Comprehensive Physiology Wiley Online Library

Control of Glycolysis and Glycogen Metabolism

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Importance of Glycolysis in Skeletal Muscle at Rest and During Exercise
2 General Overview of the Glycolytic Pathway
2.1 ATP Supply
2.2 Support of Other Metabolic Needs
3 Properties of Glycogen and Associated Enzymes
3.1 Structure of Glycogen
3.2 Control of GP
3.3 Control of GS
3.4 Integrated Control of GP and GS During Exercise
4 Other Specific Glycolytic Enzyme Controls
4.1 Equilibrium Group
4.2 Phosphofructokinase
4.3 Aldolase
4.4 Glyceraldehydephosphate Dehydrogenase and Phosphoglycerate Kinase (PGK)
4.5 Phosphoglycerate Mutase and Enolase
4.6 Pyruvate Kinase
4.7 Lactate Dehydrogenase
5 Carbohydrate Utilization at Rest and During Exercise
5.1 Diurnal Variations of Body Stores at Rest
5.2 CHO Utilization during Exercise
5.3 Control of Glycogenolysis during Heavy Exercise
6 Postexercise Glycogen Synthesis and its Control
6.1 Resynthesis of Muscle Glycogen After Exercise
6.2 Regulatory Mechanisms
7 Muscle Glycogen Metabolism and Fatigue
7.1 Importance of CHO during Prolonged Exercise
7.2 Importance of Glycogen during High‐Intensity Exercise
8 Integrative Aspects of Glycolytic Control and Future Directions (K. Sahlin)
8.1 Rest‐Work Transition
8.2 Future Directions
9 Integrative Aspects of Glycolytic Control and Future Directions (R. J. Connett)
9.1 Systems Analysis
9.2 Cellular Oxygen Tension and Lactate Formation
9.3 Summary
9.4 State of the Phosphate Energy System
9.5 Cytosolic pH
9.6 Substrate Effects
9.7 Future Directions
Figure 1. Figure 1.

Schematic diagram of biochemical system in muscle. Subsystems are indicated by rectangles. Those with a T indicate specialized transport systems. Important reactant pools are shown in ellipses. Solid arrows indicate material flow; dashed arrows, flow of information.

Figure 2. Figure 2.

Metabolic pathways of glycogen metabolism. Numbers refer to the following enzymes: 1, glycogen phosphorylase; 2, UDP‐glucose pyrophosphorylase; 3, glycogen synthase; 4, branching enzyme; 5, debranching enzyme; 6, hexokinase; 7, phosphog‐lucomutase; 8, phosphoglucose isomerase.

Figure 3. Figure 3.

Control of glycogenolysis by phosphorylation/dephos‐phorylation of glycogen phosphorylase. cAMP‐PK, cAMP‐dependent protein kinase; Epi, epinephrine; Ins‐PK, insulin‐dependent protein kinase; PKb, unphosphorylated protein kinase; PKa, phosphorylated protein kinase; PP, protein phosphatase; GPa, glycogen phosphorylase a; GPb, glycogen phosphorylase b. Filled arrows denote enzymatic reaction or connect active enzyme with catalyzed reaction. Dashed arrows connect enzyme, which can be active under some conditions with catalyzed reaction. Dotted arrows denote activation (+) or inhibition (‐) of indicated enzyme. All substrates and products in metabolic reactions are not shown.

Figure 4. Figure 4.

Control of glycogen synthesis by covalent modification of glycogen synthase. GSd, phosphorylated glycogen synthase (G6P dependent form); GSi, unphosphorylated glycogen synthase; PK, Ca2+‐dependent and other protein kinases; G6P, glucose 6‐phosphate. See legend of Figure 3 for further details.

Figure 5. Figure 5.

Control of glycogenolysis during exercise. The feedback inhibition of GP by increases in H+ may involve both reduced covalent activation of GP, decreased availability of active substrate (), and allosteric inhibition of Gpb by increases in G6P occurring secondary to inhibition of PFK. See text for further details. cAMP‐Pk, cAMP‐dependent protein kinase; Epi, epinephrine; Ins‐Pk, insulin‐dependent protein kinase; PP, protein phosphatase; GPa, glycogen phosphorylase a; GPb, glycogen phosphorylase b; Pkb, unphosphorylated protein kinase; Pka, phosphorylated protein kinase; Gsd, phosphorylated glycogen synthase; GSi, unphosphorylated gycogen synthase; Pk, Ca2+‐dependent and other protein kinase si GGP, glucose G‐phosphate.

Figure 6. Figure 6.

Outline of the glycolytic pathway from G6P to lactate. Solid lines show reactions. Dashed line indicates pathways included in Figure 2. G6P, glucose 6‐phosphate; F6P, fructose 6‐phosphate; FDP, fructose 1,6‐bisphosphate; DHAP, dihydrox‐yacetone phosphate; GA3P, glyceraldehyde 3‐phosphate; 3PG, 3‐phosphoglycerate; 2PG, 2‐phosphoglycerate; PEP, phosphoenolpyruvate. Numbers refer to enzymes: 1, hexokinase; 2, phosphoglucoisomerase; 3, phosphofructokinase (PFK); 4, aldolase; 5, triosephosphate isomerase; 6, combined glyceraldehyde phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) steps; 7, phosphoglycerate mutase; 8, enolase; 9, pyruvate kinase; 10, lactate dehydrogenase (LDH).

Figure 7. Figure 7.

Rate of pyruvate formation and pyruvate oxidation in muscle at rest and during exercise in muscle at different workloads. Rate of pyruvate oxidation was calculated from O2 consumption and estimated or measured respiratory exchange ratio. Rate of pyruvate production was calculated from the accumulation in muscle of lactate, pyruvate, alanine, and acetylcarnitine + release of lactate + rate of pyruvate oxidation. (Data are from 147, 232, 233.)

Figure 8. Figure 8.

Normalized metabolite concentrations as a function of high‐energy phosphate. All values were computed using pH = 7.0, [Mg2+] = 1 mM, and total free adenine nucleotide pool (ADt) = 0.2 × total creatine pool. Fc, [PCr]/[total creatine]; Ratp, [ATP]/[ADt]; Radp, [ADP]/[ADt]; Ramp, [AMP]/[ADt]; Fpe, ([PCr] + 2[ATP] + ADP])/[total creatine].

After Connett 52
Figure 9. Figure 9.

Schematic of cytosolic redox subsystem. GAPDH, glyceraldehydephosphate dehydrogenase; GPDH, glycerolphosphate dehydrogenase; LDH, lactate dehydrogenase.

Figure 10. Figure 10.

Relationship between cytosolic redox potential and . Correlation between cytosolic redox potential as estimated from the [lactate]/[pyruvate] ratio and oxygen consumption in dog gracilis muscle.

From Connett and Gayeski 59
Figure 11. Figure 11.

System controls on glycolysis. Solid lines show carbon flow in pathway. Other lines indicate control interactions either allosteric or substrate effects. Details are given in the text.



Figure 1.

Schematic diagram of biochemical system in muscle. Subsystems are indicated by rectangles. Those with a T indicate specialized transport systems. Important reactant pools are shown in ellipses. Solid arrows indicate material flow; dashed arrows, flow of information.



Figure 2.

Metabolic pathways of glycogen metabolism. Numbers refer to the following enzymes: 1, glycogen phosphorylase; 2, UDP‐glucose pyrophosphorylase; 3, glycogen synthase; 4, branching enzyme; 5, debranching enzyme; 6, hexokinase; 7, phosphog‐lucomutase; 8, phosphoglucose isomerase.



Figure 3.

Control of glycogenolysis by phosphorylation/dephos‐phorylation of glycogen phosphorylase. cAMP‐PK, cAMP‐dependent protein kinase; Epi, epinephrine; Ins‐PK, insulin‐dependent protein kinase; PKb, unphosphorylated protein kinase; PKa, phosphorylated protein kinase; PP, protein phosphatase; GPa, glycogen phosphorylase a; GPb, glycogen phosphorylase b. Filled arrows denote enzymatic reaction or connect active enzyme with catalyzed reaction. Dashed arrows connect enzyme, which can be active under some conditions with catalyzed reaction. Dotted arrows denote activation (+) or inhibition (‐) of indicated enzyme. All substrates and products in metabolic reactions are not shown.



