Comprehensive Physiology Wiley Online Library

Temperature Relationships: From Molecules to Biogeography

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Temperature Effects on Physiological, Biochemical, and Molecular Systems: Basic Considerations
2 Temperature Effects on Proteins
2.1 Determinants of Thermal Sensitivities of Protein Structure and Function
2.2 Protein Structural Stability and Adaptation Temperature
2.3 Adaptations in Enzyme Kinetic Properties Lead to Conservation of Metabolic Regulation and Rate of Function
2.4 Rate Compensation to Temperature Through Alterations in Enzyme Concentration
3 The Heat Shock Response
3.1 Molecular Chaperones: Assistants in Protein Folding, Compartmentation, and Renaturation
3.2 The Heat Shock Response and Induced Thermal Tolerance
3.3 Acclimatization‐Induced Differences in the Heat Shock Response
3.4 Interindividual and Intertissue Differences in the Heat Shock Response
3.5 Evolutionary, Interspecific Differences in the Heat Shock Response
3.6 Cellular Thermometers and Regulation of HSP Synthesis
3.7 Cold Shock May Induce Stress Proteins
4 Temperature Effects on Lipids and Membrane‐Localized Functions
4.1 Temperature Effects on Membrane Lipids: Changes in Phase and Fluidity
4.2 Membrane Fluidity and Compositional Changes Correlate With Effects on Membrane Functions
4.3 Homeoviscous Adaptation: Occurrence and Efficacy
4.4 Adaptation of Membrane Lipids: Regulation and Biophysical Effects
4.5 Adaptive Regulation of Depot and Membrane Lipid Fluidity in Hibernators
4.6 Membrane Lipids of Thermophilic Archaebacteria
4.7 Membrane Adaptations Involving Extrinsic Factors: pH and Solutes
4.8 Cuticular Waxes: Regulation of Body Temperature and Control of Water Loss
4.9 Evaporative Cooling in Insects
5 Temperature–pH Interactions
5.1 Temperature Dependence of Body Fluid pH Values
5.2 The Imidazole Alphastat Hypothesis
5.3 Functional Manifestations of the Advantages of Alphastat Regulation
5.4 Deviations from Alphastat Regulation in Small Mammalian Hibernators
5.5 Variation in Alpha Imidazole among Species, Tissues, Histidyl Residues, and Methodologies
6 Biogeographical Implications of Temperature Adaptation
Figure 1. Figure 1.

Thermal stabilities of orthologous homologs of four proteins. a: Lens crystallins 197. Species studied were (1) Pagothenia borchgrevinki (Antarctic fish), (2) Coryphaenoides armatus (deep‐sea fish), (3) Coryphaenoides rupestris (deep‐sea fish), (4) Oncorhynchus mykiss (rainbow trout), (5) Cebidichthys violaceus (tidepool fish), (6) Rana muscosa (frog), (7) Alticus kirkii (Red Sea fish), (8) Rana erythraea (frog), (9) Gekko gecko (lizard), (10) Rattus norwegicus, (11) Tropidurus hispidus (reptile), and (12) Dipsosaurus dorsalis (desert iguana). b: Skeletal muscle (alpha isoform) actin 261. c: M4 (A4) lactate dehydrogenase. Unfolding of the protein was monitored by quenching of protein fluorescence by acrylamide, which is able to penetrate the protein and quench fluorescing tryptophyl residues when the protein unfolds 79. d: Cytosolic malate dehydrogenase. Four species of abalone (genus Haliotis) are compared. Habitat ranges in parentheses. The first range is the entire biogeographic range in temperature; the second range encompasses temperatures where each species is commonly found: Haliotis fulgens (green abalone) (14°–27°C; 14°–23°C), H. corregata (pink abalone) (12°–23°C; 12°–20°C), H. cracherodii (black abalone) (12°–25°C; 12°–22°C), H. rufesens (red abalone) (8°–18°C; 8°–16°C), and H. kamtschatkana kamtschatkana (4°–14°C; 4°–9°C) 66.

Figure 2. Figure 2.

Effects of temperature on apparent Michaelis‐Menten constants for pyruvate (a) and reduced nicotinamide adenine dinucleotide (NADH) (b) for M4 (A4) lactate dehydrogenases of vertebrates adapted to different temperatures. a: Km of pyruvate. Pagothenia borchgrevinki, Cynocion striatus, Cynocion xanthulus, Gillichthys mirabilis, and Gillichthys seta are teleost fishes. Species' temperature ranges are shown in parentheses next to the species name.

Data from references 46,253,289, and G. N. Somero and E. Winter (G. mirabilis and G. seta) (unpublished data). b: Km of NADH. Figure modified after Yancey and Siebenaller 288. Dark line segments denote Km values at physiological temperatures. Dark vertical bar encompasses Km values for all species at physiological temperatures
Figure 3. Figure 3.

Effect of temperature on homologous dehydrogenases from congeneric species adapted to different temperatures, a: M4 ‐lactate dehydrogenases of four species of barracuda (genus Sphyraena). Dark line segments indicate Km values at physiological temperatures. Dark vertical bar encompasses Km values for all species at physiological temperatures. Figure modified after Graves and Somero 106. b: Km of NADH for cytosolic malate dehydrogenases of abalone congeners 66. Dark line segments and vertical bar indicate Km values at physiological temperatures. See legend to Figure 1 for additional information on the thermal conditions of the aba‐lone congeners.

Figure 4. Figure 4.

Temperature effects on the enzyme acetylcholinesterase (AChE) from brain tissue of several fishes and the frequency of release of acetylcholine (ACh) quanta in the Antarctic fish Pagothenia borchgrevinki. Left: Effect of temperature on the rate of spontaneous release of ACh quanta at the neuromuscular junction of the extraocular nerve of P. borchgrevinki. Figure modified after MacDonald et al. 183. Right: Effect of temperature on the Km of ACh from brains of several teleost fishes.

Data from Baldwin 16 and Baldwin and Hochachka 17
Figure 5. Figure 5.

Arrhenius plots of liver mitochondrial succinate:cytochrome c reductase activity for the homeothermic guinea pig, the heterothermic brown antechinus, and the heterothermic bent wing bat isolated during winter. Arrhenius activation energies in kilocalories per mole are given above line segments. Temperatures shown near discontinuities in slopes are Arrhenius break temperatures. Figure modified after Geiser and McMurchie 101.

Figure 6. Figure 6.

Effects of temperature on mitochondrial respiration and membrane fluidity. A: Arrhenius plot of oxygen consumption by mitochondria from the deep‐sea hydrothermal vent tube worm Riftia pachyptila, illustrating the discontinuity (“break”) in slope that occurs at an elevated temperature, the Arrhenius break temperature (ABT). Figure modified after Dahlhoff et al. 65. B: ABTs for respiration of mitochondria isolated from marine invertebrates adapted to different temperatures. Estimates of maximal habitat temperatures given on the abscissa. Study species included six hydrothermal vent species: R. pachyptila, the crab Bythograea thermydron, two polychaete worms of the genus Alvinella, a mussel (Bathymodiolus thermophilus), and the clam Calyptogena magnifica. Solemya reidi is a protobranch clam, and Mytilus galloprovincialis is a mussel.

Data from Dahlhoff et al. 65. C. Effect of acclimation temperature on the ABTs of mitochondrial respiration for four species of abalone: Haliotis fulgens (green), H. corregata (pink), H. rufesens (red), and H. kamtschatkana kamtschatkana (pinto). Figure modified after Dahlhoff and Somero 67. D: Effect of acclimation temperature on fluidity (inversely related to fluorescence polarization of 1,6‐diphenyl‐1,3,5‐hexatriene) of mitochondrial membranes of five species of abalone (H. cracherodii: black abalone). Figure modified after Dahlhoff and Somero 67. For environmental temperature ranges of the abalone species, see Figure 1
Figure 7. Figure 7.

Homeoviscous adaptation in synaptosomal membranes from brain tissue of vertebrates adapted to different temperatures. Membrane fluidity is inversely related to magnitude of 1,6‐diphenyl‐1,3,5‐hexatriene polarization. Broad line segments indicate polarization values within range of physiological temperatures of each species. Dark vertical bar at right shows range of polarization values at physiological temperatures for all six species. Figure modified after Cossins and Bowler 48 and Behan‐Martin et al. 21.

Figure 8. Figure 8.

Changes in head group composition (phospholipid class) of phospholipids of rainbow trout gill during temperature acclimation. Top: Changes in weight percent of phosphatidylethanol‐amine (PE) during acclimation from 5°C to 20°C or from 20°C to 5°C. Middle: Changes in weight percent of phosphatidylcholine (PC). Bottom: Ratio of PC to PE during acclimation. Figure modified after Hazel and Carpenter 123.

Figure 9. Figure 9.

Effect of buffer composition on temperature dependence of fluorescence anisotropy parameters for plasma membranes from rainbow trout acclimated to 20°C. The anisotropy parameter is inversely related to membrane fluidity. In phosphate buffer, pH was almost independent of temperature, but in the imidazole buffer, pH varied with temperature according to the alphastat relationship. Figure modified from Hazel et al. 128.

Figure 10. Figure 10.

Effects of pH on binding of phosphofructokinase (PFK) to myofibrils (open symbols, dashed line) and interacting effects of pH and temperature on PFK self‐assembly, as indexed by residual PFK activity (closed symbols, solid lines). PFK binding to myofibrils measured using PFK‐containing supernatants and myofibrillar preparations from white skeletal muscle of the fish Paralabrax nebulifer 235. Incubations were at 20°C for 15 min. PFK self‐assembly was studied using enzyme purified from the ground squirrel Spermophilus beecheyi 115. Residual activity after incubation for 60 min at different combinations of temperature and pH reflects fraction of PFK remaining as catalytically active tetramers or aggregations of tetramers.



