Comprehensive Physiology Wiley Online Library

Vertebrate Renal System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 External and Internal Gross Morphology of Vertebrate Kidneys
1.1 Fishes
1.2 Amphibians
1.3 Reptiles
1.4 Birds
1.5 Mammals
2 Glomerular Ultrafiltration
2.1 Glomerular Filtration Rate: Stability and Variability
2.2 Changes in the Number of Filtering Nephrons
2.3 Regulation of SNGFRs and the Number of Filtering Nephrons
3 Tubular Transport
3.1 Fine Structure of Tubule Cells
3.2 Transport of Inorganic Ions
3.3 Transport of Fluid
3.4 Transport of Organic Substances
4 Concentration and Dilution of the Urine
5 Integrative Summary of Some Renal Functions
5.1 Fishes
5.2 Amphibians
5.3 Reptiles
5.4 Birds
5.5 Mammals
Figure 1. Figure 1.

Diagrams of an elasmobranch nephron in the bundle zone (dorsal portion of the kidney) and in the sinus zone (the more ventral aspect of the kidney). a: Stylized nephron emphasizes the countercurrent folding pattern of four loops labeled I–IV(RC, renal corpuscle). A peritubular sheath surrounds the countercurrent system of nephron segments and the capillary loops in the bundle zone. Arrows indicate direction of flow in tubules and capillaries. b: Complexity of skate nephron in bundle and sinus zones. (from ref. 264, with permission).

Figure 2. Figure 2.

Three‐dimensional illustration of the avian kidney based on the anatomy of the desert quail (Callipepla gambelii); depicted is the extreme morphological heterogeneity of the nephron population within the quail kidney, which exists in all avian kidneys.

From ref. 58, with permission
Figure 3. Figure 3.

Drawings of proximal tubule ultrastructure in mammalian kidney. Cellular interdigitation is demonstrated by stippling over neighboring cells and their processes. a: S1 (P1) segment. Cellular interdigitation is most extensive and extends to apical ends of cells. Brush border is dense and high. b: S2 (P2) segment. Cellular interdigitation is decreased; cells have smooth apical outline. Brush border is less dense and reduced in height. Peroxysomes (cross‐hatched profiles) art numerous. c, d: S3 (P3) segments. Cellular interdigitation is markedly reduced. Considerable interspecies differences in brush border occur. In rabbit (c) and most other mammals, microvilli are short and scanty. In rat (d), brush border of S3 (P3) segment is highest among all proximal segments.

From ref. 263, with permission
Figure 4. Figure 4.

Schematic drawings comparing proximal tubule cells in two urodele amphibian species, Ambystoma tigrinum (tiger salamander) and Necturus maculosus (mudpuppy). Note higher, more uniform, and more dense brush border of apical membrane and greater amplification of basal membrane in A. tigrinum than in N. maculosus. Neither species has the large amplification and intercellular interdigitation of the lateral cell membranes observed in mammals (see Fig. 3).

From ref. 121, after ref. 301, with permission
Figure 5. Figure 5.

Schematic drawings showing characteristics of surfaces of proximal and distal tubule cells of mammals and reptiles. A: Mammalian cell type (less detailed than in Fig. 1). B: Gecko (Hemidactylus sp.) proximal cell. Note amplification of basal surface area. C: Horned lizard (Phrynosoma cornutum) and Galapagos lizard (Tropidurus sp.) proximal cells. Note lack of amplification of basal surface area. D: Mammalian thick ascending limb or early distal convoluted cell. E: Gecko (Hemidactylus sp.) distal cell. Note deep basolateral infoldings with elongated mitochondria, similar to those in mammalian cells. F: Horned lizard (P. cornutum) and Galapagos lizard (Tropidurus sp.) distal cell type. Note lack of deep basal infolding but presence of extensive lateral interdigitations.

From ref. 383, with permission
Figure 6. Figure 6.

Distal nephron of Amphiuma means (Congo eel). Glomerulus and proximal tubule are drawn in outline for reference. Shading indicates distal nephron segments. Lines from schematics to tubule segments indicate cellular composition of each segment. EDT, early distal tubule or “diluting segment”; LDT, late distal tubule.

From ref. 451, with permission
Figure 7. Figure 7.

Model for sodium and chloride reabsorption in nonmammalian proximal tubules based primarily on work with amphibians. Filled circle with solid arrows and breakdown of ATP to ADP, primary active transport; open circles, carrier‐mediated transport that may involve carrier‐mediated diffusion or secondary active transport; broken arrows, movement down an electrochemical gradient; solid arrows, movement against an electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign enclosed in circle indicating whether lumen is negative or positive relative to peritubular fluid.

Figure 8. Figure 8.

Model for net sodium chloride secretion by proximal tubules based on studies of elasmobranch proximal tubules by Beyenbach 31. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Note that transepithelial potential difference changes from lumen‐positive to lumen‐negative when chloride conductance across the luminal membrane is increased by cAMP.

Figure 9. Figure 9.

Model for sodium, chloride, potassium, and hydrogen ion transport by early distal tubules of nephrons of nonmammalian vertebrates and thick ascending limbs of loops of Henle of long‐looped (mammalian‐type) avian nephrons and mammalian nephrons. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Although details are based primarily on studies with amphibian and mammalian nephrons, the steps for sodium chloride reabsorption apparently are the same for early distal tubules of teleost nephrons, amphibian nephrons, and loopless (reptilian‐type) avian nephrons; the thick ascending limb of Henle's loop of mammalian‐type avian nephrons and mammalian nephrons; and possibly the thin intermediate segment or early distal tubule of reptilian nephrons.

Figure 10. Figure 10.

Model for sodium, chloride, potassium, and hydrogen ion transport by late distal tubules, collecting tubules, and collecting ducts. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Uncertainty about processes in different cell types in nonmammalian vertebrates, particularly in intercalated cells, is indicated by question marks.

Figure 11. Figure 11.

Model for potassium reabsorption by proximal tubules based on studies of mammals and amphibians. Filled circle with solid arrows, primary active transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Note that transepithelial potential difference changes from lumen‐negative in early proximal tubule to lumen‐positive in late proximal tubules in mammals but remains lumen‐negative in proximal tubules of amphibians. See text for differences between mammals and amphibians in transport steps pictured.

Figure 12. Figure 12.

Model for hydrogen ion secretion and bicarbonate reabsorption by proximal tubules based on studies on mammals and amphibians. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. C.A., carbonic anhydrase. Question marks, uncertainty about role of carbonic anhydrase in amphibians and about exit step for bicarbonate across peritubular membrane in both mammals and amphibians.

Figure 13. Figure 13.

Net fluid movement in isolated, perfused garter snake (Thamnophis sp.) proximal renal tubules. Composition of solution in lumen and bath in terms of sodium and chloride and of substitutes for them is shown at sides of figure for each experiment. Each bar represents mean net fluid movement, with lumen and bath composition shown. Horizontal lines at end of each bar represent SE. From six to thirteen tubules were used in each experiment.

From ref. 115, with permission
Figure 14. Figure 14.

Electron micrographs of cross‐section of isolated, perfused proximal renal tubules of garter snake (Thamnophis sp.). A: Proximal tubule perfused and bathed with medium containing sodium. B: Proximal tubule perfused and bathed with medium in which sodium has been replaced with choline. Both tubules are shown at same magnification. Note increase in cell height and widening of intercellular spaces in B, the tubule perfused and bathed with medium in which choline replaced sodium. Bar = 2.0 mm.

From ref. 139, with permission
Figure 15. Figure 15.

Model for net tubular reabsorption of glucose based on studies on amphibians, reptiles, and fish. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. Question marks, tentative suggestions. Apparent permeabilities of luminal membrane in lumen‐to‐cell ) and cell‐to‐lumen directions and of peritubular membrane in bath‐to‐cell direction are shown for various conditions for snake renal tubules.

Figure 16. Figure 16.

Model for amino acid entry across luminal membrane based on studies on amphibians and fish. Open circles, carrier‐mediated transport; solid arrows, movement against electrochemical gradient. Absence of positive charge on sodium indicates electroneutral entry step.

Figure 17. Figure 17.

Model for net taurine secretion based on studies on teleosts. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.

Figure 18. Figure 18.

Model for net tubular secretion of urea based on studies on amphibians. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.

Figure 19. Figure 19.

Model for net tubular secretion of organic anions, with para‐aminohippurate (PAH) as the prototype anion, based on studies on fish, amphibians, reptiles, and birds. A, anion of unspecified nature. Arrows from K+, Na+, and Ca2+, sites of effects of alterations in concentrations of these inorganic cations. Broken arrow with question mark leading from transport step at luminal membrane to transport step at peritubular membrane, possible feedback coupling between transport steps. Electrical potentials at top of figure refer to peritubular fluid at 0 mV. Values for apparent permeabilities to PAH of luminal (PL) and peritubular (PF) membranes and for Km and Jmax for net secretion are from studies on snake and frog renal tubules. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.

Figure 20. Figure 20.

Model for net tubular secretion of urate in reptiles. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. A, anion of unspecified nature; broken arrow with question mark, uncertainty at transport step across luminal membrane.

Figure 21. Figure 21.

Model for net tubular secretion of urate in birds. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.

Figure 22. Figure 22.

Model for net tubular transport of tetraethylammonium (TEA+) and N1‐methylnicotinamide (NMN+) in snake proximal renal tubules. C+, cation of unspecified nature. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. A, anion of unspecified nature; broken arrow with question mark, possible feedback coupling between transport steps. Maximum unidirectional fluxes for TEA and NMN are given and illustrated by the lengths of the arrows at the top and bottom of model, respectively. Km value for each unidirectional flux is also given.

Figure 23. Figure 23.

Model for net secretion of tetraethylammonium (TEA+) and N1‐methylnicotinamide (NMN+) (and most other organic cations) and for net reabsorption of choline in rabbit proximal renal tubules. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.

Figure 24. Figure 24.

Model for net secretion of tetraethylammonium (TEA+) and N1‐methylnicotinamide (NMN+) in fish proximal renal tubules. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.



Figure 1.

Diagrams of an elasmobranch nephron in the bundle zone (dorsal portion of the kidney) and in the sinus zone (the more ventral aspect of the kidney). a: Stylized nephron emphasizes the countercurrent folding pattern of four loops labeled I–IV(RC, renal corpuscle). A peritubular sheath surrounds the countercurrent system of nephron segments and the capillary loops in the bundle zone. Arrows indicate direction of flow in tubules and capillaries. b: Complexity of skate nephron in bundle and sinus zones. (from ref. 264, with permission).



Figure 2.

Three‐dimensional illustration of the avian kidney based on the anatomy of the desert quail (Callipepla gambelii); depicted is the extreme morphological heterogeneity of the nephron population within the quail kidney, which exists in all avian kidneys.

From ref. 58, with permission


Figure 3.

Drawings of proximal tubule ultrastructure in mammalian kidney. Cellular interdigitation is demonstrated by stippling over neighboring cells and their processes. a: S1 (P1) segment. Cellular interdigitation is most extensive and extends to apical ends of cells. Brush border is dense and high. b: S2 (P2) segment. Cellular interdigitation is decreased; cells have smooth apical outline. Brush border is less dense and reduced in height. Peroxysomes (cross‐hatched profiles) art numerous. c, d: S3 (P3) segments. Cellular interdigitation is markedly reduced. Considerable interspecies differences in brush border occur. In rabbit (c) and most other mammals, microvilli are short and scanty. In rat (d), brush border of S3 (P3) segment is highest among all proximal segments.

From ref. 263, with permission


Figure 4.

Schematic drawings comparing proximal tubule cells in two urodele amphibian species, Ambystoma tigrinum (tiger salamander) and Necturus maculosus (mudpuppy). Note higher, more uniform, and more dense brush border of apical membrane and greater amplification of basal membrane in A. tigrinum than in N. maculosus. Neither species has the large amplification and intercellular interdigitation of the lateral cell membranes observed in mammals (see Fig. 3).

From ref. 121, after ref. 301, with permission


Figure 5.

Schematic drawings showing characteristics of surfaces of proximal and distal tubule cells of mammals and reptiles. A: Mammalian cell type (less detailed than in Fig. 1). B: Gecko (Hemidactylus sp.) proximal cell. Note amplification of basal surface area. C: Horned lizard (Phrynosoma cornutum) and Galapagos lizard (Tropidurus sp.) proximal cells. Note lack of amplification of basal surface area. D: Mammalian thick ascending limb or early distal convoluted cell. E: Gecko (Hemidactylus sp.) distal cell. Note deep basolateral infoldings with elongated mitochondria, similar to those in mammalian cells. F: Horned lizard (P. cornutum) and Galapagos lizard (Tropidurus sp.) distal cell type. Note lack of deep basal infolding but presence of extensive lateral interdigitations.

From ref. 383, with permission


Figure 6.

Distal nephron of Amphiuma means (Congo eel). Glomerulus and proximal tubule are drawn in outline for reference. Shading indicates distal nephron segments. Lines from schematics to tubule segments indicate cellular composition of each segment. EDT, early distal tubule or “diluting segment”; LDT, late distal tubule.

From ref. 451, with permission


Figure 7.

Model for sodium and chloride reabsorption in nonmammalian proximal tubules based primarily on work with amphibians. Filled circle with solid arrows and breakdown of ATP to ADP, primary active transport; open circles, carrier‐mediated transport that may involve carrier‐mediated diffusion or secondary active transport; broken arrows, movement down an electrochemical gradient; solid arrows, movement against an electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign enclosed in circle indicating whether lumen is negative or positive relative to peritubular fluid.



Figure 8.

Model for net sodium chloride secretion by proximal tubules based on studies of elasmobranch proximal tubules by Beyenbach 31. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Note that transepithelial potential difference changes from lumen‐positive to lumen‐negative when chloride conductance across the luminal membrane is increased by cAMP.



Figure 9.

Model for sodium, chloride, potassium, and hydrogen ion transport by early distal tubules of nephrons of nonmammalian vertebrates and thick ascending limbs of loops of Henle of long‐looped (mammalian‐type) avian nephrons and mammalian nephrons. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Although details are based primarily on studies with amphibian and mammalian nephrons, the steps for sodium chloride reabsorption apparently are the same for early distal tubules of teleost nephrons, amphibian nephrons, and loopless (reptilian‐type) avian nephrons; the thick ascending limb of Henle's loop of mammalian‐type avian nephrons and mammalian nephrons; and possibly the thin intermediate segment or early distal tubule of reptilian nephrons.