Figure 4.

Control of glycogen synthesis by covalent modification of glycogen synthase. GSd, phosphorylated glycogen synthase (G6P dependent form); GSi, unphosphorylated glycogen synthase; PK, Ca2+‐dependent and other protein kinases; G6P, glucose 6‐phosphate. See legend of Figure 3 for further details.



Figure 5.

Control of glycogenolysis during exercise. The feedback inhibition of GP by increases in H+ may involve both reduced covalent activation of GP, decreased availability of active substrate (), and allosteric inhibition of Gpb by increases in G6P occurring secondary to inhibition of PFK. See text for further details. cAMP‐Pk, cAMP‐dependent protein kinase; Epi, epinephrine; Ins‐Pk, insulin‐dependent protein kinase; PP, protein phosphatase; GPa, glycogen phosphorylase a; GPb, glycogen phosphorylase b; Pkb, unphosphorylated protein kinase; Pka, phosphorylated protein kinase; Gsd, phosphorylated glycogen synthase; GSi, unphosphorylated gycogen synthase; Pk, Ca2+‐dependent and other protein kinase si GGP, glucose G‐phosphate.



Figure 6.

Outline of the glycolytic pathway from G6P to lactate. Solid lines show reactions. Dashed line indicates pathways included in Figure 2. G6P, glucose 6‐phosphate; F6P, fructose 6‐phosphate; FDP, fructose 1,6‐bisphosphate; DHAP, dihydrox‐yacetone phosphate; GA3P, glyceraldehyde 3‐phosphate; 3PG, 3‐phosphoglycerate; 2PG, 2‐phosphoglycerate; PEP, phosphoenolpyruvate. Numbers refer to enzymes: 1, hexokinase; 2, phosphoglucoisomerase; 3, phosphofructokinase (PFK); 4, aldolase; 5, triosephosphate isomerase; 6, combined glyceraldehyde phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) steps; 7, phosphoglycerate mutase; 8, enolase; 9, pyruvate kinase; 10, lactate dehydrogenase (LDH).



Figure 7.

Rate of pyruvate formation and pyruvate oxidation in muscle at rest and during exercise in muscle at different workloads. Rate of pyruvate oxidation was calculated from O2 consumption and estimated or measured respiratory exchange ratio. Rate of pyruvate production was calculated from the accumulation in muscle of lactate, pyruvate, alanine, and acetylcarnitine + release of lactate + rate of pyruvate oxidation. (Data are from 147, 232, 233.)



Figure 8.

Normalized metabolite concentrations as a function of high‐energy phosphate. All values were computed using pH = 7.0, [Mg2+] = 1 mM, and total free adenine nucleotide pool (ADt) = 0.2 × total creatine pool. Fc, [PCr]/[total creatine]; Ratp, [ATP]/[ADt]; Radp, [ADP]/[ADt]; Ramp, [AMP]/[ADt]; Fpe, ([PCr] + 2[ATP] + ADP])/[total creatine].

After Connett 52


Figure 9.

Schematic of cytosolic redox subsystem. GAPDH, glyceraldehydephosphate dehydrogenase; GPDH, glycerolphosphate dehydrogenase; LDH, lactate dehydrogenase.



Figure 10.

Relationship between cytosolic redox potential and . Correlation between cytosolic redox potential as estimated from the [lactate]/[pyruvate] ratio and oxygen consumption in dog gracilis muscle.

From Connett and Gayeski 59


Figure 11.

System controls on glycolysis. Solid lines show carbon flow in pathway. Other lines indicate control interactions either allosteric or substrate effects. Details are given in the text.

