References |
1. |
Akerboom, T. P. M.,
R. Van Der Meer, and
J. M. Tager.
Techniques for the investigation of intracellular compartmentation.
Tech. Metabol. Res.
B205:
1–33,
1979.
|
2. |
Atkinson, D. E.
Regulation of enzyme activity.
Annu. Rev. Biochem.
35:
85–124,
1966.
|
3. |
Atkinson, D. E.
Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell.
Curr. Top. Cell. Regul.
1:
29–43,
1969.
|
4. |
Axelrod, J.
Receptor‐mediated activation of phospholipase A2 and arachidonic acid release in signal transduction.
Biochem. Soc. Trans.
18:
503–507,
1990.
|
5. |
Bahr, R.,
P. Hansson, and
O. M. Sejersted.
Triglyceride/fatty acid cycling is increased after exercise.
Metabolism
39:
993–999,
1990.
|
6. |
Batke, J.
Channeling of glycolytic intermediates by temporary, stationary bi‐enzyme complexes is probable in vivo.
Trends Biochem. Sci.
14:
481–482,
1989.
|
7. |
Beck, J. S.
On internalization of hormone‐receptor complex and receptor cycling.
J. Theor. Biol.
132:
263–276,
1988.
|
8. |
Beeckmans, S.
Some structural and regulatory aspects of citrate synthase.
Int. J. Biochem.
16:
341–351,
1984.
|
9. |
Berry, M. N.,
R. B. Gregory,
A. R. Grivell,
D. C. Henley,
J. W. Phillips,
P. G. Wallace, and
G. R. Welch.
Linear relationships between mitochondrial forces and cytoplasmic flows argue for the organized energy‐coupled nature of cellular metabolism.
FEBS Lett.
224:
201–207,
1987.
|
10. |
Board, M.,
S. Humm, and
E. A. Newsholme.
Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells.
Biochem J.
265:
503–509,
1990.
|
11. |
Bowman, R. H.
Inhibition of citrate metabolism by sodium fluoroacetate in the perfused rat heart and the effect on phosphofructokinase activity and glucose utilization.
Biochem. J.
93:
13C–15C,
1964.
|
12. |
Bristow, J.,
D. M. Bier, and
L. G. Lange.
Regulation of adult and fetal myocardial phosphofructokinase. Relief of cooperativity and competition between fructose‐2,6‐bisphosphate, ATP and citrate.
J. Biol. Chem.
262:
2171–2175,
1987.
|
13. |
Brown, G. C,
R. P. Hafner, and
M. D. Brand.
A ‘top‐down’ approach to the determination of control coefficients in metabolic control theory.
Eur. J. Biochem.
188:
321–325,
1990.
|
14. |
Bucher, T. and
W. Russmann.
Equilibrium and nonequilibrium in the glycolysis system.
Angew. Chem. Internat. Edit.
3:
426–439,
1964.
|
15. |
Burgoyne, R. D. and
A. Morgan.
The control of free arachidonic acid levels.
Trends Biochem. Sci.
15:
364–366,
1990.
|
16. |
Burnell, J. N. and
M. D. Hatch.
Activation and inactivation of an enzyme catalyzed by a single, bifunctional protein: a new example and why.
Arch. Biochem. Biophys.
245:
297–304,
1986.
|
17. |
Burt, C. T.,
T. Glonek, and
M. Barany.
Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance.
J. Biol. Chem.
251:
2584–2591,
1976.
|
18. |
Cardenas, M. L. and
A. Cornish‐Bowden.
Characteristics necessary for an interconvertible enzyme cascade to generate a highly sensitive response to an effector.
Biochem. J.
257:
339–345,
1989.
|
19. |
Cascante, M.,
E. I. Canela, and
R. Franco.
Control analysis of systems having two steps catalysed by the same protein molecule in unbranched chains.
Eur. J. Biochem.
192:
369–371,
1990.
|
20. |
Cascante, M.,
R. Franco, and
E. I. Canela.
Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. complex systems.
Math. Biosci.
94:
289–309,
1989.
|
21. |
Cascante, M.,
R. Franco, and
E. I. Canela.
Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways.
Math. Biosci.
94:
271–288,
1989.
|
22. |
Challis, R. A. J.,
B. Crabtree, and
E. A. Newsholme.
Hormonal regulation of the rate of the glycogen/glucose‐1‐phosphate cycle in skeletal muscle.
Eur. J. Biochem.
163:
205–210
1987.
|
23. |
Challiss, R.J.A.,
J.R.S. Arch, and
E. A. Newsholme.
The rate of substrate cycling between fructose‐6‐phosphate and fructose‐1,6‐bisphosphate in skeletal muscle.
Biochem. J.