Figure 10.

Model for sodium, chloride, potassium, and hydrogen ion transport by late distal tubules, collecting tubules, and collecting ducts. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Uncertainty about processes in different cell types in nonmammalian vertebrates, particularly in intercalated cells, is indicated by question marks.



Figure 11.

Model for potassium reabsorption by proximal tubules based on studies of mammals and amphibians. Filled circle with solid arrows, primary active transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient; lines with bar at end, inhibition; VT, transepithelial potential difference, with sign in circle indicating whether lumen is negative or positive relative to peritubular fluid. Note that transepithelial potential difference changes from lumen‐negative in early proximal tubule to lumen‐positive in late proximal tubules in mammals but remains lumen‐negative in proximal tubules of amphibians. See text for differences between mammals and amphibians in transport steps pictured.



Figure 12.

Model for hydrogen ion secretion and bicarbonate reabsorption by proximal tubules based on studies on mammals and amphibians. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. C.A., carbonic anhydrase. Question marks, uncertainty about role of carbonic anhydrase in amphibians and about exit step for bicarbonate across peritubular membrane in both mammals and amphibians.



Figure 13.

Net fluid movement in isolated, perfused garter snake (Thamnophis sp.) proximal renal tubules. Composition of solution in lumen and bath in terms of sodium and chloride and of substitutes for them is shown at sides of figure for each experiment. Each bar represents mean net fluid movement, with lumen and bath composition shown. Horizontal lines at end of each bar represent SE. From six to thirteen tubules were used in each experiment.

From ref. 115, with permission


Figure 14.

Electron micrographs of cross‐section of isolated, perfused proximal renal tubules of garter snake (Thamnophis sp.). A: Proximal tubule perfused and bathed with medium containing sodium. B: Proximal tubule perfused and bathed with medium in which sodium has been replaced with choline. Both tubules are shown at same magnification. Note increase in cell height and widening of intercellular spaces in B, the tubule perfused and bathed with medium in which choline replaced sodium. Bar = 2.0 mm.

From ref. 139, with permission


Figure 15.

Model for net tubular reabsorption of glucose based on studies on amphibians, reptiles, and fish. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. Question marks, tentative suggestions. Apparent permeabilities of luminal membrane in lumen‐to‐cell ) and cell‐to‐lumen directions and of peritubular membrane in bath‐to‐cell direction are shown for various conditions for snake renal tubules.



Figure 16.

Model for amino acid entry across luminal membrane based on studies on amphibians and fish. Open circles, carrier‐mediated transport; solid arrows, movement against electrochemical gradient. Absence of positive charge on sodium indicates electroneutral entry step.



Figure 17.

Model for net taurine secretion based on studies on teleosts. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.



Figure 18.

Model for net tubular secretion of urea based on studies on amphibians. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.



Figure 19.

Model for net tubular secretion of organic anions, with para‐aminohippurate (PAH) as the prototype anion, based on studies on fish, amphibians, reptiles, and birds. A, anion of unspecified nature. Arrows from K+, Na+, and Ca2+, sites of effects of alterations in concentrations of these inorganic cations. Broken arrow with question mark leading from transport step at luminal membrane to transport step at peritubular membrane, possible feedback coupling between transport steps. Electrical potentials at top of figure refer to peritubular fluid at 0 mV. Values for apparent permeabilities to PAH of luminal (PL) and peritubular (PF) membranes and for Km and Jmax for net secretion are from studies on snake and frog renal tubules. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.



Figure 20.

Model for net tubular secretion of urate in reptiles. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. A, anion of unspecified nature; broken arrow with question mark, uncertainty at transport step across luminal membrane.



Figure 21.

Model for net tubular secretion of urate in birds. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.



Figure 22.

Model for net tubular transport of tetraethylammonium (TEA+) and N1‐methylnicotinamide (NMN+) in snake proximal renal tubules. C+, cation of unspecified nature. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient. A, anion of unspecified nature; broken arrow with question mark, possible feedback coupling between transport steps. Maximum unidirectional fluxes for TEA and NMN are given and illustrated by the lengths of the arrows at the top and bottom of model, respectively. Km value for each unidirectional flux is also given.



Figure 23.

Model for net secretion of tetraethylammonium (TEA+) and N1‐methylnicotinamide (NMN+) (and most other organic cations) and for net reabsorption of choline in rabbit proximal renal tubules. Filled circle with solid arrows, primary active transport; open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.



Figure 24.

Model for net secretion of tetraethylammonium (TEA+) and N1‐methylnicotinamide (NMN+) in fish proximal renal tubules. Open circles, carrier‐mediated transport; broken arrows, movement down electrochemical gradient; solid arrows, movement against electrochemical gradient.

