Comprehensive Physiology Wiley Online Library

Influence of Exercise on Protein and Amino Acid Metabolism

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 General Aspects of Amino Acid and Protein Metabolism in Muscle
1.1 Amino Acid Transport and the Free Amino Acid Pool
1.2 Outline of the Metabolism of Amino Acids in Muscle in Relation to Exercise
1.3 Interrelationship of BCAA, Alanine, and Glutamine Metabolism
1.4 The Purine Nucleotide Cycle in Muscle
1.5 Amino Acid Catabolism and Gluconeogenesis from Amino Acids in Liver and Kidney
1.6 Training Effects on the Capacities of Muscle Enzymes of Amino Acid Metabolism
1.7 The Effects of Contractile Activity on Ammonia Production and its Relation to the Free Amino Acid Pool
1.8 Alterations of Muscle and Blood Amino Acid Concentrations during Exercise
1.9 Production and Consumption of Amino Acids by Muscle during Exercise
1.10 Effects of Training on Amino Acid Metabolism during Exercise
1.11 Interrelationships between Working Muscle and the Viscera during Exercise
2 Protein Turnover During Exercise
2.1 Effects of Acute Contractile Activity on Protein Turnover
2.2 Postexercise Alterations in Muscle Protein Synthesis
2.3 Effects of Habitual Exercise on Whole‐Body Protein Turnover
2.4 Effects of Immobilization and Disuse
2.5 Collagen Turnover in Muscle
2.6 Physical Activity and Protein Requirements
2.7 Outstanding Questions
Figure 1. Figure 1.

General scheme of protein and amino acid metabolism in skeletal muscle.

Figure 2. Figure 2.

Intermediary metabolism of amino acids in skeletal muscle. Reaction steps referred to are as follows: 1, alanine aminotransferase; 2, leucine decarboxylation and catabolism to acetoacetate; 3, branched chain aminotransferase; 4, glutamine transaminase; 5, ω‐amidase; 6, glutaminase; 7, glutamine synthetase; 8, glutamate dehydrogenase; 9, valine and isoleucine catabolism to succinate via BCKA dehydrogenase; 10, aminotransferase; 11, phosphoenolpyruvate carboxykinase; 12, AMP deaminase.

Figure 3. Figure 3.

Amino acid catabolism illustrated by CO2 production from branched chain amino acids, ammonia production, and blood urea concentration. Notice that ammonia production and CO2 production at high levels of exercise show a different pattern, suggesting that the processes are not necessarily linked at high exercise intensity. Notice also that urea production is only marked after long periods of exercise, presumably when glycogen stores are low.



Figure 1.

General scheme of protein and amino acid metabolism in skeletal muscle.



Figure 2.

Intermediary metabolism of amino acids in skeletal muscle. Reaction steps referred to are as follows: 1, alanine aminotransferase; 2, leucine decarboxylation and catabolism to acetoacetate; 3, branched chain aminotransferase; 4, glutamine transaminase; 5, ω‐amidase; 6, glutaminase; 7, glutamine synthetase; 8, glutamate dehydrogenase; 9, valine and isoleucine catabolism to succinate via BCKA dehydrogenase; 10, aminotransferase; 11, phosphoenolpyruvate carboxykinase; 12, AMP deaminase.



Figure 3.

Amino acid catabolism illustrated by CO2 production from branched chain amino acids, ammonia production, and blood urea concentration. Notice that ammonia production and CO2 production at high levels of exercise show a different pattern, suggesting that the processes are not necessarily linked at high exercise intensity. Notice also that urea production is only marked after long periods of exercise, presumably when glycogen stores are low.

References
 1. Ahlborg, G., P. Felig, L. Hagenfeldt, R. Hendler, and J. Wahren. Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53: 1080–1090, 1974.
 2. Ahmed, A., D. L. Maxwell, P. M. Taylor, and M. J. Rennie. Glutamine transport in human skeletal muscle. Am. J. Physiol. 264: 993–1000, 1993.
 3. Akedo, H., and H. N. Christensen. Nature of insulin action on amino acid uptake by isolated diaphragm. J. Biol. Chem. 237: 118–127, 1962.
 4. Albert, J. D., D. E. Matthews, A. Legaspi, K. J. Tracey, M. Jeevanandam, M. F. Brennan, and S. F. Lowry. Exercise‐mediated peripheral tissue and whole‐body amino acid metabolism during intravenous feeding in normal man. Clin. Sci. 77: 113–120, 1977.
 5. Almdal, T. P., and H. Vilstrup. Exogenous hyperglucagonaemia in insulin controlled diabetic rats increases urea excretion and nitrogen loss from organs. Diabetologia 31: 836–841, 1988.
 6. Aoki, T. T., M. F. Brennan, W. A. Muller, F. D. Moore, and G. F. Cahill. Effect of insulin on muscle glutamate uptake. J. Clin. Invest. 51: 2889–2894, 1972.
 7. Aragón, J., and J. M. Lowenstein. The purine‐nucleotide cycle. Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Eur. J. Biochem. 110: 371–377, 1980.
 8. Babij, P., S. M. Matthews, and M. J. Rennie. Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometer exercise in man. Eur. J. Appl. Physiol. 50: 405–411, 1983.
 9. Bading, J. R., M. T. Corbally, J. D. Fissekis, G. R. Di Resta, and M. F. Brennan. Effects of starvation on [11C]‐2‐aminoisobutyrate transport in skeletal muscle. J. Nucl. Med. 28: 650, 1987.
 10. Baron, A. D. Cardiovascular actions of insulin in humans. Implications for insulin sensitivity and vascular tone. In: Insulin Resistance and Disease, edited by E. Ferranini, London: Baillière Tindall, 1993, p. 961–988.
 11. Beaufrere, B., P. Tessari, M. Cattalini, J. Miles, and M. W. Haymond. Apparent decreased oxidation and turnover of leucine during infusion of medium‐chain triglycerides. Am. J. Physiol. 249: 175–182, 1985.
 12. Bennet, W. M., A. A. Connacher, C. M. Scrimgeour, and M. J. Rennie. The effect of amino acid infusion on leg protein turnover assessed by L‐[15N]phenylalanine and L‐[13C]leucine exchange. Eur. J. Clin. Invest. 20: 37–46, 1990.
 13. Bennet, W. M., A. A. Connacher, C. M. Scrimgeour, K. Smith, and M. J. Rennie. Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of 1‐[13C]leucine. Clin. Sci. 76: 447–454, 1989.
 14. Bergstrom, J., P. Fürst, and E. Hultman. Free amino acids in muscle tissue and plasma during exercise in man. Clin. Physiol. 5: 155–160, 1985.
 15. Bertran, J., A. Werner, G. Stange, D. Markovic, J. Biber, X. Testar, A. Zorzano, M. Palacin, and H. Murer. Expression of Na+‐independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochem. J. 281: 717–723, 1992.
 16. Bier, D. M. Intrinsically difficult problems: the kinetics of body proteins and amino acid in man. Diabetes Metab. Rev. 5: 111–132, 1989.
 17. Biolo, G., D. Chinkes, X. J. Zhang, and R. R. Wolfe. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle. J. Parenter. Enteg. Nutr. 16: 305–315, 1992.
 18. Block, K. P., R. P. Aftring, W. B. Mehard, and M. G. Buse. Modulation of rat skeletal muscle branched‐chain α‐keto acid dehydrogenase in vivo. Effects of dietary protein and meal consumption. J. Clin. Invest. 79: 1349–1358, 1987.
 19. Blomstrand, E. Branched‐chain amino acids and neurotransmission in intense efforts. In: Branched‐Chain Amino Acids: Biochemistry, Physiopathology and Clinical Science, edited by P. Schauder, J. Wahren, R. Paoletti, R. Bernardi, and M. Rinetti, New York: Raven Press, 1992, p. 31–41.
 20. Blomstrand, E., F. Celsing, and E. A. Newsholme. Changes in plasma concentrations of aromatic and branched‐chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiol. Scand. 133: 115–121, 1988.
 21. Blomstrand, E., P. Hassmén, B. Ekblom, and E. A. Newsholme. Administration of branched‐chain amino acids during sustained exercise—effects on performance and on plasma concentration of some amino acids. Eur. J. Appl. Physiol. 63: 83–88, 1991.
 22. Bonadonna, R. C., M. P. Saccomani, C. Cobelli, and R. A. De Fronzo. Effect of insulin on system A amino acid transport in human skeletal muscle. J. Clin. Invest. 91: 514–521, 1993.
