References |
1. |
Abramowitz, M., and
Stegun, I. A.
Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables.
National Bureau of Standards Applied Mathematics Series 55,
1964.
|
2. |
Agin, D.
Electroneutrality and electrodiffusion in the squid axon.
Proc. Natl. Acad. Sci. USA
57:
1232–1238,
1967.
|
3. |
Andersen, O. S.
Permeability properties of unmodified lipid bilayer membranes.
In: Membrane Transport in Biology,
edited by G. Giebisch,
D. C. Tosteson, and
H. H. Ussing,.
Berlin:
Springer‐Verlag,
1978,
p. 369–446.
|
4. |
Andersen, O. S.
Kinetics of ion movements mediated by carriers and channels.
Methods Enzymol.
171:
62–112,
1989.
|
5. |
Andersen, O. S.,
A. Finkelstein,
I. Katz, and
A. Cass.
Effect of phloretin on the permeability of thin lipid membranes.
J. Gen. Physiol.
67:
749–771,
1976.
|
6. |
Andersen, O. S., and
M. Fuchs.
Potential energy barriers to ion transport within lipid bilayers: studies with tetraphenylborate.
Biophys. J.
15:
795–830,
1975.
|
7. |
Anderson, J. L., and
D. M. Malone.
Mechanism of osmotic flow in porous membranes.
Biophys. J.
14:
957–982,
1974.
|
8. |
Aronson, P. S.
Kinetic properties of the plasma membrane Na+‐H+ exchanger.
Annu. Rev. Physiol.
47:
546–560,
1985.
|
9. |
Aronson, P. S., and
P. Igarashi.
Molecular properties and physiological roles of the renal Na+‐H+ exchanger.
Curr. Top. Membr. Transp.
26:
57–75,
1986.
|
10. |
Aveyard, R., and
D. A. Haydon.
An Introduction to the Principles of Surface Chemistry.
Cambridge:
Cambridge University Press,
1973.
|
11. |
Barr, L.
Membrane potential profiles and the Goldman equation.
J. Theor. Biol.
9:
351–359,
1965.
|
12. |
Barry, P. H., and
J. M. Diamond.
Effects of unstirred layers on membrane phenomena.
Physiol. Rev.
64:
763–872,
1984.
|
13. |
Begenisich, T., and
C. Smith.
Multi‐ion nature of potassium channels in squid axons.
Curr. Top. Membr. Transp.
22:
353–369,
1984.
|
14. |
Benedek, G. B., and
F. M. H. Villars.
Physics with Illustrative examples from Biology and Medicine.
Reading, MA:
Addison‐Wesley,
1979.
|
15. |
Berg, H. C.
Random Walks in Biology.
Princeton:
Princeton University Press,
1983.
|
16. |
Blaustein, M. P.
Sodium‐calcium exchange in cardiac, smooth, and skeletal muscle: Key to contractility.
Curr. Top. Membr. Transp.
34:
289–330,
1989.
|
17. |
Bockris, J. O., and
A. K. N. Reddy.
Modern Electrochemistry.
New York:
Plenum Press,
1970.
|
18. |
Cai, M., and
P. C. Jordan.
How does vestibule surface charge affect ion conduction and toxin binding in a sodium channel?
Biophys. J.
57:
883–891,
1990.
|
19. |
Carslaw, H. S., and
J. C. Jaeger.
Conduction of Heat in Solids.
London:
Oxford University Press,
1959.
|
20. |
Chiu, S. W., and
E. Jakobsson.
Stochastic theory of singly occupied ion channels. II. Effects of access resistance and potential gradients extending into the bath.
Biophys. J.
55:
147–157,
1989.
|
21. |
Cole, K. S.
Electrodiffusion models for the membrane of squid giant axon.
Physiol. Rev.
45:
340–379,
1965.
|
22. |
Colquhoun, D., and
A. G. Hawkes.
The principles of the stochastic interpretation of ion‐channel mechanisms.
In: Single Channel Recording,
edited by B. Sakmann and
E. Neher,.
New York:
Plenum,
1983.
|
23. |
Cooper, K.,
E. Jakobsson, and
P. Wolynes.
The theory of ion transport through membrane channels.
Prog. Biophys. Mol. Biol.
46:
51–96,
1985.
|
24. |
Cooper, K. E.,
P. Y. Gates, and
R. S. Eisenberg.
Diffusion theory and discrete rate constants in ion permeation.