221:
153–161,
1984.
|
24. |
Chen, Y‐D. and
H. V. Westerhoff.
How do inhibitors and modifiers of individual enzymes affect steady state fluxes and concentrations in metabolic systems?
Math. Modelling
7:
1173–1180,
1986.
|
25. |
Clark, M. G.,
C. H. Williams,
W. F. Pfeifer,
D. P. Bloxham,
P. C. Holland,
C. A. Taylor, and
H. A. Lardy.
Accelerated substrate cycling of fructose‐6‐phosphate in the muscles of malignant hyperthermic pigs.
Nature
245:
99–101,
1973.
|
26. |
Cleland, W. W.
The kinetics of enzyme‐catalysed reactions with two or more substrates and products. III. Prediction of initial velocity and inhibition patterns by inspection.
Biochim. Biophys. Acta
67:
188–196,
1963.
|
27. |
Cohen, P.
The role of protein phosphorylation in the hormonal control of enzyme activity.
Eur. J. Biochem.
151:
439–448,
1985.
|
28. |
Cohen, S. M.
Simultaneous 13C and 31P NMR studies of perfused rat liver: effects of insulin and glucagon and a 13C NMR assay of free Mg2+.
J. Biol. Chem.
258:
14294–14308,
1983.
|
29. |
Cohen, S. M.,
R. G. Shulman, and
A. C. McLaughlin.
Effects of ethanol on alanine metabolism in perfused mouse liver studied by 13C NMR.
Proc. Natl. Acad. Sci. USA
76:
4808–4812,
1979.
|
30. |
Cohen, S. R.
Why does brain make lactate?
J. Theor. Biol.
112:
429–432,
1985.
|
31. |
Cornish‐Bowden, A.
Metabolic control theory and biochemical systems theory: different objectives, different assumptions, different results.
J. Theor. Biol.
136:
365–377,
1989.
|
32. |
Cornish‐Bowden, A.
Failure of channelling to maintain low concentrations of metabolic intermediates.
Eur. J. Biochem.
195:
103–108,
1991.
|
33. |
Cox, D. R. and
H. D. Miller.
The Theory of Stochastic Processes.
London:
Methuen,
1965.
|
34. |
Crabtree, B.
Reversible (near equilibrium) reactions and substrate cycles.
Biochem. Soc. Trans.
4:
1046–1048,
1976.
|
35. |
Crabtree, B.
Theoretical considerations of the sensitivity conferred by substrate cycles in vivo.
Biochem. Soc. Trans.
4:
999–1002,
1976.
|
36. |
Crabtree, B.
A metabolic switch produced by enzymically interconvertible forms of an enzyme.
FEBS Lett.
187:
193–195,
1985.
|
37. |
Crabtree, B.,
Metabolic regulation.
In: Quantitative Aspects of Ruminant Digestion and Metabolism,
edited by J. M. Forbes and
J. France.
Butterworths,
1992.
|
38. |
Crabtree, B.
A qualitative method for identifying external control sites in metabolic systems.
Am. J. Physiol.
262
(Regulatory Integrative Comp Physiol. 31):
R806–R812.
|
39. |
Crabtree, B.,
G. Collins, and
M. F. Franklin.
A simplified method for calculating complex metabolic sensitivites by using matrix partitioning.
Biochem. J.
263:
289–292,
1989.
|
40. |
Crabtree, B. and
G. E. Lobley.
Measuring metabolic fluxes in organs and tissues with single and multiple tracers.
Proc. Nutr. Soc.
47:
353–364,
1988.
|
41. |
Crabtree, B. and
E. A. Newsholme.
Comparative aspects of fuel utilization and metabolism by muscle.
In: Insect Muscle,
edited by P. N. R. Usherwood.
London & New York:
Academic Press,
1975,
p. 405–500.
|
42. |
Crabtree, B. and
E. A. Newsholme.
Sensitivity of a near‐equilibrium reaction in a metabolic pathway to changes in substrate concentration.
Eur. J. Biochem.
89:
19–22,
1978.
|
43. |
Crabtree, B. and
E. A. Newsholme.
Reply to letter from Susan Moore on substrate cycling.
Trends Biochem. Sci.
10:
387,
1985.
|
44. |
Crabtree, B. and
E. A. Newsholme.
A quantitative approach to metabolic control.
Curr. Top. Cell. Regul.
25:
21–76,
1985.
|
45. |
Crabtree, B. and
E. A. Newsholme.
A systematic approach to describing and analysing metabolic control systems.
Trends Biochem. Sci.
12:
4–12,
1987.
|
46. |
Crabtree, B. and
E. A. Newsholme.
The derivation and interpretation of control coefficients.
Biochem. J.
247:
113–120,
1987.
|
47. |
Crabtree, B. and
E. A. Newsholme.
A method for testing the stability of a steady state system during the calculation of a response to large changes in regulator concentration.