 23. Booth, F. W., and P. D. Gollnick. Effects of disuse on the structure and function of skeletal muscle. Med. Sci. Sports Exerc. 15: 415–420, 1983.
 24. Booth, F. W., and P. A. Watson. Control of adaptations in protein levels in response to exercise (review). Federation Proc. 44: 2293–2300, 1985.
 25. Brooks, G. A. Amino acid and protein metabolism during exercise and recovery. Med. Sci. Sports Exerc. 19: 5150–5156, 1987.
 26. Brosnan, M. E., and J. Letto. Interorgan metabolism of valine. Amino Acids 1: 29–35, 1991.
 27. Buse, M. G., F. J. Biggers, K. H. Friderici, and J. F. Buse. Oxidation of branched chain amino acids by isolated hearts and diaphragms of the heart: The effect of fatty acids, glucose, and pyruvate respiration. J. Biol. Chem. 247: 8085–8096, 1972.
 28. Buse, M. G., and S. S. Reid. Leucine: a possible regulator of protein turnover in muscle. J. Clin. Invest. 56: 1250–1261, 1975.
 29. Butterfield, G. E., and D. H. Calloway. Physical activity improves protein utilization in young men. Br. J. Nutr. 51: 171–184, 1984.
 30. Buttrose, M. E., D. McKellar, and T. E. Welbourne. Gut‐liver interaction in glutamine homeostasis: portal ammonia role in uptake and metabolism. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E746–E750, 1987.
 31. Bylund‐Fellenius, A.‐C., K. M. Ojamaa, K. E. Flaim, J. B. Li, S. J. Wassner, and L. S. Jefferson. Protein synthesis versus energy state in contracting muscle of perfused rat hindlimb. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E297–E305, 1984.
 32. Cannon, J. G., R. A. Fielding, M. A. Fiatarone, S. F. Orencole, C. Dinarello, and W. J. Evans. Increased interleukin 1 beta in human skeletal muscle after exercise. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 20): R451–R455, 1989.
 33. Carli, G., M. Bonifazi, L. Lodi, C. Lupo, G. Martelli, and A. Viti. Changes in the exercise‐induced hormone response to branched chain amino acid administration. Eur. J. Appl. Physiol. 64: 272–277, 1992.
 34. Carraro, F., W. H. Hartl, C. A. Stuart, D. K. Layman, F. Jahoor, and R. R. Wolfe. Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E821–E831, 1990.
 35. Carraro, F., T. D. Kimbrough, and R. R. Wolfe. Urea kinetics in humans at two levels of exercise intensity. J. Appl. Physiol. 75: 1180–1185, 1993.
 36. Carraro, F., J. Rosenblatt, and R. R. Wolfe. Isotopic determination of fibronectin synthesis in humans. Metabolism 40: 553–561, 1991.
 37. Carraro, F., C. A. Stuart, W. H. Hartl, J. Rosenblatt, and R. R. Wolfe. Effect of exercise and recovery on muscle protein synthesis in human subjects. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E470–E476, 1990.
 38. Castenfors, J. Renal function during exercise. Acta Physiol. Scand. 70 (Suppl. 293): 1–40, 1967.
 39. Chaouloff, F., G. A. Kennett, B. Serrurrier, D. Merino, and G. Curzon. Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat. J. Neurochem. 46: 1647–1650, 1986.
 40. Cheek, D. B. Muscle cell growth in normal children. In: Human Growth, edited by D. B. Cheek. Philadelphia: Lea & Febiger, 1968, p. 337–351.
 41. Cheng, K. N., F. Dworzak, G. C. Ford, M. J. Rennie, and D. Halliday. Direct determination of leucine metabolism and protein breakdown in humans using L‐[13C, 15N]leucine and the forearm model. Eur. J. Clin. Invest. 15: 349–354, 1986.
 42. Cheng, K. N., P. J. Pacy, F. Dworzak, G. C. Ford, and D. Halliday. Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L‐[1‐13C, 15N]leucine as the tracer. Clin. Sci. 73: 241–246, 1987.
 43. Chesley, A., J. D. MacDougall, M. A. Tarnopolsky, S. A. Atkinson, and K. Smith. Changes in human muscle protein synthesis following resistance exercise. J. Appl. Physiol. 73: 1383–1388, 1992.
 44. Christensen, H. N. Interorgan amino acid nutrition. Physiol. Rev. 62: 1193–1233, 1982.
 45. Christensen, H. N. On the strategy of kinetic discrimination of amino acid transport systems. J. Mol. Biol. 84: 97–103, 1985.
 46. Christensen, H. N., and M. S. Kilberg. Amino acid transport across the plasma membrane: role of regulation of interorgan flows. In: Amino Acid Transport in Animal Cells, edited by D. L. Yudilevich and C. A. R. Boyd. Manchester: Manchester University Press, 1987, p. 10–46
 47. Clausen, T., and P. G. Kohn. The effect of insulin on the transport of sodium and potassium in rat soleus muscle. J. Physiol. (Lond.) 265: 19–42, 1977.
 48. Curzon, G., J. Friedel, and P. J. Knott. The effect of fatty acids on the binding of tryptophan to plasma protein. Nature 242: 198–200, 1973.
 49. Devlin, J. T., I. Brodsky, A. Scrimgeour, S. Fuller, and D. M. Bier. Amino acid metabolism after intense exercise. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E249–E255, 1990.
 50. Décombaz, J., P. Reinhardt, K. Anantharaman, G. van Glutz, and J. R. Poortmans. Biochemical changes in a 100km run: free amino acids, urea and creatinine. Eur. J. Appl. Physiol. 41: 61–72, 1979.
 51. Dohm, G. L., G. R. Beecher, R. Q. Warren, and R. T. Williams. The influence of exercise on free amino acid concentrations in rat tissues. J. Appl. Physiol. 50: 41–44, 1982.
 52. Dohm, G. L., G. J. Kasperek, E. B. Tapscott, and G. R. Beecher. Effect of exercise on synthesis and degradation of muscle protein. Biochem. J. 188: 255–262, 1980.
 53. Dohm, G. L., E. B. Tapscott, H. A. Barakat, and G. J. Kasperek. Measurement of in vivo protein synthesis in rats during an exercise bout. Biochem. Med. 27: 367–373, 1982.
 54. Dohm, G. I., E. B. Tapscott, and G. J. Kasperek. Protein degradation during endurance exercise and recovery. Med. Sci. Sports Exerc. 19: 5166–5172, 1987.
 55. Dohm, G. L., R. T. Williams, G. J. Kasperek, and A. M. van Rij. Increased excretion of urea and Nτ‐methylhistidine by rats and humans after a bout of exercise. J. Appl. Physiol. 52: 27–33, 1982.
 56. Elia, M., A. Carter, S. Bacon, C. G. Winearls, and R. Smith. Clinical usefulness of urinary 3‐methylhistidine excretion in indicating muscle protein breakdown. BMJ 282: 351–354, 1981.
 57. Elia, M., and G. Livesey. Branched chain amino acid and oxo acid metabolism in human and rat muscle. In: Metabolism and Clinical Implications of Branched Chain Amino and Ketoacids, edited by M. Walser and J. R. Williamson. New York, Amsterdam, and Oxford: Elsevier/North Holland, 1981, p. 257–262.
 58. Elia, M., and G. Livesey. Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched‐chain amino acids. Clin. Sci. 64: 517–526, 1983.
 59. Eriksson, L. S., S. Broberg, O. Björkman, and J. Wahren. Ammonia metabolism during exercise in man. Clin. Physiol. 5: 325–336, 1985.
 60. Eriksson, L. S., L. Hagenfeldt, P. Felig, and J. Wahren. Leucine uptake by splanchnic and leg tissues in man: relative independence of insulin levels. Clin. Sci. 65: 491–498, 1983.
 61. Evans, W. J. Exercise and muscle metabolism in the elderly. In: Nutrition and Aging, edited by M. L. Hutchinson and H. N. Munro. San Diego, CA: Academic Press, 1986, p. 170–191.
 62. Evans, W. J., and C. N. Meredith. Exercise and nutrition in the elderly. In: Nutrition, Ageing and the Elderly, edited by H. N. Munro and D. E. Danford. New York and London: Plenum Press, 1989, p. 89–125.
 63. Falduto, M. J., R. C. Hickson, and A. P. Young. Antagonism by glucocorticoids and exercise on expression of glutamine synthetase in skeletal muscle. FASEB J. 3: 2623–2628, 1989.