References
 1. Abramson, R. G., M. S. Lipkowitz, D. Rivero, and S. K. Masur. Cytochemical demonstration of uricase in isolated membrane vesicles of rat renal cortex. Kidney Int. 29: 411, 1986.
 2. Agus, Z. A., and S. Goldfarb. Renal regulation of calcium balance. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, chapt. 56, p. 1323–1335.
 3. Alt, J. M., H. Stolte, G. M. Eisenbach, and F. Walvig. Renal electrolyte and fluid excretion in the Atlantic hagfish Myxine glutinosa. J. Exp. Biol. 91: 323–330, 1980.
 4. Ames, E., K. Steven, and E. Skadhauge. Effects of arginine vasotocin on renal excretion of Na+, K+, Cl–, and urea in the hydrated chicken. Am. J. Physiol. 221: 1223–1228, 1971.
 5. Aronson, P. S. The renal proximal tubule: a model for diversity of anion exchangers and stilbene‐sensitive anion transporters. Annu. Rev. Physiol. 51: 419–441, 1989.
 6. Austic, R. E., and R. K. Cole. Impaired renal clearance of uric acid in chickens having hyperuricemia and articular gout. Am. J. Physiol. 223: 525–530, 1972.
 7. Balinski, J. B., and E. Baldwin. The mode of excretion of ammonia and urea in Xenopus laevis. J. Exp. Biol. 38: 695–705, 1961.
 8. Balinski, J. B., and E. Baldwin. Comparative studies of nitrogen metabolism in amphibia. Biochem. J. 82: 187–191, 1962.
 9. Ballerman, B. J., and M. L. Zeidel. Atrial natriuretic hormone. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 51, p. 1843–1884.
 10. Barac‐Nieto, M., H. Murer, and R. Kinne. Lactate‐sodium co‐transport in rat renal brush border membranes. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 10): F496–F506, 1980.
 11. Barac‐Nieto, M., H. Murer, and R. Kinne. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pflugers Arch. 392: 366–371, 1982.
 12. Barfuss, D. W., and W. H. Dantzler. Glucose transport in isolated perfused proximal tubules of snake kidney. Am. J. Physiol. 231: 1716–1728, 1976.
 13. Barnes, R. D. Invertebrate Zoology (2nd ed.). Philadelphia: Saunders, 1968.
 14. Batlle, D. C., and N. A. Kurtzman. Renal regulation of acid‐base homeostasis: integrated response. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, chapt. 67, p. 1539–1565.
 15. Baze, W. B., and F. R. Horne. Ureogenesis in chelonia. Comp. Biochem. Physiol. 34: 91–100, 1970.
 16. Benyajati, S., and S. M. Bay. Isolation and characterization of basolateral membranes from snake kidney cells: comparison with brush‐border membranes [Abstract 65.11]. Physiologist 33: A95, 1990.
 17. Benyajati, S., and S. M. Bay. Sodium–taurine cotransport in reptilian renal brush‐border membrane vesicles. Pflugers Arch. 421: 168–175, 1992.
 18. Benyajati, S., and S. M. Bay. Basolateral taurine transport system in reptilian renal cells. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 37): F439–F449, 1994.
 19. Benyajati, S., and W. H. Dantzler. Plasma levels and renal handling of endogenous amino acids in snakes: a comparative study. J. Exp. Zool, 238: 17–28, 1986.
 20. Benyajati, S., and W. H. Dantzler. Renal secretion of amino acids in ophidian reptiles. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R712–R720, 1986.
 21. Benyajati, S., and W. H. Dantzler. Enzymatic and transport characteristics of isolated snake renal brush‐border membranes. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 26): R52–R60, 1988.
 22. Benyajati, S., and J. L. Johnson. Characteristics of renal transport of taurine in reptilian brush‐border membrane vesicles. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R879–R888, 1991.
 23. Benyajati, S., S. D. Yokota, and W. H. Dantzler. Renal function in sea snakes. II. Sodium, potassium, and magnesium excretion. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 20): R237–R245, 1985.
 24. Berglund, F., and R. P. Forster. Renal tubular transport of inorganic divalent ions by the aglomerular marine teleost, Lophius americanus. J. Gen. Physiol. 41: 429–440, 1958.
 25. Berndt, T., and F. G. Knox. Renal regulation of phosphate excretion. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 71, p. 2511–2532.
 26. Besseghir, K., D. Mosig, and F. Roch‐Ramel. Transport of the organic cation N1‐methylnicotinamide by the rabbit proximal tubule. I. Accumulation in the isolated nonperfused tubule. J. Pharmacol. Exp. Ther. 253: 444–451, 1990.
 27. Beuchat, C. A. Body size, medullary thickness, and urine concentrating ability in mammals. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R298–R308, 1990.
 28. Beuchat, C. A. Structure and concentrating ability of the mammalian kidney: correlations with habitat. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 40): R157–R179, 1996.
 29. Beyenbach, K. W. Direct demonstration of fluid secretion by glomerular renal tubules in a marine teleost. Nature 299: 54–56, 1982.
 30. Beyenbach, K. W. Water permeable and impermeable barriers of snake distal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F290–F299, 1984.
 31. Beyenbach, K. W. Secretory NaCl and volume flow in renal tubules. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R753–R763, 1986.
 32. Beyenbach, K. W., and W. H. Dantzler. Generation of transepithelial potentials by isolated perfused reptilian distal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 5): F238–F246, 1978.
 33. Beyenbach, K. W., and E. Frömter. Electrophysiological evidence for Cl secretion in shark renal proximal tubules. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 19): F282–F295, 1985.
 34. Beyenbach, K. W., B. M. Koeppen, W. H. Dantzler, and S. I. Helman. Luminal Na concentration and the electrical properties of the snake distal tubule. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 10): F412–F419, 1980.
 35. Beyenbach, K. W., D. H. Petzel, and W. H. Cliff. Renal proximal tubule of flounder. I. Physiological properties. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R608–R615, 1986.
 36. Biagi, B., T. Kubota, M. Sohtell, and G. Giebish. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 11): F200–F210, 1981.
 37. Biemesderfer, D., J. A. Payne, C. Y. Lytle, and B. Forbush. III. Immunocytochemical studies of the Na‐K‐Cl cotransporter of shark kidney. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F927–F936, 1996.
 38. Bindslev, N., and E. Skadhauge. Sodium chloride absorption and solute‐linked water flow across the epithelium of the coprodeum and large intestine in the normal and dehydrated fowl (Gallus domesticus). In vivo perfusion studies. J. Physiol. (Lond.) 216: 753–768, 1971.
 39. Boorman, K. N., and I. R. Falconer. The reabsorption of histidine, leucine and the cationic amino acids in the young cockerel (Gallus domesticus). Comp. Biochem. Physiol. A 42: 311–320, 1972.
 40. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander: Na–H exchange. J. Gen. Physiol. 81: 29–52, 1983.
 41. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander: basolateral HCO3‐– transport. J. Gen. Physiol. 81: 53–94, 1983.
 42. Boulpaep, E. L. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222: 517–531, 1972.
 43. Boulpaep, E. L. Electrical phenomena in the nephron. Kidney Int. 9: 88–102, 1976.
 44. Boumendil‐Podevin, E. F., R. A. Podevin, and C. Priol. Uric acid transport in brush border membrane vesicles isolated from rabbit kidney. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F519–F525, 1979.
 45. Bourdeau, J. E., and M. B. Burg. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F121–F126, 1980.
 46. Boykin, S.L.B., and E. J. Braun. Patterns of collecting duct (CD) branching, nephron entry to the collecting ducts, and nephron type distributions in the kidney of domestic fowl. FASEB J. 5: A682, 1991.
 47. Boykin, S.L.B., and E. J. Braun. Entry of nephrons into the collecting duct network of the avian kidney: a comparison of chickens and desert and quail. J. Morphol. 216: 259–269, 1993.
 48. Boylan, J. W. A model for passive urea reabsorption in the elasmobranch kidney. Comp. Biochem. Physiol., [A] 42: 27–30, 1972.
 49. Bradley, E. L., W. N. Holmes, and A. Wright. The effects of neurohypophysectomy on the pattern of renal excretion in the duck (Anas platyrhynchos). J. Endocrinol. 51: 57–65, 1971.
 50. Bradshaw, S. D. Osmoregulation and pituitary‐adrenal function in desert reptiles. Gen. Comp. Endocrinol. 25: 230–248, 1975.
 51. Bradshaw, S. D., and G. E. Rice. The effects of pituitary and adrenal hormones on renal and post‐renal reabsorption of water and electrolytes in the lizard Varanus gouldii (Gray). Gen. Comp. Endocrinol. 44: 82–93, 1981.
 52. Bradshaw, S. D., V. H. Shoemaker, and K. A. Nagy. The role of adrenalcorticosteroids in the regulation of kidney function in the desert lizard Dipsosaurus dorsalis. Comp. Biochem. Physiol., [A] 43: 621–635, 1972.
 53. Brand, P. H., and R. S. Stansbury. Lactate absorption in Thamnopis proximal tubule: transport versus metabolism. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 9): F218–F228, 1980.
 54. Brand, P. H., and R. S. Stansbury. Peritubular uptake of lactate by Thamnophis proximal tubule. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 9): F296–F304, 1980.
 55. Brand, P. H., and R. S. Stansbury. Lactate transport by Thamnophis proximal tubule: sodium dependence. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 11): F388–F394, 1981.
 56. Braun, E. J. Renal response of the starling (Sturnus vulgaris) to an intravenous salt load. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 5): F270–F278, 1978.
 57. Braun, E. J. Renal function in birds. In: New Insights in Vertebrate Kidney Function, Society for Experimental Biology Seminar Series 52, edited by J. A. Brown, R. J. Balment, and J. C. Rankin. Cambridge: Cambridge University Press, 1993, p. 167–188.
 58. Braun, E. J., and W. H. Dantzler. Function of mammalian‐type and reptilian‐type nephrons in kidney of desert quail. Am. J. Physiol. 222: 617–629, 1972.
 59. Braun, E. J., and W. H. Dantzler. Effects of water load on renal glomerular and tubular function in desert quail. Am. J. Physiol. 229: 222–228, 1975.
 60. Braun, E. J., and P. R. Reimer. Structure of the avian loop of Henle as related to countercurrent multiplier system. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 26): F500–512, 1988.
 61. Braysher, M. L. The excretion of hyperosmotic urine and other aspects of the electrolyte balance of the lizard Amphibolorus maculosus. Comp. Biochem. Physiol. A 54: 341–345, 1976.
 62. Brazy, P. C., and V. W. Dennis. Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F300–F307, 1981.
 63. Brewer, K. J., and D. M. Ensor. Hormonal control of osmoregulation in the chelonia. 1. The effects of prolactin and interrenal steroids in freshwater chelonians. Gen. Comp. Endocrinol. 42: 304–309, 1980.
 64. Brokl, O. H., E. J. Braun, and W. H. Dantzler. Transport of PAH, urate, TEA, and fluid by isolated perfused and non‐perfused avian renal proximal tubules. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 37): R1085–R1094, 1994.
 65. Brown, J. A., and C. Green. Single nephron function of the lesser spotted dogfish, Scylorhinus caniculus, and the effects of adrenaline. J. Exp. Biol. 129: 265–278, 1987.
 66. Brown, J. A., B. A. Jackson, J. A. Oliver, and I. W. Henderson. Single nephron filtration rates (SNGFR) in the trout, Salmo gairdneri. Pflugers Arch. 377: 101–108, 1978.
 67. Brown, J. A., J. A. Oliver, I. W. Henderson, and B. A. Jackson. Angiotensin and single nephron glomerular function in the trout Salmo gairdneri. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 10): R509–R514, 1980.
 68. Brummermann, M., and E. J. Braun. Effect of salt and water balance on colonic motility of white leghorn roosters. Am. J. Physiol. 268 (Regulatory Integrative Comp. Physiol. 39): R690–R698, 1995.
 69. Bulger, R. E., and B. F. Trump. Renal morphology of the English sole (Parophrys vetulus). Am. J. Anat. 123: 195–225, 1968.
 70. Burg, M. B. Thick ascending limb of Henle's loop. Kidney Int. 22: 454–464, 1982.
 71. Burg, M. B. Renal handling of sodium, chloride, water, amino acids and glucose. In: The Kidney, (3rd ed.), edited by B. M. Brenner and F. C. Rector, Jr. Philadelphia: Saunders, 1986, vol. I, chapt. 5, p. 145–175.
 72. Burg, M. B., and N. Green. Function of the thick ascending limb of Henle's loop. Am. J. Physiol. 224: 659–668, 1973.
 73. Burg, M. B., and P. F. Weller. Iodopyracet transport by isolated perfused flounder proximal renal tubules. Am. J. Physiol. 217: 1053–1056, 1969.
 74. Butler, D. G. Antidiuretic effect of arginine vasotocin in the western painted turtle (Chrysemys picta belli). Gen. Comp. Endocrinol. 18: 121–125, 1972.
 75. Cacini, W., and A. J. Quebbemann. The metabolism and active excretion of hypoxanthine by the renal tubules in the chicken. J. Pharmacol. Exp. Ther. 207: 574–583, 1978.
 76. Calder, W. A. Size, Function, and Life History. Cambridge, MA: Harvard University Press, 1984.
 77. Calder, W. A., and E. J. Braun. Scaling of osmotic regulation in mammals and birds. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 15): R601–R606, 1983.
 78. Cameron, J. N., and G. A. Kormanik. Acid‐base responses of gills and kidneys to infused acid and base loads in channel catfish, Ictalurus punctatus. J. Exp. Biol. 99: 143–160, 1982.
 79. Chan, D.K.O., J. C. Rankin, and I. Chester Jones. Influences of the adrenal cortex and the corpuscles of Stannius on osmoregulation in the European eel (Anguilla anguilla L.) adapted to fresh water. Gen. Comp. Endocrinol. (Suppl): 342–353, 1969.
 80. Chatsudthipong, V., and W. H. Dantzler. PAH‐α‐KG countertransport stimulates PAH uptake and net secretion in isolated snake renal tubules. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30): F858–F867, 1991.
 81. Chatsudthipong, V., and W. H. Dantzler. PAH/α‐KG countertransport stimulates PAH uptake and net secretion in isolated rabbit renal tubules. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32); F384–F391, 1992.
 82. Jones, I. Chester, D.K.O. Chan, and J. C. Rankin. Renal function in the European eel (Anguilla anguilla L.): changes in blood pressure and renal function of the freshwater eel transferred to sea‐water. J. Endocrinol. 43: 9–19, 1969.
 83. Chin, T. Y., and A. J. Quebbemann. Quantitation of renal uric acid synthesis in the chicken. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F446–F451, 1978.
 84. Chonko, A. M. Urate secretion in isolated rabbit renal tubules. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F545–F551, 1980.
 85. Churchill, P. C., R. L. Malvin, M. C. Churchill, and F. D. McDonald. Renal function in Lophius americanus: effects of angiotensin II. Am. J. Physiol. 236 (Regulatory Integrative Comp. Physiol. 5): R297–R301, 1979.
 86. Clark, N. B., E. J. Braun, and R. F. Wideman, Jr. Parathyroid hormone and renal excretion of phosphate and calcium in normal starlings. Am. J. Physiol. 231: 1152–1158, 1976.
 87. Clark, N. B., and W. H. Dantzler. Renal tubular transport of calcium and phosphate in snakes: role of parathyroid hormone. Am. J. Physiol. 223: 1455–1464, 1972.
 88. Clark, N. B., and W. H. Dantzler. Renal tubular transport of calcium and phosphate in snakes: role of calcitonin. Gen. Comp. Endocrinol. 26: 321–326, 1975.
