 56–88, 1966.
 499. Widdicombe, J. G. Nervous receptors in the respiratory tract and lungs. In: Regulation of Breathing, Lung Biology in Health and Disease, edited by T. F. Hornbein. New York: Marcel Dekker, Inc., 1981, p. 429–473.
 500. Wiesenfeld‐Hallin, Z., T. Hokfelt, J. M. Lundberg, W. G. Forssmann, M. Reinecke, F. A. Tschopp, and J. A. Fischer. Immunoreactive calcitonin gene‐related peptide and substance P coexist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci. Lett. 52: 199–204, 1984.
 501. Wildenthal, K., D. S. Mierzwiak, N. S. Skinner, Jr., and J. H. Mitchell. Potassium‐induced cardiovascular and ventilatory reflexes from the dog hindlimb. Am. J. Physiol. 215: 542–548, 1968.
 502. Willette, R. N., S. Punnen, A. J. Krieger, and H. N. Sapru. Interdependence of rostral and caudal ventrolateral medullary areas in the control of blood pressure. Brain Res. 231: 169–174, 1984.
 503. Williams, C. A., J. R. Roberts, and D. B. Freels. Changes in blood pressure during isometric contractions to fatigue in the cat after brain stem lesions: effects of clonidine. Cardiovasc. Res. 24: 821–833, 1990.
 504. Williamson, J. W., J. H. Mitchell, H. L. Olesen, P. B. Raven, and N. H. Secher. Reflex increase in blood pressure induced by leg compression in man. J. Physiol. (Lond.) 475: 351–357, 1994.
 505. Williamson, J. W., P. B. Raven, B. H. Foresman, and B. J. Whipp. Evidence for an intramuscular ventilatory stimulus during dynamic exercise in man. Respir. Physiol. 94: 121–135, 1993.
 506. Wilson, L. B., I. E. Fuchs, K. Matsukawa, J. H. Mitchell, and P. T. Wall. Substance P release in the spinal cord during the exercise pressor reflex in anaesthetized cats. J. Physiol. (Lond.) 460: 79–90, 1993.
 507. Wilson, L. B., P. T. Wall, K. Matsukawa, and J. H. Mitchell. The effect of spinal microinjections of an antagonist to substance P or somatostatin on the exercise pressor reflex. Circ. Res. 70: 213–222, 1992.
 508. Woolf, C. J., and P. D. Wall. Chronic peripheral nerve section diminishes the primary afferent A‐fibre mediated inhibition of rat dorsal horn neurons. Brain Res. 242: 77–85, 1982.
 509. Wyss, C. R., J. L. Ardell, A. M. Scher, and L. B. Rowell. Cardiovascular responses to graded reductions in hindlimb perfusion in exercising dogs. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H481–H486, 1983.
 510. Yamamoto, I. H., and M. W. Edwards. Homeostasis of CO2 during intravenous infusion of CO2. J. Appl. Physiol. 15: 807–818, 1960.
 511. Yamamoto, W. S. Looking at the regulation of ventilation as a signalling process. In: Muscular Exercise and the Lung, edited by J. A. Dempsey and C. E. Reed. Madison, WI: University of Wisconsin, 1977, p. 137–149.
 512. Yamashiro, S. M., and F. S. Grodins. Optimal regulation of respiratory airflow. J. Appl. Physiol. 30: 597–602, 1971.
 513. Yoshimura, M., and T. Jessell. Amino acid‐mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J. Physiol. (Lond.) 430: 315–335, 1990.
 514. Young, I. H., and A.J. Woolcock. Changes in arterial blood gas tension during unsteady‐state exercise. J. Appl. Physiol. 44: 93–96, 1978.
 515. Zechman, F., F. G. Hull, and W. E. Hull. Effects of graded resistance to tracheal air flow in man. J. Appl. Physiol. 10: 356–362, 1967.
 516. Zhan, W.‐Z., H. H. Ellenberger, and J. L. Feldman. Monoaminergic and GABAergic terminations in phrenic nucleus of rat identified by immunohistochemical labeling. Neuroscience 31: 105–113, 1989.
 517. Zuntz, N., and J. Geppert. Ueber die natur der normalen atemreize und den ort ihrer wirkung. Arch. Gen. Physiol. 38: 337–338, 1886.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Marc P. Kaufman, Hubert V. Forster. Reflexes Controlling Circulatory, Ventilatory and Airway Responses to Exercise. Compr Physiol 2011, Supplement 29: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems: 381-447. First published in print 1996. doi: 10.1002/cphy.cp120110