 64. Felig, P. Amino acid metabolism in man. Annu. Rev. Biochem. 44: 933–955, 1975.
 65. Felig, P., T. Pozefsky, C. Marliss, and G. F. Cahill. Alanine: key role in gluconeogenesis. Science 167: 1003–1004, 1970.
 66. Felig, P., and J. Wahren. Amino acid metabolism in exercising man. J. Clin. Invest. 50: 2703–2709, 1971.
 67. Fielding, R. A., W. J. Evans, V. A. Hughes, L. L. Moldawer, and B. R. Bistrian. The effects of high intensity exercise on muscle and plasma levels of alpha‐ketoisocaproic acid. Eur. J. Appl. Physiol. 55: 482–485, 1986.
 68. Fielding, R. A., C. N. Meredith, K. P. O'reilly, W. R. Frontera, J. G. Cannon, and W. J. Evans. Enhanced protein breakdown after eccentric exercise in young and older men. J. Appl. Physiol. 71: 674–679, 1991.
 69. Fine, A., F. I. Bennett, and G. A. O. Alleyne. Effects of acute acid‐base alterations of glutamine metabolism and renal ammoniagenesis in the dog. Clin. Sci. Mol. Med. 54: 503–508, 1978.
 70. Finocchiaro, G., F. Taroni, and S. Di Donato. Glutamate dehydrogenase in olivopontocerebellar atrophies: leukocytes, fibroblasts, and muscle mitochondria. Neurology 36: 550–553, 1986.
 71. Fischer, H. G., W. Hollmann, and K. De Meirleir. Exercise changes in plasma tryptophan fractions and relationship with prolactin. Int. J. Sports Med. 12: 487–489, 1991.
 72. Forbes, G. B. The effect of anabolic steroids on lean body mass: the dose response curve. Metabolism 34: 571–573, 1985.
 73. Forbes, G. B. Body composition as affected by physical activity and nutrition. Federation Proc. 44: 343–347, 1985.
 74. Forbes, G. B. Human Body Composition: Growth, Aging, Nutrition and Activity. New York: Springer‐Verlag, 1987, p. 171.
 75. Frontera, W. R., C. N. Meredith, K. P. O'reilly, and W. J. Evans. Strength training and determinants of V.O2max in older men. J. Appl. Physiol. 68: 329–333, 1990.
 76. Frontera, W. R., C. N. Meredith, K. P. O'reilly, H. G. Knuttgen, and W. J. Evans. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J. Appl. Physiol. 64: 1038–1044, 1988.
 77. Gazzola, G. C., R. Franchi, V. Saibene, P. Ronchi, and G. G. Guidotti. Biochim. Biophys. Acta 266: 407–421, 1972.
 78. Gibson, J. N. A., D. Halliday, W. L. Morrison, P. J. Steward, G. A. Hornsby, P. W. Watt, G. Murdoch, and M. J. Rennie. Decrease in human quadriceps muscle protein turnover consequent on leg immobilization. Clin. Sci. 72: 503–509, 1987.
 79. Gibson, J. N. A., D. Halliday, P. W. Watt, P. J. Steward, W. L. Morrison, and M. J. Rennie. Decrease in human quadriceps muscle protein turnover consequent upon leg immobilisation. Clin. Sci. 72: 503–509, 1987.
 80. Gibson, J. N. A., M. J. McMaster, C. M. Scrimgeour, P. J. Steward, and M. J. Rennie. Rates of muscle protein synthesis in paraspinal muscles: lateral disparity in children with idiopathic scoliosis. Clin. Sci. 75: 79–83, 1988.
 81. Gibson, J. N. A., W. L. Morrison, C. M. Scrimgeour, K. M. Smith, P. J. Stoward, and M. J. Rennie. Effects of therapeutic percutaneous electrical stimulation of atrophic human quadriceps on muscle composition protein synthesis and contractile properties. Eur. J. Clin. Invest. 19: 206–212, 1989.
 82. Gibson, J. N. A., K. Smith, and M. J. Rennie. Prevention of disuse muscular atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet ii: 767–770, 1988.
 83. Goldberg, A. L., and T. W. Chang. Regulation and significance of amino acid metabolism in skeletal muscle. Federation Proc. 37: 2301–2307, 1978.
 84. Goldberg, A. L., J. D. Etlinger, D. F. Goldspink, and C. Jablecki. Mechanism of work‐induced hypertrophy of skeletal muscle. Med. Sci. Sports 7: 248–261, 1975.
 85. Goldberg, A. L., and H. M. Goodman. Amino acid transport during work‐induced growth of skeletal muscle. Am. J. Physiol. 216: 1111–1115, 1969.
 86. Goldberg, A. L., C. Jablecki, and J. B. Li. Effects of use and disuse on amino acid transport and protein turnover in muscle. Ann. N. Y. Acad. Sci. 228: 190–201, 1974.
 87. Gontzea, I., P. Sutzescu, and S. Dumitrache. The influence of adaptation to physical effort on nitrogen balance in man. Nutr. Rep. Int. 22: 231–236, 1975.
 88. Goodman, M. N. Acute alterations in sodium flux in vitro lead to decreased myofibrillar protein breakdown in rat skeletal muscle. Biochem. J. 247: 151–156, 1987.
 89. Goodman, M. N. Myofibrillar protein breakdown in skeletal muscle is diminished in rats with chronic streptozocin‐induced diabetes. Diabetes 36: 100–105, 1987.
 90. Goro, M., H. Shinno, and A. Ichihara. Isozyme patterns of branched‐chain amino transaminase in human tissues and tumors. Gann 68: 663–667, 1977.
 91. Gorski, J., D. A. Hood, O. M. Brown, and R. L. Terjung. Incorporation of 15N‐leucine amine into ATP of fast‐twitch muscle following stimulation. Biochem. Biophys. Res. Commun. 128: 1254–1260, 1985.
 92. Gould, R. P. Collagen. In: The Structure and Function of Muscle, edited by G. J. Bourne. New York: Academic Press, 1973, p. 186–243.
 93. Graham, T., J. Bangsbo, and B. Saltin. Skeletal muscle ammonia production and repeated, intense exercise in humans. Can. J. Physiol. Pharmacol. 71: 484–490, 1993.
 94. Graham, T. E., J. Bangsbo, P. D. Gollnick, C. Juel, and B. Saltin. Ammonia metabolism during intense dynamic exercise and recovery in humans. Am. J. Physiol. 259: 170–176, 1990.
 95. Graham, T. E., B. Kiens, M. Hargreaves, and E. A. Richter. Influence of fatty acids on ammonia and amino acid flux from active human muscle. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E168–E176, 1991.
 96. Graham, T. E., and B. Saltin. Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J. Appl. Physiol. 66: 561–566, 1989.
 97. Gregory, J., K. Foster, H. Tyler, and M. Wiseman. The Dietary and Nutritional Survey of British Adults. London: H.M. Stationery Office, 1990.
 98. Griggs, R. C., W. Kingston, R. F. Jozefowicz, B. E. Herr, G. Forbes, and D. Halliday. Effect of testosterone on muscle mass and muscle protein synthesis. J. Appl. Physiol. 266 (Endocrinol. Metab. 29): E498–E503, 1989.
 99. Guidotti, G. G., A. F. Borghetti, and G. C. Gazzola. The regulation of amino acid transport in animal cells. Biochim. Biophys. Acta 515: 329–366, 1978.
 100. Guidotti, G. G., R. Franchi‐Gazzola, G. C. Gazzola, and P. Ronchi. Regulation of amino acid transport in chick embryo heart cells. IV. Site and mechanisms of insulin action. Biochim. Biophys. Acta 356: 219–230, 1974.
 101. Guidotti, G. G., G. C. Gazzola, A. M. Borghetti, and R. Franchi‐Gazzola. Adaptive regulation of amino acid transport across the cell membrane in avian and mammalian tissues. Biochim. Biophys. Acta 406: 264–279, 1991.
 102. Gulve, E. A., G. D. Cartee, J. H. Youn, and J. O. Holloszy. Prolonged incubation of skeletal muscle increases system A amino acid transport. Am. J. Physiol. 260 (Cell Physiol. 29): C88–C95, 1991.
 103. Gumà, A., M. Camps, M. Palacin, X. Testar, and A. Zorzano. Protein kinase C activators selectively inhibit insulin‐stimulated system A transport activity in skeletal muscle at a post‐receptor level. Biochem. J. 268: 633–639, 1990.
 104. Guy, P. S., and D. H. Snow. The effect of training and detraining on muscle composition in the horse. J. Physiol. (Lond.) 269: 33–51, 1977.