 89. Clark, N. B., and L.L.S. Mok. Renal excretion in gull chicks: effect of parathyroid hormone and calcium loading. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R41–R50, 1986.
 90. Clark, N. B., and Y. Sasayama. The role of parathyroid hormone on renal excretion of calcium and phosphate in the Japanese quail. Gen. Comp. Endocrinol. 45: 234–241, 1981.
 91. Clark, N. B., and R. F. Wideman, Jr. Renal excretion of phosphate and calcium in parathyroidectomized starlings. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F138–F144, 1977.
 92. Cliff, W. H., and K. W. Beyenbach. Fluid secretion in glomerular renal proximal tubules of freshwater‐adapted fish. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 25): R154–R158, 1988.
 93. Cliff, W. H., and K. W. Beyenbach. Secretory renal proximal tubules in seawater‐ and freshwater‐adapted killifish. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 33): F108–F116, 1992.
 94. Cliff, W. H., D. B. Sawyer, and K. W. Beyenbach. Renal proximal tubule of flounder. II. Transepithelial Mg secretion. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R616–R624, 1986.
 95. Cogan, M. G. Regulation and control of bicarbonate reabsorption in the proximal tubule. Semin. Nephrol. 10: 115–121, 1990.
 96. Cohen, B., G. Giebisch, L. L. Hansen, U. Teuscher, and M Wiederholt. Relationship between peritubular membrane potential and net fluid reabsorption in the distal renal tubule of Amphiuma. J. Physiol. (Lond.) 348: 115–134, 1984.
 97. Cohen, J. J. Specificity of substrate utilization by the dog kidney in vivo. In: Renal Metabolism and Epidemiology of Some Renal Diseases, edited by J. Metcalf. New York: National Kidney Foundation, 1964, p. 126–146.
 98. Colbert, E. H. Evolution of the Vertebrates (3rd ed.). New York: Wiley, 1980.
 99. Costanzo, L. S., and E. E. Windhager. Renal tubular transport of calcium. In: Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1990, sect. 8, vol. II, chapt. 36, p. 1759–1783.
 100. Coulson, R. A., and T. Hernandez. Biochemistry of the Alligator. Baton Rouge: Louisiana State University, 1964.
 101. Coulson, R. A., and T. Hernandez. Nitrogen metabolism and excretion in the living reptile. In: Comparative Biochemistry of Nitrogen Metabolism. The Vertebrates, edited by J. W. Campbell. New York: Academic, 1970, vol. 2, p. 640–710.
 102. Coulson, R. A., and T. Hernandez. Alligator metabolism: studies on chemical reactions in vivo. Comp. Biochem. Physiol., [B] 74: 1–182, 1983.
 103. Craan, A. G., G. Lemieux, P. Vinay, and A. Gougoux. The kidney of chicken adapts to chronic metabolic acidosis: in vivo and in vitro studies. Kidney Int. 22: 103–111, 1982.
 104. Craan, A. G., P. Vinay, G. Lemieux, and A. Gougoux. Metabolism and transport of l‐glutamine and l‐alanine by renal tubules of chickens. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 16): F142–F150, 1983.
 105. Dantzler, W. H. Renal response of chickens to infusion of hyperosmotic sodium chloride solution. Am. J. Physiol. 210: 640–646, 1966.
 106. Dantzler, W. H. Glomerular and tubular effects of arginine vasotocin in water snakes (Natrix sipedon). Am. J. Physiol. 212: 83–91, 1967.
 107. Dantzler, W. H. Effect of metabolic alkalosis and acidosis on tubular urate secretion in water snakes. Am. J. Physiol. 215: 747–751, 1968.
 108. Dantzler, W. H. Effects of K, Na, and ouabain on urate and PAH uptake by snake and chicken kidney slices. Am. J. Physiol. 217: 1510–1519, 1969.
 109. Dantzler, W. H. Kidney function in desert vertebrates. In: Memoirs of the Society of Endocrinology, No. 18, Hormones and the Environment, edited by G. K. Benson and J. G. Phillips. Cambridge: Cambridge University Press, 1970, p. 157–190.
 110. Dantzler, W. H. Characteristics of urate transport by isolated perfused snake proximal renal tubules. Am. J. Physiol. 224: 445–453, 1973.
 111. Dantzler, W. H. K+ effects on PAH transport and membrane permeabilities in isolated snake renal tubules. Am. J. Physiol. 227: 1361–1370, 1974.
 112. Dantzler, W. H. PAH transport by snake proximal renal tubules: differences from urate transport. Am. J. Physiol. 226: 634–641, 1974.
 113. Dantzler, W. H. Comparison of uric acid and PAH transport by isolated, perfused snake renal tubules. In: Amino Acid Transport and Uric Acid Transport, edited by S. Silbernagl, F. Lang, and R. Greger. Stuttgart: Thieme, 1976, p. 169–180.
 114. Dantzler, W. H. Renal function (with special emphasis on nitrogen excretion). In: Biology of the Reptilia. Physiology A, edited by C. G. Gans and W. R. Dawson. London: Academic, 1976, vol. 5, p. 447–503.
 115. Dantzler, W. H. Some renal glomerular and tubular mechanisms involved in osmotic and volume regulation in reptiles and birds. In: Osmotic and Volume Regulation. Alfred Benzon Symposium XI, edited by C. Barker Jorgenson, and E. Skadhange. Copenhagen: Munksgaard, 1978, p. 187–201.
 116. Dantzler, W. H. Urate excretion in nonmammalian vertebrates. In: Handbook of Experimental Pharmacology, Uric Acid, edited by W. N. Kelley and I. M. Weiner. Berlin: Springer‐Verlag, 1978, vol. 51, p. 185–210.
 117. Dantzler, W. H. Renal mechanisms for osmoregulation in reptiles and birds. In: Animals and Environmental Fitness, edited by R. Gilles. Oxford: Pergamon, 1980, p. 91–110.
 118. Dantzler, W. H. Reptilian glomerular and tubular functions and their control. Federation Proc. 41: 2371–2376, 1982.
 119. Dantzler, W. H. Studies on nonmammalian nephrons. Kidney Int. 22: 560–570, 1982.
 120. Dantzler, W. H. Some renal glomerular and tubular mechanisms involved in the regulation of water and solute balance in reptiles. In: Current Trends in Comparative Endocrinology, edited by B. Lofts and W. N. Holmes. Hong Kong: Hong Kong University Press, 1985, vol. 2, p 945–948.
 121. Dantzler, W. H. Comparative Physiology of the Vertebrate Kidney. Berlin: Springer‐Verlag, 1988.
 122. Dantzler, W. H. Comparative aspects of renal function. In: The Kidney: Physiology and Pathophysiology, (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 1, chapt. 27, p. 885–942.
 123. Dantzler, W. H. Comparative physiology of the kidney. In: Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1990, sect. 8, vol. 1, chapt. 11, p. 416–474.
 124. Dantzler, W. H., and S. K. Bentley. Low Na+ effects on PAH transport and permeabilities in isolated snake renal tubules. Am. J. Physiol. 230: 256–262, 1976.
 125. Dantzler, W. H., and S. K. Bentley. Fluid absorption with and without sodium in isolated perfused snake proximal tubules. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 5): F68–F78, 1978.
 126. Dantzler, W. H., and S. K. Bentley. Lack of effect of potassium on fluid absorption in isolated, perfused snake proximal renal tubules. Renal Physiol. 1: 268–274, 1978.
 127. Dantzler, W. H., and S. K. Bentley. Effects of inhibitors in lumen on PAH and urate transport by isolated renal tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 7): F379–F386, 1979.
 128. Dantzler, W. H., and S. K. Bentley. Bath and lumen effects of SITS on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 9): F16–F25, 1980.
 129. Dantzler, W. H., and S. K. Bentley. Effects of chloride substitutes on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F632–F644, 1981.
 130. Dantzler, W. H., and S. K. Bentley. Effects of sulfhydral reagent, p‐chloromercuribenzoate, on p‐aminohippurate transport by isolated, perfused snake renal tubules. Renal Physiol. 6: 209–217, 1983.
 131. Dantzler, W. H., and E. J. Braun. Comparative nephron function in reptiles, birds, and mammals. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 10): R197–R213, 1980.
 132. Dantzler, W. H., and O. H. Brokl. Effects of low [Ca2+] and La3+ on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 17): F175–F187, 1984.
 133. Dantzler, W. H., and O. H. Brokl. Lack of effect of low [Ca2+], La3+, and pyrazinoate on urate transport by isolated, perfused snake renal tubules. Pflugers Arch. 401: 262–265, 1984.
 134. Dantzler, W. H., and O. H. Brokl. Verapamil and quinidine effects on PAH transport by isolated perfused renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F188–F200, 1984.
 135. Dantzler, W. H., and O. H. Brokl. N1‐methylnicotinamide transport by isolated perfused snake proximal renal tubules. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 21): F407–F418, 1986.
 136. Dantzler, W. H., and O. H. Brokl. NMN transport by snake renal tubules: choline effects, countertransport, H+–NMN exchange. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 24): F656–F663, 1987.
 137. Dantzler, W. H., and O. H. Brokl. TEA transport by snake renal tubules: choline effects, countertransport, H+–TEA exchange. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 26): F167–F176, 1988.
 138. Dantzler, W. H., and O. H. Brokl. Tetraethylammonium (TEA) and N1‐methylnicotinamide (NMN) transport by snake brush border membrane vesicles (BBMV) [Abstract]. FASEB J. 3: A378 1989.
 139. Dantzler, W. H., O. H. Brokl, R. B. Nagle, D. J. Welling, and L. W. Welling. Morphological changes with Na+–free fluid absorption in isolated perfused snake tubules. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 22): F150–F155, 1986.
 140. Dantzler, W. H., O. H. Brokl, and S. H. Wright. Brush‐border TEA transport in intact proximal tubules and isolated membrane vesicles. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 27): F290–F297, 1989.
 141. Dantzler, W. H., and B. Schmidt‐Nielsen. Excretion in freshwater turtle (Pseudemys scripta) and desert tortoise (Gopherus agassizii). Am. J. Physiol. 210: 198–210, 1966.
 142. Dantzler, W. H., S. H. Wright, and O. H. Brokl. Tetraethylammonium transport by snake renal brush‐border membrane vesicles. Flugers Arch. 418: 325–332, 1991.
 143. Dantzler, W. H., S. H. Wright, V. Chatsudthipong, and O. H. Brokl. Basolateral tetraethylammonium transport in intact tubules: specificity and trans‐stimulation. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 32): F386–F392, 1991.
 144. Davis, L. E., and B. Schmidt‐Nielsen. Ultrastructure of the crocodile kidney (Crocodylus acutus) with special reference to electrolyte and fluid transport. J. Morphol. 121: 255–276, 1967.
 145. Davis, L. E., B. Schmidt‐Nielsen, and H. Stolte. Anatomy and ultrastructure of the excretory system of the lizard, Sceloporus cyanogenys. J. Morphol. 149: 279–236, 1976.
 146. Deetjen, P., and T. Maren. The dissociation between renal HCO3 reabsorption and H+ secretion in the skate, Raja erinacea. Pflugers Arch. 346: 25–30, 1974.
 147. Deetjen, P., H. von Baeyer, and H. Drexel. Renal glucose transport. In: The Kidney: Renal Physiology and Pathophysiology, (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 3, chapt. 82, p. 2873–2888.
 148. Delaney, R., and L. C. Stoner. Miniature Ag‐AgCl electrode for voltage clamping of the Ambystoma collecting duct. J. Membr. Biol. 64: 45–53, 1982.
 149. Desjeux, J.‐F., E. Turk, and E. Wright. Congenital selective Na+ D‐glucose cotransport defects leading to renal glycosuria and congenital selective intestinal malabsorption of glucose and galactose. In: The Metabolic and Molecular Bases of Inherited Disease, 7th ed., edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, New York: McGraw‐Hill, 1995, chapt. 116, p. 3563–3580.
 150. Dessauer, H. C. Biochemical studies on the lizards, Anolis carolinensis. Proc. Soc. Exp. Biol. Med. 80: 742–744, 1952.
 151. Dietl, P., and H. Oberleithner. Ca2+ transport in diluting segment of frog kidney. Pflugers Arch. 410: 63–68, 1987.
 152. Doucet, A., and A. I. Katz. High‐affinity Ca‐Mg‐ATPase along the rabbit nephron. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 13): F346–F352, 1982.
 153. Elizondo, R. S., and S. J. LeBrie. Adrenal–renal function in water snakes Natrix cyclopion. Am. J. Physiol. 217: 419–425, 1969.
 154. Emery, N., T. L. Poulson, and W. B. Kinter. Production of concentrated urine by avian kidneys. Am. J. Physiol. 223: 180–187, 1972.
 155. Eveloff, J., M. Field, R. Kinne, and H. Murer. Sodium‐cotransport systems in intestine and kidney of the winter flounder. J. Comp. Physiol. 135: 175–182, 1980.
 156. Eveloff, J., R. Kinne, and W. B. Kinter. p‐Aminohippurate acid transport into brush border vesicles isolated from flounder kidney. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 8): F291–F298, 1979.
 157. Fange, R., and J. Krog. Inability of the kidney of the hagfish to secrete phenol red. Nature 199: 713, 1963.
 158. Fine, L. G., and W. Trizna. Influence of prostaglandins on sodium transport of isolated medullary nephron segments. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F383–F390, 1977.
 159. Fleming, W. R., and J. G. Stanley. Effects of rapid changes in salinity in the renal function of a euryhaline teleost. Am. J. Physiol. 209: 1025–1030, 1965.
 160. Forster, J., P. S. Steels, and E. L. Boulpaep. Organic substrate effects on and heterogeneity of Necturus proximal tubule function. Kidney Int. 17: 479–490, 1980.
 161. Forster, R. P. A comparative study of renal function in marine teleosts. J. Cell. Comp. Physiol. 42: 487–510, 1953.
 162. Forster, R. P. Active tubular transport of urea and its role in environmental physiology. In: Urea and the Kidney, edited by B. Schmidt‐Nielsen and D.W.S. Kerr. Amsterdam: Excerpta Medica, 1970, p. 229–237.
 163. Foster, R. C. Renal hydromineral balance in starry flounder, Platichthys stellatus. Comp. Biochem. Physiol. A 55: 135–140, 1975.
 164. Friedman, P. A. Basal and hormone‐activated calcium absorption in mouse renal thick ascending limbs. Am. J. Physiol. 254 (Renal Fluid Electrolyte Physiol. 25): F62–F70, 1988.
 165. Friedman, P. A., and S. C. Hebert. Diluting segment in kidney of dogfish shark. I. Localization and characterization of chloride absorption. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R398–R408, 1990.
 166. Fujimoto, M., K. Kotera, and Y. Matsumara. The direct measurement of K, Cl, Na, and H ions in bullfrog tubule cells. In: Current Topics in Membranes and Transport, Vol. 13, Cellular Mechanisms of Renal Tubular Ion Transport, edited by E. L. Boulpaep. New York: Academic Press, 1980 p. 49–61.
 167. Gallardo, R., P.K.T. Pang, and W. H. Sawyer. Neural influences on bullfrog renal functions. Proc. Soc. Exp. Biol. Med. 165: 233–240, 1980.
 168. Galli‐Gallardo, S. M., and P.K.T. Pang. Renal and vascular actions of angiotensin in amphibian. [Abstract], Physiologist 21: 41, 1978.
 169. Garland, H. O., I. W. Henderson, and J. A. Brown. Micropuncture study of the renal responses of the urodele amphibian Necturus maculosus to injections of arginine vasotocin and an anti‐aldosterone compound. J. Exp. Biol. 63: 249–264, 1975.
 170. Giebisch, G. Measurements of pH, chloride and inulin concentrations in proximal tubule fluid of Necturus. Am. J. Physiol. 185: 171–174, 1956.
 171. Giebisch, G. Measurement of electrical potential difference on single nephrons of the perfused Necturus kidney. J. Gen. Physiol. 44: 659–768, 1961.
 172. Giebisch, G. Some reflections on the mechanism of renal tubular potassium transport. Yale J. Biol. Med. 48: 315–336, 1975.
 173. Giebisch, G., and E. Windhager. Renal tubular transport of sodium, chloride, and potassium. Am. J. Med. 36: 643–669, 1964.