Figure 1.

Thermal stabilities of orthologous homologs of four proteins. a: Lens crystallins 197. Species studied were (1) Pagothenia borchgrevinki (Antarctic fish), (2) Coryphaenoides armatus (deep‐sea fish), (3) Coryphaenoides rupestris (deep‐sea fish), (4) Oncorhynchus mykiss (rainbow trout), (5) Cebidichthys violaceus (tidepool fish), (6) Rana muscosa (frog), (7) Alticus kirkii (Red Sea fish), (8) Rana erythraea (frog), (9) Gekko gecko (lizard), (10) Rattus norwegicus, (11) Tropidurus hispidus (reptile), and (12) Dipsosaurus dorsalis (desert iguana). b: Skeletal muscle (alpha isoform) actin 261. c: M4 (A4) lactate dehydrogenase. Unfolding of the protein was monitored by quenching of protein fluorescence by acrylamide, which is able to penetrate the protein and quench fluorescing tryptophyl residues when the protein unfolds 79. d: Cytosolic malate dehydrogenase. Four species of abalone (genus Haliotis) are compared. Habitat ranges in parentheses. The first range is the entire biogeographic range in temperature; the second range encompasses temperatures where each species is commonly found: Haliotis fulgens (green abalone) (14°–27°C; 14°–23°C), H. corregata (pink abalone) (12°–23°C; 12°–20°C), H. cracherodii (black abalone) (12°–25°C; 12°–22°C), H. rufesens (red abalone) (8°–18°C; 8°–16°C), and H. kamtschatkana kamtschatkana (4°–14°C; 4°–9°C) 66.



Figure 2.

Effects of temperature on apparent Michaelis‐Menten constants for pyruvate (a) and reduced nicotinamide adenine dinucleotide (NADH) (b) for M4 (A4) lactate dehydrogenases of vertebrates adapted to different temperatures. a: Km of pyruvate. Pagothenia borchgrevinki, Cynocion striatus, Cynocion xanthulus, Gillichthys mirabilis, and Gillichthys seta are teleost fishes. Species' temperature ranges are shown in parentheses next to the species name.

Data from references 46,253,289, and G. N. Somero and E. Winter (G. mirabilis and G. seta) (unpublished data). b: Km of NADH. Figure modified after Yancey and Siebenaller 288. Dark line segments denote Km values at physiological temperatures. Dark vertical bar encompasses Km values for all species at physiological temperatures


Figure 3.

Effect of temperature on homologous dehydrogenases from congeneric species adapted to different temperatures, a: M4 ‐lactate dehydrogenases of four species of barracuda (genus Sphyraena). Dark line segments indicate Km values at physiological temperatures. Dark vertical bar encompasses Km values for all species at physiological temperatures. Figure modified after Graves and Somero 106. b: Km of NADH for cytosolic malate dehydrogenases of abalone congeners 66. Dark line segments and vertical bar indicate Km values at physiological temperatures. See legend to Figure 1 for additional information on the thermal conditions of the aba‐lone congeners.



Figure 4.

Temperature effects on the enzyme acetylcholinesterase (AChE) from brain tissue of several fishes and the frequency of release of acetylcholine (ACh) quanta in the Antarctic fish Pagothenia borchgrevinki. Left: Effect of temperature on the rate of spontaneous release of ACh quanta at the neuromuscular junction of the extraocular nerve of P. borchgrevinki. Figure modified after MacDonald et al. 183. Right: Effect of temperature on the Km of ACh from brains of several teleost fishes.

Data from Baldwin 16 and Baldwin and Hochachka 17


Figure 5.

Arrhenius plots of liver mitochondrial succinate:cytochrome c reductase activity for the homeothermic guinea pig, the heterothermic brown antechinus, and the heterothermic bent wing bat isolated during winter. Arrhenius activation energies in kilocalories per mole are given above line segments. Temperatures shown near discontinuities in slopes are Arrhenius break temperatures. Figure modified after Geiser and McMurchie 101.



Figure 6.

Effects of temperature on mitochondrial respiration and membrane fluidity. A: Arrhenius plot of oxygen consumption by mitochondria from the deep‐sea hydrothermal vent tube worm Riftia pachyptila, illustrating the discontinuity (“break”) in slope that occurs at an elevated temperature, the Arrhenius break temperature (ABT). Figure modified after Dahlhoff et al. 65. B: ABTs for respiration of mitochondria isolated from marine invertebrates adapted to different temperatures. Estimates of maximal habitat temperatures given on the abscissa. Study species included six hydrothermal vent species: R. pachyptila, the crab Bythograea thermydron, two polychaete worms of the genus Alvinella, a mussel (Bathymodiolus thermophilus), and the clam Calyptogena magnifica. Solemya reidi is a protobranch clam, and Mytilus galloprovincialis is a mussel.

Data from Dahlhoff et al. 65. C. Effect of acclimation temperature on the ABTs of mitochondrial respiration for four species of abalone: Haliotis fulgens (green), H. corregata (pink), H. rufesens (red), and H. kamtschatkana kamtschatkana (pinto). Figure modified after Dahlhoff and Somero 67. D: Effect of acclimation temperature on fluidity (inversely related to fluorescence polarization of 1,6‐diphenyl‐1,3,5‐hexatriene) of mitochondrial membranes of five species of abalone (H. cracherodii: black abalone). Figure modified after Dahlhoff and Somero 67. For environmental temperature ranges of the abalone species, see Figure 1


Figure 7.

Homeoviscous adaptation in synaptosomal membranes from brain tissue of vertebrates adapted to different temperatures. Membrane fluidity is inversely related to magnitude of 1,6‐diphenyl‐1,3,5‐hexatriene polarization. Broad line segments indicate polarization values within range of physiological temperatures of each species. Dark vertical bar at right shows range of polarization values at physiological temperatures for all six species. Figure modified after Cossins and Bowler 48 and Behan‐Martin et al. 21.



Figure 8.

Changes in head group composition (phospholipid class) of phospholipids of rainbow trout gill during temperature acclimation. Top: Changes in weight percent of phosphatidylethanol‐amine (PE) during acclimation from 5°C to 20°C or from 20°C to 5°C. Middle: Changes in weight percent of phosphatidylcholine (PC). Bottom: Ratio of PC to PE during acclimation. Figure modified after Hazel and Carpenter 123.



Figure 9.

Effect of buffer composition on temperature dependence of fluorescence anisotropy parameters for plasma membranes from rainbow trout acclimated to 20°C. The anisotropy parameter is inversely related to membrane fluidity. In phosphate buffer, pH was almost independent of temperature, but in the imidazole buffer, pH varied with temperature according to the alphastat relationship. Figure modified from Hazel et al. 128.



Figure 10.

Effects of pH on binding of phosphofructokinase (PFK) to myofibrils (open symbols, dashed line) and interacting effects of pH and temperature on PFK self‐assembly, as indexed by residual PFK activity (closed symbols, solid lines). PFK binding to myofibrils measured using PFK‐containing supernatants and myofibrillar preparations from white skeletal muscle of the fish Paralabrax nebulifer 235. Incubations were at 20°C for 15 min. PFK self‐assembly was studied using enzyme purified from the ground squirrel Spermophilus beecheyi 115. Residual activity after incubation for 60 min at different combinations of temperature and pH reflects fraction of PFK remaining as catalytically active tetramers or aggregations of tetramers.