FEBS Lett.
280:
329–331,
1991.
|
48. |
Derr, R. F.
Modern metabolic control theory II. Determination of flux‐control coefficients.
Biochem. Archiv.
2:
31–44,
1986.
|
49. |
Dixon, M. and
E. C. Webb.
Enzymes.
New York:
Longmans,
1979.
|
50. |
Easterby, J. S.
Biochem. J.
199:
155–161,
1981.
|
51. |
El‐Maghrabi, M.,
T. Claus,
T. Pilkis,
E. Fox, and
S. Pilkis.
J. Biol. Chem.
257:
7603–7607,
1982.
|
52. |
England, P. J. and
P. J. Randle.
Effectors of rat‐heart hexokinases and the control of rates of glucose phosphorylation in the perfused rat heart.
Biochem. J.
105:
907–920,
1967.
|
53. |
Engstrom, L.
The regulation of liver pyruvate kinase by phosphorylation‐dephosphorylation Curr.
Top. Cell. Regul.
13:
29–52,
1978.
|
54. |
Fell, D. A. and
H. M. Sauro.
Metabolic control and its analysis.
Eur. J. Biochem.
148:
555–561,
1985.
|
55. |
Fell, D. A. and
K. Snell.
Control analysis of mammalian serine biosynthesis.
Biochem. J.
256:
97–101,
1988.
|
56. |
Fischer, E. H.,
A. Pocker, and
J. C. Saari.
The structure, function and control of glycogen phosphorylase.
Essays Biochem.
6:
23–68,
1970.
|
57. |
Giersch, C.
Control analysis of biochemical pathways: a novel procedure for calculating control coefficients, and an additional theorem for branched pathways.
J. Theor. Biol.
134:
451–462,
1988.
|
58. |
Gilman, A. G.
G‐proteins: transducers of receptor‐generated signals.
Annu. Rev. Biochem.
56:
615–649,
1987.
|
59. |
Goldbeter, A. and
D. E. Koshland.
An amplified sensitivity arising from covalent modification in biological systems.
Proc. Nat. Acad. Sci. U.S.A.
78:
6840–6844,
1981.
|
60. |
Goldbeter, A. and
D. E. Koshland, Jr..
Energy expenditure in the control of biochemical systems by covalent modification.
J. Biol. Chem.
262:
4460–4471,
1987.
|
61. |
Goldhammer, A. R. and
H. H. Paradies.
Phosphofructokinase: structure and function.
Curr. Top. Cell. Regul.
15:
109–141,
1979.
|
62. |
Goldstein, B. M. and
A. N. Ivanova.
Hormonal regulation of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase: kinetic models.
FEBS Lett.
217:
212–215,
1987.
|
63. |
Goldstein, B. N. and
E. L. Shevelev.
Stability of multienzyme systems with feedback regulation: a graph‐theoretical approach.
J. Theor. Biol.
112:
493–503,
1985.
|
64. |
Groen, A. K.,
C.W.T. Van Roermudn,
R. C. Vervoorn, and
J. M. Tager.
Control of gluconeogenesis in rat liver cells.
Biochem. J.
237:
379–389,
1986.
|
65. |
Groen, A. K.,
R.J.A. Wanders,
H.V. Westerhoff,
R. Van Der Meer, and
J. M. Tager.
Quantification of the contribution of various steps to the control of mitochondrial respiration.
J. Biol. Chem.
257:
2754–2757,
1982.
|
66. |
Grynkiewicz, G.,
M. Poenie, and
R. Y. Tsien.
A new generation of Ca2+ indicators with greatly improved fluorescence properties.
J. Biol. Chem.
260:
3440–3450,
1985.
|
67. |
Halling, P. J.
Do the laws of chemistry apply to living cells?
Trends Biochem. Sci.
14:
317–318,
1989.
|
68. |
Hanson, P. J. and
D. S. Parsons.
Metabolism and transport of glutamine and glucose in vascularly perfused small intestine rat.
Biochem. J.
166:
509–519,
1977.
|
69. |
Hawthorne, J. N.
Phosphoinositides and metabolic control: how many messengers?
Biochem. Soc. Trans.
16:
657–660,
1988.
|
70. |
Heinrich, R. and
S. M. Rapoport.
The utility of mathematical models for the understanding of metabolic systems.
Biochem. Soc. Trans.
11:
31–35,
1983.
|
71. |
Heinrich, R.,
S. M. Rapoport, and
T. A. Rapoport.
Metabolic regulation and mathematical models.
Prog. Biophys. Molec. Biol.
32:
1–82,
1977.
|
72. |
Heinrich, R. and
T. A. Rapoport.
A linear steady state treatment of enzymatic chains: general properties, control and effector strength.