References
 1. Achs, M. J., and D. Garfinkel. Computer simulation of energy metabolism in anoxic perfused rat heart Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 1): R164–R174, 1977.
 2. Achs, M. J., and D. Garfinkel. Computer simulation of rat heart metabolism after adding glucose to the perfusate. Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 1): R175–R184, 1977.
 3. Adams, G. R., J. M. Foley, and R. A. Meyer. Muscle buffer capacity estimated from pH changes during rest‐to‐work transitions. J. Appl. Physiol. 69: 968–972, 1990.
 4. Ahlborg, B., J. Bergström, L.‐G. Ekelund, G. Guarnieri, R. C. Harris, E. Hultman, and L.‐O. Nordesjö. Muscle metabolism during isometric exercise performed at constant force. J. Appl. Physiol. 33: 224–228, 1972.
 5. Aragon, J. J., and J. M. Lowenstein. The purine‐nucleotide cycle. Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Eur. J. Biochem. 110: 371–377, 1980.
 6. Aragon, J. J., K. Tornheim, and J. M. Lowenstein. On a possible role of IMP in the regulation of phosphorylase activity in skeletal muscle. Fed. Eur. Biochem. Soc. Lett. 117: K56–K64, 1980.
 7. Astrand, P.‐O., J. Hallback, R. Hedman, and B. Saltin. Blood lactates after prolonged severe exercise. J. Appl. Physiol. 18: 619–622, 1963.
 8. Astrand, P.‐O., E. Hultman, A. Juhlin‐Dannfelt, and G. Reynolds. Disposal of lactate during and after strenous exercise in humans. J. Appl. Physiol. 61: 338–343, 1986.
 9. Astrand, P.‐O., and K. Rodahl. Textbook of Work Physiology, 3rd edition. New York: McGraw‐Hill, 1986.
 10. Baldwin, K. M., W. W. Winder, R. L. Terjung, and J. O. Holloszy. Glycolytic enzymes in different types of skeletal muscle: adaptation to exercise. Am. J. Physiol. 225: 962–966, 1973.
 11. Bangsbo, J., T. E. Graham, B. Kiens, and B. Saltin. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J. Physiol. (Land.) 451: 205–227, 1992.
 12. Bar‐Tana, J., and Cleland, W. W. Rabbit muscle phosphofructokinase II. Product and dead end inhibition J. Biol. Chem. 249: 1271–1276, 1974.
 13. de Barsy, T., and H.‐G. Hers. Normal metabolism and disorders of carbohydrate metabolism. Baillieres Clin. Endocrinol. Metab. 4: 499–522, 1990.
 14. Bardosi, A., Eber, S. W., and Roessmann, U. Ultrastructural and histochemical abnormalities of skeletal muscle in a patient with a new variant (type Homburg) of glucosephosphate isomerase (GPI) deficiency. Clin. Neuropathol. 4: 72–76, 1985.
 15. Bass, A., A. Brdiczka, P. Eyer, S. Hofer, and D. Pette. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10: 198–206, 1969.
 16. Bergström, J. Muscle electrolytes in man. Scand. J. Clin. Lab. Invest. 14 (Suppl. 68): 1–110, 1962.
 17. Bergström, J., L. Hermansen, E. Hultman, and B. Saltin. Diet, muscle glycogen and physical performance. Acta. Physiol. Scand. 71: 140–150, 1967.
 18. Bergström, J., and E. Hultman. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature 1210: 309–310, 1966.
 19. Bergström, J., and E. Hultman. Synthesis of muscle glycogen in man after glucose and fructose infusion. Acta Med. Scand. 182: 93–107, 1967.
 20. Bergström, J., E. Hultman, and A. E. Roch‐Norlund. Muscle glycogen synthetase in normal subjects. Scand. J. Clin. Lab. Invest. 29: 231–236, 1972.
 21. Berry, M. N., A. R. Grivell, and P. G. Wallace. Energy‐dependent regulation of the steady‐state concentrations of the components of the lactate dehydrogenase reaction in liver. FEBS Lett. 119: 317–322, 1980.
 22. Bertocci, L. A., R. G. Haller, S. F. Lewis, J. L. Fleckenstein, and R. L. Nunnally. Abnormal high‐energy phosphate metabolism in human muscle phosphofructokinase deficiency. J. Appl. Physiol. 70: 1201–1207, 1991.
 23. Bloch, G., J. R. Chase, D. B. Meyer, M. J. Avison, G. I. Shulman, and R. G. Shulman. In vivo regulation of rat muscle glycogen resynthesis after intense exercise. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E85–E91, 1994.
 24. Blom, P. C. S., N. K. Vollestad, and D. L. Costill. Factors affecting changes in muscle glycogen concentration during and after prolonged exercise. Acta Physiol. Scand. 128 (Suppl. 556): 67–74, 1986.
 25. Blomstrand, E., B. Ekblom, and E. A. Newsholme. Maximum activities of key glycolytic and oxidative enzymes in human muscle from differently trained individuals. J. Physiol. (Lond.) 381: 111–118, 1986.
 26. Bosá, L., J. J. Aragón, and A. Sols. Modulation of muscle phosphofructokinase at physiological concentration of enzyme. J. Biol. Chem. 260: 2100–2107, 1985.
 27. Bresolin, N., Y. I. Ro, M. Reyes, A. F. Miranda, and D. Maura. Muscle phosphoglycerate mutase (PGAM) deficiency: A second case. Neurology 33: 1049–1053, 1983.
 28. Bristow, J., D. M. Bier, and L. G. Lange. Regulation of adult and fetal myocardial phosphofructokinase relief of cooperativity and competition between fructose 2,6‐bis‐phosphate, ATP, and citrate. J. Biol. Chem. 262: 2171–2175, 1987.
 29. Broberg, S., and K. Sahlin. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J. Appl. Physiol. 67: 116–122, 1989.
 30. Brooks, S. P., and K. B. Storey. The effect of enzyme‐enzyme complexes on the overall glycolytic rate in vivo. Biochem. Int. 25: 477–489, 1991.
 31. Brooks, S. P., and K. B. Storey. Where is the glycolytic complex? A critical evaluation of present data from muscle tissue. FEBS Lett. 278: 135–138, 1991.
 32. Brown, D. H., and C. F. Cori. Animal and plant polysaccharide phosphorylase. In: The Enzymes, edited by L. M. Boyer. New York: Academic Press, 1961.
 33. Busby, S. J. W., and G. K. Radda. Regulation of the glycogen phosphorylase system—from physical measurements to biological speculations. Curr. Top. Cell. Regul. 10: 89–160, 1976.
 34. Canela, E. I., I. Ginesta, and R. Franco. Simulation of the purine nucleotide cycle as an anaplerotic process in skeletal muscle. Arch. Biochem. Biophys. 254: 142–155, 1987.
 35. Cardenas, J. M., and R. D. Dyson. Bovine pyruvate kinases. II. Purification of the liver isozyme and its hybridization with skeletal muscle pyruvate kinase. J. Biol. Chem. 248: 6938–6944, 1973.
 36. Cardenas, J. M., R. D. Dyson, and J. J. Strandholm. Bovine pyruvate kinases. I. Purification and characterization of the skeletal muscle isozyme. J. Biol. Chem. 248: 6931–6937, 1972.
 37. Cartee, G. D., D. A. Young, M. D. Sleeper, J. Zierath, H. Wallberg‐Henriksson, and J. O. Holloszy. Prolonged increase in insulin‐stimulated glucose transport in muscle after exercise. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E494–E499, 1989.
 38. Castillo, C. E., A. Katz, M. K. Spencer, Z. Yan, and B. L. Nyomba. Fasting inhibits insulin‐mediated glycolysis and anaplerosis in human skeletal muscle. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E598–E605, 1991.
 39. Ceretelli, P., D. Pendergast, W. C. Paganelli, and D. W. Rennie. Effects of specific muscle training on VO2 on‐response and early blood lactate. J. Appl. Physiol. 47: 761–769, 1979.
 40. Chaliss, R. A. J., B. Crabtree, and E. A. Newsholme. Hormonal regulation of the rate of the glycogen/glucose‐1‐phosphate cycle in skeletal muscle. Eur. J. Biochem. 163: 205–210, 1987.
 41. Chasiotis, D. The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle. Acta Physiol. Scand. Suppl. 518: 1–68, 1983.
 42. Chasiotis, D., L. Edstrom, K. Sahlin, and H. Sjoholm. Activation of glycogen phosphorylase by electrical stimulation of isolated fast‐twitch and slow‐twitch muscles from rat. Acta Physiol. Scand. 123: 43–47, 1985.
 43. Chasiotis, D., E. Hultman, and K. Sahlin. Acidotic depression of cyclic AMP accumulation and phosphorylase b to a transformation in skeletal muscle of man. J. Physiol (Lond). 335: 197–204, 1983.
 44. Chasiotis, D., K. Sahlin, and E. Hultman. Regulation of glycogenolysis in human muscle at rest and during exercise. J. Appl. Physiol. 53: 708–715, 1982.
 45. Chasiotis, D., K. Sahlin, and E. Hultman. Regulation of glycogenolysis in human muscle in response to epinephrine infusion. J. Appl. Physiol. 54: 45–50, 1983.