References
 1. Abad‐Zapatero, C., J. Griffith, J. Sussman and M. Rossman. Refined crystal structure of dogfish M4 apo‐lactate dehydrogenase. J. Mol. Biol. 198: 445–467, 1987.
 2. Abe, H. Determination of L‐histidine‐related compounds in fish muscle using high‐performance liquid chromatography. Bull. Jp. Soc. Sci. Fish. 47: 139, 1981.
 3. Adams, M. J., M. Buehner, K. Chandrasekhar, G. C. Ford, M. L. Hackert, A. Liljas, M. G. Rossmann, I. E. Smiley, W. S. Allison, J. Everse, N. O. Kaplan, and S. S. Taylor. Structure‐function relationships in lactate dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 70: 1968–1972, 1973.
 4. Agard, D. A. To fold or not to fold…. Science 260: 1903–1904, 1993.
 5. Ahern, T. J., and A. M. Klibanov. The mechanism of irreversible enzyme inactivation at 100°C. Science 228: 1280–1284 1985.
 6. Alahiotis, S. N. Heat shock proteins. A new view on the temperature compensation. Comp. Biochem. Physiol. [B] 75: 379–387, 1983.
 7. Alexandrov, V. Y. Conformational flexibility of proteins, their resistance to proteinases and temperature conditions of life. Curr. Mod. Biol. 3: 9–19, 1969.
 8. Alexandrov, V. Y. Cells, Molecules, and Temperature. Berlin: Springer‐Verlag, 1977.
 9. Ali, S., H.‐L. Lin, R. Bittman, and C.‐H. Huang. Binary mixtures of saturated and unsaturated mixed‐chain phosphatidylcholines. A differential scanning calorimetry study. Biochemistry 28: 522–528, 1989.
 10. Aloia, R. C., and J. K. Raison. Membrane function in mammalian hibernation. Biochem. Biophys. Acta 988: 123–146, 1989.
 11. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 8: 223–230, 1973.
 12. Arpigny, J. L., G. Feller, S. Davail, S. Genicot, E. Narinx, Z. Zekhnini and C. Gerday. Molecular adaptations of enzymes from thermophilic and psychrophilic organisms. In: Advances in Comparative and Environmental Physiology, edited by R. Gilles. Berlin: Springer‐Verlag, 1994, vol. 20, p. 270–295.
 13. Ashburner, M., and J. J. Bonner. The induction of gene activity in Drosophila by heat shock. Cell 17: 241–245, 1979.
 14. Austin, J. H., F. W. Sunderman, and J. B. Camack. The electrolyte composition and the pH of serum of a poikilothermous animal at different temperatures. J. Biol. Chem. 72: 677–685, 1927.
 15. Bailey, A. J. The nature of collagen. In: Comprehensive Biochemistry, edited by M. Florkin and E. H. Stolz. Amsterdam: Elsevier, 1968, vol. 26B, p. 297–423.
 16. Baldwin, J. Adaptation of enzymes to temperature: acetylcholinesterases in the central nervous system of fishes. Comp. Biochem. Physiol. 40: 181–187, 1971.
 17. Baldwin, J., and P. W. Hochachka. Functional significance of isoenzymes in thermal acclimatization: acetylcholinesterases from trout brain. Biochem. J. 116: 883–887, 1970.
 18. Barnes, B. M. Freeze avoidance in a mammal: body temperatures below 0°C in an Arctic hibernator. Science 244: 1593–1595, 1989.
 19. Baross, J. A., and J. W. Deming. Growth of “black smoker” bacteria at temperatures of at least 250°C. Nature 303: 423–426, 1983.
 20. Basaglia, F. Some aspects of isozymes of lactate dehydrogenase, malate dehydrogenase and glucosephosphate isomerase in fish. Comp. Biochem. Physiol. [B] 92: 213–226, 1989.
 21. Behan‐Martin, M. K., G. R. Jones, K. Bowler, and A. R. Cossins. A near perfect temperature adaptation of bilayer order in vertebrate brain membranes. Biochim. Biophys. Acta 1151: 216–222, 1993.
 22. Block, B. A. Endothermy in fish: thermogenesis, ecology and evolution. In: Biochemistry and Molecular Biology of Fishes, edited by P. W. Hochachka and T. Mommsen, Amsterdam: Elsevier, 1991, p. 269–311.
 23. Block, B. A. Thermogenesis in muscle. Annu. Rev. Physiol. 56: 535–577, 1994.
 24. Bock, P. E. and C. Frieden. pH‐induced cold lability of rabbit skeletal muscle phosphofructokinase. Biochemistry 13: 4191–4196, 1974.
 25. Bock, P. E. and C. Frieden. Phosphofructokinase I. Mechanism of the pH‐dependent inactivation and reactivation of the rabbit muscle enzyme. J. Biol. Chem. 251: 5630–5636, 1976.
 26. Bols, N. C., D. D. Mosser, and G. B. Steels. Temperature studies and recent advances with fish cells in vitro. Comp. Biochem. Physiol. A 103: 1–14, 1992.
 27. Borgmann, U., and T. W. Moon. A comparison of LDHs from an ectothermic and endothermic animal. Can. J. Biochem. 53: 998–1004, 1975.
 28. Bosch, T.C.G., S. M. Krylow, H. R. Bode, and R. E. Steele. Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis. Proc. Natl. Acad. Sci. U.S.A. 85: 7927–7931, 1988.
 29. Botelho, L.H.S., H. Friend, J. B. Matthew, L. D. Lehman, G. I. Hanania, and F.R.N. Gurd. Proton nuclear magnetic resonance study of histidine ionization in myoglobins of various species: comparison of observed and computed pK values. Biochemistry 17: 5197–5205, 1978.
 30. Bowler, K. Cellular heat injury: are membranes involved. In: S. E. B. Symposium XLI: Temperature and Animal Cells, edited by K. Bowler and B. J. Fuller. Cambridge: Company of Biologists, 1987, p. 157–185.
 31. Brand, M. D., P. Couture, P. L. Else, K. W. Withers, and A. J. Hulburt. Evolution of energy metabolism: proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem. J. 275: 81–86.
 32. Brandts, J. F. Heat effects on proteins and enzymes. In: Thermobiology, edited by H. Rose. New York: Academic, 1967, p. 25–72.
 33. Brenner, R. R. Effect of unsaturated acids on membrane structure. Prog. Lipid Res. 23: 69–96, 1984.
 34. Burton, R. F. Intracellular buffering. Respir. Physiol. 33: 51–58, 1978.
 35. Busa, W. B. and R. Nuccitelli. Metabolic regulation via intracellular pH. Am. J. Physiol. (Regulatory Integrative Comp. Physiol. 16) 246: R409–R438, 1984.
 36. Cameron, J. N. Acid‐base homeostasis: past and present perspectives. Physiol. Zool. 62: 845–865, 1989.
 37. Carey, C., and J. R. Hazel. Diurnal variation in membrane lipid composition of Sonoran desert teleosts. J. Exp. Biol. 147: 375–391, 1989.
 38. Carruthers, A., and D. L. Melchior. How bilayer lipids affect membrane protein activity. Trends Biochem. Sci. 11: 331–335, 1986.
 39. Cerbon J. The influence of pH and temperature on the limited rotational freedom of the structured water and lipid hydrocarbon chains of natural membranes. Biochim. Biophys. Acta 211: 389–395, 1970.
 40. Cevc, G. How membrane chain melting properties are regulated by the polar surface of the lipid bilayer. Biochemistry 26: 6305–6310, 1987.
 41. Cevc, G. Isothermal lipid phase transitions. Chem. Phys. Lipids 57: 293–307, 1991.
 42. Chakravarthy, B. R., M. W. Spence, and H. W. Cook. Turnover of phospholipid fatty acyl chains in cultured neuroblastoma cells: involvement of deacylation–reacylation and de novo synthesis in plasma membranes. Biochim. Biophys. Acta 879: 264–277, 1986.
 43. Chapelle, S., G. Brichon and G. Zwingelstein. Effect of environmental temperature on the incorporation of 3H‐ethanolamine into the phospholipids of the tissues of the crab Carcinus meanas. J. Exp. Zool. 224: 289–297, 1982.
 44. Cheesbrough, T. M. Decreased growth temperature increases soybean stearoyl‐acyl carrier protein desaturase activity. Plant Physiol. 93: 555–559, 1990.
 45. Chen, C.‐P., R. E. Lee, and D. L. Denlinger. Cold shock and heat shock: a comparison of the protection generated by brief pretreatment at less severe temperatures. Physiol. Entomol. 16: 543–547, 1991.
 46. Coppes, Z. L., and G. N. Somero. Temperature‐adaptive differences between the M4‐lactate dehydrogenases of stenothermal and eurythermal sciaenid fishes. J. Exp. Zool. 254: 127–131, 1990.
 47. Cossins, A. R. The adaptation of membrane structure and function to changes in temperature. In: Cellular Acclimatization to Environmental Change, edited by A. R. Cossins and P. Sheterline. London: Cambridge Univ. Press, 1983, p. 3–32.
 48. Cossins, A. R. and K. Bowler. Temperature Biology of Animals. London: Chapman and Hall, 1987.
 49. Cossins, A. R., K. Bowler, and C. L. Prosser. Homeoviscous adaptation and its effect upon membrane‐bound proteins. J. Therm. Biol. 6: 183–187, 1981.
 50. Cossins, A. R., J. Christiansen, and C. L. Prosser. Adaptation of biological membranes to temperature. The lack of homeoviscous adaptation in the sarcoplasmic reticulum. Biochim. Biophys. Acta 511: 442–454, 1978.
 51. Cossins, A. R., M. J. Friedlander, and C. L. Prosser. Correlations between behavioural temperature adaptations of goldfish and the viscosity and fatty acid composition of their synaptic membranes. J. Comp. Physiol. 120: 109–121, 1977.
 52. Cossins, A. R., and J. A. C. Lee. The adaptation of membrane structure and lipid composition to cold. In: Circulation, Respiration, and Metabolism: Current Comparative Approaches, edited by R. Gilles. Berlin: Springer‐Verlag, 1985, p. 543–552.
 53. Cossins, A. R., and C. L. Prosser. Evolutionary adaptation of membranes to temperature. Proc. Natl. Acad. Sci. U.S.A. 75: 2040–2043, 1978.