 174. Gögelein, H. Ion channels in mammalian proximal renal tubules. Renal Physiol. Biochem. 13: 8–25, 1990.
 175. Goldstein, L. Ammonia production and excretion in the mammalian kidney. Int. Rev. Physiol. 11: 284–315, 1976.
 176. Gona, O. Uptake of 125I‐labelled prolactin by bullfrog kidney tubules: an autoradiographic study. J. Endocrinol. 93: 133–138, 1982.
 177. Good, D. W., M. A. Knepper, and M. B. Burg. Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F35–F44, 1984.
 178. Gottschalk, C. W., and M. Mylle. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am. J. Physiol. 196: 927–936, 1959.
 179. Grantham, J. J. Studies of organic anion and cation transport in isolated segments of proximal tubules. Kidney Int. 22: 519–525, 1982.
 180. Grantham, J. J., and M. B. Burg. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211: 255–259, 1966.
 181. Greger, R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Physiol. Rev. 65: 760–797, 1985.
 182. Greger, R., F. C. Lang, F. G. Knox, and C. P. Lechene. Absence of significant secretory flux of phosphate in the proximal convoluted tubule. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 13): F235–F238, 1977.
 183. Greger, R., and E. Schlatter. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 396: 325–334, 1983.
 184. Gregg, C., and R. F. Wideman, Jr. Effects of atriopeptin and chicken heart extract in Callus domesticus. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 22): R543–R551, 1986.
 185. Gross, J. B., M. Imai, and J. P. Kokko. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55: 1284–1294, 1975.
 186. Guggino, W. B. Functional heterogeneity in the early distal tubule of the Amphiuma kidney: evidence for two modes of Cl– and K+ transport across the basolateral cell membrane. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 21): F430–F440, 1986.
 187. Guggino, W. B., E. L. Boulpaep, and G. Giebisch. Electrical properties of chloride transport across the Necturus proximal tubule. J. Membr. Biol. 65: 185–196, 1982.
 188. Guggino, W. B., R. London, E. L. Boulpaep, and G. Giebisch. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: dependence on bicarbonate and sodium. J. Membr. Biol. 71: 227–240, 1983.
 189. Guggino, W. B., E. E. Windhager, E. L. Boulpaep, and G. Giebisch. Cellular and paracellular resistances of the Necturus proximal tubule. J. Membr. Biol. 67: 143–154, 1982.
 190. Gupta, A., and J. L. Renfro. Control of phosphate transport in flounder renal proximal tubule primary cultures. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R850–R857, 1989.
 191. Hall, D. A., and D. M. Varney. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle. J. Clin. Invest. 66: 792–802, 1980.
 192. Halperin, M. L., K. S. Kamel, J. H. Ethier, B. J. Stinebaugh, and R. L. Jungas. Biochemistry and physiology of ammonium excretion. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 76, p. 2645–2679.
 193. Hamm, L. L., and R. J. Alpert. Cellular mechanisms of renal tubular acidification. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 74, p. 2581–2626.
 194. Harris, P. J., and J. A. Young. Dose‐dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 367: 295–297, 1977.
 195. Hawk, C. T., and W. H. Dantzler. Tetraethylammonium transport by isolated perfused snake renal tubules. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F476–F487, 1984.
 196. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl cotransport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH‐stimulated NaCl co‐transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F412–F431, 1981.
 197. Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. NaCl cotransport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of the transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F432–F442, 1981.
 198. Hebert, S. C., and P. A. Friedman. A diluting segment in the kidney of the dogfish shark. II. Properties of apical membranes and estimates of cellular resistances. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R409–R417, 1990.
 199. Hentschel, H., and M. Elger. The distal nephron in the kidney of fishes. Adv. Anat. Embryol. Cell Biol. 108: 1–151, 1987.
 200. Hernandez, T., and R. A. Coulson. Amino acid excretion in the alligator. Comp. Biochem. Physiol. 23: 775–784, 1967.
 201. Hickman, C. P., Jr. Glomerular filtration and urine flow in the euryhaline southern flounder, Paralichthys lethostigma, in seawater. Can. J. Zool. 46: 427–437, 1968.
 202. Hickman, C. P., Jr., and B. F. Trump. The kidney. In: Fish Physiology. Excretion, Ion Regulation, and Metabolism, edited by W. S. Hoar and D. J. Randall. New York: Academic 1969, vol. I, p. 1063–1096.
 203. Hill, L., and W. H. Dawbin. Nitrogen excretion in the tuatara, Sphenodon punctatus. Comp. Biochem. Physiol. 31: 453–468, 1969.
 204. Hinton, D. E., L. C. Stoner, M. Burg, and B. F. Trump. Heterogeneity in the distal nephron of the salamander (Ambystoma tigrinum): a correlated structure function study of isolated tubule segments. Anat. Rec. 204: 21–32, 1982.
 205. Hodler, J., H. O. Heinemann, A. P. Fishman, and H. W. Smith. Urine pH and carbonic anhydrase activity in the marine dogfish. Am. J. Physiol. 193: 155–162, 1955.
 206. Holmes, W. N. Regulation of electrolyte balance in marine birds with special reference to the role of the pituitary‐adrenal axis in the duck (Anas platyrhynchos). Federation Proc. 31: 1587–1598, 1972.
 207. Holmes, W. N., G. L. Fletcher, and D. J. Stewart. The patterns of renal electrolyte excretion in the duct (Anas platyrhynchos) maintained on freshwater and on hypertonic saline. J. Exp. Biol. 48: 487–508, 1968.
 208. Holmes, W. N., and J. G. Phillips. The adrenal cortex of birds. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester Jones and I. Henderson. London: Academic, 1976, vol. I, p. 293–420.
 209. Horster, M. Loop of Henle functional differentiation in vitro perfusion of the isolated thick ascending segment. Pflugers Arch. 378: 15–24, 1978.
 210. Hoshi, T., and H. Hayashi. Role of sodium ions in phenol red transport by renal tubules of the goldfish. Jpn. J. Physiol. 20: 683–696, 1970.
 211. Hoshi, T., G. Kuramochi, and K. Yoshitomi. Lumen‐positive chloride transport potential in the early distal tubule of Triturus kidney: its absolute dependence on the presence of Na+ and K+ in luminal fluid. Jpn. J. Physiol. 33: 855–861, 1983.
 212. Hoshi, T., K. Sudo, and Y. Suzuki. Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in Triturus proximal tubule. Biochim. Biophys. Acta 448: 492–504, 1976.
 213. Hoshi, T., Y. Suzuki, and K. Itoi. Differences in functional properties between the early and the late segments of the distal tubule of amphibian (Triturus) kidney. Jpn. J. Nephrol. 23: 889–896, 1981.
 214. Huber, G. C. On the morphology of the renal tubules of vertebrates. Anat. Rec. 13: 305–339, 1917.
 215. Hunter, M. Patch clamp studies of the amphibian nephron. Renal Physiol. Biochem. 13: 94–111, 1990.
 216. Hunter, M. Potassium‐selective channels in the basolateral membrane of single proximal tubule cells of frog kidney. Pflugers Arch. 418: 26–34, 1991.
 217. Hurst, A. M., and M. Hunter. Acute changes in channel density of amphibian diluting segment. Am. J. Physiol. 259 (Cell Physiol.) C1005–1009, 1990.
 218. Husted, R. F., L. H. Cohen, and P. R. Steinmetz. Pathways for bicarbonate transfer across the serosal membrane of the turtle urinary bladder: studies with a disulfonic stilbene. J. Membr. Biol. 47: 27–37, 1979.
 219. Ichikawa, I., and R. C. Harris. Angiotensin actions in the kidney: renewed insight into the old hormone. Kidney Int. 40: 583–596, 1991.
 220. Imai, M., and J. P. Kokko. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J. Clin. Invest. 53: 393–402, 1974.
 221. Irish, J. M., III. Selected Characteristics of Transport in Isolated Perfused Renal Proximal Tubules of the Bullfrog (Rana catesbeiana). Tucson: Univ. of Arizona, 1975. Dissertation.
 222. Irish, J. M., III., and W. H. Dantzler. PAH transport and fluid absorption by isolated perfused frog proximal renal tubules. Am. J. Physiol. 230: 1509–1516, 1976.
 223. Jackson, E. K., R. A. Branch, H. S. Margolis, and J. A. Oates. Physiological function of the renal prostaglandin, renin, and kallikrein systems. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 1, chapt. 26, p. 613–644.
 224. Jacobson, H. R. Transport characteristics of in vitro perfused proximal convoluted tubules. Kidney Int. 22: 425–433, 1982.
 225. Jamison, R. L., and W. Kriz. Urinary Concentrating Mechanisms: Structure Function. New York: Oxford University Press, 1982, p. 1–340.
 226. Jard, S., and F. Morel. Actions of vasotocin and some of its analogues on salt and water excretion by the frog. Am. J. Physiol. 204: 222–226, 1963.
 227. Johnson, O. W. Some morphological features of avian kidneys. Auk 85: 216–228, 1968.
 228. Johnson, O. W. Urinary organs. In: Form and Function in Birds, edited by A. S. King and J. McCleland. New York: Academic, 1979, vol. 1, chapt. 4, p. 183–235.
 229. Kahn, A. M., and E. J. Weinman. Urate transport in the proximal tubule: in vivo and vesicle studies. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 20): F789–F798, 1985.
 230. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 231. Kaune, R., and H. Hentschel. Stimulation of renal phosphate secretion in the stenohaline freshwater teleost Carassius auratus gibelio Black. Comp. Biochem. Physiol. A 87: 359–362, 1987.
 232. Kawahara, K., M. Hunter, and G. Giebisch. Potassium channels in Necturus proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol 24): F488–F494, 1987.
 233. Kempton, R. T. Studies on the elasmobranch kidney. J. Morphol. 73: 247–263, 1943.
 234. Khalil, F. Excretion in reptiles. II. Nitrogen constituents of urinary concretions of the oviparous snake Zamensis diadema. J. Biol. Chem. 172: 101–103, 1948.
 235. Khalil, F. Excretion in reptiles. III. Nitrogen constituents of urinary concretions of the viviparous snake Eryx thebaicus. J. Biol. Chem. 172: 105–106, 1948.
 236. Khalil, F. Excretion in reptiles. IV. Nitrogenous constituents in excreta of lizards. J. Biol. Chem. 189: 443–445, 1951.
 237. Khalil, F., and G. Haggag. Nitrogenous excretion in crocodiles. J. Exp. Biol. 335: 552–555, 1958.
 238. Khuri, R. N., W. J. Flanigan, D. J. Oken, and A. K. Solomon. Influences of electrolytes on glucose absorption in Necturus kidney proximal tubules. Federation Proc. 25: 899–902, 1966.
 239. Kikuta, Y., H. Hayashi, and Y. Saito. Effects of changes in sodium electrochemical potential gradient on p‐aminohippurate transport in newt kidney. Biochim. Biophys. Acta 556: 354–365, 1979.
 240. Kikuta, Y., and T. Hoshi. Role of sodium ions in p‐aminohippurate transport by newt kidney. Biochim. Biophys. Acta 553: 404–416, 1979.
 241. Kim, Y. K., and W. H. Dantzler. Relation of membrane potential to basolateral tetraethylammonium transport in isolated snake proximal renal tubules. Am. J. Physiol. 268 (Regulatory Integrative Comp. Physiol. 39): R1539–R1545, 1995.
 242. Kim, Y. K., and W. H. Dantzler. Specificity of basolateral organic cation transport in snake renal proximal tubules. Am. J. Physiol. 270 (Regulatory Integrative Comp. Physiol. 41): R1025–R1030, 1996.
 243. King, P. A., K. W. Beyenbach, and L. Goldstein. Taurine transport by isolated flounder renal tubules. J. Exp. Zool. 223: 103–114, 1982.
 244. King, P., and L. Goldstein. Renal ammoniagenesis and acid excretion in the dogfish, Squalus acanthias. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 16): R581–R589, 1983.
 245. King, P., and L. Goldstein. Renal ammonia excretion and production in goldfish, Carassium auratus, at low environmental pH. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 16): R590–R599, 1983.
 246. King, P. A., and L. Goldstein. Renal excretion of nitrogenous compounds in vertebrates. Renal Physiol. 8: 261–278, 1985.
 247. King, P. A., R. Kinne, and L. Goldstein. Taurine transport by brush border membrane vesicles isolated from flounder kidney. J. Comp. Physiol. [B] 155: 185–193, 1985.
 248. Kinne, R., and E. Kinne‐Saffron. Renal metabolism: coupling of luminal and antiluminal transport processes. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 1, chapt. 30, p. 719–737.
 249. Kinne, R., H. Murer, E. Kinne‐Saffron, M. Thees, and G. Sachs. Sugar transport by renal plasma membrane vesicles. Characterization of the system in the brush border microvilli and basolateral plasma membranes. J. Membr. Biol. 21: 375–395, 1975.
 250. Kinsella, J. L., P. D. Holohan, and C. R. Ross. Transport of organic cations in renal cortical luminal and antiluminal membrane vesicles. J. Pharmacol. Exp. Ther. 209: 443–450, 1979.
 251. Kinter, W. B. Chlorophenol red influx and efflux: microspectrophotometry of flounder kidney tubules. Am. J. Physiol. 211: 1152–1164, 1966.
 252. Kippen, I., B. Hirayama, J. R. Klinenberg, and E. M. Wright. Transport of p‐aminohippuric acid and glucose in highly purified rabbit renal brush border membranes. Biochim. Biophys. Acta. 556: 161–174, 1979.
 253. Kleinzeller, A., and E. M. McAvoy. Sugar transport across peritubular face of renal cells of the flounder. J. Gen. Physiol. 62: 169–184, 1973.
 254. Knepper, M. A., R. Packer, and D. W. Good. Ammonium transport in the kidney. Physiol. Rev. 69: 179–249, 1989.
 255. Knox, F. G., and A. Haramati. Renal regulation of phosphate excretion. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, chapt. 59, p. 1381–1396.
 256. Knox, F. G., E. G. Schneider, L. R. Willis, J. H. Strandhoy, and C. E. Ott. Site and control of phosphate reabsorption by the kidney. Kidney Int. 3: 346–353, 1973.
 257. Koeppen, B., G. Giebisch, and G. Malnic. Mechanism and regulation of renal tubular acidification. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, chapt. 65, p. 1491–1525.
 258. Koeppen, B. M., B. A. Biagi, and G. Giebisch. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 15): F35–F47, 1983.
 259. Koeppen, B. M., and B. A. Stanton. Sodium chloride transport. Distal nephron. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 54, p. 2003–2039.
 260. Kokko, J. P., M. B. Burg, and J. Orloff. Characteristics of NaCl and water transport in the renal proximal tubule. J. Clin. Invest. 50: 69–76, 1971.
 261. Komadina, S., and S. Solomon. Comparison of renal function of bull and water snakes (Pituophis melanoleucus and Natrix sipedon). Comp. Biochem. Physiol. 32: 333–343, 1970.
 262. Kopp, U. C., and G. F. DiBona. The neural control of renal function. The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 1, chapt. 33, p. 1157–1204.
 263. Kriz, W., and B. Kaissling. Structural organization of the mammalian kidney. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 1, chapt. 14, p. 265–306.
 264. Lacy, E. R., and E. Reale. The elasmobranch kidney. I. Gross anatomy and general distribution of the nephrons. Anat. Embryol. 173: 23–34, 1985.
 265. Lacy, E. R., and E. Reale. The elasmobranch kidney. II. Sequence and structure of the nephrons. Anat. Embryol. 173: 163–186, 1985.
 266. Lahlou, B., and A. Giordan. Le controle hormonal des echanges et de la balance de l'eau chez le teleosteen d'eau douce Carassium auratus, intact et hypophysectomize. Gen. Comp. Endocrinol. 14: 491–509, 1970.