 105. Gyntelberg, F., M. J. Rennie, R. C. Hickson, and J. O. Holloszy. Effect of training on the response of plasma glycagon to exercise. J. Appl. Physiol. 43: 302–305, 1977.
 106. Hagg, S. A., E. L. Morse, and S. A. Adibi. Effect of exercise on rates of oxidation, turnover and plasma clearance of leucine in human subjects. Am. J. Physiol. 242 (Endocrinol. Metab. 11): E407–E410, 1985.
 107. Handlogten, M. E., M. S. Kilberg, and H. N. Christensen. Incomplete correspondence between repressive and substrate action by amino acids on transport systems A and N in monolayered rat hepatocytes. J. Biol. Chem. 257: 345–348, 1982.
 108. Haralambie, G. and A. Berg. Serum urea and amino nitrogen changes with exercise duration. Eur. J. Appl. Physiol. 36: 39–48, 1976.
 109. Harper, A. E. Some recent developments in the study of amino acid metabolism. Proc. Nutr. Soc. 42: 437–449, 1983.
 110. Hasselgren, P.‐O., M. Hall‐ångeras, U. Ångeras, D. Benson, J. H. James, and J. E. Fischer. Regulation of total and myofibrillar protein breakdown in rat extensor digitorum longus and soleus muscle incubated flaccid or at resting length. Biochem. J. 267: 37–44, 1990.
 111. Häggmark, T. A study of morphologic and enzymatic properties of the skeletal muscles after injuries and immobilization in man. Ph.D. Thesis: Karolinska Institute, Stockholm, 1978.
 112. Häussinger, D., S. Kaiser, T. Stehle, and W. Gerok. Structural and functional organization of hepatic ammonia metabolism: pathophysiological consequences. In: Advances in Ammonia Metabolism and Hepatic Encephalopathy, edited by P. B. Soeters, J. H. P. Wilson, A. J. Meijer, and E. Holm. Amsterdam: Elsevier Scientific Publishers B.V. (Biomedical Division), 1988, p. 26–36.
 113. Hellerstein, M. K., and R. A. Neese. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am. J. Physiol. 263 (Endocrinol. Metab. 32): E988–E1001, 1992.
 114. Henriksson, J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J. Exp. Biol. 160: 149–165, 1991.
 115. Henriksson, J., M. M.‐Y. Chi, C. S. Hintz, D. A. Young, K. Kaiser, S. Salmons, and O. H. Lowry. Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am. J. Physiol. 251: 614–632, 1986.
 116. Holloszy, J. O., and F. W. Booth. Biochemical adaptations to endurance exercise in muscle. Annu. Rev. Physiol. 38: 273–291, 1976.
 117. Holloszy, J. O., L. B. Oscai, I. J. Don, and P. A. Mole. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. Biophys. Res. Commun. 40: 1368–1373, 1970.
 118. Hood, D. A., and R. L. Terjung. Effect of endurance training on leucine metabolism in perfused rat skeletal muscle. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E648–656, 1987.
 119. Hood, D. A., and R. L. Terjung. Amino acid metabolism during exercise and following endurance training. Sports Med. 9: 23–35, 1990.
 120. Hood, D. A., and R. L. Terjung. Endurance training alters alanine and glutamine release from muscle during contractions. FEBS Lett. 340: 287–290, 1994.
 121. Hundal, H. S., P. Babij, P. M. Taylor, P. W. Watt, and M. J. Rennie. Effects of corticosteroid on the transport and metabolism of glutamine in rat skeletal muscle. Biochim. Biophys. Acta 1092: 376–383, 1991.
 122. Hundal, H. S., and M. J. Rennie. Effects of electrical stimulation on perfused rat skeletal muscle glutamine transport. J. Physiol. (Lond.) 392: 28P, 1987 (Abstract).
 123. Hundal, H. S., M. J. Rennie, and P. W. Watt. Characteristics of L‐glutamine transport in perfused rat skeletal muscle. J. Physiol. (Lond.) 393: 283–305, 1987.
 124. Hundal, H. S., M. J. Rennie, and P. W. Watt. Characteristics of acidic, basic and neutral amino acid transport in perfused rat hindlimb. J. Physiol. (Lond.) 408: 93–114, 1989.
 125. Hutson, S. M. Subcellular distribution of branched‐chain aminotransferase activity in rat tissues. J. Nutr. 118: 1475–1481, 1988.
 126. Hutson, S. M., and T. R. Hall. Identification of the mitochondrial branched chain aminotransferase as a branched chain alpha‐keto acid transport protein. J. Biol. Chem. 268: 3084–3091, 1993.
 127. Hutson, S. M., and A. E. Harper. Blood and tissue branched‐chain amino and α‐keto acid concentrations: effect of diet, starvation and disease. Am. J. Clin. Nutr. 34: 173–183, 1981.
 128. Hutson, S. M., C. Zapalowski, T. C. Cree, and A. E. Harper. Regulation of leucine and α‐ketoisocaproic acid metabolism in skeletal muscle. Effects of starvation and insulin. J. Biol. Chem. 255: 2418–2426, 1980.
 129. Ishii, T., K. Nakayama, H. Sato, K. Miura, M. Yamada, K. Yamada, Y. Sugita, and S. Bannai. Expression of mouse macrophage cystine transporter in Xenopus laevis oocytes. Arch. Biochem. Biophys. 289: 71–75, 1991.
 130. Jahoor, F., and R. R. Wolfe. Re‐assessment of the primed‐constant infusion tracer technique as a tool for the measurement of urea production in humans. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E557–E564, 1987.
 131. Jaspers, S. R., and M. F. Tischler. Atrophy and growth failure of rat hindlimb muscles in tail‐cast suspension. J. Appl. Physiol. 57: 1472–1479, 1984.
 132. Ji, L. L., D. L. Lennon, R. G. Kochan, F. J. Nagle, and H. A. Lardy. Enzymatic adaptation to physical training under beta‐blockade in the rat. Evidence of a beta 2‐adrenergic mechanism in skeletal muscle. J. Clin. Invest. 78: 771–778, 1986.
 133. Ji, L. L., R. H. Miller, F. J. Nagle, H. A. Lardy, and F. W. Stratman. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of the branched chain amino acids. Metabolism 8: 748–752, 1987.
 134. Jones, D. A., and O. M. Rutherford. Human muscle strength training: the effects of three different regimes and the nature of the resultant changes. J. Physiol. (Lond.) 391: 1–11, 1987.
 135. Joseph, S. K., N. M. Bradford, and J. D. McGivan. Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated liver cells. Biochem. J. 176: 827–836, 1978.
 136. Jungas, R. L., M. L. Halperin, and J. T. Brosnan. Quantitative analysis of amino acid oxidation and related gluco‐neogenesis in humans. Physiol. Rev. 72: 419–448, 1992.
 137. Karpakka, J., K. Väänänen, P. Virtanen, J. Savolainen, S. Orava, and T. E. S. Takala. The effects of remobilization and exercise on collagen biosynthesis in rat tendon. Acta Physiol. Scand. 139: 139–145, 1990.
 138. Kasperek, G. J., G. R. Conway, D. S. Krayeski, and J. J. Lohne. A reexamination of the effect of exercise on rate of muscle protein degradation. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E1144–E1150, 1992.
 139. Kasperek, G. J., G. L. Dohm, and R. D. Snider. Activation of branched‐chain keto acid dehydrogenase by exercise. Am. J. Physiol. 248 (Regulatory Integrative Comp. Physiol. 17): R166–R171, 1985.
 140. Kasperek, G. J., and R. D. Snider. Effect of exercise intensity and starvation on activation of branched‐chain keto acid dehydrogenase by exercise. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E22–E37, 1987.
 141. Kasperek, G. J., and R. D. Snider. Total and myofibrillar protein degradation in isolated soleus muscles after exercise. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E1–E5, 1989.
 142. Katz, A., S. Broberg, K. Sahlin, and J. Wahren. Muscle ammonia and amino acid metabolism during dynamic exercise in man. Clin. Physiol. 6: 365–379, 1986.
 143. Katz, A., K. Sahlin, and J. Henriksson. Muscle ammonia metabolism during isometric contraction in humans. Am. J. Physiol. 250 (Cell Physiol. 19): C834–C840, 1986.
 144. Katz, A., M. K. Spencer, and K. Sahlin. Failure of glutamate dehydrogenase system to predict oxygenation state of human skeletal muscle. Am. J. Physiol. 259 (Cell Physiol. 28): C26–C28, 1990.