Eur. J. Biochem.
42:
89–95,
1974.
|
73. |
Hofmeyr, J‐H. S. and
A. Cornish‐Bowden.
Quantitative assessment of regulation in metabolic systems.
Eur. J. Biochem.
200:
223–236,
1991.
|
74. |
Irvine, D. H.
Objectives, assumptions and results of metabolic control theory and biochemical systems theory.
J. Theor. Biol.
143:
139–143,
1990.
|
75. |
Jeffrey, F.M.H.,
A. Rajagopal,
C. R. Malloy, and
A. D. Sherry.
13C NMR: a simple yet comprehensive method for analysis of intermediary metabolism.
Trends Biochem. Sci.
16:
5–10,
1991.
|
76. |
Kacser, H.
The control of enzyme systems in vivo: elasticity analysis of the steady state.
Biochem. Soc. Trans.
11:
35–40,
1983.
|
77. |
Kacser, H. and
J. A. Burns.
The control of flux.
Symp. Soc. Exp. Biol.
27:
65–104,
1973.
|
78. |
Kacser, H. and
J. A. Burns.
Molecular democracy: who shares the controls?
Biochem. Soc. Trans.
7:
1149–1160,
1979.
|
79. |
Kacser, H. and
J. W. Porteous.
Control of metabolism: what do we have to measure?
Trends Biochem. Sci.
12:
5–14,
1987.
|
80. |
Katz, J.
An n.m.r. study of the tricarboxylic acid cycle.
Biochem. J.
263:
997,
1989.
|
81. |
Katz, J. and
R. Rognstad.
Futile cycles in the metabolism of glucose.
Curr. Top. Cell. Regul.
10:
238–287,
1976.
|
82. |
Keizer, J. L.
Thermodynamic coupling in chemical reactions.
J. Theor. Biol.
49:
323–335,
1975.
|
83. |
Keleti, T.
Kinetic power: basis of enzyme efficiency, specificity and evolution.
J. Molec. Catal.
47:
271–279,
1988.
|
84. |
Keleti, T. and
Vértessy, B.,
Kinetic power, and theory of control.
In Dynamics of Biochemical Systems,
edited by S. Damjanovich,
T. Keleti and
L. Trón
Amsterdam:
Elsevier,
1996,
p. 3–10.
|
85. |
Keleti, T. and
J. Ovadi.
Control of metabolism by dynamic macromolecular interactions.
Curr. Top. Cell. Regul.
29:
1–33,
1988.
|
86. |
Keleti, T. and
G. R. Welch.
The evolution of enzyme kinetic power.
Biochem. J.
223:
299–303,
1984.
|
87. |
Kell, D. B. and
H. V. Westerhoff.
Metabolic control theory: its role in microbiology and biotechnology.
FEMS Microbiol. Rev.
39:
305–320,
1986.
|
88. |
Koerner, T.A.W.,
R. J. Voll, and
E. S. Younathan.
A proposed model for the regulation of phosphofructokinase and frustose‐1,6‐bisphosphatase based on their reciprocal anomeric specificities.
FEBS Lett.
84:
207–213,
1977.
|
89. |
Koshland, D. R., Jr.,
Control of enzyme activity and metabolic pathways.
In: Metabolic Regulation,
edited by R. S. Ochs,
R. W. Hanson, and
J. Hall.
Amsterdam:
Elsevier,
1985,
p. 1–8.
|
90. |
Krebs, H. A.
The Pasteur effect and the relations between respiration and fermentation.
Essays Biochem
8:
1–34,
1972.
|
91. |
Kunz, W.,
F. N. Gellerich,
L. Schild, and
P. Schonfeld.
Kinetic limitations in the overall reactions of mitochendrial oxidative phosphorylation accounting for flux‐dependent changes in the apparent ratio.
FEBS Lett.
233:
17–21,
1988.
|
92. |
La Porte, D. C. and
D. E. Koshland.
A protein with kinase and phosphatase activities involved in regulating the tricarboxylic acid cycle.
Nature,
300:
458–460,
1982.
|
93. |
La Porte, D. C. and
D. E. Koshland.
Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation.
Nature,
305:
286–290,
1983.
|
94. |
LaPorte, D. C.,
K. Walsh, and
D. E. Koshland, Jr..
The branch point effect: ultrasensitivity and subsensitivity to metabolic control.
J. Biol. Chem.
259:
14068–14075,
1984.
|
95. |
Madsen, J.,
J. Bulow, and
N. E. Nielsen.
Inhibition of fatty acid mobilization by arterial free fatty acid concentration.
Acta Physiol. Scand.
127:
161–166,
1986.
|
96. |
Malloy, C. R.,
A. D. Sherry, and
F.M.H. Jeffrey.