 267. Lahlou, B., and W. H. Sawyer. Electrolyte balance in hypophysectomized goldfish, Carassium auratus L. Gen. Comp. Endocrinol. 12: 370–377, 1969.
 268. Lam, T. J., and J. F. Leatherland. Effect of prolactin on the glomerulus of the three spined stickleback Gasterosteus aculeatus L. form trachurus, after transfer from sea water to fresh water, during the late autumn and early winter. Can. J. Zool. 47: 245–250, 1969.
 269. Laverty, G., and M. Alberici. Micropuncture study of proximal tubule pH in avian kidney. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 24): R587–R591, 1987.
 270. Laverty, G., and N. B. Clark. Renal clearance of phosphate and calcium in freshwater turtle: effects of parathyroid hormone. J. Comp. Physiol. 141: 463–469, 1981.
 271. Laverty, G., and W. H. Dantzler. Micropuncture of superficial nephrons in avian (Sturnus vulgaris) kidney. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 14): F561–F569, 1982.
 272. Laverty, G., and W. H. Dantzler. Effects of parathyroid hormone (PTH) on phosphate transport in superficial, reptilian‐type nephrons of the European starling [Abstract]. Federation Proc. 42: 478, 1983.
 273. Laverty, G., and W. H. Dantzler. Micropuncture study of urate transport by superficial nephrons in avian (Sturnus vulgaris) kidney. Pflugers Arch. 397: 232–236, 1983.
 274. Laverty, G., and L. Harris. Calcium transport in superficial proximal tubules of the avian kidney [Abstract]. FASEB J. 3: A559, 1989.
 275. LeBrie, S. J., and R. S. Elizondo. Saline loading and aldosterone in water snakes Natrix cyclopion. Am. J. Physiol. 217: 426–430, 1969.
 276. Lee, S.‐H., and J. B. Pritchard. Proton‐coupled L‐lysine uptake by renal brush border membrane vesicles from mullet (Magil cephalus). J. Membr. Biol. 75: 171–178, 1983.
 277. Lee, S.‐H., and J. B. Pritchard. Role of the electrochemical gradient for Na+ in D‐glucose transport by mullet kidney. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F278–F288, 1983.
 278. Lemieux, G., J. Berkofsky, A. Quenneville, and C. Lemieux. Net tubular secretion of bicarbonate by the alligator kidney, antimammalian response to acetazolamide. Kidney Int. 28: 760–766, 1985.
 279. Lemieux, G., A. G. Craan, Z. Quenneville, C. Lemieux, J. Berkovsky, and V. Lewis. Metabolic machinery of the alligator kidney. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F686–F693, 1984.
 280. Leslie, B. R., J. H. Schwartz, and P. R. Steinmetz. Coupling between Cl– absorption and HCO3 secretion in turtle urinary bladder. Am. J. Physiol. 225: 610–617, 1973.
 281. Levine, D. Z., and H. R. Jacobson. The regulation of renal acid secretion: new observations from studies of distal nephron segments. Kidney Int. 29: 1099–1109, 1986.
 282. Levinsky, N. G., and D. G. Davidson. Renal action of parathyroid extract in the chicken. Am. J. Physiol. 191: 530–536, 1957.
 283. Liu, F.‐Y., and M. G. Cogan. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanisms, and kinetics. J. Clin. Invest. 82: 601–607, 1988.
 284. Logan, A. G., R. J. Moriarty, and J. C. Rankin. A micropuncture study of kidney function in the river lamprey, Lampetra fluviatilis, adapted to fresh water. J. Exp. Biol. 85: 137–147, 1980.
 285. Logan, A. G., R. Morris, and J. C. Rankin. A micropuncture study of kidney function in the river lamprey Lampetra fluviatilis adapted to sea water. J. Exp. Biol. 88: 239–247, 1980.
 286. Long, W. S. Renal handling of urea in Rana catesbeiana. Am. J. Physiol. 224: 482–490, 1973.
 287. Long, S., and G. Giebisch. Comparative physiology of renal tubular transport mechanisms. Yale J. Biol. Med. 52: 525–544, 1979.
 288. Long, S., and E. Skadhauge. Renal acid excretion in domestic fowl. J. Exp. Biol. 104: 51–58, 1983.
 289. Lonnerholm, G., and Y. Ridderstrale. Distribution of carbonic anhydrase in the frog nephron. Acta Physiol. Scand. 90: 764–778, 1974.
 290. Love, J. K., and N. Lifson. Transtubular movements of urea in the doubly perfused bullfrog kidney. Am. J. Physiol. 193: 662–668, 1958.
 291. Loveridge, J. P. Observations on nitrogenous excretion and water relations of Chiromantis xerampolina (Amphibia, Anura). Arnoldia (Rhodesia) 5: 1–6, 1970.
 292. Low, I., T. Friedrich, and G. Burckhardt. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 17): F334–F342, 1984.
 293. Lucke, H., G. Stange, and H. Murer. Sulfate ion/sodium ion co‐transport by brush border membrane vesicles isolated from rat kidney cortex. Biochem. J. 182: 223–229, 1979.
 294. Lytle, C., J.‐C. Xu, D. Biemesderfer, and B. Forbish III. Distribution and diversity of Na‐K‐Cl cotransport proteins: a study with monoclonal antibodies. Am. J. Physiol. 269 (Cell Physiol. 38): C1496–C1505, 1995.
 295. Maegawa, H., M. Kato, K.‐I. Inui, and R. Hori. pH sensitivity of H+/organic cation, antiport system in rat renal brush‐border membranes. J. Biol. Chem. 263: 11150–11154, 1988.
 296. Malvin, R. L., E. J. Cafruny, and H. Kutchai. Renal transport of glucose by aglomerular fish Lophius americanus. J. Cell. Comp. Physiol. 65: 381–384, 1965.
 297. Maren, T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev. 47: 595–781, 1967.
 298. Marsh, D. J., and M. A. Knepper. Renal handling of urea. In: Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1990, Sect. 8, vol. II, chapt. 29, p. 1317–1347.
 299. Martinez, F., M. Manganel, C. Montrose‐Rafizadeh, D. Werner, and F. Roch‐Ramel. Transport of urate and p‐aminohippurate in rabbit renal brush‐border membranes. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 29): F1145–F1153, 1990.
 300. Maruyama, T., and T. Hoshi. The effect of d‐glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim. Biophys. Acta. 282: 214–225, 1972.
 301. Maunsbach, A. B., and E. L. Boulpaep. Quantitative ultrastructure and functional correlates in proximal tubule of Ambystoma and Necturus. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 17): F710–724, 1984.
 302. McBean, R. L., and L. Goldstein. Ornithine‐urea cycle activity in Xenopus laevis: adaptation to saline. Science 157: 931–932, 1967.
 303. McBean, R. L., and L. Goldstein. Renal function during osmotic stress in the aquatic toad Xenopus laevis. Am. J. Physiol. 219: 1115–1123, 1970.
 304. McDonald, D. G., and C. M. Wood. Branchial and renal acid and ion fluxes in the rainbow trout, Salmo gairdneri, at low environmental pH. J. Exp. Biol. 93: 101–118, 1981.
 305. McKinney, T. D., P. Meyers, and K. V. Speeg, Jr. Cimetidine secretion by rabbit renal tubules in vitro. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F69–F76, 1981.
 306. McKinney, T. D. and K. V. Speeg, Jr. Cimetadine and procainamide secretion by proximal tubules in vitro. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 13): F672–F680, 1982.
 307. McNabb, F.M.A., and R. A. McNabb. Proportions of ammonia, urate, and total nitrogen in avian urine and quantitative methods for their analysis on a single urine sample. Poultry Sci. 54: 1498–1505, 1975.
 308. McVicar, A. J., and J. C. Rankin. Dynamics of glomerular filtration in the river lamprey, Lampetra fluviatilis L. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 20): F132–F138, 1985.
 309. Miller, D. S., and P. D. Holohan. Organic cation secretion in flounder renal tissue. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 24): R861–R867, 1987.
 310. Miller, D. S., and J. B. Pritchard. Indirect coupling of organic anion secretion to sodium in teleost (Paralicthys lethostigma) renal tubules. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R1470–R1477, 1991.
 311. Miller, D. S., D. E. Stewart, and J. B. Pritchard. Intracellular compartmentation of organic anions within renal cells. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 35): R882–R890, 1993.
 312. Minnich, J. E. Excretion of urate salts by reptiles. Comp. Biochem. Physiol. [A] 41: 535–549, 1972.
 313. Miwa, T., and H. Nishimura. Diluting segment in avian kidney. II. Water and chloride transport. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R341–R347, 1987.
 314. Mizgala, C. L., and G. A. Quamme. Renal handling of phosphate. Physiol. Rev. 65: 431–466, 1985.
 315. Mok, L. The effect of parathyroid extract on the renal handling of ions in parathyroidectomized chickens [Abstract]. Am. Zool. 18: 602, 1978.
 316. Montgomery, H., and J. A. Pierce. The site of acidification of the urine within the renal tubule in amphibia. Am. J. Physiol. 118: 144–152, 1937.
 317. Montrose‐Rafizadeh, C., F. Mingard, H. Murer, and F. Roch‐Ramel. Carrier‐mediated transport of tetraethylammonium across rabbit renal basolateral membrane. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F243–F251, 1989.
 318. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240: (Renal Fluid Electrolyte Physiol. 11) F159–F164, 1981.
 319. Moriarty, R. J., and A. G. Logan, and J. C. Rankin. Measurement of single nephron filtration rate in the kidney of the river lamprey, Lampetra fluviatilis L. J. Exp. Biol. 77: 57–69, 1978.
 320. Moyle, V. Nitrogenous excretion in chelonian reptiles. Biochem. J. 44: 581–584, 1949.
 321. Mudge, G. H., W. O. Berndt, and H. Valtin. Tubular transport of urea, glucose, phosphate, uric acid, sulfate, and thiosulfate. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 19, p. 587–652.
 322. Mukherjee, S. K., and W. H. Dantzler. Effects of SITS on urate transport by isolated, perfused snake renal tubules. Pflugers Arch. 403: 35–40, 1985.
 323. Munro, A. F. The ammonia and urea excretion of different species of amphibia during their development and metamorphosis. Biochem. J. 54: 29–36, 1953.
 324. Murer, H., and J. Biber. Renal tubular phosphate transport. Cellular mechanisms. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 70, p. 2481–2509.
 325. Nicholson, J. K. The microanatomy of the distal tubules, collecting tubules and collecting ducts of the starling kidney. J. Anat. 134: 11–23, 1982.
 326. Nishimura, H. Endocrine control of renal handling of solutes and water in vertebrates. Renal Physiol. 8: 279–300, 1985.
 327. Nishimura, H. Countercurrent urine concentration in birds. In: New Insights in Vertebrate Kidney Function, Society for Experimental Biology Seminar Series S p.4701 edited by J. A. Brown, R. J. Balment, and J. C. Rankin. Cambridge: Cambridge University Press, 1993, p. 189–212.
 328. Nishimura, H., and M. Imai. Control of renal function in freshwater and marine teleosts. Federation Proc. 41: 2355–2360, 1982.
 329. Nishimura, H., M. Imai, and M. Ogawa. Sodium chloride and water transport in the renal distal tubule of the rainbow trout. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 15): F247–F254, 1983.
 330. Nishimura, H., M. Imai, and M. Ogawa. Transepithelial voltage in the reptilian‐ and mammalian‐type nephrons from Japanese quail [Abstract] Federation Proc. 42: 304, 1983.
 331. Nishimura, H., M. Imai, and M. Ogawa. Diluting segment in avian kidney. I Characterization of transepithelial voltages. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R333–R340, 1986.
 332. Nishimura, H., T. Miwa, and J. R. Bailey. Renal handling of sodium chloride and its control in birds. J. Exp. Zool. 232: 697–705, 1984.
 333. Nishimura, H., and W. H. Sawyer. Vasopressor, diuretic, and natriuretic responses to angiotensin by the American eel, Anguilla rostrata. Gen. Comp. Endocrinol. 29: 337–348, 1976.
 334. Nissenson, R. A., K. O. Nyiredy, and C. D. Arnoud. Guanyl nucleotide potentiation of parathyroid hormone‐stimulated adenyl cyclase in chicken renal plasma membranes: a receptor independent effect. Endocrinology 108: 1949–1953, 1981.
 335. Nouwen, E. J., E. Decuypere, E. R. Kuhn, H. Michels, and T. R. Hall. Effect of dehydration, haemorrhage and oviposition on serum concentrations of vasotocin, mesotocin and prolactin in the chicken. J. Endocrinol. 102: 345–351, 1984.
 336. Oberleithner, H., R. Greger, S. Neuman, F. Lang, G. Giebisch, and P. Deetjen. Omission of luminal potassium reduces cellular chloride in early distal tubule of amphibian kidney. Pflugers Arch. 398: 18–22, 1983.
 337. Oberleithner, H., W. Guggino, and G. Giebisch. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F331–F339, 1982.
 338. Oberleithner, H., W. Guggino, and G. Giebisch. Potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation. Pflugers Arch. 396: 185–191, 1983.
 339. Oberleithner, H., W. B. Guggino, and G. Giebisch. Resistance properties of the diluting segment of Amphiuma kidney: influence of potassium adaptation. J. Membr. Biol. 88: 139–147, 1985.
 340. Oberleithner, H., W. Guggino, and G. Giebisch. The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation. Pflugers Arch. 396: 27–33, 1983.
 341. Oberleithner, H., F. Lang, R. Greger, W. Wang, and G. Giebisch. Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pflugers Arch. 396: 34–40, 1983.
 342. Oberleithner, H., F. Lang, G. Messner, and W. Wang. Mechanism of hydrogen ion transport in the diluting segment of frog kidney. Pflugers Arch. 402: 272–280, 1984.
 343. Oberleithner, H., M. Weigt, H.‐J. Westphale, and W. Wang. Aldosterone activates Na+/H+ exchange and raises cytoplasmic pH in target cells of the amphibian kidney. Proc. Natl. Acad. Sci. U.S.A. 84: 1464–1468, 1987.
 344. O'Dell, R. M., and B. Schmidt‐Nielsen. Retention of urea by frog and mammalian kidney slices in vitro. J. Cell. Comp. Physiol. 57: 211–219, 1961.
 345. Ogawa, M. Comparative study on the external shape of the teleostean kidney with relation to phylogeny. Sci. Rep. Tokyo Kyoiku Daigaku B10: 61–68, 1961.
 346. Oken, D. E., and A. K. Solomon. Single proximal tubules of Necturus kidney. VI. Nature of potassium transport. Am. J. Physiol. 204: 377–380, 1963.
 347. Oken, D. E., and M. Weise. Micropuncture studies of the transport of individual amino acids by the Necturus proximal tubule. Kidney Int. 13: 445–451, 1978.
 348. Oliver, J. Speculations on the phylogenetic and evolutionary aspects of renal architectonics. In: Nephrons and Kidneys, New York: Harper and Row, 1968, chapt. 18, p. 43–57.
 349. O'Regan, M. G., G. Malnic, and G. Giebisch. Cell pH and luminal acidification in Necturus proximal tubule. J. Membr. Biol. 69: 99–106, 1982.
 350. Pang, P.K.T., and W. H. Sawyer. Renal and vascular responses of the bullfrog (Rana catesbeiana) to mesotocin. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 6): F151–F155, 1978.
 351. Peek, W. D., and D. B. McMillan. Ultrastructure of the tubular nephron of the garter snake Thamnophis sirtalis. Am. J. Anat. 154: 103–128, 1979.
 352. Perschmann, C. Uber die Bedeutung der Nierenpfortader insbesondere für die Ausschiedung von Harnstoff und Harnsäurre bei Testudo hermanni Gml. und Lacerta viridis Laur. sowie über die Funktion der Harnblase bei Lacerta viridis Laur. Zool. Beitr. 2: 447–480, 1956.
 353. Persson, B.‐E. and A.E.G. Persson. The existence of a tubuloglomerular feedback mechanism in the Amphiuma nephron. Acta Univ. Ups. 308: 1–16, 1978.
 354. Pordy, W. T., M. S. Lipkowitz, and R. G. Abramson. Evidence for the transport function of uricase, an oxidative enzyme. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 24): F702–F711, 1987.