 145. Kelso, T. B., C. R. Shear, and S. R. Max. Enzymes of glutamine metabolism in inflammation associated with skeletal muscle hypertrophy. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E885–E894, 1989.
 146. Kettelhut, I. C., S. S. Wing, and A. L. Goldberg. Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab. Rev. 4: 751–772, 1988.
 147. Khatra, B. S., R. K. Chawla, C. W. Sewell, and D. Rudman. Distribution of branched‐chain α‐keto acid dehydrogenases in primate tissues. J. Clin. Invest. 59: 558–564, 1977.
 148. Kilberg, M. S., M. E. Handlogten, and H. N. Christensen. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine and closely related analogs. J. Biol. Chem. 255: 4011–4019, 1980.
 149. Kim, J. W., E. I. Closs, L. M. Albritton, and J. M. Cunningham. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352: 725–728, 1991.
 150. King, P. A., L. Goldstein, and E. A. Newsholme. Glutamine synthetase activity of muscle in acidosis. Biochem. J. 216: 523–525, 1983.
 151. Kipnis, D. M., and M. W. Noall. Stimulation of amino acid transport by insulin in the isolated rat diaphragm. Biochim. Biophys. Acta 228: 226–227, 1958.
 152. Knapik, J., C. Meredith, B. Jones, R. Fielding, V. R. Young, and W. Evans. Leucine metabolism during fasting and exercise. J. Appl. Physiol. 70: 43–47, 1991.
 153. Kostyo, J. L. Rapid effects of growth hormone on amino acid transport and protein synthesis. Ann. N. Y. Acad. Sci. 148: 389–407, 1968.
 154. Kovanen, V., H. Suominen, and E. Heikkinen. Collagen of slow twitch and fast twitch muscle fibre types in different types of rat skeletal muscle. Eur. J. Appl. Physiol. 52: 235–242, 1984.
 155. Krebs, H. A. Regulation of fuel supply in animals. Adv. Enzyme Regul. 10: 406–413, 1972.
 156. Laurent, G. J., M. P. Sparrow, P. C. Bates, and D. J. Millward. Collagen content and turnover in cardiac and skeletal muscles of the adult fowl and the changes during stretch‐induced growth. Biochem. J. 176: 419–427, 1978.
 157. Laurent, G. J., M. P. Sparrow, and D. J. Millward. Turnover of muscle protein in the fowl. Changes in rates of protein synthesis and breakdown during hypertrophy of the anterior and posterior latissimus dorsi muscles. Biochem. J. 176: 407–417, 1978.
 158. Leighton, B., R. Curi, A. Hussein, and E. A. Newsholme. Maximum activities of some key enzymes of glycolysis, glutaminolysis, Krebs cycle and fatty acid utilization in bovine pulmonary endothelial cells. FEBS Lett. 225: 93–96, 1987.
 159. Lemon, P. W., and J. P. Mullin. Effect of initial muscle glycogen levels on protein catabolism during exercise. J. Appl. Physiol. 48: 624–629, 1980.
 160. Lemon, P. W. R., F. J. Nagle, J. P. Mullin, and N. J. Benevenga. In vivo leucine oxidation at rest and during two intensities of exercise. J. Appl. Physiol. 53: 947–954, 1982.
 161. Livesey, G., and P. Lund. Enzymic determination of branched‐chain amino acids and 2‐oxoacids in rat tissues. Biochem. J. 188: 705–713, 1980.
 162. Logan, W. J., A. Klip, and E. Gagalang. Regulation of amino acid transport into L6 muscle cells: I. Stimulation of transport System A by amino acid deprivation. J. Cell. Physiol. 112: 229–236, 1982.
 163. Low, S. Y., M. J. Rennie, and P. M. Taylor. Sodium‐dependent glutamate transport in cultured rat myotubes increases after glutamine deprivation. FASEB J. 8: 127–131, 1994.
 164. Low, S. Y., M. Salter, R. G. Knowles, C. I. Pogson, and M. J. Rennie. A quantitative analysis of the control of glutamine catabolism in rat liver cells: use of selective inhibitors. Biochem. J. 295: 617–624, 1993.
 165. Low, S. Y., P. M. Taylor, H. S. Hundal, C. I. Pogson, and M. J. Rennie. Transport of L‐glutamine and L‐glutamate across sinusoidal membranes of rat liver. Effects of starvation, diabetes and corticosteroid treatment. Biochem. J. 284: 333–340, 1992.
 166. Lowenstein, J. M. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol. Rev. 52: 382–414, 1972.
 167. Lowenstein, J. M. and M. N. Goodman. The purine nucleotide cycle in skeletal muscle. Federation Proc. 37: 2308–2312, 1978.
 168. Lundgren, F., H. Sachrisson, P. Emery, A.‐C. Bylund‐Fellenius, A. Elander, K. Bennegård, T. Scherstén, and K. Lundholm. Leg exchange of amino acids during exercise in patients with arterial insufficiency. Clin. Physiol. 8: 227–241, 1988.
 169. Mackenzie, B., A. Ahmed, and M. J. Rennie. Muscle amino acid metabolism and transport. In: Mammalian Amino Acid Transport: Mechanism and Control, edited by M. S. Kilberg and D. Häussinger. New York: Plenum Publishing, 1992.
 170. MacLean, D. A., L. L. Spriet, E. Hultman, and T. E. Graham. Plasma and muscle amino acid and ammonia responses during prolonged exercise in humans. J. Appl. Physiol. 70: 2095–2103, 1991.
 171. MacLennan, P. A., R. A. Brown, and M. J. Rennie. A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett. 215: 187–191, 1987.
 172. MacLennan, P. A., and M. J. Rennie. Effects of ischaemia, blood loss and reperfusion on rat skeletal muscle protein synthesis in vivo. Biochem. J. 260: 195–200, 1989.
 173. MacLennan, P. A., K. Smith, B. Weryk, P. W. Watt, and M. J. Rennie. Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett. 237: 133–136, 1988.
 174. May, R. C., Y. Hara, R. A. Kelly, K. P. Block, M. G. Buse, and W. E. Mitch. Branched‐chain amino acid metabolism in rat muscle: abnormal regulation in acidosis. Am. J. Physiol. 252 (Endocrinol. Metah. 15): E712–E718, 1987.
 175. Meijer, A. J., C. Lof, I. C. Ramos, and A. J. Verhoeven. Control of ureagenesis. Eur. J. Biochem. 148: 189–196, 1985.
 176. Meredith, C. N., M. J. Zackin, W. R. Frontera, and W. J. Evans. Dietary protein requirements and body protein metabolism in endurance‐trained men. J. Appl. Physiol. 66: 2850–2856, 1989.
 177. Meyer, R. A., and R. L. Terjung. AMP deamination and IMP reamination in working skeletal muscle. Am. J. Physiol. 237: 111–118, 1979.
 178. Michna, H., and G. Hartmann. Adaptation of tendon collagen to exercise. Int. Orthopaed. 13: 161–163, 1989.
 179. Millward, D. J. Protein turnover in cardiac and skeletal muscle during normal growth and hypertrophy. In: Degra‐dative Processes in Skeletal and Cardiac Muscle, edited by K. Wildenthal, New York: Elsevier‐North Holland, 1980, p. 161–200.
 180. Millward, D. J., P. C. Bates, J. G. Brown, S. R. Rosochacki, and M. J. Rennie. Protein degradation and the regulation of protein balance in muscle. In: Protein Degradation in Health and Disease, edited by D. Evered and J. Whelan, Amsterdam, Excerpta Medica, 1980, p. 307–329.
 181. Millward, D. J., C. T. M. Davies, D. Halliday, S. L. Wolman, D. E. Matthews, and M. J. Rennie. Effect of exercise on protein metabolism in humans as explored with stable isotopes. Federation Proc. 41: 2686–2691, 1982.
 182. Millward, D. J. and J. C. Waterlow. Effect of nutrition on protein turnover in skeletal muscle. Federation Proc. 37: 2283–2290, 1978.
 183. Mole, P. A., K. M. Baldwin, R. L. Terjung, and J. O. Holloszy. Enzymatic pathways of pyruvate metabolism in skeletal muscle: adaptations to exercise. Am. J. Physiol. 224: 50–54, 1973.
 184. Mole, P. A., L. B. Oscai, and J. O. Holloszy. Adaptation of muscle to exercise. Increase in levels of palmityl Coa synthetase, carnitine palmityltransferase, and palmityl Coa dehydrogenase, and in the capacity to oxidize fatty acids. J. Clin. Invest. 50: 2323–2330, 1971.