Carbon flux through citric acid cycle pathway in perfused heart by 13C NMR spectroscopy.
FEBS Lett.
212:
58–62,
1987.
|
97. |
Malloy, C. R.,
A. D. Sherry, and
F.M.H. Jeffrez.
Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 3C NMR spectroscopy.
J. Biol. Chem.
263:
6964–6971,
1988.
|
98. |
Matsuno, T.
Bioenergetics of tumor cells: glutamine metabolism in tumor cell mitochondria.
Int. J. Biochem.
19:
303–307,
1987.
|
99. |
Mazur, A. K.
A probabilistic view on steady‐state enzyme reactions.
J. Theor. Biol.
148:
229–242,
1991.
|
100. |
McCormack, J.G.,
A. Halestrap, and
R. M. Denton.
Role of calcium ions in the regulation of mammalian intramitochondrial metabolism.
Physiol. Rev.
70:
391–425,
1990.
|
101. |
Meinke, M. H. and
R. D. Edstrom.
Muscle glycogenolysis: regulation of the cyclic interconversion of phosphorylase a and phosphorylase b.
J. Biol. Chem.
266:
2259–2266,
1991.
|
102. |
Monod, J.,
J‐P. Changeux, and
F. Jacob.
Allosteric proteins and cellular control systems.
J. Mol. Biol.
6:
306–329,
1963.
|
103. |
Morris, J. G.
A Biologist's Physical Chemistry.
London:
Edward Arnold,
1974.
|
104. |
Morris, J. L.
Computational Methods in Elementary Numerical Analysis.
Chichester:
Wiley & Sons,
1983.
|
105. |
Newsholme, E. A. and
M. Board.
Application of metabolic‐control logic to fuel utilization and its significance in tumor cells.
Adv. Enzyme Regul.
31:
225–246,
1991.
|
106. |
Newsholme, E. A.,
R. A. J. Challiss, and
B. Crabtree.
Substrate cycles; their role in improving sensitivity in metabolic control.
Trends Biochem. Sci.
9:
277–280,
1984.
|
107. |
Newsholme, E. A. and
B. Crabtree.
Metabolic aspects of enzyme activity regulation.
Symp. Soc. Exp. Biol.
27:
429–460,
1973.
|
108. |
Newsholme, E. A. and
B. Crabtree.
Substrate cycles in metabolic regulation and in heat generation.
Biochem. Soc. Symp.
41:
61–109,
1976.
|
109. |
Newsholme, E. A. and
B. Crabtree.
Theoretical principles in the approaches to the control of metabolic pathways, and their application to the control of glycolysis in muscle.
J. Mol. Cell. Cardiol.
11:
839–856,
1979.
|
110. |
Newsholme, E. A. and
B. Crabtree.
Flux‐generating and regulatory steps in metabolic control.
Trends Biochem. Sci.
6:
53–55,
1981.
|
111. |
Newsholme, E. A. and
B. Crabtree.
Qualitative and quantitative approaches for control: Their current value.
In: Regulation of Hepatic Function,
edited by N. Grunnet and
B. Quistorff.
Copenhagen:
Munksgaard,
1991,
p. 214–226.
|
112. |
Newsholme, E. A.,
B. Crabtree, and
M.S.M. Ardawi.
The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells.
Biosci. Rep.
5:
393–400,
1985.
|
113. |
Newsholme, E. A.,
B. Crabtree, and
M. Parry‐Billings.
The energetic cost of regulation: an analysis based on the principles of metabolic‐control‐logic.
In: Energy Metabolism: tissue determinants and cellular corollaries,
edited by J. M. Kinney and
H. M. Tucker.
Raven Press, New York,
1992,
p. 467–493.
|
114. |
Newsholme, E. A. and
A. R. Leech.
Biochemistry for the Medical Sciences.
Chichester:
John Wiley & Sons,
1983.
|
115. |
Newsholme, E. A.,
P. Newsholme,
R. Curi,
E. Challoner, and
M.S.M. Ardawai.
A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns.
Nutrition,
4:
261–268,
1988.
|
116. |
Newsholme, E. A. and
J. C. Stanley.
Substrate cycles: their role in control of metabolism with specific references to the liver.
Diabetes/Metabolism Reviews.
3:
295–305,
1987.
|
117. |
Newsholme, E. A. and
C. Start.
General aspects of the regulation of enzyme activity and the effects of hormones.
In: Handbook of Physiology. Section 7: Endocrinology,
edited by D. F. Steiner and
N. Freinkel.
Washington, D.C.:
American Physiological Society,
1972,
p. 369–383.
|
118. |
Newsholme, E. A. and
C. Start.
Regulation in Metabolism.
Chichester:
Wiley & Sons,
1973.
|
119. |
Newsholme, P.,
S. Gordon, and
E. A. Newsholme.
Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages.