 46. Cheetham, M. E., L. H. Boobis, L. Brooks, and C. Williams. Human muscle metabolism during sprint running. J. Appl. Physiol. 61: 54–60, 1986.
 47. Christensen, E. H., and O. Hansen. Arbeitsfähigkeit undernährung. IV. Hypoglykemie, Arbeitsfähigkeit und Ermudung. Scand. Arch. Physiol. 81: 160–181, 1939.
 48. Cohen, P. Muscle glycogen synthase. Enzymes 17: 461–497, 1986.
 49. Cohen, P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem. Sci. 17: 408–413, 1992.
 50. Conlee, R. K., R. C. Hickson, W. W. Winder, J. M. Hagberg, and J. O. Holloszy. Regulation of glycogen resynthesis in muscles of rats following exercise. Am. J. Physiol. 235 (Regulatory Integrative Comp. Physiol. 4): R145–R150, 1978.
 51. Conlee, R. K., J. A. McLane, M. J. Rennie, W. W. Winder, and J. O. Holloszy. Reversal of phosphorylase activation in muscle despite continued contractile activity. Am. J. Physiol. 237 (Regulatory Integrative Comp. Physiol. 6): R291–R296, 1979.
 52. Connett, R. J. Analysis of metabolic control: new insights using a scaled creatine kinase model. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R949–R959, 1988.
 53. Connett, R. J. Cytosolic pH during a rest‐to‐work transition in red muscle: application of enzyme equilibria. J. Appl. Physiol. 63: 2360–2365, 1987.
 54. Connett, R. J. Glycolytic regulation during an aerobic rest‐to‐work transition in dog gracilis muscle. J. Appl. Physiol. 63: 2366–2374, 1987.
 55. Connett, R. J. Glycolytic regulation during rest‐to‐work transition in dog gracilis muscle. J. Appl. Physiol. 63: 2370–2374, 1987.
 56. Connett, R. J. In vivo control of phosphofructokinase: system models suggest new experimental protocols. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R878–R888, 1989.
 57. Connett, R. J. In vivo glycolytic equilibria in dog gracilis muscle. J. Biol. Chem. 260: 3314–3320, 1985.
 58. Connett, R. J. The cytosolic redox is coupled to VO2: a working hypothesis. Adv. Exp. Med. Biol. 222: 133–142, 1988.
 59. Connett, R. J., T. E. J. Gayeski, and C. R. Hong. Does energy demand have an additional control in ischemia or are current models of metabolic control adequate at extremes? Adv. Exp. Med. Biol. 361: 509–520, 1994.
 60. Connett, R. J., T. E. J. Gayeski, and C. R. Honig. Lactate accumulation in fully aerobic, working dog gracilis muscle. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H120–H128, 1984.
 61. Connett, R. J., T. E. J. Gayeski, and C. R. Honig. Energy sources in fully aerobic rest‐work transitions: a new role for glycolysis. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H922–H929, 1985.
 62. Connett, R. J., T. E. J. Gayeski, and C. R. Honig. Lactate efflux is unrelated to intracellular PO2 in a working red muscle in situ. J. Appl. Physiol. 61: 402–408, 1986.
 63. Connett, R. J., and C. R. Honig. Regulation of VO2 in red muscle: do current biochemical hypotheses fit in vivo data? Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R898–R906, 1989.
 64. Connett, R. J., C. R. Honig, T. E. J. Gayeski, and G. A. Brooks. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J. Appl. Physiol. 68: 833–842, 1990.
 65. Consler, T. G., M. J. Jennewein, G. Z. Cai, and J. C. Lee. Synergistic effects of proton and phenylalanine on the regulation of muscle pyruvate kinase. Biochemistry 29: 10765–10771, 1990.
 66. Constable, S. H., R. J. Favier, and J. O. Holloszy. Exercise and glycogen depletion: effects on ability to activate muscle phosphorylase. J. Appl. Physiol. 60: 1518–1523, 1986.
 67. Constable, S. H., J. C. Young, M. Higuchi, and J. O. Holloszy. Glycogen resynthesis in leg muscles of rats during exercise. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R880–R883, 1984.
 68. Constantin‐Teodosiu, D., G. Cederblad, and E. Hultman. Pyruvate dehydrogenase complex activity and acetyl group accumulation in skeletal muscle during prolonged exercise. J. Appl. Physiol. 74: 1712–1718, 1993.
 69. Cooke, R., and E. Pate. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys. J. 48: 789–798, 1985.
 70. Cori, G. T. The effect of stimulation and recovery on the phosphorylase a content of muscle. J. Biol. Chem. 151: 31–38, 1945.
 71. Cornell, N. W., M. Leadbetter, and R. L. Veech. Effects of free magnesium concentration and ionic strength on equilibrium constants for the glyceraldehyde phosphate dehydrogenase and phosphoglycerate kinase reactions. J. Biol. Chem. 254: 6522–6527, 1979.
 72. Costill, D. L., E. Coyle, G. Dalsky, W. Evans, W. Fink, and D. Hoopes. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J. Appl. Physiol. 43: 695–699, 1977.
 73. Costill, D. L., D. D. Pascoe, W. J. Fink, R. A. Robergs, S. I. Barr, and D. Pearson. Impaired muscle glycogen resynthesis after eccentric exercise. J. Appl. Physiol. 69: 46–50, 1990.
 74. Costill, D. L., D. R. Pearson, and W. L. Fink. Impaired muscle glycogen storage after muscle biopsy. J. Appl. Physiol. 64: 2245–2248, 1988.
 75. Coyle, E. F. Carbohydrate supplementation during exercise. J. Nutr. 122 (Suppl. 3): 788–795, 1992.
 76. Danforth, W. H. Activation of glycolytic pathway in muscle. In: Control of Energy Metabolism, edited by B. Chance and R. W. Estabrook. New York: Academic Press, 1965, p. 287–296.
 77. Danforth, W. H. Glycogen synthetase activity in skeletal muscle: interconversion of two forms and control of glycogen synthesis. J. Biol. Chem. 240: 588–593, 1965.
 78. Danforth, W. H., E. Helmreich, and C. F. Cori. The effect of contraction and of epinephrine on the phosphorylase activity of frog sartorius muscle. Biochemistry 48: 1191–1199, 1962.
 79. Danforth, W. H., and J. B. Lyon. Glycogenolysis during tetanic contraction of isolated mouse muscles in the presence and absence of phosphorylase a. J. Biol. Chem. 239: 4047–4050, 1964.
 80. Davies, C. T. M., and M. W. Thompson. Aerobic performance of female marathon and male ultramarathon athletes. Eur. J. Appl. Physiol. 41: 233–245, 1979.
 81. Dawson, M. J., D. G. Gadian, and D. R. Wilkie. Studies of the biochemistry of contracting and relaxing muscle by the use of 31P n.m.r. in conjunction with other techniques. Phil. Trans. R. Soc. Lond. 3289: 445–455, 1980.
 82. Dawson, M. J., D. G. Gadian, and D. R. Wilkie. Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance. J. Physiol. (Lond.) 267: 703–735, 1977.
 83. de Bruijne, A. W., H. Vreeburg, and J. van Steveninck. Alternate‐substrate inhibition of L‐lactate transport via the monocarboxylate‐specific carrier system in human erythrocytes. Biochim. Biophys. Acta 812: 841–844, 1985.
 84. de Barsy, T., and H.‐G. Hers. Normal metabolism and disorders of carbohydrate metabolism. Baillieres Clin. Endocrinol. Metab. 4: 499–522, 1990.
 85. Deibert, D. C., and R. A. De Fronzo. Epinephrine‐induced insulin resistance in man. J. Clin. Invest. 65: 717–721, 1980.
 86. Denton, R. M., and A. P. Halestrap. Regulation of pyruvate metabolism in mammalian tissues. Essays Biochem. 15: 37–77, 1979.
 87. Di Prampero, P. E., C. T. M. Davies, P. Cerretelli, and R. Margaria. An analysis of O2 debt contracted in submaximal exercise. J. Appl. Physiol. 29: 547–551, 1970.
 88. Dobson, G. P., E. Yamamoto, and P. W. Hochachka. Phosphofructokinase control in muscle: nature and reversal of pH dependent ATP inhibition. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R71–R76, 1986.
 89. Donaldson, S. K. B., L. Hermansen, and L. Bolles. Differential direct effects of H+ on Ca2+ activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflugers Arch. 376: 55–65, 1978.
 90. Drummond, G. I., J. P. Harwood, and C. A. Powell. Studies on the activation of phosphorylase in skeletal muscle by contraction and by epinephrine. J. Biol. Chem. 244: 4235–4240, 1969.
 91. Dyson, R. D., J. M. Cardenas, R. J. Barsotti. The reversibility of skeletal muscle pyruvate kinase and an assessment of its capacity to support glyconeogenesis. J. Biol. Chem. 250: 3316–3321, 1975.