J. Membr. Biol.
106:
95–105,
1988a.
|
25. |
Cooper, K. E.,
P. Y. Gates, and
R. S. Eisenberg.
Surmounting barriers in ionic channels.
Q. Rev. Biophys.
21:
331–364,
1988b.
|
26. |
Cornish‐Bowden, A., and
C. W. Wharton.
Enzyme Kinetics.
Oxford:
IRL Press,
1988.
|
27. |
Crank, J.
The Mathematics of Diffusion.
Oxford:
Clarendon Press,
1975.
|
28. |
Dainty, J., and
C. R. House.
“Unstirred layers” in frog skin.
J. Physiol. (Lond.)
182:
66–78,
1966.
|
29. |
Dani, J. A., and
D. G. Levitt.
Water transport and ion‐water interaction in the gramicidin channel.
Biophys. J.
35:
501–508,
1981.
|
30. |
Dani, J. A., and
D. G. Levitt.
Diffusion and kinetic approaches to describe permeation in ionic channels.
J. Theor. Biol.
146:
289–301,
1990.
|
31. |
Diamond, J. M.,
G. Szabo, and
Y. Katz.
Theory of nonelectrolyte permeation in a generalized membrane.
J. Membr. Biol.
17:
148–152,
1974.
|
32. |
Diamond, J. M., and
E. M. Wright.
Molecular forces governing non‐electrolyte permeation through cell membranes.
Proc. R. Soc. Lond. Biol.
172:
273–316,
1969.
|
33. |
DiFrancesco, D., and
D. Noble.
A model of cardiac electrical activity incorporating ionic pumps and concentration changes.
Philos. Trans. R. Soc. Lond. Biol.
307:
353–98,
1985.
|
34. |
Eisenberg, D., and
D. Carothers.
Physical Chemistry.
Menlo Park, CA.:
Benjamin Cummings,
1979.
|
35. |
Ferreira, H. G., and
M. W. Marshall.
The Biophysical Basis of Excitability.
New York:
Cambridge University Press,
1985.
|
36. |
Finkelstein, A.
Water Movement Through Lipid Bilayer, Pores, and Plasma Membranes.
New York:
John Wiley & Sons,
1987.
|
37. |
Finkelstein, A., and
A. Cass.
Permeability and electrical properties of thin lipid membranes.
J. Gen. Physiol.
52:
145s,
1968.
|
38. |
Finkelstein, A. and
A. Mauro.
Physical principles and formalisms of electrical excitability.
In: Handbook of Physiology. The Nervous System,
edited by Eric R. Kandel,
Baltimore, Maryland:
Am. Physiol. Soc.,
sect 1,
vol. 1,
1977,
p. 161–213.
|
39. |
Finkelstein, A., and
P. A. Rosenberg.
Single file transport: Implications for ion and water movement through gramidicin A channels.
In: Membrane Transport Processes,
edited by C. F. Stevens and
R. W. Tsien,.
New York:
Raven,
1979,
p. 73–88.
|
40. |
Flewelling, R. F., and
W. L. Hubbell.
Hydrophobic ion interactions with membranes.
Biophys. J.
49:
531–540,
1986a.
|
41. |
Flewelling, R. F., and
W. L. Hubbell.
The membrane dipole potential in a total membrane potential model.
Biophys. J.
49:
541–552,
1986b.
|
42. |
Freedman, J. C., and
J. F. Hoffman.
Ionic and osmotic equilibria of human red blood cells treated with nystatin.
J. Gen. Physiol.
74:
157–185,
1979.
|
43. |
Garrahan, P. J., and
I. M. Glynn.
Driving the sodium pump backwards to form adenosine triphosphate.
Nature
211:
1414–1415,
1966.
|
44. |
Glasstone, S.
Thermodynamics for Chemists.
Huntington, NY:
R. E. Krieger,
1972.
|
45. |
Glasstone, S.,
K. J. Laidler, and
H. Eyring.
The Theory of Rate Processes.
New York:
McGraw‐Hill,
1941.
|
46. |
Glynn, I. M.
Sodium and potassium movements in human red cells.
J. Physiol.
34:
278–310,
1956.
|
47. |
Glynn, I. M.
The action of cardiac glycosides on sodium and potassium movements in the human red cells.
J. Physiol.
136
(1):
148–173,
1957.
|
48. |
Goldman, D.
Potential, impedance, and rectification in membranes.
J. Gen. Physiol.
27:
37–60,
1944.
|
49. |
Hardt, S. L.