Biochem. J.
242:
631–636,
1987.
|
120. |
Nimmo, H. G. and
P. Cohen.
Applications of recombinant DNA technology to studies of metabolic regulation.
Biochem. J.
247:
1–13,
1987.
|
121. |
Ninio, J.
Alternative to the steady state method: derivation of reaction rates from first‐passage times and pathway probabilities.
Proc. Natl. Acad. Sci. USA
84:
663–667,
1987.
|
122. |
Ovadi, J.
Physiological significance of metabolic channelling.
J. Theor. Biol.
152:
1–22,
1991.
|
123. |
Ovadi, J.,
P. Tompa,
B. Vertessy,
F. Orosz,
T. Keleti, and
G. R. Welch.
The perfection of substrate‐channelling in interacting enzyme systems: transient‐time analysis.
Biochem J.
1991.
|
124. |
Pahl‐Wostl, C. and
J. Seelig.
Metabolic pathways for ketone body production. 13C NMR spectroscopy of rat liver in vivo using 13C‐multilabeled fatty acids.
Biochemistry
25:
6799–6807,
1986.
|
125. |
Parry‐Billings, M.
Studies in glutamine metabolism in muscle.
Oxford: Thesis, Oxford University,
1989.
|
126. |
Pryor, H. J.,
J. E. Smyth,
P. T. Quinlan, and
A. N. Halestrap.
Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats.
Biochem. J.
247:
449–457,
1987.
|
127. |
Putney, J. W., Jr..
Formation and actions of calcium‐mobilizing messenger inositol‐1,4,5‐trisphosphate.
Am. J. Physiol.
252
(Gastrointest. Liver Physiol. 15):
G149–G157,
1987.
|
128. |
Randle, P. J.
Fuel selection in animals.
Biochem. Soc. Trans.
14:
799–806,
1986.
|
129. |
Randle, P. J.,
P. J. England, and
R. M. Denton.
Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
Biochem. J.
117:
677–695,
1970.
|
130. |
Rapoport, T. A.,
R. Heinrich, and
S. M. Rapoport.
The regulatory principles of glycolysis in erythrocytes in vivo and in vitro: a minimal comprehensive model describing steady states, quasi‐steady states and time‐dependent processes.
Biochem. J.
154:
449–469,
1976.
|
131. |
Reder, C.
Metabolic control theory: a structural approach.
J. Theor. Biol.
135:
175–201,
1988.
|
132. |
Ricard, J.
Dynamics of multi‐enzyme reactions, cell growth and perception of ionic signals from the external milieu.
J. Theor. Biol.
128:
253–278,
1987.
|
133. |
Richter, E. A. and
H. Galbo.
High Glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle.
J. Appl. Physiol.
61:
827–831,
1986.
|
134. |
Rognstad, R.
Rate‐limiting steps in metabolic pathways.
J. Biol. Chem.
254:
1875–1878,
1979.
|
135. |
Sacktor, B.
Regulation of intermediary metabolism, with special reference to the control mechanisms in insect flight muscle.
Adv. Insect Physiol.
7:
267–347,
1970.
|
136. |
Sahlin, K.
Control of energetic processes in contracting human skeletal muscle.
Biochem. Soc. Trans.
19:
353–358,
1991.
|
137. |
Salter, M.,
R. G. Knowles, and
C. I. Pogson.
Quantification of the importance of individual steps in the control of aromatic amino acid metabolism.
Biochem. J.
234:
635–647,
1986.
|
138. |
Savageau, M. A.
Biochemical systems analysis III. Dynamic solutions using a power‐law approximation.
J. Theor. Biol.
26:
215–226,
1970.
|
139. |
Savageau, M. A.
The behavior of intact biochemical control systems.
Curr. Top. Cell. Regul.
6:
63–130,
1972.
|
140. |
Savageau, M. A.
A theory of alternative designs for biochemical control systems.
Biomed. Biochim. Acta
6:
875–880,
1985.
|
141. |
Savageau, M. A.
Mathematics of organizationally complex systems.
Biomed. Biochim. Acta
6:
839–844,
1985.
|
142. |
Savageau, M. A.,
E. O. Voit, and
D. H. Irvine.
Biochemical systems theory and metabolic control theory: 2. he role of summation and connectivity relationships.
Math. Biosci.
86:
147–169,
1987.
|
143. |
Schiffmann, Y.
Self‐organization in biological membranes.
Biochem. Soc. Trans.
14:
1195–1196,
1986.
|
144. |
Sen, A. K.
Topological analysis of metabolic control.
Math. Biosci.
102:
191–223,
1990.
|
145. |
Sen, A. K.
Metabolic control analysis. An application of signal flow graphs.
Biochem. J.