 92. Entman, M. L., S. S. Keslensky, A. Chu, and W. B. Van Winkle. The sarcoplasmic reticulum‐glycogenolytic complex in mammalian fast twitch skeletal muscle. J. Biol. Chem. 255: 6245–6252, 1980.
 93. Erecinska, M., R. L. Veech, and D. F. Wilson. Thermodynamic relationships between oxidation‐reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria. Arch. Biochem. Biophys. 160: 412–421, 1974.
 94. Essen, B., and T. Häggmark. Lactate concentration in type I and type II fibres during muscular contractions in man. Acta Physiol. Scand. 95: 344–346, 1975.
 95. Essen, B., E. Jansson, J. Henriksson, A. W. Taylor, and B. Saltin. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol. Scand. 95: 153–165, 1975.
 96. Fischer, E. H., L. M. G. Heilmeyer, Jr., and R. H. Haschke. Phosphorylase and the control of glycogen degradation. Curr. Top. Cell. Reg. 4: 211–251, 1971.
 97. Fischer, E. H., and E. G. Krebs. Commentary on “the phosphorylase b to a converting enzyme of rabbit skeletal muscle” Biochem. Biophys. Acta 1000: 297–301, 1989.
 98. Fishbein, W. N. Lactate transporter defect: a new disease of muscle. Science 234: 1254–1256, 1986.
 99. Fitts, R. H. Cellular mechanisms of muscle fatigue. Physiol. Rev. 74: 49–94, 1994.
 100. Fletterick, R. J. The structures and related functions of phosphorylase a. Annu. Rev. Biochem. 49: 31–61, 1980.
 101. Frenkel, R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. Arch. Biochem. Biophys. 125: 151–165, 1968.
 102. Fridén, J., J. Seger, and B. Ekblom. Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiol. Scand. 135: 381–391, 1989.
 103. Friedman, J. E., P. D. Neufer, and G. L. Dohm. Regulation of glycogen resynthesis following exercise. Dietary considerations. Sports Med. 11: 232–243, 1991.
 104. Funk, C., A. Clark, Jr., and R. J. Connett. How phosphocreatine buffers cyclic changes in ATP demand in working muscle. Adv. Exp. Med. Biol. 248: 687–692, 1989.
 105. Funk, C. I., A. Clark, Jr., and R. J. Connett. A simple model of aerobic metabolism: applications to work transitions in muscle. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R949–R959, 1990.
 106. Gadian, D. G., G. K. Radda, T. R. Brown, E. M. Chance, M. J. Dawson, and D. R. Wilkie. The activity of creatine kinase in frog skeletal muscle studied by saturation‐transfer nuclear magnetic resonance. Biochem. J. 194: 215–228, 1981.
 107. Gollnick, P. D., B. Pernow, B. Essen, E. Jansson, and B. Saltin. Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clin. Physiol. 1: 27–42, 1981.
 108. Gollnick, P. D., K. Piehl, and B. Saltin. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J. Physiol. 241: 45–57, 1974.
 109. Goodman, M. N., and J. M. Lowenstein. The purine nucleotide cycle. Studies of ammonia production by skeletal muscle in situ and in perfused preparations. J. Biol. Chem. 252: 5054–5060, 1977.
 110. Gottschalk, M. E., and R. G. Kemp. Interaction of dinucleotides with muscle phosphofructokinase. Biochemistry 20: 2245–2251, 1981.
 111. Graham, T. E., D. G. Sinclair, and C. K. Chapler. Metabolic intermediates and lactate diffusion in active dog skeletal muscle. Am. J. Physiol. 231: 766–771, 1976.
 112. Green, H. J. How important is endogenous muscle glycogen to fatigue in prolonged exercise? Can. J. Physiol. Pharm. 69: 290–297, 1991.
 113. Green, H. J., R. L. Hughson, G. W. Orr, and D. A. Ranney. Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J. Appl. Physiol. Respir. Environ. Exer. Physiol. 54: 1032–1038, 1983.
 114. Greenhaff, P. L., E. Hultman, and R. C. Harris. Carbohydrate metabolism. In: Principles of Exercise Biochemistry in Medicine and Sport Sciences, edited by J. R. Poortmans. Basel: Karger, 1993, p. 89–136.
 115. Greenhaff, P. L., M. E. Nevill, K. Söderlund, K. Bodin, L. H. Boobis, C. Williams, and E. Hultman. The metabolic responses of human type I and type II fibres during maximal treadmill sprinting. J. Physiol. (Lond.) 1994 (in press).
 116. Greenhaff, P. L., K. Söderlund, J. M. Ren, and E. Hultman. Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. J. Physiol. (Lond.) 460: 443–453, 1993.
 117. Griffiths, J. R. A fresh look at glycogenolysis in skeletal muscle. Biosci. Rep. 1: 595–610, 1981.
 118. Grisolia, S., and W. W. Cleland. Influence of salt, substrate, and cofactor concentrations on the kinetic and mechanistic behavior of phosphoglycerate mutase. Biochemistry 7: 1115–1121, 1968.
 119. Gross, S. R., K. Bromwell, and I. V. Baanante. Comparison of the mechanism of isoproterenol‐stimulated glycogenolysis in skeletal muscle of normal and phosphorylase kinase‐deficient mice (I strain). J. Pharmacol. Exp. Ther. 205: 732–742, 1978.
 120. Guinovart, J. J., A. Salavert, J. Massague, C. J. Ciudad, E. Salsas, and E. Itarte. Glycogen synthase: a new activity ratio expressing a high sensitivity to the phosphorylase state. FEBS Lett. 106: 284–288, 1979.
 121. H:son Nilsson, L., and E. Hultman. Liver glycogen in man—the effect of total starvation or a carbohydrate‐poor diet followed by carbohydrate refeeding. Scand. J. Clin. Lab. Invest. 32: 325–330, 1973.
 122. Hanson, R. L., F. R. Rudolph, and H. A. Lardy. Rabbit muscle phosphofructokinase. The kinetic mechanism of action and the equilibrium constant. J. Biol. Chem. 248: 7852–7859, 1973.
 123. Haralambie, G., and H. Reinartz. Human skeletal muscle enolase factors influencing its activity. Enzyme 23: 404–409, 1978.
 124. Hargreaves, M., and E. A. Richter. Regulation of skeletal muscle glycogenolysis during exercise. Can. J. Sport Sci. 13: 197–203, 1988.
 125. Harris, R. C., B. Essen, and E. Hultman. Glycogen phosphorylase activity in biopsy samples and single muscle fibres of muscle quadriceps femoris of man at rest. Scand. J. Clin. Lab. Invest. 36: 521–526, 1976.
 126. Harris, R. C., E. Hultman, and K. Sahlin. Glycolytic intermediates in human muscle after isometric contraction. Pflugers Arch. 389: 277–282, 1981.
 127. Haschke, R. H., K. W. Grätz, and L. M. G. Heilmeyer. Control of phosphorylase activity in a muscle glycogen particle. J. Biol. Chem. 247: 5351–5356, 1972.
 128. Haschke, R. H., L. M. G. Heilmeyer, Jr., F. Meyer, and F. Fischer. Control of phosphorylase activity in a muscle glycogen particle III. Regulation of phosphorylase phosphatase. J. Biol. Chem. 245: 6657–6663, 1970.
 129. Heilmeyer, L. M. G., F. Meyer, R. H. Haschke, and E. H. Fischer. Control of activity in a muscle glycogenparticle. J. Biol. Chem. 245: 6649–6656, 1970.
 130. Hermansen, L. Effect of metabolic changes on force generation in skeletal muscle during maximal exercise. In: Human Muscle Fatigue: Physiological Mechanisms, edited by R. Porters and J. Whelan. London: Pitman Medical, 1981, p. 75–88.
 131. Hermansen, L., and O. Vaage. Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E422–E429, 1977.
 132. Hespel, P., and E. A. Richter. Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat muscle. Biochem. J. 284: 777–780, 1992.
 133. Hochachka, P. W., and G. O. Matheson. Regulating ATP turnover rates over broad dynamic work ranges in skeletal muscles. J. Appl. Physiol. 73: 1697–1703, 1992.
 134. Hultman, E. Muscle glycogen in man determined in needle biopsy specimens. Scand. J. Clin. Lab. Invest. 19: 209–217, 1967.
 135. Hultman, E., and J. Bergström. Muscle glycogen in relation to diet studied in normal subjects. Acta Med. Scand. 182: 109–117, 1967.
 136. Hultman, E., J. Bergström, A. E. Roch‐Norlund. Glycogen storage in human skeletal muscle. Adv. Exp. Med. Biol. 2: 273–288, 1971.
 137. Hultman, E., and H. Sjöholm. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J. Physiol. (Lond.) 345: 525–532, 1983.
 138. Issekutz, B., Jr., W. S. Shaw, and T. B. Issekutz. Effect of lactate on glycerol turnover in resting and exercised dogs. J. Appl. Physiol. 39: 349–353, 1975.