 355. Poulson, T. L., and G. A. Bartholomew. Salt balance in the savannah sparrow. Physiol. Zool. 35: 109–119, 1962.
 356. Prange, H. D., and L. Greenwald. Concentrations of urine and salt gland secretions in dehydrated and normally hydrated sea turtles. Federation Proc. 38: 970, 1979.
 357. Pritchard, J. B. Luminal and peritubular steps in renal transport of p‐aminohippurate. Biochim. Biophys. Acta 906: 295–308, 1987.
 358. Pritchard, J. B. Coupled transport of p‐aminohippurate by rat kidney basolateral membrane vesicles. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 26): F597–F604, 1988.
 359. Pritchard, J. B., and D. S. Miller. Proximal tubular transport of organic anions and cations. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 3, chapt. 84, p. 2921–2945.
 360. Pritchard, J. B., and D. S. Miller. Mechanisms mediating renal secretion of organic anions and cations. Physiol. Rev. 73: 765–796, 1993.
 361. Pritchard, J. B., and J. L. Renfro. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc. Natl. Acad. Sci. U.S.A. 80: 2603–2607, 1983.
 362. Quamme, G. A. Magnesium, Cellular and renal exchanges. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, p. 2339–2355.
 363. Rall, D. P., and J. W. Burger. Some aspects of hepatic and renal excretion in Myxine. Am. J. Physiol. 212: 354–356, 1967.
 364. Randle, H. W., and W. H. Dantzler. Effects of Kp+ and Na+ on urate transport by isolated perfused snake renal tubules. Am. J. Physiol. 225: 1206–1214, 1973.
 365. Rankin, J. C., A. G. Logan, and R. J. Moriarty. Changes in kidney function in the river lamprey, Lampetra fluviatilis, in response to changes in external salinity. In: Epithelial Transport in the Lower Vertebrates, edited by B. Lahlou. Cambridge: Cambridge University Press, 1980, p. 171–184.
 366. Reeves, B., and T. E. Andreoli. Sodium chloride transport in the loop of Henle. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 54, p. 1975–2001.
 367. Renfro, J. L. Calcium transport across peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 5): F522–F531, 1978.
 368. Renfro, J. L. Relationship between renal fluid and Mg secretion in a glomerular teleost. Am. J. Physiol. 238 (Regulatory Integrative Comp. Physiol. 9): F92–F98, 1980.
 369. Renfro, J. L. Adaptability of marine teleost renal inorganic sulfate excretion: evidence for glucocorticoid involvement. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 28): R511–R516, 1989.
 370. Renfro, J. L., and N. B. Clark. Parathyroid hormone effect on chicken renal brush border membrane phosphate transport. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 18): R302–R307, 1984.
 371. Renfro, J. L., N. B. Clark, R. E. Metts, and M. A. Lynch. Sulfate transport by chick renal tubule brush‐border and basolateral membranes. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 23): R85–R93, 1987.
 372. Renfro, J. L., and K. G. Dickman. Sulfate transport across the peritubular surface of the marine teleost renal tubule. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 10): F143–F148, 1980.
 373. Renfro, J. L., K. G. Dickman, and P. S. Miller. Effect of Na+ and ATP on peritubular Ca transport by the marine teleost renal tubule. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 14): R34–R41, 1982.
 374. Renfro, J. L., and J. B. Pritchard. H+‐dependent sulfate secretion in the marine teleost renal tubule. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 14): F150–F159, 1982.
 375. Renfro, J. L., and J. B. Pritchard. Sulfate transport by flounder renal tubule brush border: presence of anion exchange. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 15): F488–F498, 1983.
 376. Rennick, B. R. Renal tubular transport of organic cations. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer‐Verlag, 1981, p. 178–188.
 377. Rennick, B. R. Renal tubule transport of organic cations. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 11): F83–F89, 1981.
 378. Rice, G. E., S. D. Bradshaw, and F. J. Prendergast. The effects of bilateral adrenalectomy on renal function in the lizard Varanus gouldii (Gray). Gen. Comp. Endocrinol. 47: 182–189, 1982.
 379. Ridderstrale, Y. Intracellular localization of carbonic anhydrase in the frog nephron. Acta Physiol. Scand. 98: 465–469, 1976.
 380. Roberts, J. R., and W. H. Dantzler. Glomerular filtration rate in conscious unrestrained starlings: effect of dehydration. In: Proc. XXX International Congress of Physiological Sciences, Vancouver, Canada. 1986, vol. XVI, 337.
 381. Roberts, J. R., and W. H. Dantzler. Micropuncture study of the avian kidney: infusion of mannitol or sodium chloride. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R869–R875, 1990.
 382. Roberts, J. R., and W. H. Dantzler. Micropuncture study of avian kidney: effect of prolactin. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 33): R933–R937, 1992.
 383. Roberts, J. S., and B. Schmidt‐Nielsen. Renal ultrastructure and excretion of salt and water by three terrestrial lizards. Am. J. Physiol. 211: 476–486, 1966.
 384. Robinson, R. R., and R. M. Portwood. Mechanism of magnesium excretion by the chicken. Am. J. Physiol. 202: 309–312, 1962.
 385. Roch‐Ramel, F., and G. Peters. Renal transport of urea. In: Renal Transport of Organic Substances, edited by R. Greger, F. Lang, and S. Silbernagl. Berlin: Springer‐Verlag, 1981, p. 134–153.
 386. Roch‐Ramel, F., F. White, L. Vowles, A. Simmonds, and J. S. Cameron. Micropuncture study of tubular transport of urate and PAH in the pig kidney. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 10): F107–F112, 1980.
 387. Rocha, A. S., and J. P. Kokko. Sodium chloride and water transport in the medullary thick ascending limb of Henle. J. Clin. Invest. 52: 612–623, 1973.
 388. Rocha, A. S., and L. H. Kudo. Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct. Kidney Int. 22: 485–491, 1982.
 389. Rosen, S. Localization of carbonic anhydrase activity in the vertebrate nephron. Histochem. J. 4: 35–48, 1972.
 390. Sackin, H. Stretch‐activated potassium channels in renal proximal tubule. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 24): F1253–F1262, 1987.
 391. Sackin, H., and E. L. Boulpaep. Models for coupling of salt and water transport: proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66: 671–733, 1975.
 392. Sackin, H., and E. L. Boulpaep. Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F39–F52, 1981.
 393. Sackin, H., and E. L. Boulpaep. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogenic transport. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F540–F555, 1981.
 394. Sackin, H., H. Morgunov, and E. L. Boulpaep. Intracellular microelectrode measurements in the diluting segment of the amphibian nephron [Abstract]. Federation Proc. 40: 394, 1981.
 395. Sakai, T., R. Billo, and W. Kriz. The structural organization of the kidney of Typhlonectes compressicaudus (Amphibia, Gymnophiona). Anat. Embryol. 174: 243–252, 1986.
 396. Sakai, T., R. Billo, and W. Kriz. Ultrastructure of the kidney of a South American caecilian, Typhlonectes compressicaudus (Amphibia, Gymnophiona). II. Distal tubule, connecting tubule, collecting duct and Wolffian duct. Cell Tissue Res. 252: 601–610, 1988.
 397. Sakai, T., and K. Kawahara. The structure of the kidney of Japanese newts, Triturus (Cynops) pyrrhogaster. Anat. Embryol. 166: 31–52, 1983.
 398. Sandor, T., A. G. Fazekas, and B. H. Robinson. The biosynthesis of corticosteroids throughout the vertebrates. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex, edited by I. Chester Jones and I. Henderson. London: Academic, 1976, vol. 1, p. 25–142.
 399. Sasaki, S., and M. Imai. Effects of vasopressin on water and NaCl transport across the thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys. Pflugers Arch. 383: 215–221, 1980.
 400. Sawyer, D. B., and K. W. Beyenbach. Mechanism of fluid secretion in isolated shark renal proximal tubules. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 20): F884–F890, 1985.
 401. Sawyer, W. H. Vasopressor, diuretic, and natriuretic responses by lungfish to arginine vasotocin. Am. J. Physiol. 218: 1789–1794, 1970.
 402. Schafer, J. A., and T. E. Andreoli. Perfusion of isolated mammalian renal tubules. In: Membrane Transport in Biology. Transport Organs, edited by G. Giebisch. Berlin: Springer‐Verlag, 1979, vol. IV, p. 473–528.
 403. Schafer, J. A., and D. W. Barfuss. The study of pars recta function by the perfusion of isolated tubule segments. Kidney Int. 22: 434–448, 1982.
 404. Schafer, J. A., C. S. Patlak, and T. E. Andreoli. Fluid absorption and active and passive ion flows in the rabbit superficial pars recta. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F154–F167, 1977.
 405. Schafer, J. A., W. B. Reeves, and T. E. Andreoli. Mechanisms of fluid transport across renal tubules. In: Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1990, sect. 8, vol. I, chapt. 15, p. 659–713.
 406. Schali, C., and F. Roch‐Ramel. Accumulation of [14C]urate and [3H]PAH in isolated proximal tubular segments of the rabbit kidney. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 10): F222–F227, 1980.
 407. Schali, C., and F. Roch‐Ramel. Uptake of [3H]PAH and [14C]urate into isolated proximal tubular segments of the pig kidney. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F591–F596, 1981.
 408. Schali, C., L. Schild, J. Overney, and F. Roch‐Ramel. Secretion of tetraethylammonium by proximal tubules of rabbit kidneys. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 16): F238–F246, 1983.
 409. Schmidt‐Nielsen, B. Renal transport of urea in elasmobranchs. In: Transport Mechanisms in Epithelia, Alfred Benzon Symp. V., edited by H. H. Ussing and N. A. Thorn. Copenhagen: Munksgaard, 1972, p. 608–621.
 410. Schmidt‐Nielsen, B., and L. E. Davis. Fluid transport and tubular intercellular spaces in reptilian kidneys. Science 159: 1105–1108, 1968.
 411. Schmidt‐Nielsen, B., and R. P. Forster. The effect of dehydration and low temperature on renal function in the bullfrog. J. Cell. Comp. Physiol. 44: 233–246, 1954.
 412. Schmidt‐Nielsen, B., and J. L. Renfro. Kidney function of the American eel Anguilla rostrata. Am. J. Physiol. 228: 420–431, 1975.
 413. Schmidt‐Nielsen, B., and D. Schmidt. Renal function of Sphenodon punctatum. Comp. Biochem. Physiol. [A] 44: 121–129, 1973.
 414. Schmidt‐Nielsen, B., and C. R. Shrauger. Handling of urea and related compounds by the renal tubules of the frog. Am. J. Physiol. 205: 483–488, 1963.
 415. Schmidt‐Nielsen, B., and E. Skadhauge. Function of the excretory system of the crocodile (Crocodylus acutus). Am. J. Physiol. 205: 483–488, 1967.
 416. Schneider, E. G., R. C. Hanson, J. W. Childers, E. M. Fitzgerald, and S. D. Gleason. Is phosphate secreted by the kidney? In: Renal Handling of Phosphate, edited by S. G. Massry and H. Fleisch. New York: Plenum, 1980, chapt. 3, p. 59–78.
 417. Schröck, H., R. P. Forster, and L. Goldstein. Renal handling of taurine in marine fishes. Am. J. Physiol. 242 (Regulatory Integrative Comp. Physiol. 13): R64–R69, 1982.
 418. Schuster, V. L., J. P. Kokko, and H. R. Jacobson. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J. Clin. Invest. 73: 507–515, 1984.
 419. Seifter, J. L., and P. S. Aronson. Cl– transport via anion exchange in Necturus renal microvillus membranes. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 18): F888–F895, 1984.
 420. Senekjian, H. O., T. F. Knight, and E. J. Weinman. Urate transport by the isolated perfused S2 segment of the rabbit. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 11): F530–F355, 1981.
 421. Sharegi, G. R., and Z. Agus. Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J. Clin. Invest. 69: 759–769, 1982.
 422. Sharegi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 6): F367–F375, 1978.
 423. Sharratt, B. M., C. Jones, and D. Bellamy. Water and electrolyte compositions of the body and renal function of the eel (Anguilla anguilla L.). Comp. Biochem. Physiol. 11: 9–18, 1964.
 424. Shideman, J. R., M. J. Zmuda, and A. J. Quebbemann. The acute effects of furosemide, ethacrynic acid and chlorothiazide on the renal tubular handling of uric acid in the chicken. J. Pharmacol. Exp. Ther. 216: 441–446, 1981.
 425. Shimada, H., B. Moewes, and G. Burckhardt. Indirect coupling to Na+ of p‐aminohippuric acid uptake into rat renal basolateral membrane vesicles. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 24) F795–F801, 1987.
 426. Shimomura, A., A. M. Chonko, and J. J. Grantham. Basis for heterogeneity of para‐aminohippurate secretion in rabbit proximal tubules. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 11): F430–F436, 1981.
 427. Shoemaker, V. H. Renal function in the mourning dove [Abstract]. Am. Zool. 7: 736, 1967.
 428. Shoemaker, V. H., and P. E. Bickler. Kidney and bladder function in a uricotelic treefrog. J. Comp. Physiol. 133: 211–218, 1979.
 429. Shoemaker, V. H., and L. L. McClanahan, Jr. Evaporative water loss, nitrogen excretion and osmoregulation in phyllomedusine frogs. J. Comp. Physiol. 100: 331–345, 1975.
 430. Siebens, A. W., and W. F. Boron. Effect of electroneutral luminal and basolateral lactate transport on intracellular pH in salamander proximal tubules. J. Gen. Physiol. 90: 799–831, 1987.
 431. Silbernagl, S. The renal handling of amino acids and oligopeptides. Physiol. Rev. 68: 911–1007, 1988.
 432. Silbernagl, S. Amino acids and oligopeptides. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 3, chapt. 83, p. 2889–2920.
 433. Silbernagl, S. Tubular transport of amino acids and small peptides. In: Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1990, sect. 8, vol. 2, chapt. 41, p. 1937–1976.
 434. Silbernagl, S., and D. Scheller. Formation and excretion of NH3–NH4. New aspects of an old problem. Klin. Wochenschr. 64: 862–870, 1986.
 435. Silbernagl, S., E. R. Swenson, and T. H. Maren. Proximal tubular acidification in the isolated perfused kidney of the little skate, Raja erinacea. Bull. Mt. Desert Island Biol. Lab. 26: 156–158, 1986.
 436. Silverman, M., and R. J. Turner. Glucose transport in the renal proximal tubule. In: Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1990, sect. 8, vol. 2, chapt. 43, p. 2017–2038.
 437. Skadhauge, E. Renal and cloacal salt and water transport in the fowl (Callus domesticus). Danish Med. Bull. 20 (Suppl. I): 1–82, 1973.
 438. Skadhauge, E., and B. Schmidt‐Nielsen. Renal function in domestic fowl. Am. J. Physiol. 212: 793–798, 1967.
 439. Smith, P. M., J. B. Pritchard, and D. S. Miller. Membrane potential drives organic cation transport into teleost renal proximal tubules. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 26): R492–R499, 1988.
 440. Smith, W. W. The excretion of phosphate in the dogfish, Squalus acanthias. J. Cell. Comp. Physiol. 14: 95–102, 1939.
 441. Sokol, P. P., P. D. Holohan, and C. R. Ross. Electroneutral transport of organic cations in canine renal brush border membrane vesicles (BBMV). J. Pharmacol. Exp. Ther. 233: 694–699, 1985.
 442. Sokol, P. P., and T. D. McKinney. Mechanism of organic cation transport in rabbit renal basolateral membrane vesicles. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 29): F1599–F1607, 1990.