 185. Myllyla, R., A. Salminen, L. Peltonen, T. E. Takala, and V. Vihko. Collagen metabolism of mouse skeletal muscle during the repair of exercise injuries. Pflugers Arch. 407: 64–70, 1986.
 186. Nair, K. S., D. Halliday, D. E. Matthews, and S. L. Welle. Hyperglucagonemia during insulin deficiency accelerates protein catabolism. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E208–E213, 1987.
 187. Narahara, H. T., and J. O. Holloszy. The actions of insulin, trypsin and electrical stimulation on amino acid transport in muscle. J. Biol. Chem. 249: 5435–5443, 1974.
 188. Newsholme, E. A., and B. Crabtree. Flux‐generating and regulatory steps in metabolic control. Trends Biochem. Sci. 00: 53–56, 1981.
 189. Newsholme, E. A., and A. R. Leach. Biochemistry for the Medical Sciences. Chichester: John Wiley & Sons, 1983.
 190. Newsholme, E. A., and M. Parry‐Billings. Properties of glutamine release from muscle and its importance for the immune system. J. Parenter. Enter. Nutr. 14: 63S–67S, 1990.
 191. Palacin, M., A. Werner, J. Dittmer, H. Murer, and J. Biber. Expression of rat liver Na+/L‐alanine co‐transport in Xenopus laevis oocytes. Biochem. J. 270: 189–195, 1990.
 192. Palmer, T. N., M. A. Caldecourt, K. Snell, and M. C. Sugden. Alanine and inter‐organ relationships in branched‐chain amino and 2‐oxo acid metabolism. Biosci. Rep. 5: 1015–1033, 1985.
 193. Palmer, T. N., M. A. Caldecourt, J. P. Warner, and M. C. Sugden. The role of phosphenolpyruvate carboxykinase in muscle alanine synthesis. Biochem. J. 224: 971–976, 1984.
 194. Pardridge, W. M. Tryptophan transport through the blood‐brain barrier: in vivo measurement of free and albumin bound amino acid. Life Sci. 25: 1519–1528, 1979.
 195. Parker, P. J., and P. J. Randle. Active and inactive forms of branched‐chain 2‐oxoacid dehydrogenase complex in rat heart and skeletal muscle. Biomed. Press 112: 186–190, 1980.
 196. Parry‐Billings, M., R. Budgett, Y. Koutedakis, E. Blom‐strand, S. Brooks, D. Williams, P. C. Calder, S. Pilling, R. Baigrie, and E. A. Newsholme. Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med. Sci. Sports Exerc. 24: 1353–1358, 1992.
 197. Paul, G. L. Dietary protein requirements of physically active individuals. Sports Med. 8: 154–176, 1989.
 198. Pines, G., N. C. Danbolt, M. Bjoras, Y. Zhang, A. Bendahan, L. Eide, H. Koepsell, J. Storm‐Mathisen, E. Seeberg, and B. I. Kanner. Cloning and expression of a rat brain L‐glutamate transporter. Nature 360: 464–467, 1992.
 199. Plante, P. D., and M. E. Houston. Effects of concentric and eccentric exercise on protein catabolism in man. Int. J. Sports Med. 5: 174–178, 1984.
 200. Pogson, C. I., S. Y. Low, R. G. Knowles, M. Salter, and M. J. Rennie. Application of metabolic control theory to amino acid metabolism in liver. In: Regulation of Hepatic Function: Alfred Benzon Symposium 30, edited by N. Grunnet and B. Quistorff, Copenhagen: Munksgaard, 1990, p. 262–272.
 201. Pozefsky, T., P. Felig, J. D. Tobin, J. S. Soeldner, and G. F. Cahill. Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J. Clin. Invest. 48: 2273–2282, 1969.
 202. Pozefsky, T., R. G. Tancredi, R. T. Moxley, J. Dupre, and J. D. Tobin. Metabolism of forearm tissues in man. Studies with glucagon. Diabetes 25: 128–134, 1976.
 203. Price, G. M., D. Halliday, P. J. Pacy, R. M. Quevedo, and D. J. Millward. Nitrogen homeostasis in man: 1. Influence of protein intake on the amplitude of diurnal cycling of body nitrogen. Clin. Sci. 86: 91–102, 1994.
 204. Quevedo, R. M., M. Cox, W. A. Coward, D. Jones, P. Pacy, I. Smeaton, D. Thorpe, and D. J. Millward. Energy intake and expenditure in body builders. Proc. Nutr. Soc. 50: 238A, 1991.
 205. Quevedo, R. M., G. M. Price, D. Halliday, P. J. Pacy, and D. J. Millward. Nitrogen homeostasis in man: 3. Diurnal changes in nitrogen excretion, leucine oxidation and whole body leucine kinetics during a reduction from a high to a moderate protein intake. Clin. Sci. 86: 185–193, 1994.
 206. Radha, E., and S. P. Bessman. Effect of exercise on protein degradation: 3‐methylhistidine and creatinine excretion. Biochem. Med. 29: 96–100, 1983.
 207. Refsum, H. W., and S. B. Strömme. Urea and creatinine production and excretion in urine during and after prolonged heavy exercise. J. Lab. Clin. Invest. 33: 247–254, 1974.
 208. Reichsman, F., S. P. Scordilis, P. M. Clarkson, and W. J. Evans. Muscle protein changes following eccentric exercise in humans. Eur. J. Appl. Physiol. 62: 245–250, 1991.
 209. Rennie, M. J. Muscle protein turnover and the wasting due to injury and disease. Br. Med. Bull. 41: 257–264, 1985.
 210. Rennie, M. J., A. Ahmed, S. Y. Low, H. S. Hundal, P. W. Watt, P. A. Lennan, and C. J. Egan. Transport of amino acids in muscle, gut and liver: relevance to metabolic control. Biochem. Soc. Trans. 18: 1140–1141, 1991.
 211. Rennie, M. J., A. Ahmed, G. W. A. Thompson, K. Smith, W. M. Bennet, and P. W. Watt. Effects of insulin on amino acid transport and protein synthesis in skeletal muscle. In: Protein Metabolism in Diabetes Mellitus, edited by K. S. Nair. London: Smith‐Gordon, 1992, p. 173–180.
 212. Rennie, M. J., P. Babij, J. R. Sutton, W. W. Tonkins, W. W. Read, C. Ford, and D. Halliday. Effects of acute hypoxia on forearm leucine metabolism. Prog. Clin. Biol. Res. 136: 317–323, 1983.
 213. Rennie, M. J., C. Bennegård, E. Eden, P. W. Emery, and K. Lundholm. Urinary excretion and efflux from the leg of 3‐methylhistidine before and after major surgical operation. Metabolism 33: 250–256, 1984.
 214. Rennie, M. J., J. L. Bowtell, and D. J. Millward. Physical activity and protein metabolism. In: Physical Activity, Fitness and Health. International Consensus Statements, edited by C. Bouchard, R. J. Shepherd, and T. Stephens. Champaign, IL: Human Kinetics Publishers, 1994.
 215. Rennie, M. J., R. H. T. Edwards, C. T. M. Davies, S. Krywawych, D. Halliday, J. C. Waterlow, and D. J. Millward. Protein and amino acid turnover during and after exercise. Biochem. Soc. Trans. 8: 499–501, 1980.
 216. Rennie, M. J., R. H. T. Edwards, D. Halliday, D. E. Matthews, S. L. Wolman, and D. J. Millward. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin. Sci. 63: 519–523, 1982.
 217. Rennie, M. J., R. H. T. Edwards, S. Krywawych, C. T. M. Davies, D. Halliday, J. C. Waterlow, and D. J. Millward. Effect of exercise on protein turnover in man. Clin. Sci. 61: 627–639, 1981.
 218. Rennie, M. J., D. Halliday, C. T. M. Davies, R. H. T. Edwards, S. Krywawych, D. J. Millward, and D. E. Matthews. Exercise induced increase in leucine oxidation in man and the effect of glucose. In: Metabolism and Clinical Implications of Branched Chain Amino and Keto Acids, edited by M. Walser and J. R. Williamson. New York: Elsevier‐North Holland, 1981, p. 361–366.
 219. Rennie, M. J., H. S. Hundal, P. Babij, P. A. MacLennan, P. W. Watt, M. M. Jepson, and D. J. Millward. Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection, and chronic disease. Lancet ii: 1008–1012, 1986.