269:
141–147,
1990.
|
146. |
Sen, A. K.
A graph‐theoretic analysis of metabolic regulation in linear pathways with multiple feedback loops and branched pathways.
Biochim. Biophys. Acta
1059:
293–311,
1991.
|
147. |
Sen, A. K.
Quantitative analysis of metabolic regulation: a graph‐theoretic analysis using spanning trees.
Biochem. J.
275:
253–258,
1991.
|
148. |
Sen, A. K.
Calculation of control coefficients of metabolic pathways: a flux‐oriented graph‐theoretic approach.
Biochem. J.
279:
55–65,
1991.
|
149. |
Shulman, G. I. and
L. Rossetti.
Influence of the route of glucose administration on hepatic glycogen repletion.
Am. J. Physiol.
257
(Endocrinol. Metab. 20)
E681–E685,
1989.
|
150. |
Shulman, G. I.,
D. L. Rothman,
T. Jue,
P. Stein,
R. A. Defronzo, and
R. G. Shulman.
Quantitation of glycogen synthesis in normal subjects and subjects with non insulin dependent diabetes by 13C nuclear magnetic resonance spectroscopy.
New Engl. J. Med.
322:
223–228,
1990.
|
151. |
Sibley, D. R. and
R. J. Lefkowitz.
Molecular mechanisms of receptor desensitization using the β‐adrenergic receptor‐coupled adenylate cyclase system as a model.
Nature
317:
124–129,
1985.
|
152. |
Sibley, D. R.,
R. H. Strasser,
J. L. Benovic,
K. Daniel, and
R. J. Lefkowitz.
Phosphorylation/ dephosphorylation of the β‐adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution.
Proc. Natl. Acad. Sci. USA
83:
9408–9412,
1986.
|
153. |
Small, J. R. and
D. A. Fell.
Responses of metabolic systems: application of control analysis to yeast glycolysis.
Biochem. Soc. Trans.
15:
238,
1987.
|
154. |
Small, J. R. and
D. A. Fell.
The matrix method of metabolic control analysis: its validity for complex pathway structures.
J. Theor. Biol.
136:
181–197,
1989.
|
155. |
Snell, K. and
D. A. Fell.
Metabolic control analysis of mammalian serine metabolism.
Adv. Enzyme Regul.
30:
13–32,
1990.
|
156. |
Sols, A. and
C. Gancedo.
Primary regulatory enzymes and related proteins.
In: Biochemical Regulatory mechanisms in eukaryotic cells,
edited by E. Kun and
S. Grisolia.
New York:
Wiley‐Interscience,
1972,
p. 85–114.
|
157. |
Sorribas, A. and
M. A. Savageau.
A comparison of variant theories of intact biochemical systems. II. Flux‐oriented and metabolic control theories.
Math. Biosci.
94:
195–238,
1989.
|
158. |
Sorribas, A. and
M. A. Savageau.
A comparison of variant theories of intact biochemical systems. I. Enzyme‐enzyme interactions and biochemical systems theory.
Math. Biosci.
94:
161–193,
1989.
|
159. |
Sorribas, A. and
M. A. Savageau.
Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways.
Math. Biosci.
94:
239–269,
1989.
|
160. |
Srivastava, D. K. and
S. A. Bernhard.
Metabolite transfer via enzyme‐enzyme complexes.
Science.
234:
1081–1086,
1986.
|
161. |
Stadtman, E. R. and
P. B. Chock.
Interconvertible enzyme cascades in metabolic regulation.
Curr. Top. Cell. Regul.
13:
53–95,
1978.
|
162. |
Stephenson, G.
Mathematical Methods for Science Students.
London:
Longmans,
1961.
|
163. |
Stryer, L.
Biochemistry.
New York:
Freeman,
1988.
|
164. |
Stucki, J. W.
The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation.
Eur. J. Biochem.
109:
269–283,
1980.
|
165. |
Stucki, J. W.
The thermodynamic‐buffer enzymes.
Eur. J. Biochem.
109:
257–267,
1980.
|
166. |
Tager, J. M.,
A. K. Groen,
R. J. A. Wanders,
J. Duszynski,
H. V. Westerhoff, and
R. C. Vervoorn.
Control of mitochondrial respiration.
Biochem. Soc. Trans.
11:
40–43,
1983.
|
167. |
Tejwani, G. A.,
A. Ramaiah, and
M. Ananthanaryana.
Regulation of glycolysis in muscle. The role of ammonium and synergism among the positive effectors of phosphofructokinase.
Arch. Biochem. Biophys.
158:
195–199,
1973.
|
168. |
Tompa, P.,
J. Batke,
J. Ovadi,
G. R. Welch, and
P. A. Srere.
Quantitation of the interaction between citrate synthase and malate dehydrogenase.