 54. Cossins, A. R., and C. L. Prosser. Variable homeoviscous responses of different brain membranes of thermally‐acclimated goldfish. Biochim. Biophys. Acta 687: 303–309, 1982.
 55. Cossins, A. R. and H. Wilkinson. The role of homeoviscous adaptation in mammalian hibernation. J. Therm. Biol. 7: 107–110, 1982.
 56. Craig, E. A. Chaperones: helpers along the pathways to protein folding. Science 260: 1902–1903, 1993.
 57. Craig, E. A., and C. A. Gross. Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16: 135–140, 1991.
 58. Crawford, D. L., H. R. Constantino, and D. A. Powers. Lactate dehydrogenase‐B cDNA from the teleost Fundulus heteroclitus: evolutionary implications. Mol. Biol. Evol. 6: 369–383, 1989.
 59. Crawford, D. L., and D. A. Powers. Molecular basis of evolutionary adaptation at the lactate dehydrogenase‐B locus in the fish Fundulus heteroclitus. Proc. Natl. Acad. Sci. U.S.A. 86: 9365–9369, 1989.
 60. Crawford, D. L., and D. A. Powers. Evolutionary adaptation to different thermal environments via transcriptional regulation. Mol. Biol. Evol. 9: 806–813, 1992.
 61. Creighton, T. E. Unfolding protein folding. Nature 352: 17–18, 1991.
 62. Crockford, T., and I. A. Johnston. Temperature acclimation and the expression of contractile protein isoforms in the skeletal muscles of the common carp (Cyprinus carpio L.). J. Comp. Physiol. [B] 160: 23–30, 1990.
 63. Crowe, J. H., and L. M. Crowe. Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry cells. In: Water and Life, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis, Berlin: Springer‐Verlag, 1992, p. 87–103.
 64. Crush, K. G. Carnosine and related substances in animal tissues. Comp. Biochem. Physiol. 34: 3–30, 1970.
 65. Dahlhoff, E., J. O'Brien, G. N. Somero, and R. D. Vetter. Temperature effects on mitochondria from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures. Physiol. Zool. 64: 1490–1508, 1991.
 66. Dahlhoff, E., and G. N. Somero. Kinetic and structural adaptations of cytosolic malate dehydrogenases of eastern Pacific abalones (genus Haliotis) from different thermal habitats: biochemical correlates of biogeographical patterning. J. Exp. Biol. 185: 137–150, 1993.
 67. Dahlhoff, E., and G. N. Somero. Temperature effects on mitochondria from abalones (genus Haliotis): adaptive plasticity and its limits. J. Exp. Biol. 185: 151–168, 1993.
 68. Davey, C. L. The significance of carnosine and anserine in striated skeletal muscle. Arch. Biochem. Biophys. 89: 303–308, 1960.
 69. Denlinger, D. L., R. E. Lee, G. D. Yocum and O. Kukal. Role of chilling in the acquisition of cold tolerance and the capacitation to express stress proteins in diapausing pharate larvae of the gypsy moth, Lymantria dispar. Arch. Insect Biochem. Physiol. 21: 271–280, 1992.
 70. Depietro, F. R., and J. C. Byrd. Effects of membrane fluidity on [3H]TCP binding to PCP receptors. J. Mol. Neurosci. 2: 45–52, 1990.
 71. DeVries, A. L., and C.‐H. C. Chen. The role of antifreeze glycopeptides and peptides in the survival of cold‐water fishes. In: Water and Life, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis. Berlin: Springer‐Verlag, 1992, p. 301–315.
 72. Dietz, T. J. Acclimation of the threshold induction temperatures for 70‐kDa and 90‐kDa heat shock proteins in the fish Gillichthys mirabilis. J. Exp. Biol. 188: 333–338, 1994.
 73. Dietz, T. J., and G. N. Somero. The threshold induction temperature of the 90‐kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc. Natl. Acad. Sci. U.S.A. 89: 3389–3393, 1992.
 74. Dietz, T. J., and G. N. Somero. Interspecific and intertissue differences in heat shock protein concentrations and threshold induction temperatures. Physiol. Zool. 66: 863–880, 1993.
 75. Dill, K. A. Dominant forces in protein folding. Biochemistry 29: 7133–7155, 1990.
 76. Dimichele, L., and D. A. Powers. LDH‐B genotype specific hatching times of Fundulus heteroclitus embryos. Nature 296: 563–563, 1982.
 77. Dimichele, L., and D. A. Powers. Physiological basis for swimming endurance differences between LDH‐B genotypes of Fundulus heteroclitus. Science 216: 1014–1016, 1982.
 78. Dimichele, L., and D. A. Powers. Developmental and oxygen consumption rate differences between lactate dehydrogenase‐B genotypes of Fundulus heteroclitus and their effect on hatching time. Physiol. Zool. 57: 52–56, 1984.
 79. Donahue, V. E. Lactate Dehydrogenase: Structural Aspects of Environmental Adaptation. San Diego: Univ. of California, 1982. Dissertation.
 80. Duman, J. G., D. W. Wu, L. Xu, D. Tursman, and T. M. Olsen. Adaptations of insects to subzero temperatures. Q. Rev. Biol. 66: 387–410, 1991.
 81. Dutta, H., A. Das, A. B. Das and T. Farkas. Role of environmental temperature in seasonal changes of fatty acid composition of hepatic lipid in an air‐breathing Indian teleost. Comp. Biochem. Physiol. [B] 81: 341–347, 1985.
 82. Dyer, S. D., K. L. Dickson, E. G. Zimmerman, and B. M. Sanders. Tissue‐specific patterns of synthesis of heat‐shock proteins and thermal tolerance of the fathead minnow (Pimephales promelas). Can. J. Zool. 69: 2021–2027, 1991.
 83. Easton, D. P., P. S. Rutledge, and J. R. Spotila. Heat shock protein induction and induced thermal tolerance are independent in adult salamanders. J. Exp. Zool. 241: 263–267, 1987.
 84. Ellens, H., D. P. Siegal, D. Alford, P. L. Yeagle, L. Boni, L. J. Lis, P. J. Quinn and J. Bentz. Membrane fusion and inverted phases. Biochemistry 28: 3692–3703, 1989.
 85. Ellis, R. J., and S. M. Van der Vies. Molecular chaperones. Annu. Rev. Biochem. 60: 321–347, 1991.
 86. Ellory, J. C., and J. S. Willis. Kinetics of Na pump in red cells of different temperature sensitivity. J. Gen. Physiol. 79: 1115–1130, 1982.
 87. Else, P. L., and A. J. Hulbert. Comparison of the “mammal machine” and the “reptile machine”: energy production. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 9): R3–R9, 1981.
 88. Else, P. L., and A. J. Hulbert. An allometric comparison of the mitochondria of mammalian and reptilian tissues: the implications for the evolution of endothermy. J. Comp. Physiol. [B] 156: 3–11, 1985.
 89. Else, P. L., and A. J. Hulbert. Evolution of mammalian endothermic metabolism: “leaky” membranes as a source of heat. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 22): R1–R7, 1987.
 90. Fabry, S., J. Lang, T. Niermann, M. Vingron and R. Hensel. Nucleotide sequence of the glyceraldehyde‐3‐phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Methanobacterium formicicum. Eur. J. Biochem. 179: 405–413, 1989.
 91. Farkas, T. and I. Csengeri. Biosynthesis of fatty acids by the carp, Cyprinus carpio in relation to environmental temperature. Lipids 11: 401–407, 1976.
 92. Farkas, T., and J. C. Nevenzel. Temperature acclimation in the crayfish: effects on phospholipid fatty acids. Lipids 16: 341–346, 1981.
 93. Farkas, T. and R. Roy. Temperature mediated restructuring of phosphatidylethanolamines in livers of freshwater fishes. Comp. Biochem. Physiol. [B] 93: 217–222, 1989.
 94. Fields, P., J. B. Graham, R. H. Rosenblatt, and G. N. Somero. Effects of expected global climate change on marine faunas. Trends Ecol. Evol. 8: 361–367, 1993.
 95. Fittinghoff, C. M., and L. M. Riddiford. Heat sensitivity and protein synthesis during heat‐shock in the tobacco hornworm, Manduca sexta. J. Comp. Physiol. [B] 160: 349–356, 1990.
 96. Frank, C. L. Adaptations for hibernation in the depot fats of a ground squirrel (Spermophilus beldingi). Can. J. Zool. 69: 2702–2711, 1991.
 97. Frank, C. L. The influence of dietary fatty acids on hibernation by golden‐mantled ground squirrels (Spermophilus lateralis). Physiol. Zool. 65: 906–920, 1992.
 98. Fujii, D. K., and A. J. Fulco. Biosynthesis of unsaturated fatty acids by bacilli—hyperinduction of desaturase synthesis. J. Biol. Chem. 252: 3660–3670, 1977.
 99. Geiser, F., B. T. Firth, and R. S. Seymour. Polyunsaturated dietary lipids lower the selected body temperature of a lizard. J. Comp. Physiol. [B] 162: 1–4, 1992.
 100. Geiser, F., and E. J. McMurchie. Differences in the thermotropic behaviour of mitochondrial membrane respiratory enzymes from homeothermic and heterothermic endotherms. J. Comp. Physiol. [B] 155: 125–133, 1984.
 101. Geiser, F., and E. J. McMurchie. Arrhenius parameters of mitochondrial membrane respiratory enzymes in relation to thermoregulation in endotherms. J. Comp. Physiol. [B] 155: 711–715, 1985.
 102. Genicot, S., G. Feller and C. Gerday. Trypsin from Antarctic fish (Paranotothenia magellanica Forster) as compared with trout (Salmo gairdneri) trypsin. Comp. Biochem. Physiol. [B] 90: 601–609, 1988.
 103. Gibbs, A., T. A. Mousseau, and J. H. Crowe. Genetic and acclimatory variation in biophysical properties of insect cuticle lipids. Proc. Natl. Acad. Sci. U.S.A. 88: 7257–7260, 1991.