The diffusion transit time: a simple derivation.
Bull. Math. Biol.
41:
89–99,
1981.
|
50. |
Helfferich, F.
Ion Exchange.
New York:
McGraw‐Hill,
1962.
|
51. |
Hille, B.
Ionic Channels of Excitable Membranes.
Sunderland, MA:
Sinauer Associates,
1992.
|
52. |
Hille, B., and
W. Schwarz.
Potassium channels as multi‐ion single file pores.
J. Gen. Physiol.
72:
409–442,
1978.
|
53. |
Hodgkin, A. L., and
A. F. Huxley.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J. Physiol.
117:
500–544,
1952.
|
54. |
Hodgkin, A. L., and
R. D. Keynes.
The potassium permeability of a giant nerve fibre.
J. Physiol.
128:
61–68,
1955.
|
55. |
Horowicz, P.,
P. W. Gage, and
R. S. Eisenberg.
The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle.
J. Gen. Physiol.
51:
193s–203s,
1968.
|
56. |
Jacquez, J. A.
A general relation between membrane potential, ion activities, and pump fluxes for nonsymmetric cells in a steady state.
Math. Biosci.
53:
53–57,
1981.
|
57. |
Jakobsson, E., and
S. W. Chiu.
Stochastic theory of ion movement in channels with single‐ion occupancy.
Biophys. J.
52:
33–45,
1987.
|
58. |
Jordan, P. C.
Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential.
Biophys. J.
41:
189–195,
1983.
|
59. |
Jordan, P. C.
Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels.
Biophys. J.
45:
1091–1100,
1984a.
|
60. |
Jordan, P. C.
Effect of pore structure on energy barriers and applied voltage profiles. II. Unsymmetrical channels.
Biophys. J.
45:
1101–1107,
1984b.
|
61. |
Jordan, P. C.
The total eletrostatic potential in a gramicidin channel.
J. Membr. Biol.
78:
91–102,
1984c.
|
62. |
Jordan, P. C.
Ion channel electrostatics and the shapes of channel proteins.
In: Ion Channel Reconstitution,
edited by C. Miller,.
New York:
Plenum Press,
1986,
p. 37–55.
|
63. |
Jordan, P. C.
How pore mouth charge distributions alter the permeability of transmembrane ionic channels.
Biophys. J.
51:
297–311,
1987.
|
64. |
Jordan, P. C.,
R. J. Bacquet,
J. A. McCammon, and
P. Tran.
How electrolyte shielding influences the electrical potential in transmembrane ion channels.
Biophys. J.
55:
1041–1052,
1989.
|
65. |
Katchalsky, A. and
P. F. Curran.
Nonequilibrium Thermodynamics in Biophysics.
Cambridge, MA:
Harvard University Press,
1965.
|
66. |
Katz, M. A., and
E. H. Bresler.
Osmosis.
In: Edema,
edited by N. C. Staub and
A. E. Taylor,
New York:
Raven Press,
1984,
p. 39–60.
|
67. |
Kedem, O., and
A. Katchalsky.
Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes.
Biochim. Biophys. Acta
27:
229–246,
1958.
|
68. |
Kedem, O., and
A. Katchalsky.
A physical interpretation of the phenomenological coefficients of membrane permeability.
J. Gen. Physiol.
45
(1):
143–179,
1961.
|
69. |
Ketterer, B.,
B. Neumcke, and
P. Lauger.
Transport mechanism of hydrophobic ions through lipid bilayer membranes.
J. Membr. Biol.
5:
225–245,
1971.
|
70. |
Kinne, R. K. H.
Selectivity and direction: plasma membranes in renal transport.
Am. J. Physiol.
260
(Renal Fluid Electrolyte Physiol. 29):
F153–F162,
1991.
|
71. |
Klingenberg, M.
The ADP‐ATP translocation in mitocondria, a membrane potential controlled transport.
J. Membr. Biol.
56:
97–105,
1980.
|
72. |
Kohler, H. H., and
K. Heckmann.
Unidirectional fluxes in saturated single‐file pores of biological and artificial membranes. I. Pores containing no more than one vacancy.
J. Theor. Biol.
79:
381–401,
1979.
|
73. |
Kotyk, A.,
K. Janacek, and
J. Koryta.
Biophysical Chemistry of Membrane Functions.
New York:
John Wiley & Sons,
1988.
|
74. |
Latorre, R.,
P. Labarca, and
D. Naranjo.
Surface charge effects on ion conduction in ion channels.