 139. Ivy, J. L. Muscle glycogen synthesis before and after exercise. Sports Med. 11: 6–19, 1991.
 140. Ivy, J. L., A. L. Katz, C. L. Cutler, W. M. Sherman, and E. F. Coyle. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J. Appl. Physiol. 64: 1480–1485, 1988.
 141. Jacobs, I. Lactate concentrations after short, maximal exercise at various glycogen levels. Acta Physiol. Scand. 111: 465–469, 1981.
 142. Jansson, E., and C. Sylven. Activities of key enzymes in the energy metabolism of human myocardial and skeletal muscle. Clin. Physiol. 6: 465–471, 1986.
 143. Jong, Y. A., and E. J. Davis. Reconstruction of steady state in cell free systems. Arch. Biochem. Biophys. 222: 179–191, 1983.
 144. Juel, C., and F. Wibrand. Lactate transport in isolated mouse muscles studied with tracer technique—kinetics, stereospecificity, pH dependency, and maximal capacity. Acta Physiol. Scand. 137: 33–39, 1989.
 145. Kahana, S. E., O. H. Lowry, D. W. Schulz, J. V. Passonneau, and E. J. Crawford. The kinetics of phosphoglucoisomerase. J. Biol. Chem. 235: 2178–2184, 1960.
 146. Kasvinsky, P. J., and W. L. Meyer. The effect of pH and temperature on the kinetics of native and altered glycogen phosphorylase. Arch. Biochem. Biophys. 181: 616–631, 1977.
 147. Katz, A., S. Broberg, K. Sahlin, and J. Wahren. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E65–E70, 1986.
 148. Katz, A., and K. Sahlin. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiol. Scand. 131: 119–127, 1987.
 149. Katz, A., and K. Sahlin. Regulation of lactic acid production during exercise. J. Appl. Physiol. 65: 509–518, 1988.
 150. Katz, A., K. Sahlin, and J. Henriksson. Muscle ammonia metabolism during isometric contraction in humans. Am. J. Physiol. 250: C834–C840, 1986.
 151. Katz, A., M. K. Spencer, S. Lillioja, Z. Yan, D. M. Mott, R. G. Haller, and S. Lewis. Basal and insulin‐mediated carbohydrate metabolism in human muscle deficient in phosphofructokinase 1. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E473–E478, 1991.
 152. Kauppinen, R. A., J. K. Hiltunen, and I. E. Hassinen. Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate‐aspartate translocase in the isolated perfused rat heart. Biochim. Biophys. Acta 725: 425–433, 1983.
 153. Kauppinen, R. A., J. K. Hiltunen, and I. E. Hassinen. Compartmentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart. Arch. Biochem. Biophys. 120: 542–546, 1967.
 154. Kobayashi, K., and J. R. Neely. Control of maximum rates of glycolysis in rat cardiac muscle. Circ. Res. 44: 166–175, 1979.
 155. Kochan, R. G., D. R. Lamb, S. A. Lutz, C. V. Perill, E. M. Reimann, and K. K. Schlender. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E660–E666, 1979.
 156. Kochan, R. G., D. R. Lamb, E. M. Reimann, and K. K. Schlender. Modified assays to detect activation of glycogen synthase following exercise. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E197–E202, 1981.
 157. Kohn, M. C. Computer simulation of metabolism in palmitate‐perfused rat heart. III. Sensitivity analysis. Ann. Biomed. Eng. 11: 533–549, 1983.
 158. Kohn, M. C., and D. Garfinkel. Computer simulation of metabolism in palmitate perfused rat heart. II. Behavior of complete model. Ann. Biomed. Eng. 11: 511–531, 1983.
 159. Kohn, M. C., and D. Garfinkel. Computer simulation of metabolism in palmitate‐perfused rat heart. I. Palmitate oxidation. Ann. Biomed. Eng. 11: 361–384, 1983.
 160. Krebs, E. G., D. S. Love, G. E. Bratvold, K. A. Trayser, W. L. Meyer, and E. H. Fischer. Purification and properties of rabbit skeletal muscle phosphorylase b kinase. Biochemistry 3: 1022–1033, 1964.
 161. Kushmerick, M. J., and R. A. Meyer. Chemical changes in rat leg muscle by phosphorus nuclear magnetic resonance. Am. J. Physiol. 248 (Cell Physiol. 17): C542–C549, 1985.
 162. Kushmerick, M. J., R. A. Meyer, and T. R. Brown. Phosphorus NMR spectroscopy of cat biceps and soleus muscle. Adv. Exp. Med. Biol. 159: 303–325, 1983.
 163. Larner, J., and C. Villar‐Palasi. Glycogen synthase and its control. In: Current Topics in Cell Regulation, edited by E. R. Hoerecker and E. Stadtmen. New York: Academic Press, 1971, p. 195–236.
 164. Lawrence, J. C., and R. L. Smith. Phosphorylase kinase isozymes and phosphorylase in denervated skeletal muscles. Muscle Nerve 13: 133–137, 1990.
 165. Lawson, J. W. R., and K. Uyeda. Effects of insulin and work on fructose 2,6‐bisphosphate content and phosphofructokinase activity in perfused rat hearts. J. Biol. Chem. 262: 3165–3173, 1987.
 166. Lee, S.‐H., and E. J. Davis. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citric acid cycle intermediates in skeletal muscle. J. Biol. Chem. 254: 420–430, 1979.
 167. Leijendekker, W. J., P. Edauw, C. van Hardeveld, and W. S. Simonides. Phosphorylase a formation in protein‐glycogen particles isolated from fast‐twitch muscle of euthyroid and hypothyroid rats. Arch. Biochem. Biophys. 274: 120–129, 1989.
 168. Lewis, S. F., and R. G. Haller. The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue. J. Appl. Physiol. 61: 391–401, 1986.
 169. Lowry, C. V., J. S. Kimmey, S. Felder, M. M.‐Y. Chi, K. K. Kaiser, P. N. Passonneau, K. A. Kirk, and O. H. Lowry. Enzyme patterns in single muscle fibers. J. Biol. Chem. 253: 8269–8277, 1978.
 170. Lowry, O. H., D. W. Schulz, and J. V. Passonneau. Effects of adenylic acid on the kinetics of muscle phosphorylasea. J. Biol. Chem. 239: 1947–1953, 1964.
 171. Maehlum, S., and L. Hermansen. Muscle glycogen concentration during recovery after prolonged severe exercise in fasting subjects. Scand. J. Clin. Lab. Invest. 38: 557–560, 1978.
 172. Martin, J. L., L. N. Johnson, and S. G. Withers. Comparison of the binding of glucose and glucose 1‐phosphate derivatives to T‐state glycogen phosphorylase b. Biochemistry 29: 10745–10757, 1990.
 173. Mason, M. J., and R. C. Thomas. A microelectrode study of L‐lactate entry into and release from frog sartorius muscle. J. Physiol. (Lond.) 400: 459–479, 1988.
 174. Masters, C. Interactions between glycolytic enzymes and components of the cytomatrix. J. Cell Biol. 99: 222S–225S, 1984.
 175. Maughan, R. J., and D. C. Poole. The effects of a glycogen‐loading regimen on the capacity to perform anaerobic exercise. Eur. J. Appl. Physiol. 46: 211–219, 1981.
 176. Maughan, R. J., C. Williams, D. M. Campbell, and D. Hepburn. Fat and carbohydrate metabolism during low intensity exercise: effects of the availability of muscle glycogen. Eur. J. Appl. Physiol. 39: 7–16, 1978.
 177. Mayr, G. W. Interaction of calmodulin with muscle phosphofructokinase. Interplay with metabolic effectors of the enzyme under physiological conditions. Eur. J. Biochem. 143: 521–529, 1984.
 178. McGilvery, R. W., and T. W. Murray. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle. J. Biol. Chem. 249: 5845–5850, 1974.
 179. McLane, J. A., and J. O. Holloszy. Glycogen synthesis from lactate in the three types of skeletal muscle. J. Biol. Chem. 254: 6548–6553, 1979.
 180. McQuate, J. T., and M. F. Utter. Equilibrium and kinetic studies of the pyruvic kinase reaction. J. Biol. Chem. 234: 2151–2157, 1959.
 181. Meinke, M. H., and R. D. Edstrom. Muscle glycogenolysis. Regulation of the cyclic interconversion of phosphorylase a and phosphorylase b. J. Biol. Chem. 266: 2259–2266, 1991.
 182. Meyer, R. A., T. R. Brown, and M. J. Kushmerick. Phosphorus nuclear magnetic resonance of fast‐ and slow‐twitch muscle. Am. J. Physiol. 248 (Cell Physiol. 17): C279–C287, 1985.
 183. Midelfort, C. F., R. K. Gupta, and I. A. Rose. Fructose 1,6‐bisphosphate: isomeric composition, kinetics, and substrate specificity for the adolases. Biochemistry 15: 2178–2185, 1976.
 184. Miller, R. G., M. D. Boska, R. S. Moussavi, P. J. Carson, and M. W. Weiner. 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. J. Clin. Invest. 81: 1190–1196, 1988.