 104. Gladwell, R. T., K. Bowler, and D. J. Duncan. Heat death in the crayfish Austropotamobius pallipes —ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1: 79–94, 1975.
 105. Graves, J. E., R. H. Rosenblatt, and G. N. Somero. Kinetic and electrophoretic differentiation of lactate dehydrogenases of teleost species‐pairs from the Atlantic and Pacific coasts of Panama. Evolution 37: 30–37, 1983.
 106. Graves, J. E., and G. N. Somero. Electrophoretic and functional enzymic evolution in four species of eastern Pacific barracudas from different thermal environments. Evolution 36: 91–106, 1982.
 107. Greaney, G. S., and D. A. Powers. Cellular regulation of an allosteric modifier of fish haemoglobin. Nature 270: 73–74, 1977.
 108. Gudbjarnason, S., B. Doell and G. Oskarsdottir. Docosahexaenoic acid in cardiac metabolism and function. Acta Biol. Med. Germ. 37: 777–784, 1978.
 109. Guy, C., D. Haskell, L. Neven, P. Klein and C. Smelser. Hydration‐state‐responsive proteins link cold and drought stress in spinach. Planta 188: 265–270, 1992.
 110. Hadley, N. F. Epicuticular lipids of the desert tenebrionid beetle, Eleodes armata: seasonal and acclimatory effects on composition. Insect Biochem. 7: 277–283, 1977.
 111. Hadley, N. F. Epicuticular lipids of the desert tenebrionid beetles: correlations with epicuticular hydrocarbon composition. Insect Biochem. 8: 17–22, 1978.
 112. Hadley, N. F. Cuticular lipids of terrestrial plants and arthropods: a comparison of their structure, composition, and waterproofing function. Biol. Rev. 56: 23–47, 1981.
 113. Hadley, N. F., E. C. Toolson, and M. C. Quinlan. Regional differences in cuticular permeability in the desert cicada Diceroprocta apache: implications for evaporative cooling. J. Exp. Biol. 141: 219–230, 1989.
 114. Hagar, A. F., and J. R. Hazel. Changes in desaturase activity and the fatty acid composition of microsomal membranes from liver tissue of thermally acclimating rainbow trout. J. Comp. Physiol. 156: 35–42, 1985.
 115. Hand, S. C., and G. N. Somero. Phosphofructokinase of the hibernator Citellus beecheyi: temperature and pH regulation of activity via influences on the tetramer–dimer equilibrium. Physiol. Zool. 56: 380–388, 1983.
 116. Harri, M. and E. Florey. The effects of acclimation temperature on a neuromuscular system of the crayfish, Astacus leptodactylus. J. Exp. Biol. 78: 281–293, 1979.
 117. Harwood, J. Strategies for coping with low environmental temperatures. Trends Biochem. Sci. 16: 126–127, 1991.
 118. Hazel, J. R. The effect of temperature acclimation upon succinic dehydrogenase activity from the epaxial muscle of the common goldfish (Carassius auratus L.) II. Lipid reactivation of the soluble enzyme. Comp. Biochem. Physiol. [B] 43: 863–882, 1972.
 119. Hazel, J. R. The influence of thermal acclimation on membrane lipid composition of rainbow trout liver. Am. J. Physiol. 236 (Regulatory Integrative Comp. Physiol. 5): R91–R101, 1979.
 120. Hazel, J. R. Homeoviscous adaptation in animal cell membranes. In: Advances in Membrane Fluidity. Physiological Regulation of Membrane Fluidity, edited by R. C. Aloia, C. C. Curtain, and L. M. Gordon. New York: Liss, 1988, p. 149–188.
 121. Hazel, J. R. Adaptation to temperature: phospholipid synthesis in hepatocytes of rainbow trout. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R1495–1501, 1990.
 122. Hazel, J. R. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 57: 19–42, 1995.
 123. Hazel, J. R. and R. Carpenter. Rapid changes in the phospholipid composition of gill membranes during thermal acclimation of the rainbow trout, Salmo gairdneri. J. Comp. Physiol. [B] 155: 597–602, 1985.
 124. Hazel, J. R., W. S. Garlick, and P. A. Sellner. The effect of assay temperature upon the pH optima of enzymes from poikilotherms: a test of the imidazole alphastat hypothesis. J. Comp. Physiol. [B] 123: 97–104, 1978.
 125. Hazel, J. R., and S. R. Landrey. Timecourse of thermal acclimation in plasma membranes of trout kidney. I. Headgroup composition. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R622–R627, 1988.
 126. Hazel, J. R., and S. R. Landrey. Timecourse of thermal acclimation in plasma membranes of trout kidney. II. Molecular species composition. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R628–R634, 1988.
 127. Hazel, J. R., and R. C. Livermore. Fatty‐acyl coenzyme A pool in liver of rainbow trout (Salmo gairdneri): effects of temperature acclimation. J. Exp. Zool. 256: 31–37, 1990.
 128. Hazel, J. R., S. J. McKinley, and E. E. Williams. Thermal adaptation in biological membranes: interacting effects of temperature and pH. J. Comp. Physiol. [B] 162: 593–601, 1992.
 129. Hazel, J. R., and C. L. Prosser. Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54: 620–677, 1974.
 130. Hazel, J. R., and C. L. Prosser. Incorporation of 1‐14 C‐acetate into fatty acids and sterols by isolated hepatocytes of thermally acclimated rainbow trout (Salmo gairdneri) J. Comp. Physiol. 134: 321–329, 1979.
 131. Hazel, J. R., and V. L. Schuster. The effects of temperature and thermal acclimation upon the osmotic properties and non‐electrolyte permeability of liver and gill mitochondria from rainbow trout (Salmo gairdneri). J. Exp. Zool. 195: 425–438, 1976.
 132. Hazel, J. R., and E. E. Williams. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29: 167–227, 1990.
 133. Heisler, N., H. Weitz, and A. M. Weitz. Extracellular and intracellular pH with changes in temperature in the dogfish Scyliorhinus stellaris. Respir. Physiol. 26: 249–263, 1976.
 134. Hennessey, J. P., Jr., and J. F. Siebenaller. Pressure‐adaptive differences in proteolytic inactivation of M4‐lactate dehydrogenase homologues from marine fishes. J. Exp. Zool. 241: 9–15, 1987.
 135. Henriques, V. and C. Hansen. Vergleichende Untersuchungen uber die chemische Zusammensetzung des thierischen Fettes. Skand. Arch. Physiol. 11: 151–165, 1901.
 136. Hensel, R. and H. Konig. Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol. Lett. 49: 75–79, 1988.
 137. Hershko, A. and A. Ciechanover. The unbiquitin system for protein degradation. Annu. Rev. Biochem. 61: 761–807, 1992.
 138. Hines, S. A., D. P. Philipp, W. F. Childers, and G. S. Whitt. Thermal kinetic differences between allelic isozymes of malate dehydrogenase (Mdh‐B locus) of largemouth bass, Micropterus salmoides. Biochem. Genet. 21: 1143–1151, 1983.
 139. Hitzig, B. M., P. Wann‐Cherng, T. Burt, P. Okunieff, and D. C. Johnson. 1H‐NMR measurement of fractional dissociation of imidazole in intact animals. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35): R1008–R1015, 1994.
 140. Hochachka, P. W., and G. N. Somero. Biochemical Adaptation. Princeton, NJ: Princeton Univ. Press, 1984.
 141. Hofmann, G. E. and G. N. Somero. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198: 1509–1518, 1995.
 142. Holland, L. Z., M. McFall‐Ngai, and G. N. Somero. Evolution of lactate dehydrogenase‐A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: Differences in kinetic properties and thermal stability are due to independent amino acid substitutions outside the active site.
 143. Holub, B. J., J. Piekarski, and J. F. Leatherland. Differential biosynthesis of molecular species of 1,2‐diacyl‐SH‐glycerols and phosphatidylcholines in cold and warm acclimated goldfish (Carassius auratus L.). Lipids 12: 316–318, 1977.
 144. Hottiger, T., T. Boiler and A. Wiemken. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett. 220: 113–115, 1987.
 145. Hottiger, T., T. Boiler and A. Wiemken. Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett. 255: 432–434, 1989.
 146. Houslay, M. D., and R. W. Palmer. Changes in the form of Arrhenius plots of the activity of glucagon‐stimulated adenylate cyclase and other hamster liver plasma membrane enzymes occurring on hibernation. Biochem. J. 174: 909–919, 1978.
 147. Houslay, M. D., and P. K. Tubbs. Dynamics of Biological Membranes. New York: Wiley, 1982.
 148. Huber, R., M. Kurr, H. W. Jannasch, and K. O. Stetter. A novel group of abyssal methogenic archaebacteria (Methanopyrus) growing at 100°C. Nature 342: 833–834, 1989.
 149. Huey, R. B., and A. F. Bennett. Physiological adjustments to fluctuating thermal environments: an ecological and evolutionary perspective. In: Stress Proteins in Biology and Medicine, edited by R. I. Morimoto, A. Tissiers, and C. Georgopoulos. Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1990, p. 37–59.
 150. Hulbert, A. J., and P. L. Else. Evolution of mammalian endothermic metabolism: mitochondrial activity and cell composition. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R63–R69, 1989.
 151. Hulbert, A. J., and P. L. Else. The cellular basis of endothermic metabolism: a role for “leaky” membranes? News Physiol. Sci. 5: 25–28, 1990.