 220. Rennie, M. J., S. M. Jennett, and R. H. Johnson. The metabolic effects of strenous exercise: a comparison between untrained subjects and racing cyclists. Q. J. Exp. Physiol. 59: 201–212, 1974.
 221. Rennie, M. J., and R. H. Johnson. Alteration of metabolic and hormonal responses to exercise by physical training. Eur. J. Appl. Physiol. 33: 215–226, 1974.
 222. Rennie, M. J., P. A. MacLennan, H. S. Hundal, B. Weryk, K. Smith, P. M. Taylor, and C. Egan. Skeletal muscle glutamine transport, intramuscular glutamine concentration, and muscle‐protein turnover. Metabolism 38: 47–51, 1989.
 223. Rennie, M. J., and D. J. Millward. 3‐Methylhistidine excretion and the urinary 3‐methylhistidine/creatinine ratio are poor indicators of skeletal muscle protein breakdown. Clin. Sci. 65: 217–225, 1983.
 224. Rennie, M. J., N. M. Willhoft, A. Ahmed, P. W. Watt, P. M. Taylor, and H. S. Hundal. Amino acid and protein metabolism during exercise. In: Diabetes Mellitus and Exercise, edited by J. Devlin, E. S. Horton, and M. Vranic, London: Smith‐Gordon, 1993, p. 139–150.
 225. Rennie, M. J., N. M. Willhoft, and P. M. Taylor. Glutamine transport and metabolism in mammalian skeletal muscle. Biochem. J. 285: 339–344, 1992.
 226. Riggs, T. R., and L. M. Walker. Growth hormone stimulation of amino acid transport into rat tissues in vivo. J. Biol. Chem. 235: 3603–3607, 1960.
 227. Rowe, W. B. Glutamine synthetase from muscle. Methods Enzymol. 113: 199–212, 1985.
 228. Ruderman, N. B., and P. Lund. Amino acid metabolism in skeletal muscle: regulation of glutamine and alanine release in the perfused rat hindquarter. Isr. J. Med. Sci. 8: 295–302, 1972.
 229. Rundell, K. W., P. C. Tullson, and R. L. Terjung. AMP deaminase binding in contracting rat skeletal muscle. Am. J. Physiol. 263 (Cell Physiol. 32): C287–C293, 1992.
 230. Rundell, K. W., P. C. Tullson, and R. L. Terjung. Altered kinetics of AMP deaminase by myosin binding. Am. J. Physiol. 263 (Cell Physiol. 32): C294–C299, 1992.
 231. Rundell, K. W., P. C. Tullson, and R. L. Terjung. AMP deaminase binding in rat skeletal muscle after high‐intensity running. J. Appl. Physiol. 74: 2004–2006, 1993.
 232. Saccomani, M. P., C. Cobelli, R. A. De Fronzo, and R. C. Bonadonna. Effect of insulin on aminoacid trans‐membrane transport and metabolism in human skeletal muscle assessed by a compartmental‐model. San Raffaele Proc. Milan 1: 32P, 1990.
 233. Sahlin, K., A. Katz, and S. Broberg. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 259 (Cell Physiol. 28): C834–C841, 1990.
 234. Salter, M., R. G. Knowles, and C. I. Pogson. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem. J. 234: 635–647, 1986.
 235. Saltin, B., J. Henriksson, E. Nygaard, and P. Andersen. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann. N. Y. Acad. Sci. 301: 3–29, 1977.
 236. Sargeant, A. J., A. Young, C. T. M. Davies, C. Maunder, and R. H. T. Edwards. Functional and structural changes following disuse of human muscle. Clin. Sci. 52: 342, 1977.
 237. Savolainen, J., V. Myllyla, R. Myllyla, V. Vihko, K. Vaananen, and T. E. Takala. Effects of denervation and immobilization on collagen synthesis in rat skeletal muscle and tendon. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R897–R902, 1988.
 238. Savolainen, J., K. Vaananen, J. Puranen, T. E. Takala, J. Komulainen, and V. Vihko. Collagen synthesis and proteolytic activities in rat skeletal muscles: effect of cast‐immobilization in the lengthened and shortened positions. Arch. Phys. Med. Rehabil. 69: 964–969, 1988.
 239. Savolainen, J., K. Vaananen, V. Vihko, J. Puranen, and T. E. Takala. Effect of immobilization on collagen synthesis in rat skeletal muscles. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R883–R888, 1987.
 240. Säämänen, A.‐M., K. Puustjärvi, K. Lives, and M. Tammi. Effect of running exercise on proteoglycans and collagen content in the intervetebral disc of young dogs. Int. J. Sports Med. 14: 48–51, 1993.
 241. Scholte, H. R., and H. F. Busch. Early changes of muscle mitochondria in Duchenne dystrophy. Partition and activity of mitochondrial enzymes in fractionated muscle of unaffected boys and adults and patients. J. Neurol. Sci. 45: 217–234, 1980.
 242. Schott, L. H., and R. L. Terjung. The influence of exercise on muscle lysosomal enzymes. Eur. J. Appl. Physiol. 42: 175–182, 1979.
 243. Schröck, H., C. J. Cha, and L. Goldstein. Glutamine release from hind limb and uptake by kidney in the acutely acidotic rat. Biochem. J. 188: 557–560, 1980.
 244. Schwartz, R. G., E. J. Barrett, C. K. Francis, R. Jacob, and B. L. Zaret. Regulation of myocardial amino acid balance in the conscious dog. J. Clin. Invest. 75: 1204–1211, 1985.
 245. Scislowski, P. W. D., B. M. Hokland, W. I. A. Davisvan Thienen, J. Bremer, and E. J. Davis. Methionine metabolism by rat muscle and other tissues. Biochem. J. 247: 35–40, 1987.
 246. Sjölin, J., H. Stjernström, S. Henneberg, E. Andersson, J. Martensson, G. Griman, and J. Larsson. Splanchnic and peripheral release of 3–methylhistidine in relation to its urinary excretion in human infection. Metabolism 38: 23–29, 1989.
 247. Smith, K., J. M. Barua, C. M. Scrimgeour, and M. J. Rennie. Flooding with L‐[1‐13C]leucine stimulates human muscle protein incorporation of continuously infused L‐[1‐13C]valine. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E372–E376, 1992.
 248. Snow‐Harter, C., and R. Marcus. Exercise, bone mineral density and osteoporosis. In: Exercise and Sports Science Reviews, edited by J. O. Holloszy. Baltimore: Williams & Wilkins, 1991, p. 351–388.
 249. Stauber, W. T., P. M. Clarkson, V. K. Fritz, and W. J. Evans. Extracellular matrix disruption and pain after eccentric muscle action. J. Appl. Physiol. 69: 868–874, 1990.
 250. Swierczynski, J., Z. Bereznowski, and W. Makarewicz. Phosphate‐dependent glutaminase of rat skeletal muscle. Some properties and possible role in glutamine metabolism. Biochim. Biophys. Acta 1157: 55–62, 1993.
 251. Tadros, L. B., N. M. Willhoft, P. M. Taylor, and M. J. Rennie. Effects of glutamine deprivation on glutamine transport and synthesis in primary tissue culture of rat skeletal muscle. Am. J. Physiol. 265: 935–942, 1993.
 252. Tarnopolsky, M. A., S. A. Atkinson, J. D. MacDougall, A. Chesley, S. Phillips, and H. P. Schwarcz. Evaluation of protein requirements for trained strength athletes. J. Appl. Physiol. 73: 1986–1995, 1992.
 253. Tarnopolsky, M. A., S. A. Atkinson, J. D. MacDougall, B. B. Senor, P. W. R. Lemon, and H. Schwarcz. Whole body leucine metabolism during and after resistance exercise in fed humans. Med. Sci. Sports Exerc. 23: 326–333, 1991.
 254. Tarnopolsky, M. A., J. D. MacDougall, and S. A. Atkinson. Influence of protein intake and training status on nitrogen balance and lean body mass. J. Appl. Physiol. 64: 187–193, 1988.
 255. Taylor, P. M., C. J. F‐gan, and M. J. Rennie. Transport of glutamine across blood‐facing membranes of perfused rat jejunum. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E550–E558, 1989.
 256. Taylor, P. M., and M. J. Rennie. Amino acid fluxes across sinusoidal membranes of perfused rat liver: relationship with portal ammonia concentrations. In: Advances in Ammonia Metabolism and Hepatic Encephalopathy, edited by P. B. Soeters, J. H. P. Wilson, A. J. Meijer, and E. Holm. Amsterdam: Elsevier (Biomedical Division), 1988, p. 45–52.