 443. Solomon, S. E. The morphology of the kidney of the green turtle (Chelonia mydas L.). J. Anat. 140: 355–369, 1985.
 444. Sonnenberg, H., W. A. Cupples, A. J. DeBold, and A. T. Veress. Intrarenal localization of the natriuretic effects of cardiac atrial extract. Can. J. Physiol. Pharmacol. 60: 1149–1152, 1982.
 445. Sonnenberg, H., U. Honrath, C. K. Chong, S. Milojevic, and A. T. Veress. Renal responses to saline and atrial natriuretic factor infusions in Dahl rats. Can. J. Physiol. Pharmacol. 65: 1680–1683, 1987.
 446. Sonnenberg, H., U. Honrath, C. K. Chong, and D. R. Wilson. Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 21): F963–F966, 1986.
 447. Sperber, I. Studies on the mammalian kidney. Zool. Bidr. Upps. 22: 249–432, 1944.
 448. Sperber, I. Excretion. In: Biology and Physiology of Birds, edited by A. J. Marshall. New York: Academic, 1960, p. 469–492.
 449. Spring, K. R., and G. Kimura. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38: 233–254, 1978.
 450. Stallone, J. N., and H. Nishimura. Angiotensin II (AII)‐induced natriuresis in anesthetized domestic fowl. [Abstract] Federation Proc. 44: 1364, 1985.
 451. Stanton, B., D. Biemesderfer, D. Stetson, M. Kashgarian, and G. Giebisch. Cellular ultrastructure of Amphiuma distal nephron: effects of exposure to potassium. Am. J. Physiol. 247 (Cell Physiol. 18): C204–C216, 1984.
 452. Stanton, B., W. Guggino, and G. Giebisch. Electrophysiology of isolated and perfused distal tubules of Amphiuma [Abstract]. Kidney Int. 21: 289, 1982.
 453. Stanton, B., A. Omerovic, B. Koeppen, and G. Giebisch. Electroneutral H+ secretion in late distal tubule of Amphiuma. [Abstract] Proc. 9th Int. Cong. Nephrol., Los Angeles, 1984, p. 412A.
 454. Steinmetz, P. R. Characteristics of hydrogen ion transport in urinary bladder of water turtle. J. Clin. Invest. 46: 1531–1540, 1967.
 455. Steinmetz, P. R. Cellular mechanisms of urinary acidification. Physiol. Rev. 54: 890–956, 1974.
 456. Stetson, D. L. Renal alterations induced by osmotic stress and metabolic acidosis in Xenopus laevis. J. Exp. Zool. 200: 157–166, 1978.
 457. Stewart, D. J., W. N. Holmes, and G. Fletcher. The renal excretion of nitrogenous compounds by the duck (Anas platyrhynchos) maintained on freshwater and on hypertonic saline. J. Exp. Biol. 50: 327–539, 1969.
 458. Stiffler, D. Partitioning of acid‐base regulation between renal and extrarenal sites in the adult, terrestrial stage of the salamander, Ambystoma tigrinum during respiratory acidosis. J. Exp. Biol. 157: 47–62, 1991.
 459. Stokes, J. B. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle. J. Clin. Invest. 64: 495–502, 1979.
 460. Stokes, J. B. Potassium secretion by cortical collecting tubules: relation to sodium absorption, luminal sodium concentration, and transepithelial voltage. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F395–F402, 1981.
 461. Stokes, J. B. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F514–F520, 1982.
 462. Stokes, J. B., C. C. Tisher, and J. P. Kokko. Structural‐functional heterogeneity along the rabbit collecting tubule. Kidney Int. 14: 585–593, 1978.
 463. Stolte, H., R. G. Galaske, G. M. Eisenbach, C. Lechene, B. Schmidt‐Nielsen, and J. W. Boylan. Renal tubule ion transport and collecting duct function in the elasmobranch little skate, Raja erinacea. J. Exp. Zool. 199: 403–410, 1977.
 464. Stolte, H., and B. Schmidt‐Nielsen. Comparative aspects of fluid and electrolyte regulation by the cyclostome, elasmobranch, and lizard kidney. In: Osmotic and Volume Regulation, Alfred Benzon Symp. XI, edited by C. B. Jorgenson and E. Skadhauge, Copenhagen: Munksgaard, 1978, vol. I, p. 209–222.
 465. Stolte, H., B. Schmidt‐Nielsen, and L. Davis. Single nephron function in the kidney of the lizard, Sceloporus cyanogenys. Zool. Jb. Physiol. 81: S219–S244, 1977.
 466. Stoner, L. C. Isolated, perfused amphibian renal tubules: the diluting segment. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F438–F444, 1977.
 467. Stoner, L. C. The movement of solutes and water across the vertebrate distal nephron. Renal Physiol. 8: 237–248, 1985.
 468. Sullivan, L. P., D. J. Welling, D. G. Deeds, and J. N. Simone. Kinetic analysis of potassium transport in bullfrog kidney. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 4): F464–F480, 1977.
 469. Swenson, E. R., and T. H. Maren. Dissociation of CO2 hydration and renal acid secretion in the dogfish, Squalus acanthias. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 21): F288–F293, 1986.
 470. Sykes, A. H. Formation and composition of the urine. In: Physiology and Biochemistry of the Domestic Fowl, edited by D. J. Bell and B. M. Freeman. London: Academic, 1971, p. 233–278.
 471. Takano, M., K.‐I. Inui, T. Okano, H. Saito, and R. Hori. Carrier‐mediated transport systems of tetraethylammonium in rat renal brush border and basolateral membrane vesicles. Biochim. Biophys. Acta 773: 113–124, 1984.
 472. Tannen, R. L. Ammonia metabolism. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 6): F265–F277, 1978.
 473. Tannen, R. L. Renal ammonia production and excretion. Handbook of Physiology. Renal Physiology, edited by E. E. Windhager. Bethesda, MD: Am. Physiol. Soc., 1990, sect. 8, vol. I, chapt. 23, p. 1017–1059.
 474. Tanner, G. A. Micropuncture study of PAH and Diodrast transport in Necturus kidney. Am. J. Physiol. 212: 1341–1346, 1967.
 475. Tanner, G. A., P. K. Carmines, and W. B. Kinter. Excretion of phenol red by the Necturus kidney. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 7): F442–F447, 1979.
 476. Tanner, G. A., and W. B. Kinter. Reabsorption and secretion of p‐aminohippurate and Diodrast in Necturus kidney. Am. J. Physiol. 210: 221–231, 1966.
 477. Tanner, R. J., Chonko, A. M., Edwards, R. M., and J. J. Grantham. Evidence for an inhibitor of renal urate and PAH secretion in rabbit blood. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 15): F590–F598, 1983.
 478. Tarloff, J. B., and P. H. Brand. Active tetraethylammonium uptake across the basolateral membrane of rabbit proximal tubule. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 22): F141–F149, 1986.
 479. Taylor, A., and E. E. Windhager. Possible role of cytosolic calcium and Na–Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 7): F505–F512, 1979.
 480. Terreros, D. A., M. Tarr, and J. J. Grantham. Transmembrane electrical potential difference in cells of isolated renal tubules. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F61–F68, 1981.
 481. Tisher, C. C., and K. Madsen. Anatomy of the kidney. In: The Kidney, edited by B. M. Brenner and F. C. Rector, Jr. Philadelphia: Saunders, 1986, chapt. 1, p. 3–60.
 482. Tune, B. M., and M. B. Burg. Glucose transport by proximal renal tubules. Am. J. Physiol. 221: 580–585, 1971.
 483. Tune, B. M., M. B. Burg, and C. S. Patlak. Characteristics of p‐aminohippurate transport in proximal renal tubules. Am. J. Physiol. 217: 1057–1063, 1969.
 484. Turner, R. J. β‐Amino acid transport across the renal brush‐border membrane is coupled to both Na and Cl. J. Biol. Chem. 261: 16060–16066, 1986.
 485. Uchiyama, M., T. Murakami, and P.K.T. Pang. Renal and vascular responses of the bull frog, Rana catesbeiana, and the toad Bufo bufo japonicus, to mesotocin. Abstract Proc. 10th Int. Symp. Comp. Endocrinol., Copper Mountain, Colorado, 1985.
 486. Uchiyama, M., T. Murakami, H. Yoshizawa, and C. Wakasugi. Structure of the kidney in the crab‐eating frog, Rana cancrivora. J. Morphol. 204: 147–156, 1990.
 487. Ullrich, K. J., G. Rumrich, and S. Kloss. Active sulfate reabsorption in the proximal convolution of the rat kidney: specificity, Na+, and HCO3– dependence. Pflugers Arch. 383: 159–163, 1980.
 488. Vogel, G., and W. Kroger. Die Bedentung des Transportes, der Konzentration und der Darbietungsrichtung von Na+ für den tubularen Glucsose‐und PAH‐Transport. Pflugers Arch. 288: 342–358, 1966.
 489. Vogel, G., and M. Kurten. Untersuchungen zur Na+ Abhängigkeit der renal‐tubulären Harnstoff‐Sekretion bei Rana ridibunda. Pflugers Arch. 295: 42–55, 1967.
 490. Vogel, G., F. Lauterbach, and W. Kroger. Die Bedeutung des Natriums für die renalen Transporte von Glucose und Para‐Aminohippusäure. Pflugers Arch. 283: 151–159, 1965.
 491. Vogel, G., and I. Stoeckert. Die Bedeutung des Anions für den renal tubularen Transport von Na+ und die Transporte von Glucose und PAH. Pflugers Arch. 292: 309–315, 1966.
 492. Wake, M. H. Evolutionary morphology of the caecilian urogenital system. II. The kidneys and urogenital ducts. Acta Anat. 75: 321–358, 1970.
 493. Wake, M. H. Urogenital morphology of dipnoans, with comparisons to other fishes and to amphibians. J. Morphol. (suppl. 1): 199–216, 1986.
 494. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134: 580–595, 1941.
 495. Walker, A. M., and C. L. Hudson. The reabsorption of glucose from the renal tubule in amphibia and the action of phlorizin upon it. Am. J. Physiol. 118: 130–141, 1937.
 496. Walker, A. M., and C. L. Hudson. The role of the tubule in the excretion of urea by the amphibian kidney. Am. J. Physiol. 118: 153–166, 1937.
 497. Walker, A. M., and C. L. Hudson. The role of the tubule in the excretion of inorganic phosphates by the amphibian kidney. Am. J. Physiol. 118: 167–173, 1937.
 498. Weiderholt, M., W. J. Sullivan, and G. Giebisch. Potassium and sodium transport across single distal tubules of Amphiuma. J. Gen. Physiol. 57: 495–525, 1971.
 499. Weigt, M., P. Dietl, S. Silbernagl, and H. Oberleithner. Activation of luminal Na+/H+ exchange in distal nephron of frog kidney. An early response to aldosterone. Pflugers Arch. 408: 609–614, 1987.
 500. Weiner, I. M. Transport of weak acids and bases. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, sect. 8, chapt. 17, p. 521–554.
 501. Weiner, I. M. Organic acids and bases and uric acid. In: The Kidney: Physiology and Pathophysiology (1st ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, vol. 2, chapt. 72, p. 1703–1724.
 502. Weinstein, A. M. Sodium and chloride transport. Proximal nephron. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven Press, 1992, vol. 2, chapt. 53, p. 1925–1973.
 503. Werner, D., F. Martinez, and F. Roch‐Ramel. Urate and p‐aminohippurate transport in the brush border membrane of the pig kidney. J. Pharmacol. Exp. Ther. 252: 792–799, 1990.
 504. Werner, A., H. Murer, and R.K.H. Kinne. Cloning and expression of a renal Na‐P: cotransport system from flounder. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F311–F317, 1994.
 505. Werner, D., and F. Roch‐Ramel. Indirect Na+ dependency of urate and p‐aminohippurate transport in pig basolateral membrane vesicles. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 32): F265–F272, 1991.
 506. White, B. A., and C. S. Nicoll. Prolactin receptors in Rana catesbeiana during development and metamorphosis. Science 204: 851–853, 1979.
 507. Wideman, R. F. Avian kidney anatomy and physiology. CRC Crit. Rev. Poultry Biol. 1: 133–176, 1988.
 508. Wideman, R. F., Jr., and E. J. Braun. Stimulation of avian renal phosphate secretion by parathyroid hormone. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 12): F263–F272, 1981.
 509. Wideman, R. F., E. J. Braun, and G. L. Anderson. Microanatomy of the renal cortex in the domestic fowl. J. Morphol. 168: 193–221, 1981.
 510. Wideman, R. F., Jr., N. B. Clark, and E. J. Braun. Effects of phosphate loading and parathyroid hormone on starling renal phosphate excretion. Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 10): F233–F243, 1980.
 511. Wiederholt, M., W. J. Sullivan, and G. Giebisch. Potassium and sodium transport across single distal tubules of Amphiuma. J. Gen. Physiol. 57: 495–525, 1971.
 512. Wilkinson, H. L., L. P. Sullivan, D. J. Welling, and L. W. Welling. Localization of tissue potassium pools in the amphibian kidney. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 16): F801–F812, 1983.
 513. Windhager, E. E., G. Whittembury, D. E. Oken, H. J. Schatzman, and A. K. Solomon. Single proximal tubules of Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am. J. Physiol. 197: 313–318, 1959.
 514. Wittner, M., A. DiStefano, B. Mandon, N. Roinel, and C. de Rouffignac. Stimulation of NaCl reabsorption by antidiuretic hormone in the cortical thick ascending limb of Henle's loop of the mouse. Pflugers Arch. 419: 212–214, 1991.
 515. Wolbach, R. A. Renal regulation of acid‐base balance in the chicken. Am. J. Physiol. 181: 149–156, 1955.
 516. Wolff, N. A., R. Kinne, B. Elger, and L. Goldstein. Renal handling of taurine, l‐alanine, l‐glutamate and d‐glucose in Opsanus tau: studies on isolated brush border membrane vesicles. J. Comp. Physiol. [B] 157: 573–581, 1987.
 517. Wolff, N. A., D. F. Perlman, and L. Goldstein. Ionic requirements of peritubular taurine transport in Fundulus kidney. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R984–R990, 1986.
 518. Woodhall, P. B., C. C. Tisher, C. A. Simonton, and R. R. Robinson. Relationship between para‐aminohippurate secretion and cellular morphology in rabbit proximal tubules. J. Clin. Invest. 51: 1320–1329, 1978.
 519. Wright, F. S., and G. Giebisch. Regulation of potassium excretion. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, vol. 2, chapt. 61, p. 2209–2247.
 520. Wright, S. H., and T. M. Wunz. Transport of tetraethylammonium by rabbit renal brush‐border and basolateral membrane vesicles. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 24): F1040–F1050, 1987.
 521. Wright, S. H., T. M. Wunz, and T. P. Wunz. A choline transporter in renal brush‐border membrane vesicles: energetics and structural specificity. J. Membr. Biol. 126: 51–65, 1992.
 522. Yokota, S. D. Autoregulation in the reptilian kidney. FASEB J. 6: A1529, 1992.
 523. Yokota, S. D., S. Benyajati, and W. H. Dantzler. Renal function in sea snakes. I. Glomerular filtration rate and water handling. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 20): R228–R236, 1985.
 524. Yokota, S. D., and W. H. Dantzler. Measurements of blood flow to individual glomeruli in the ophidian kidney. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R1313–R1319, 1990.
 525. Yoshimura, H., M. Yata, M. Yuasa, and R. A. Wolbach. Renal regulation of acid‐base balance in the bullfrog. Am. J. Physiol. 201: 980–986, 1961.
 526. Youson, J. H., and D. B. McMillan. The opisthonephric kidney of the sea lamprey of the Great Lakes, Petromyzon marinus L. I. The renal corpuscle. Am. J. Anat. 127: 207–232, 1970.
 527. Yucha, C. B., and L. C. Stoner. Bicarbonate transport by amphibian nephron. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 22): F865–F872, 1986.
 528. Zmuda, M. J., and A. J. Quebbemann. Localization of renal tubular uric acid transport defect in gouty chickens. Am. J. Physiol. 229: 820–825, 1975.
 529. Zucker, A., and H. Nishimura. Renal responses to vasoactive hormones in the aglomerular toad fish, Opsanus tau. Gen. Comp. Endocrinol. 43: 1–9, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Eldon J. Braun, William H. Dantzler. Vertebrate Renal System. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 481-576. First published in print 1997. doi: 10.1002/cphy.cp130108