 185. Minatogawa, Y., and L. Hue. Fructose 2,6‐bisphosphate in rat skeletal muscle during contraction. Biochem. J. 223: 73–79, 1984.
 186. Mole, P. A., R. L. Coulson, J. R. Caton, B. G. Nichols, and T. J. Barstow. In vivo 31P‐NMR in human muscle: transient patterns with exercise. J. Appl. Physiol. 59: 101–104, 1985.
 187. Mommaerts, W. F. H. M., K. Vegh, and E. Homsher. Activation of phosphorylase in frog muscle as determined by contractile activity. J. Gen. Physiol. 66: 657–669, 1975.
 188. Morgan, H. E., and A. Parmeggiani. Regulation of glycogenolysis in muscle. In: Control of Glycogen Metabolism, edited by W. J. Whelan. London: Churchill Livingstone, 1964, p. 254–272.
 189. Newsholme, E. A. Control of metabolism and the integration of fuel supply for the marathon runner. In: Biochemistry of Exercise, edited by H. G. Knuttgen, J. A. Vogels, and J. Poortmans. Champaign, IL: Human Kinetics, 1983, p. 144–150.
 190. Newsholme, E. A. Essays in Cell Metabolism, edited by W. Bartley, H. L. Kornberg, and J. R. Quayle. New York: John Wiley & Sons, 1970, p. 144–150.
 191. Newsholme, E. A., and A. R. Leech. Biochemistry for the Medical Sciences. New York: John Wiley & Sons, 1984.
 192. Nolte, J., D. Pette, B. Bachmaier, P. Kiefhofer, H. Schneider, and P. C. Scriba. Enzyme response to thyrotoxicosis and hypothyroidism in human liver and muscle: comparative aspects. Eur. J. Clin. Invest. 2: 141–149, 1972.
 193. Norman, B., A. Sollevi, and E. Jansson. Increased IMP content in glycogen‐depleted muscle fibres during submaximal exercise in man. Acta Physiol. Scand. 133: 97–100, 1988.
 194. Nosek, T. M., K. Y. Fender, and R. E. Godt. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 236: 191–193, 1987.
 195. Nuttall, F. Q., and M. C. Gannon. Allosteric regulation of glycogen synthase in liver. A physiological dilemma. J. Biol. Chem. 268: 13286–13290, 1993.
 196. O'reilly, K. P., M. J. Warhol, R. A. Fielding, W. R. Fontera, C. N. Meredith, and W. J. Evans. Eccentric exercise‐induced muscle damage impairs muscle glycogen repletion. J. Appl. Physiol. 63: 252–256, 1987.
 197. Opie, L. H., K. R. L. Mansford, and P. Owen. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem. J. 124: 475–490, 1971.
 198. Paganelli, W., D. R. Pendergast, J. Koness, and P. Cerretelli. The effect of decreased muscle energy stores on the VO2 kinetics at the onset of exercise. Eur. J. Appl. Physiol. 59: 321–326, 1989.
 199. Pearce, F. J., and R. J. Connett. Effect of lactate and palmitate on substrate utilization of isolated rat soleus. Am. J. Physiol. 238 (Cell Physiol. 7): C149–C159, 1980.
 200. Pernow, B. B., R. J. Havel, and D. B. Jennings. The second wind phenomenon in McArdle's syndrome. Acta Med. Scand. Suppl. 472: 294–307, 1967.
 201. Pette, D., and G. Dolken. Some aspects of regulation of enzyme levels in muscle energy‐supplying metabolism. Adv. Enzyme Regul. 13: 355–377, 1975.
 202. Pette, D., W. Luh, and T. H. Bucher. A constant‐proportion group in the enzyme activity pattern of the Embden‐Myerhof chain. Biochem. Biophys. Res. Commun. 7: 419–424, 1962.
 203. Pettigrew, D. W., and C. Frieden. Rabbit muscle phosphofructokinase. A model for regulatory kinetic behavior. J. Biol. Chem. 254: 1896–1901, 1979.
 204. Piras, R., and R. Staneloni. In vivo regulation of rat muscle glycogen synthetase activity. Biochemistry 8: 2153–2160, 1969.
 205. Price, T. B., D. L. Rothman, M. J. Avison, P. Buonamico, and R. G. Shulman. C‐NMR measurements of muscle glycogen during low‐intensity exercise. J. Appl. Physiol. 70: 1836–1844, 1991.
 206. Price, T. B., D. L. Rothman, R. Taylor, M. J. Avison, G. I. Shulman, and R. G. Shulman. Human muscle glycogen resynthesis after exercise: insulin‐dependent and independent phases. J. Appl. Physiol. 76: 104–111, 1994.
 207. Quistorff, B., L. Johansen, and K. Sahlin. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Biochem. J. 291: 681–686, 1992.
 208. Rahim, Z. H. A., D. Perrett, G. Lutaya, and J. R. Griffiths. Metabolic adaptation in phosphorylase kinase deficiency. Biochem. J. 186: 331–341, 1980.
 209. Raz, I., A. Katz, and M. K. Spencer. Epinephrine inhibits insulin‐mediated glycogenesis but enhances glycolysis in human skeletal muscle. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E430–E435, 1991.
 210. Ren, J. M., S. Broberg, K. Sahlin, and E. Hultman. Influence of reduced glycogen level on glycogenolysis during short‐term stimulation in man. Acta Physiol. Scand. 139: 467–474, 1990.
 211. Ren, J.‐M., D. Chasiotis, M. Bergstrom, and E. Hultman. Skeletal muscle glucolysis, glycogenolysis and glycogen phosphorylase during electrical stimulation in man. Acta Physiol. Scand. 133: 101–107, 1988.
 212. Ren, J. M., E. A. Gulve, G. D. Cartee, and J. O. Holloszy. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E1086–E1091, 1992.
 213. Ren, J. M., and E. Hultman. Regulation of phosphorylase activity in human skeletal muscle. J. Appl. Physiol. 69: 919–923, 1990.
 214. Ren, J.‐M., B. A. Marshall, E. A. Gulve, J. Gao, D. W. Johnson, H. O. Holloszy, and M. Mueckler. Evidence from transgenic mice that glucose transport is rate‐limiting for glycogen deposition and glycolysis in skeletal muscle. J. Biol. Chem. 268: 16113–16115, 1993.
 215. Richter, E. A., and H. Galbo. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle. J. Appl. Physiol. 61: 827–831, 1986.
 216. Richter, O., A. Betz, and C. Giersch. The response of oscillating glycolysis to perturbations in the NADH/NAD system: a comparison between experiments and a computer model. Biosystems 7: 137–146, 1975.
 217. Richter, E. A., K. J. Mikines, H. Galbo, and B. Kiens. Effect of exercise on insulin action in human skeletal muscle. J. Appl. Physiol. 66: 876–885, 1989.
 218. Roach, P. J. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 4: 2961–2968, 1990.
 219. Roos, A. Intracellular pH and distribution of weak acids across cell membranes. A study of D‐ and L‐lactate and of DMO in rat diaphragm. J. Physiol. (Lond.) 249: 1–25, 1975.
 220. Rose, I. A., and E. L. O'connell. Specificity of fructose‐1,6‐P2 aldolase (muscle) and partition of the enzyme among catalytic intermediates in the steady state. J. Biol. Chem. 252: 479–482, 1977.
 221. Rose, Z. B., and S. Dube. Phosphoglycerate mutase. Kinetics and effects of salts on the mutase and bisphosphoglycerate phosphatase activities of the enzyme from chicken breast muscle. J. Biol. Chem. 253: 8583–8592, 1978.
 222. Rosell‐Perez, M., C. Villar Palasi, and J. Larner. Uridine diphosphate glucose (UDPG)‐glycogentransglucosylase. 1. Preparation and differentiation of two activities of UDP‐glycogen transglucosylase from ratskeletal muscle. Biochemistry 1: 763–768, 1962.
 223. Sabina, R. L., J. L. Swain, C. W. Olanow, W. G. Bradley, W. N. Fishbein, S. Di Mauro, and E. W. Holmes. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J. Clin. Invest. 73: 720–730, 1984.
 224. Sahlin, K. Muscle fatigue and lactic acid accumulation. Acta Physiol. Scand. 128: 83–91, 1986.
 225. Sahlin, K. Muscle carnitine metabolism during incremental dynamic exercise in humans. Acta Physiol. Scand. 138: 259–262, 1990.
 226. Sahlin, K. Control of energetic processes in contracting human skeletal muscle. Biochem. Soc. Trans. 19: 353–358, 1991.
 227. Sahlin, K. Metabolic aspects of fatigue in human skeletal muscle. Med. Sport Sci. 34: 54–68, 1992.
 228. Sahlin, K., N.‐H. Areskog, P. G. Haller, K. G. Henriksson, L. Jorfeldt, and S. F. Lewis. Impaired oxidative metabolism increases adenine nucleotide breakdown in McArdle's disease. J. Appl. Physiol. 69: 1231–1235, 1990.
 229. Sahlin, K., S. Broberg, and A. Katz. Glucose formation in human skeletal muscle‐influence of glycogen level. Biochem. J. 258: 911–913, 1989.
 230. Sahlin, K., J. Gorski, and L. Edström. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am. J. Physiol. 259 (Cell Physiol. 28): C409–C412, 1990.