 152. Hulbert, A. J., W. Mantaj, and P. A. Janssens. Development of mammalian endothermic metabolism: quantitative changes in tissue mitochondria. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 30): R561–R568, 1991.
 153. Hutchison, V. H., and J. D. Maness. The role of behavior in temperature acclimation and tolerance in ectotherms. Am. Zool. 19: 367–384, 1979.
 154. Hwang, G. C., S. Watabe and K. Hashimoto. Changes in carp myosin ATPase induced by temperature acclimation. J. Comp. Physiol. [B] 160: 233–239, 1990.
 155. Imanaka, T., M. Shibazaki and M. Takagi. A new way of enhancing the thermostability of proteases. Nature 324: 695–697, 1986.
 156. Jaenicke, R. Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202: 715–728, 1991.
 157. Johnston, I. A. Cellular responses to an altered body temperature: the role of alterations in the expression of protein isoforms. In: Cellular Acclimatization to Environmental Change, edited by A. R. Cossins and P. Sheterline, London: Cambridge Univ. Press, 1983, p. 121–143.
 158. Johnston, I. A., and N. J. Walesby. Molecular mechanisms of temperature adaptation in fish myofibrillar adenosine triphosphatases. J. Comp. Physiol. 119: 195–206, 1977.
 159. Jones, P. G., R. A. Vanbogelen, and F. C. Neidhardt. Induction of proteins in response to low temperature in Escherichia coli. J. Bacterial. 169: 2092–2095, 1987.
 160. Joplin, K. H., G. D. Yocum, and D. L. Denlinger. Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalis. J. Insect Physiol. 36: 825–834, 1990.
 161. Kimpel, J. A., and J. L. Key. Presence of heat shock mRNAs in field grown soybeans. Plant Physiol. 79: 672–678, 1985.
 162. Koban, M., G. Graham, and C. L. Prosser. Induction of heat‐shock protein synthesis in teleost hepatocytes: effects of acclimation temperature. Physiol. Zool. 60: 645–650, 1987.
 163. Koban, M., A. A. Yup, L. B. Agellon, and D. A. Powers. Molecular adaptation to environmental temperature: heat‐shock response of the eurythermal teleost Fundutus heteroclitus. Mol. Mar. Biol. Biotech. 1: 1–17, 1991.
 164. Kobayashi, N. and K. McEntee. Evidence for a heat shock transcription factor‐independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 87: 6550–6554, 1990.
 165. Lagerspetz, K.Y.H. Temperature acclimation and the nervous system. Biol. Rev. 49: 477–514, 1974.
 166. Laskey, R. A., B. M. Honda, A. Mills, and J. T. Finch. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275: 416–420, 1978.
 167. Lavoie, J. N., G. Gingras‐Breton, R. M. Tanguay and J. Landry. Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. J. Biol. Chem. 268: 3420–3429, 1993.
 168. Lee, J.A.C., and A. R. Cossins. Temperature adaptation of biological membranes: differential homeoviscous responses in brush‐border and basolateral membranes of carp intestinal mucosa. Biochim. Biophys. Acta 1026: 195–203, 1990.
 169. Lee, Y. M., H. P. Misra, and F. J. Ayala. Superoxide dismutase in Drosophila melanogaster: biochemical and structural characterization of allozyme variants. Proc. Natl. Acad. Sci. U.S.A. 78: 7052–7055, 1981.
 170. Leslie, J. M., and J. T. Buckley. Phospholipid composition of goldfish (Carassius auratus L.) liver and brain temperature dependence of phosphatidylcholine synthesis. Comp. Biochem. Physiol. [B] 53: 335–337, 1976.
 171. Li, G. C., L. Li, Y.‐K. Liu, J. Y. Mak, L. Chen, and W. F. Lee. Thermal response of rat fibroblasts stably transfected with the human 70‐kDa heat shock protein‐encoding gene. Proc. Natl. Acad. Sci. U.S.A. 88: 1681–1685, 1991.
 172. Li, G. C., N. S. Petersen, and H. K. Mitchell. Induced thermal tolerance and heat shock protein synthesis in Chinese hamster ovary cells. Br. J. Cancer 45: 132–136, 1982.
 173. Lin, J. J., and G. N. Somero. Temperature‐dependent changes in expression of thermostable and thermolabile isozymes of cytosolic malate dehydrogenase in the eurythermal goby fish Gitlichthys mirabilis. Physiol. Zool. 68: 114–128, 1995.
 174. Lin, J. J., and G. N. Somero. Thermal adaptation of cytoplasmic malate dehydrogenases of eastern Pacific barracudas (genus Sphyraena): the role of differential isozyme expression. J. Exp. Biol. 198: 551–560, 1995.
 175. Lindquist, S. The heat shock response. Annu. Rev. Biochem. 55: 1151–1191, 1986.
 176. Livermore, R. C., and J. R. Hazel. Acylation of lysophosphatidylcholine in liver microsomes of thermally acclimated trout. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R923–R928, 1988.
 177. Loomis, S., J. F. Carpenter, and J. H. Crowe. Identification of strombine and taurine as cryoprotectants in the intertidal bivalve Mytilus edulis. Biochim. Biophys. Acta 943: 113–118, 1988.
 178. Low, P. S., J. L. Bada, and G. N. Somero. Temperature adaptation of enzymes: roles of the free energy, the enthalpy, and the entropy of activation. Proc. Natl. Acad. Sci. U.S.A. 70: 430–432, 1973.
 179. Low, P. S., and G. N. Somero. Adaptation of muscle pyruvate kinases to environmental temperature and pressure. J. Exp. Zool. 198: 1–12, 1976.
 180. Lubchenco, J., S. A. Navarette, B. N. Tissot, and J. C. Castilla. Possible ecological responses to global climate change: near‐shore benthii: biota of northeastern Pacific ecosystems. In: Earth System Responses to Global Change, edited by H. Mooney, E. R. Fuentes, and B. I. Kronberg. London: Academic, 1993, p. 147–166.
 181. Luther, M. A., and J. C. Lee. The role of phosphorylation in the interactions of rabbit muscle phosphofructokinase with F‐actin. J. Biol. Chem. 261: 1753–1759, 1986.
 182. Lynch, D. V., and G. A. Thompson, Jr. Retailoring lipid molecular species: a tactical mechanism for modulating membrane properties. Trends Biochem. Sci. 9: 442–44, 1984.
 183. MacDonald, J. A., J. C. Montgomery, and R. M. G. Wells. The physiology of McMurdo Sound fishes: current New Zealand research. Comp. Biochem. Physiol. [B] 90: 567–578, 1988.
 184. Malan, A. Respiration and acid‐base state in hibernation. In: Hibernation and Torpor in Mammals and Birds, edited by C. P. Lyman, J. S. Willis, A. Malan, and L.C.H. Wang. New York: Academic, 1982, p. 273–282.
 185. Malan, A. and E. Mioskowski. pH‐temperature interactions on protein function and hibernation: GDP binding to brown adipose tissue mitochondria. J. Comp. Physiol. [B] 158: 485–491, 1988.
 186. Malan, A., J. L. Rodeau and F. Daull. Intracellular pH in hibernation and respiratory acidosis in the European hamster. J. Comp. Physiol. [B] 495–500, 1985.
 187. Malan, A., T. Wilson, and R. B. Reeves. Intracellular pH in cold‐blooded vertebrates as a function of body temperature. Respir. Physiol. 28: 29–47, 1976.
 188. Maresca, B., E. Patriarca, C. Goldenberg and M. Sacco. Heat shock and cold adaptation in Antarctic fishes: a molecular approach. Comp. Biochem. Physiol. [B] 90: 623–629, 1988.
 189. Martin, J., T. Langer, R. Boteva, A. Schramel, A. L. Horwich, and F. U. Haiti. Chaperonin‐mediated protein folding at the surface of groEL through a “molten globule”‐like intermediate. Nature 352: 36–42, 1991.
 190. Matthews, B. W. Genetic and structural analysis of the protein stability problem. Biochemistry 26: 6885–6888, 1987.
 191. Matthews, B. W. Structural and genetic analysis of protein stability. Annu. Rev. Biochem. 62: 139–160, 1993.
 192. Matthews, B. W., H. Nicholson, and W. J. Becktel. Enhanced protein thermostability from site‐directed mutations that decrease the entropy of unfolding. Proc. Natl. Acad. Sci. U.S.A. 84: 6663–6667 (1987).
 193. McArthur, M. D., C. C. Hanstock, A. Malan, L.C.H. Wang, and P. S. Allen. Skeletal muscle pH dynamics during arousal from hibernation measured by 31 P NMR spectroscopy. J. Comp. Physiol. [B] 160: 339–347, 1990.
 194. McCarthy, J. S., and G. C. Walker. DnaK as a thermometer: threonine‐199 is site of autophosphorylation and is critical for ATPase activity. Proc. Natl. Acad. Sci. U.S.A. 88: 9513–9517, 1991.
 195. McClanahan, L. L., J. N. Stinner, and V. H. Shoemaker. Skin lipids, water loss, and energy metabolism in a South American tree frog (Phyllomedusa sauvagei). Physiol. Zool. 51: 179–187, 1978.
 196. McElhaney, R. N. The structure and function of the Acholeplasma laidlawii membrane. Biochim. Biophys. Acta 779: 1–42, 1984.
 197. McFall‐Ngai, M. and J. Horwitz. A comparative study of the thermal stability of the vertebrate eye lens: Antarctic fish to the desert iguana. Exp. Eye Res. 50: 703–709, 1990.
 198. McLennan, A. G. and D. Miller. A biological role for the heat shock response in crustaceans. J. Therm. Biol. 15: 61–66, 1990.
 199. Merritt, R. B. Geographic distribution and enzymatic properties of lactate dehydrogenase allozymes in the fathead minnow, Pimephales promelas. Am. Nat. 106: 174–184, 1972.