 257. Tischler, M. E., M. Desautels, and A. L. Goldberg. Does leucine, leucyl‐tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem. 257: 1613–1621, 1982.
 258. Tovar, A. R., J. K. Tews, N. Torres, D. C. Madsen, and A. E. Harper. Competition for transport of amino acids into rat heart: effect of competitors on protein synthesis and degradation. Metabolism 41: 925–933, 1992.
 259. Tullson, P. C., and R. L. Terjung. Adenine nucleotide metabolism in contracting skeletal muscle. Exerc. Sport Sci. Rev. 19: 507–537, 1991.
 260. Turinsky, J. Glucose and amino acid uptake by exercising muscles in vivo effect of insulin, fiber population and denervation. Endocrinology 121: 528–535, 1987.
 261. Uchida, S., H. M. Kwon, A. S. Preston, and J. S. Handler. Expression of Madin‐Derby canine kidney cell Na+‐ and Cl‐dependent taurine transporter in Xenopus laevis oocytes. J. Biol. Chem. 266: 9605–9609, 1991.
 262. Van Hall, G., J. S. H. Raaymakers, W. H. M. Saris, and A. J. M. Wagenmakers. Effect of branched‐chain amino acid supplementation on performance during prolonged exercise. J. Physiol. 479: 51P, 1994.
 263. Vanuxem, D., S. Delpierre, A. Barlatier, and P. Vanuxem. Changes in blood ammonia induced by a maximum effort in trained and untrained subjects. Arch. Int. Physiol. Biochim. Biophys. 101: 405–409, 1993.
 264. Vihko, V., A. Salminen, and J. Rantamaki. Acid hydrolase activity in red and white skeletal muscle of mice during a two‐week period following exhausting exercise. Pflugers Arch. 378: 99–106, 1978.
 265. Vihko, V., A. Salminen, and J. Rantamaki. Oxidative and lysosomal capacity in skeletal muscle of mice after endurance training of different intensities. Acta. Physiol. Scand. 104: 74–81, 1978.
 266. Wagenmakers, A. J. Amino acid metabolism, muscular fatigue and muscle wasting, speculations on adaptations at high altitude (review). Int. J. Sports Med. 13 (Suppl. 1): S110–S113, 1992.
 267. Wagenmakers, A. J. M., E. J. Beckers, F. Brouns, H. Kuipers, P. B. Soeters, G. J. van der Vusse, and W. H. M. Saris. Carbohydrate supplementation, glycogen depletion and amino acid metabolism during exercise. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E883–E890, 1991.
 268. Wagenmakers, A. J. M., J. H. Brookes, J. H. Coakley, T. Reilly, and R. H. T. Edwards. Exercise‐induced activation of the branched‐chain 2‐oxo acid dehydrogenase in human muscle. Eur. J. Appl. Physiol. 59: 159–167, 1989.
 269. Wagenmakers, A. J. M., J. H. Coakley, and R. H. T. Edwards. Metabolism of branched‐chain amino acids and ammonia during exercise: clues from McArdle's disease. Int. J. Sports Med 11: S101–S113, 1990.
 270. Wagenmakers, A. J. M., J. T. G. Schepens, and J. H. Veerkamp. Effect of starvation and exercise on actual and total activity of the branched chain 2‐oxo acid dehydrogenase complex in rat skeletal tissues. Biochem. J. 223: 815–821, 1984.
 271. Wahren, J., P. Felig, and L. Hagenfeldt. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J. Clin. Invest. 57: 987–999, 1976.
 272. Wasserman, D. H., R. J. Geer, P. E. Williams, T. Becker, D. B. Lacy, and N. N. Aburnrad. Interaction of gut and liver in nitrogen metabolism during exercise. Metabolism 40: 307–314, 1991.
 273. Waterlow, J. C., and E. B. Fern. Free amino acid pools and their regulation. In: Nitrogen Metabolism in Man. Chichester, England: Applied Science Publishers, 1981, p. 1–16.
 274. Waterlow, J. C., P. J. Garlick, and D. J. Millward. Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: Elsevier‐North Holland, 1978.
 275. Watson, P. A., J. P. Stein, and F. W. Booth. Changes in actin synthesis and α‐actin‐mRNA content in rat muscle during immobilization. Am. J. Physiol. 247: 39–44, 1984.
 276. Watt, P. W., M. E. Corbett, and M. J. Rennie. Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability. Am. J. Physiol. 263: 453–460, 1992.
 277. Welbourne, T. C. Interorgan glutamine flow in metabolic acidosis. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F1069–F1076, 1987.
 278. White, T. P., and G. A. Brooks. [U‐14C]glucose, ‐alanine, and ‐leucine oxidation in rats at rest and two intensities of running. Am. J. Physiol. 240: 155–165, 1981.
 279. Wibom, R., and E. Hultman. ATP production rate in mitochondria isolated from microsamples of human muscle. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E204–E209, 1990.
 280. Willhoft, N. M., and M. J. Rennie. Characteristics of L‐glutamine efflux from incubated rat soleus muscle. J. Physiol. (Lond.) 446: 10P, 1992.
 281. Wilson, W. M., and R. J. Maughan. Evidence for a possible role of 5‐hydroxytrypamine in the genesis of fatigue in man: administration of paroxetine, a 5‐HT re‐uptake inhibitor, reduces the capacity to perform prolonged exercise. Exp. Physiol. 77: 921–924, 1992.
 282. Windmueller, H. G., and A. E. Spaeth. Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 249: 5070–5079, 1974.
 283. Windmueller, H. G., and A. E. Spaeth. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for post‐absorptive rat small intestine. J. Biol. Chem. 253: 69–76, 1978.
 284. Wolfe, R. R. Does exercise stimulate protein breakdown in humans?: isotopic approaches to the problem. Med. Sci. Sports Exerc. 19: 172–178, 1987.
 285. Wolfe, R. R., R. D. Goodenough, M. H. Wolfe, F. T. Royle, and E. R. Nadel. Isotopic analysis of leucine and urea metabolism in exercising humans. J. Appl. Physiol. 52: 458–466, 1982.
 286. Wolfe, R. R., M. H. Wolfe, E. R. Nadel, and J. H. F. Shaw. Isotopic determination of amino acid‐urea interactions in exercise in humans. J. Appl. Physiol. 56: 221–229, 1984.
 287. Wong, T. S., and F. W. Booth. Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. J. Appl. Physiol. 69: 1709–1717, 1990.
 288. Wu, G., and J. R. Thompson. The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem. J. 265: 593–598, 1990.
 289. Wu, G., J. R. Thompson, and V. E. Baracos. Glutamine metabolism in skeletal muscles from the broiler chick (Callus domesticus) and the laboratory rat (Rattus norvegicus). Biochem. J. 274: 769–774, 1991.
 290. Yamada, Y., T. Ishihara, M. Fujiwara, S. Tamoto, I. Seki, and N. Ohsawa. Effects of exercise and pacing loads on myocardial amino acid balance in patients with normal and stenotic coronary arteries, with special reference to branched chain amino acids. Jpn. Circ. J. 57: 272–282, 1993.
 291. Yarasheski, K. E., J. J. Zachwieja, and D. M. Bier. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am. J. Physiol. 265 (Endocrinol. Metab. 23): E210–E214, 1993.
 292. Yki‐Jarvinen, H., K. Sahlin, J. M. Ren, and V. A. Koivisto. Localization of rate‐limiting defect for glucose disposal in skeletal muscle of insulin‐resistant type I diabetic patients. Diabetes 39: 157–167, 1990.
 293. Young, L. H., P. H. McNulty, C. Morgan, L. I. Deckelbaum, B. L. Zaret, and E. J. Barrett. Myocardial protein turnover in patients with coronary artery disease. Effect of branched chain amino acid infusion. J. Clin. Invest. 87: 554–560, 1991.
 294. Young, V. R., and H. N. Munro. Nt‐Methylhistidine (3‐methylhistidine) and muscle protein turnover: an overview. Federation Proc. 37: 2291–2300, 1978.
 295. Zorzano, A., T. W. Balon, L. P. Garetto, M. N. Goodman, and N. B. Ruderman. Muscle α‐aminoisobutyric acid transport after exercise: enhanced stimulation by insulin. Am. J. Physiol. 248 (Endocrinol. Metab. 11): E546–E552, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Michael J. Rennie. Influence of Exercise on Protein and Amino Acid Metabolism. Compr Physiol 2011, Supplement 29: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems: 995-1035. First published in print 1996. doi: 10.1002/cphy.cp120122