 231. Sahlin, K., R. C. Harris, and E. Hultman. Creatine kinase equilibrium and lactate content compared with muscle pH in tissue samples obtained after isometric exercise. Biochem. J. 152: 173–180, 1975.
 232. Sahlin, K., A. Katz, and S. Broberg. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 259 (Cell Physiol. 28): C834–C841, 1990.
 233. Sahlin, K., A. Katz, and J. Henriksson. Redox state and lactate acccumulation in human skeletal muscle during dynamic exercise. Biochem. J. 245: 551–556, 1987.
 234. Sahlin, K., and J. M. Ren. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J. Appl. Physiol. 67: 648–654, 1989.
 235. Saltin, B., and J. Karlsson. Muscle glycogen utilization during work of different intensities. In: Muscle Metabolism During Exercise, edited by B. Pernow and B. Saltin. New York: Plenum Press, 1972, p. 289–299.
 236. Sargeant, A. J., and P. Dolan. Effect of prior exercise on maximal short‐term power output in humans. J. Appl. Physiol. 63: 1475–1480, 1987.
 237. Sherman, W. M., L. E. Armstrong, T. M. Murray, F. C. Hagerman, D. L. Costill, R. C. Staron, and J. L. Ivy. Effect of 42.2‐km footrace and subsequent rest or exercise on muscular strength and work capacity. J. Appl. Physiol. 57: 1668–1673, 1984.
 238. Shikama, H., J. Chiasson, and J. H. Exton. Studies on the interaction between insulin and epinephrine in the control of skeletal muscle glycogen metabolism. J. Biol. Chem. 256: 4450–4454, 1981.
 239. Simoneau, J.‐A., and C. Bouchard. Human variation in skeletal muscle fiber‐type proportion and enzyme activies. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E567–E572, 1989.
 240. Sjödin, B., and J. Svedenhag. Applied physiology of marathon running. Sports Med. 2: 83–99, 1985.
 241. Smythe, C., and P. Cohen. The discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur. J. Biochem. 200: 625–631, 1991.
 242. Spamer, C., and D. Pette. Activity patterns of phosphofructokinase, glyceraldehyde dehydrogenase, lactate dehydrogenase, and malate dehydrogenase in microdissected fast and slow fibers from rabbit psoas and soleus muscle. Histochemistry 52: 201–216, 1977.
 243. Spencer, M. K., and A. Katz. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E859–E864, 1991.
 244. Spencer, M. K., Z. Yan, and A. Katz. Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. Am. J. Physiol. 261 (Cell Physiol. 30): C71–C76, 1991.
 245. Spriet, L. L. Phosphofructokinase activity and acidosis during short‐term tetanic contractions. Can. J. Physiol. Pharmacol. 69: 298–304, 1991.
 246. Spriet, L. L., L. Berardinucci, D. R. Marsh, C. B. Campbell, and T. E. Graham. Glycogen content has no effect on skeletal muscle glycogenolysis during short‐term tetanic stimulation. J. Appl. Physiol. 68: 1883–1888, 1990.
 247. Spriet, L. L., M. I. Lindinger, R. S. McKelvie, G. J. F. Heigenhauser, and N. L. Jones. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J. Appl. Physiol. 66: 8–13, 1989.
 248. Spydevold, O., E. J. Davis, and J. Bremer. Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Eur. J. Biochem. 71: 155–165, 1976.
 249. Srivastava, D. K., and S. A. Bernhard. Enzyme‐enzyme interactions and the regulation of metabolic reaction pathways. Curr. Top. Cell. Regul. 28: 1–68, 1986.
 250. Srivastava, D. K., and S. A. Bernhard. Mechanism of transfer of reduced nicotinamide adenine dinucleotide among dehydrogenases. Biochemistry 24: 623–628, 1985.
 251. Stainsby, W. N., W. F. Brechue, D. M. O'drobinak, and J. K. Barclay. Effects of ischemic and hypoxic hypoxia on VO2 and lactate acid output during tetanic contractions. J. Appl. Physiol. 68: 574–579, 1990.
 252. Stubbs, M., R. L. Veech, and H. A. Krebs. Control of the redox state of the nicotinamide‐adenine dinucleotide couple in rat liver cytoplasm. Biochem. J. 126: 59–65, 1972.
 253. Stura, E. A., G. Zanotti, Y. S. Babu, M. S. Sansom, D. I. Stuart, K. S. Wilson, L. N. Johnson, and G. Van de Werve. Comparison of AMP and NADH binding to glycogen phosphorylase b. J. Mol. Biol. 170: 529–565, 1983
 254. Symons, J. D., and I. Jacobs. High‐intensity exercise performance is not impaired by low intramuscular glycogen. Med. Sci. Sports Exerc. 21: 550–557, 1989.
 255. Taylor, D. J., P. J. Bore, P. Styles, D. G. Gadian, and G. K. Radda. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol. Biol. Med. 1: 77–94, 1983.
 256. Tejwani, G. A., A. Ramaiah, and M. Ananthanarayanan. Regulation of glycolysis in muscle. The role of ammonium and synergism among the positive effectors of phosphofructokinase. Arch. Biochem. Biophys. 158: 195–199, 1973.
 257. Terblanche, S. E., R. D. Fell, A. C. Juhlin‐Dannfelt, B. W. Craig, and J. O. Holloszy. Effects of glycerol feeding before and after exhausting exercise in rats. J. Appl. Physiol. Respir. Environ. Exer. Physiol. 50: 94–101, 1981.
 258. Tesch, P., B. Sjödin, A. Thorstensson, and J. Karlsson. Muscle fatigue and its relation to lactate accumulation and LDH activity in man. Acta Physiol. Scand. 103: 413–420, 1978.
 259. Tornheim, K., and J. M. Lowenstein. Purine nucleotide cycle. Study of interactions with oscillations of the glycolytic pathway in muscle extracts. J. Biol. Chem. 247: 162–169, 1974.
 260. Tornheim, K., and J. M. Lowenstein. The purine nucleotide cycle. Control of phosphofructokinase and glycolytic oscillations in muscle extracts. J. Biol. Chem. 250: 6304–6314, 1975.
 261. Trivedi, B., and W. H. Danforth. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241: 4110–4114, 1966.
 262. Vaughan, H., S. D. Thornton, and E. A. Newsholme. The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from various muscles. Biochem. J. 132: 527–535, 1973.
 263. Veech, R. L., L. Raijman, K. Dalziel, and H. A. Krebs. Disequilibrium in the triose phosphate isomerase system in rat liver. Biochem. J. 115: 837–842, 1969.
 264. Villar‐Palasi, C. Oligo‐ and polysaccharide inhibition of muscle transferase D phosphatase. Ann. N.Y. Acad. Sci. 166: 719–730, 1969.
 265. Villar‐Palasi, C. Substrate specific activation by glucose‐6‐phosphate of the dephosphorylation of muscle glycogen synthase. Biochim. Biophys. Acta 1095: 261–267, 1991.
 266. Völlestad, N. K., I. Tabata, and J. I. Medbö. Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration. Acta Physiol. Scand. 144: 135–141, 1992.
 267. Wallberg‐Henriksson, H. Glucose transport into skeletal muscle. Influence of contractile activity, insulin, catecholamines and diabetes mellitus. Acta Physiol. Scand. Suppl. 564: 7–80, 1987.
 268. Walsh, T. P., C. J. Masters, D. J. Morton, and F. M. Clarke. The reversible binding of glycolytic enzymes in bovine skeletal muscle in response to tetanic stimulation. Biochem. Biophys. Acta 675: 29–39, 1981.
 269. Wang, J. H., J.‐I. Tu, and F. M. Lo. Effects of glucose 6‐phosphate on the nucleotide site of glycogen phosphorylase b. J. Biol. Chem. 245: 3115–3121, 1970.
 270. Williams, G. D., B. Enders, and M. B. Smith. Effect of pH and inorganic phosphate on creatine kinase inactivation: an in vitro 31P NMR saturation‐transfer study. Biochem. Int. 26: 35–42, 1992.
 271. Wilson, D. F., M. Erecinska, C. Drown, and I. A. Silver. The oxygen dependence of cellular energy metabolism. Arch. Biochem. Biophys. 195: 485–493, 1979.
 272. Wilson, J. E., B. Sacktor, and C. G. Tiekert. In situ regulation of glycolysis in tetanized cat skeletal muscle. Arch. Biochem. Biophys. 120: 542–546, 1967.
 273. Zorzano, A., T. W. Balon, M. N. Goodman, and N. B. Ruderman. Glycogen depletion and increased insulin sensitivity and responsiveness in muscle after exercise. Am. J. Physiol. 251 (Endocrinol. Metab. 19): E664–E669, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard J. Connett, Kent Sahlin. Control of Glycolysis and Glycogen Metabolism. Compr Physiol 2011, Supplement 29: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems: 870-911. First published in print 1996. doi: 10.1002/cphy.cp120119