 200. Mitchell, H. K., G. Moller, N. S. Petersen, and L. Lipps‐Sarmiento. Specific protection from phenocopy induction by heat shock. Dev. Genet. 1: 181–192, 1979.
 201. Morimoto, R., A. Tissieres and C. Georgopoulos. Stress Proteins in Biology and Medicine. Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1990.
 202. Mosser, D. D., and N. C. Bols. Relationship between heat‐shock protein synthesis and thermotolerance in rainbow trout fibroblasts. J. Comp. Physiol. [B] 158: 457–467, 1988.
 203. Moyes, C. D., L. T. Buck, and P. W. Hochachka. Temperature effects on pH of mitochondria isolated from carp red muscle. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R611–R615, 1988.
 204. Nei, M. Molecular Evolutionary Genetics. New York: Columbia Univ. Press, 1987.
 205. Neven, L. G., D. W. Haskell, A. Hong, Q.‐B. Li, and C. L. Guy. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol. Biol. 21: 291–305, 1993.
 206. O'Brien, J., E. Dahlhoff, and G. N. Somero. Thermal resistance of mitochondrial respiration: hydrophobic interactions of membrane proteins may limit mitochondrial thermal resistance. Physiol. Zool. 64: 1509–1526, 1991.
 207. Oda, S., H. Matani, K. Naruse and A. Shima. Synthesis of heat shock proteins in the isolated fin of the medaka, Oryzias latipes, acclimated to various temperatures. Comp. Biochem. Physiol. [B] 98: 587–591, 1991.
 208. Okuyama, H., M. Saito, V. C. Joshi, G. Gunsberg, and S. J. Wakil. Regulation by temperature of the chain length of fatty acids in yeast. J. Biol. Chem. 254: 12281–12284, 1979.
 209. Pak, Y., J. Joo, V. Laszlo, A. Katho, and G. A. Thompson, Jr. Action of a homogeneous hydrogenation catalyst on living Tetrahymena mimbres cells. Biochim. Biophys. Acta 1023: 230–238, 1990.
 210. Palleros, D. R., W. J. Welch, and A. L. Fink. Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc. Natl. Acad. Sci. U.S.A. 88: 5719–5723, 1991.
 211. Parsell, D. A. and S. Lindquist. The function of heat‐shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437–496, 1993.
 212. Pesce, A., T. P. Fondy, F. Stolzenbach, F. Castilo, and N. O. Kaplan. The comparative enzymology of lactic dehydrogenases. III. Properties of the H4 and M4 enzymes from a number of vertebrates. J. Biol. Chem. 242: 2151–2167, 1967.
 213. Philipp, D. P., W. F. Childers, and G. S. Whitt. Correlations of allele frequencies with physical and environmental variables for populations of largemouth bass, Micropterus salmoides (Lacepede). J. Fish. Biol. 27: 347–365, 1985.
 214. Place, A. R., and D. A. Powers. Genetic variation and relative catalytic efficiencies: lactate dehydrogenase B allozymes of Fundulus heteroclitus. Proc. Natl. Acad. Sci. U.S.A. 76: 2354–2358, 1979.
 215. Place, A. R., and D. A. Powers. Purification and characterization of the lactate dehydrogenase (LDH‐B4) allozymes of Fundulus heteroclitus. J. Biol. Chem. 259: 1299–1308, 1984.
 216. Place, A. R., and D. A. Powers. Kinetic characteristics of the lactate dehydrogenases (LDH‐B4) allozymes of Fundulus heteroclitus. J. Biol. Chem. 259: 1309–1318, 1984.
 217. Powers, D. A., G. S. Greaney, and A. R. Place. Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in killifish. Nature 277: 240–241, 1979.
 218. Powers, D. A., M. Smith, I. Gonzalez‐Villasenor, L. Dimichelle, D. Crawford, G. Bernardi and T. Lauerman. A multidisciplinary approach to the selectionist/neutralist controversy using the model teleost Fundulus heteroclitus. In: Oxford Surveys in Evolutionary Biology, edited by D. Futuyma and J. Antonovics. Oxford: Oxford Univ. Press, 1993, vol. 9, p. 43–107.
 219. Prosser, C. L. Adaptational Biology. New York: Wiley, 1986.
 220. Prosser, C. L., and J. E. Heath. Temperature. In: Comparative Animal Physiology, edited by C. L. Prosser. New York: Wiley, 1990, p. 109–165.
 221. Quinn, P. J. Effects of sugars on the phase behaviour of phospholipid model membranes. Biochem. Soc. Trans. 17: 953–957, 1990.
 222. Quinn, P. J., F. Joo and L. Vigh. The role of unsaturated lipids in membrane structure and stability. Prog. Biophys. Mol. Biol. 53: 71–103, 1989.
 223. Rabindran, S. K., R. I. Haroun, J. Clos, J. Wisniewshi and C. Wu. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259: 230–234, 1993.
 224. Raison, J. K., J. M. Lyons, R. J. Melhorn, and A. D. Keith. Temperature‐induced phase changes in mitochondrial membranes detected by spin labeling. J. Biol. Chem. 246: 4036–4040, 1971.
 225. Ramesha, C. S., and G. A. Thompson, Jr. Cold stress induces in situ phospholipid molecular species changes in cell surface membranes. Biochim. Biophys. Acta 731: 251–260, 1983.
 226. Ramsey, R. R., and P. K. Tubbs. The effects of temperature and some inhibitors on the carnitine exchange system of heart mitochondria. Eur. J. Biochem. 69: 299–303, 1976.
 227. Raymond, J. A. Glycerol is a colligative antifreeze in some northern fishes. J. Exp. Zool. 262: 347–352, 1992.
 228. Raynard, R. S., and A. R. Cossins. Homeoviscous adaptation and thermal compensation of sodium pump of trout erythrocytes. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R916–R924, 1991.
 229. Rechsteiner, M., S. Rogers and K. Rote. Protein structure and intracellular stability. Trends Biochem. Sci. 12: 390–394, 1987.
 230. Reeves, R. B. An imidazole alphastat hypothesis for vertebrate acid‐base regulation: tissue carbon dioxide content and body temperature in bull frogs. Respir. Physiol. 14: 219–236, 1972.
 231. Reeves, R. B. The interaction of body temperature and acid‐base balance in ectothermic vertebrates. Annu. Rev. Physiol. 39: 559–586, 1977.
 232. Reeves, R. B. Alphastat regulation of intracellular acid‐base state? In: Circulation, Respiration, and Metabolism, edited by R. Gilles. Berlin: Springer‐Verlag, 1985, p. 414–423.
 233. Riabowol, K. T., L. A. Mizzen, and W. J. Welch. Heat shock is lethal to fibroblasts microinjected with antibodies against HSP70. Science 242: 433–436, 1988.
 234. Ritossa, F. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18: 571–573, 1962.
 235. Roberts, S. J., M. S. Lowery, and G. N. Somero. Regulation of binding of phosphofructokinase to myofibrils in the red and white muscle of the barred sand bass, Paralabrax nebulifer (Serranidae). J. Exp. Biol. 137: 13–27, 1988.
 236. Robin, E. D. Relationship between temperature and plasma pH and carbon dioxide tension in the turtle. Nature 195: 249–251, 1962.
 237. Roccheri, M. C., M. G. Bernardo and G. Giudice. Synthesis of heat shock proteins in developing sea urchin embryos. Dev. Biol. 83: 173–177, 1981.
 238. Ruben, J. The evolution of endothermy in mammals and birds: from physiology to fossils. Annu. Rev. Physiol. 57: 69–95, 1995.
 239. Sanchez, Y., and S. L. Lindquist. HSP104 required for induced thermotolerance. Science 248: 1112–1115, 1990.
 240. Sanders, B. M. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol. 23: 49–75, 1993.
 241. Sanders, B. M., C. Hope, V. M. Pascoe, and L. S. Martin. Characterization of the stress protein response in two species of Collisella limpets with different temperature tolerances. Physiol. Zool. 64: 1471–1489, 1991.
 242. Schultes, V., R. Deutzmann and R. Jaenicke. Complete amino acid sequence of glyceraldehyde‐3‐phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. Eur. J. Biochem. 192: 25–31, 1990.
 243. Seddon, J. M. Structure of the inverted hexagonal (HII) phase, and nonlamellar phase transitions of lipids. Biochim. Biophys. Acta 1031: 1–69, 1990.
 244. Seelig, J. and A. Seelig. Lipid conformation in model membranes. Q. Rev. Biophys. 13: 19–61, 1980.
 245. Shinitzky, M. Membrane fluidity and cellular functions. In: Physiology of Membrane Fluidity, edited by M. Shinitzky. Boca Raton, FL: CRC, 1984, vol. 1, p. 1–52.
 246. Shinitzky, M., and I. Yuli. Lipid fluidity at the submacroscopic level: determination by fluorescence polarization. Chem. Phys. Lipids 30: 261–282, 1982.
 247. Sidell, B. D., F. R. Wilson, J. Hazel, and C. L. Prosser. Time course of thermal acclimation in goldfish. J. Comp. Physiol. 84: 119–127, 1973.
 248. Sinensky, M. Homeoviscous adaptation—a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 71: 522–525, 1974.
 249. Sinensky, M., F. Pinkerton, E. Sutherland, and F. R. Simon. Rate limitation of (Na+‐K+) ATPase by membrane acyl chain ordering. Proc. Natl. Acad. Sci. U.S.A. 76: 4893–4897, 1979.
 250. Somero, G. N. pH–temperature interactions on proteins: principles of optimal pH and buffer system design. Marine Biol. Lett. 2: 163–178, 1981.
 251. Somero, G. N. Intracellular pH, buffering substances, and proteins: imidazole protonation and the conservation of protein structure and function. In: Transport Processes, Iono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Baillien. Berlin: Springer‐Verlag, 1985, p. 454–468.