J. Biol. Chem.
262:
6089–6092,
1987.
|
169. |
Tornheim, K.
Activation of muscle phosphofructokinase by fructose‐2,6‐bisphosphate and fructose‐1,6‐bisphosphate is differently affected by other regulatory metabolites.
J. Biol. Chem.
260:
7985–7989,
1985.
|
170. |
Traut, T. W.
Uridine‐5'‐phosphate synthesis: evidence for substrate cycling involving this bifunctional protein.
Arch. Biochem. Biophys.
268:
108–115,
1989.
|
171. |
Umbarger, H. E.
Amino acid biosynthesis and its regulation.
Annu. Rev. Biochem.
47:
533–606,
1978.
|
172. |
Van Schaftingen, E.
Fructose‐2,6‐bisphosphate.
Adv. Enzymol.
59:
315–395,
1987.
|
173. |
Vinay, P.,
G. Lemieux, and
a. Gougoux.
Characteristics of glutamine metabolism by rat kidney tubules: a carbon and nitrogen balance.
Can. J. Biochem.
57:
346–356,
1979.
|
174. |
Vinay, P.,
J. P. Mapes, and
H. A. Krebs.
Fate of glutamine carbon in renal metabolism.
Am. J. Physiol.
234
(Renal Fluid Electrolyte Physiol. 3):
F123–F129,
1978.
|
175. |
Voit, E. O. and
M. A. Savageau.
Accuracy of alternative representations for integrated biochemical systems.
Biochemistry
26:
6869–6880,
1987.
|
176. |
Wajngot, A.,
V. Chandramouli,
W. C. Schumann,
K. Kumaran,
S. Efendic, and
B. R. Landau.
Testing of the assumptions made in estimating the extent of futile cycling.
Am. J. Physiol.
256
(Endocrinol. Metab. 19):
E668–E6765,
1989.
|
177. |
Walker, D. G.
The nature and function of hexokinases in animal tissues.
Essays Biochem.
2:
33–67,
1966.
|
178. |
Waterlow, J. C.,
P. J. Garlick, and
D. J. Millward.
Protein Turnover in Mammalian Tissues and in the Whole Body.
Amsterdam:
Elsevier,
1978.
|
179. |
Welch, G. R.
Some problems in the usage of Gibbs free energy in biochemistry.
J. Theor. Biol.
114:
433–446,
1985.
|
180. |
Welch, G. R. and
T. Keleti.
On the “cytosociology” of enzyme action in vivo: a novel thermodynamic correlate of biological evolution.
J. Theor. Biol.
93:
701–735,
1981.
|
181. |
Welch, G. R.,
T. Keleti, and
B. Vertessy.
The control of cell metabolism for homogeneous vs. heterogeneous enzyme systems.
J. Theor. Biol.
130:
407–422,
1988.
|
182. |
Westerhoff, H. V.,
A. K. Groen, and
R.J.A. Wanders.
Modern theories of metabolic control and their applications.
Biosci. Rep.
4:
1–22,
1984.
|
183. |
Westerhoff, H. V. and
D. B. Kell.
Matrix method for determining steps most rate‐limiting to metabolic fluxes in biotechnological processes.
Biotechnol. Bioeng.
30:
101–107,
1987.
|
184. |
Williamson, J. R.,
R. H. Cooper,
S. K. Joseph, and
A. P. Thomas.
Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver.
Am. J. Physiol.
248
(Cell Physiol. 17):
C203–C216,
1985.
|
185. |
Wilson, D. F,
K. Nishiki, and
M. Erecinska.
Energy metabolism in muscle and its regulation during individual contraction‐relaxation cycles.
In: Metabolic Regulation,
edited by R. S. Ochs,
R. W. Hanson, and
J. Hall.
Amsterdam:
Elsevier,
1985,
p. 77–86.
|
186. |
Windmueller, H. G. and
A. E. Spaeth.
Uptake and metabolism of plasma glutamine by the small intestine.
J. Biol. Chem.
249:
5070–5079,
1974.
|
187. |
Windmueller, H. G. and
A. E. Spaeth.
Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine.
J. Biol. Chem.
253:
69–76,
1978.
|
188. |
Woledge, R. C.,
N. A. Curtin, and
E. Homsher.
Energetic Aspects of Muscle Contraction.
London:
Academic Press,
1985.
|
189. |
Woods, N. M.,
S. R. Cuthbertson, and
P. H. Cobbold.
Repetitive transient rises in cytoplasmic free calcium in hormone‐stimulated hepatocytes.
Nature
319:
600–602,
1986.
|
190. |
Wright, B. E. and
P. J. Kelly.
Kinetic models of metabolism in intact cells, tissues and organisms.
Curr. Top. Cell. Regul.
19:
103–158,
1981.
|