 252. Somero, G. N. Protons, osmolytes, and fitness of the internal milieu for protein function. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R197–R213, 1986.
 253. Somero, G. N. Biochemical mechanisms of cold adaptation and stenothermality in Antarctic fishes. In: Biology of Antarctic Fish, edited by G. diPrisco, B. Maresca, and B. Tota. Berlin: Springer‐Verlag, 1991, p. 232–247.
 254. Somero, G. N. Adapting to water stress: convergence on common solutions. In: Water and Life, edited by G. N. Somero, C. L. Bolis, and C. B. Osmond. Berlin: Springer‐Verlag, 1992, p. 3–18.
 255. Somero, G. N. Proteins and temperature. Annu. Rev. Physiol. 57: 43–68, 1995.
 256. Somero, G. N., and A. L. DeVries. Temperature tolerance of some Antarctic fishes. Science 156: 257–258, 1967.
 257. Somero, G. N., A. C. Giese, and D. E. Wohlschlag. Cold adaptation in the Antarctic fish Trematomus bernacchii. Comp. Biochem. Physiol. 26: 223–233, 1968.
 258. Somero, G. N., M. S. Lowery, and S. J. Roberts. Compartmentation of animal enzymes: physiological and evolutionary significance. Am. Zool. 31: 493–503, 1991.
 259. Somero, G. N., and P. H. Yancey. Organic osmolytes. In: Handbook of Physiology. Cell Physiology, edited by J. Hoffman and J. Jamieson. New York: Oxford Univ. Press for the Am. Physiol. Soc., 1997 Sect. 14. chapt. 10.
 260. Stephanou, G., S. N. Alahiotis, V. J. Marmaras and C. Christodoulou. Heat shock response in Ceratitis capitata. Comp. Biochem. Physiol. [B] 74: 425–432, 1983.
 261. Swezey, R. R., and G. N. Somero. Polymerization thermodynamics and structural stabilities of skeletal muscle actins from vertebrates adapted to different temperatures and hydrostatic pressures. Biochemistry 21: 4496–4502, 1982.
 262. Thomas, S. E., D. M. Byers, F. B. St. C. Palmer, M. W. Spence, and H. W. Cook. Incorporation of polyunsaturated fatty acids into plasmalogens, compared to other phospholipids of cultured glioma cells, is more dependent on chain length than on selectivity between (n‐3) and (n‐6) families. Biochim. Biophys. Acta 1044: 349–356, 1990.
 263. Timasheff, S. N. A physicochemical basis for the selection of osmolytes by nature. In: Water and Life, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis. Berlin: Springer‐Verlag, 1992, p. 70–84.
 264. Tissieres, A., H. K. Mitchell, and U. M. Tracy. Protein synthesis in salivary glands of D. melanogaster: relation to chromosome puffs. J. Mol. Biol. 84: 389–398, 1974.
 265. Toolson, E. C. Interindividual variation in epicuticular hydrocarbon composition and water loss rates of the cicada Tibicen dealbatus (Homoptera: Cicadidae). Physiol. Zool. 57: 550–556, 1984.
 266. Toolson, E. C. Water profligacy as an adaptation to hot deserts: water loss rates and evaporative cooling in the Sonoran desert cicada, Diceroprocta apache (Homoptera: Cicadidae). Physiol. Zool. 60: 379–385, 1987.
 267. Toolson, E. C., and N. F. Hadley. Seasonal effects on cuticular permeability and epicuticular lipid composition in Centruroides sculpturarus Ewing 1928 (Scorpiones: Buthidae). J. Comp. Physiol. 129: 319–325, 1979.
 268. Trent, J., R. A. Chastain, and A. A. Yayanos. Possible artefactual basis for apparent bacterial growth at 250°C. Nature 307: 737–740, 1984.
 269. Trent, J. D., E. Nimmesgern, J. S. Wall, F.‐U. Hartl, and A. L. Horwich. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t‐complex polypeptide‐1. Nature 354: 490–493, 1991.
 270. Trent, J. D., J. Osipiuk and T. Pinkau. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12. J. Bacteriol. 172: 1478–1484, 1990.
 271. Tyurin, V. A., V. E. Kagan, S. A. Shukolyukov, N. K. Klaan, K. N. Novikov, and O. A. Azizova. Thermal stability of rhodopsin and protein–lipid interactions in the photoreceptor membranes of homeothermic and poikilothermic animals. J. Therm. Biol. 4: 203–208, 1979.
 272. Ulmasov, K. A., S. Shammakov, K. Karaev, and M. B. Even'Ev. Heat shock proteins and thermoresistance in lizards. Proc. Natl. Acad. Sci. U.S.A. 89: 1666–1670, 1992.
 273. Walsh, P. J., and G. N. Somero. Interactions among pyruvate concentration, pH, and Km of pyruvate in determining in vivo Q10 values of the lactate dehydrogenase reaction. Can. J. Zool. 60: 1293–1299, 1982.
 274. Watt, W. B. Adaptation at specific loci. I. natural selection on phosphoglucose isomerase of Colias butterflies: biochemical and population aspects. Genetics 87: 177–194, 1977.
 275. Watt, W. B. Biochemistry, physiological ecology, and population genetics—the mechanistic tools of evolutionary biology. Funct. Ecol. 5: 145–154, 1991.
 276. Watt, W. B., and C. L. Boggs. Allelic isozymes as probes of the evolution of metabolic organization. Curr. Top. Biol. Med. Res. 15: 27–47, 1987.
 277. Welsh, W. J. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev. 72: 1063–1081, 1992.
 278. White, R. H. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250°C. Nature 310: 430–433, 1984.
 279. Whyard, S., G. R. Wyatt, and V. K. Walker. The heat shock response in Locusta migratoria. J. Comp. Physiol. [B] 156: 813–817, 1986.
 280. Wieslander, A., A. Christiansson, L. Rilfors and G. Lindblom. Lipid bilayer stability in membranes: regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry 19: 3650–3655, 1980.
 281. Wilkinson, A. J., A. R. Fersht, D. M. Blow, P. Carter and G. Winter. A large increase in enzyme‐substrate affinity by protein engineering. Nature 307: 187–188, 1984.
 282. Williams, E. E., and J. R. Hazel. The role of docosahexaenoic acid‐containing molecular species of phospholipid in the thermal adaptation of biological membranes. In: Essential Patty Acids and Eicosanoids, edited by A. Sinclair and R. Gibson. Champaign, IL: Am. Oil Chemists Soc., 1992, p. 128–133.
 283. Wilson, T. L. Interrelations between pH and temperature for the catalytic rate of the M4 isozyme of lactate dehydrogenase (EC 1.1.1.27) from goldfish (Carassius auratus L.). Arch. Biochem. Biophys. 179: 378–390, 1977.
 284. Wodtke, E. Discontinuities in the Arrhenius plots of mitochondrial membrane‐bound enzyme systems from a poikilotherm: acclimation temperature of carp affects transition temperatures. J. Comp. Physiol. 110: 145–157, 1976.
 285. Wodtke, E. Temperature adaptation of biological membranes. Compensation of the molar activity of cytochrome C oxidase in the mitochondrial energy‐transducing membrane during thermal acclimation. Biochim. Biophys. Acta 640: 710–720, 1981.
 286. Worman, H. J., T. A. Brasitus, P. K. Dudeja, H. A. Fozzard and M. Field. Relationship between lipid fluidity and water permeability of bovine tracheal epithelial cell apical membranes. Biochemistry 25: 1549–1555, 1986.
 287. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222, 1983.
 288. Yancey, P. H., and J. F. Siebenaller. Coenzyme binding ability of homologs of M4‐lactate dehydrogenase in temperature adaptation. Biochim. Biophys. Acta 924: 483–491, 1987.
 289. Yancey, P. H., and G. N. Somero. Temperature dependence of intracellular pH: its role in the conservation of pyruvate apparent Km values of vertebrate lactate dehydrogenase. J. Comp. Physiol. [B] 125: 129–134, 1978.
 290. Yeagle, P. L. Lipid regulation of cell membrane structure and function. FASEB J. 3: 1833–1842, 1989.
 291. Yeagle, P. L., J. Young and D. Rice. Effects of cholesterol on (Na+, K:PL)‐ATPase ATP hydrolyzing activity in bovine kidney. Biochemistry 27: 6449–6452, 1988.
 292. Yocum, G. D., K. H. Joplin, and D. L. Denlinger. Expression of heat shock proteins in response to high and low temperature extremes in diapausing pharate larvae of the gypsy moth. Arch. Insect Biochem. Physiol. 18: 239–249, 1991.
 293. Zamer, W. E., and R. J. Hoffmann. Allozymes of glucose‐6‐phosphate isomerase differentially modulate pentose‐shunt metabolism in the sea anemone Metrium senile. Proc. Natl. Acad. Sci. U.S.A. 86: 2737–2741, 1989.
 294. Zecevic, D. and H. Levitan. Temperature acclimation: effects on membrane physiology of an identified snail neuron. Am. J. Physiol. 239 (Cell Physiol. 8): C47–C57, 1980.
 295. Zimmer, G., H.‐J. Freisleban and J. Fuchs. Influence of pH on sulfhydryl groups and fluidity of the mitochondrial membrane. Arch. Biochim. Biophys. 282: 309–317, 1990.
 296. Zwickl, P., S. Fabry, C. Bogedain, A. Haas and R. Hensel. Glyceraldehyde‐3‐phosphate dehydrogenase from the hyperth‐ermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. J. Bacteriol. 172: 4329–4338, 1990.
 297. Zwinglestein, G., N. A. Malak and G. Brichon. Effect of environmental temperature on biosynthesis of liver phosphatidylcholine in the trout (Salmo gairdneri). J. Therm. Biol. 3: 229–233, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

George N. Somero. Temperature Relationships: From Molecules to Biogeography. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 1391-1444. First published in print 1997. doi: 10.1002/cphy.cp130219