Methods Enzymol.
207:
471–501,
1992.
|
75. |
Lauger, P.
Ion transport through pores: a rate theory analysis.
Biochim. Biophys. Acta
311:
423–441,
1973.
|
76. |
Lauger, P.
Diffusion‐limited ion flow through pores.
Biochim. Biophys. Acta
455:
493–509,
1976.
|
77. |
Lauger, P.
Kinetic properties of ion carriers and channels.
J. Membr. Biol.
57:
163–178,
1980.
|
78. |
Lauger, P.
Conformational transitions of ionic channels.
In: Single Channel Recording,
edited by B. Sakmann and
E. Neher,.
New York:
Plenum Press,
1983.
|
79. |
Lauger, P.
Dynamics of ion transport systems in membranes.
Physiol. Rev.
67:
1296–1331,
1987.
|
80. |
Lauger, P.
Electrogenic Ion Pumps.
Sunderland, MA:
Sinauer Associates,
1991.
|
81. |
Lauger, P.,
W. Stephan, and
E. Frehland.
Fluctuation of barrier structure in ionic channels.
Biochim. Biophys. Acta
602:
167–180,
1980.
|
82. |
Leo, A.
Hydrophobic parameter: measurement and calculation.
Methods Enzymol.
202:
544–591,
1991.
|
83. |
Levie, R.
Mathematical modeling of transport of lipid soluble ions and ion carrier complexes through lipid bilayer membranes.
Adv. Chem. Phys.
37:
99–137,
1978.
|
84. |
Levie, R., and
H. Moreira.
Transport of ions of one kind through thin membranes.
J. Membr. Biol.
9:
241–260,
1972.
|
85. |
Levitt, D. G.
A new theory of transport for cell membrane pores. I. General theory and application to red cell.
Biochim. Biophys. Acta
373:
115–131,
1974.
|
86. |
Levitt, D. G.
Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions.
Biophys. J.
22:
209–219,
1978a.
|
87. |
Levitt, D. G.
Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel.
Biophys. J.
22:
221–248,
1978b.
|
88. |
Levitt, D. G.
Comparison of Nernst‐Plank and reaction rate models for multiply occupied channels.
Biophys. J.
37
(3):
575–587,
1982.
|
89. |
Levitt, D. G.
Kinetics of movement in narrow channels.
Curr. Topic. Membr. Transp.
21:
182–197,
1984.
|
90. |
Levitt, D. G.
Interpretation of biological ion channel flux data—Reaction‐rate versus continuum theory.
Annu. Rev. Biophys. Biophys. Chem.
15:
29–57,
1986.
|
91. |
Levitt, D. G.
General continuum theory for multiion channel. I. Theory.
Biophys. J.
59:
271–277,
1991a.
|
92. |
Levitt, D. G.
General continuum theory for multiion channel. II. Application to acetylcholine channel.
Biophys. J.
59:
278–288,
1991b.
|
93. |
Lew, V. L.,
H. G. Ferreira, and
T. Moura.
The behaviour of transporting epithelial cells. I. Computer analysis of a basic model.
Proc. R. Soc. Lond [Biol.]
206:
53–83,
1979.
|
94. |
Lew, V. L.,
C. J. Freeman,
O. E. Ortiz, and
R. M. Bookchin.
A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration.
J. Clin. Invest.
87:
100–112,
1991.
|
95. |
Lieb, W. R.
A kinetic approach to transport studies.
In: Red Cell Membranes—A Methodological Approach,
edited by J. C. Ellory and
J. D. Young,.
New York:
Academic Press,
1982,
p. 135–154.
|
96. |
Lieb, W. R., and
W. D. Stein.
Non‐Stokesian nature of transverse diffusion within human red cell membranes.
J. Membr. Biol.
92:
111–119,
1986.
|
97. |
Lipschutz, S.
Schaum's Outline of Theory and Problems of Linear Algebra.
New York:
McGraw‐Hill,
1991.
|
98. |
Macey, R. I.
Mathematical models of membrane transport processes.
In: Physiology of Membrane Disorders,
edited by T. E. Andreoli,
J. F. Hoffman,
D. D. Fanestil, and
S. G. Schultz,.
New York:
Plenum,
1986,
p. 111–131.
|
99. |
Macey, R. I., and
L. W. Yousef.
Osmotic stability of red cells in renal circulation requires rapid urea transport.
Am. J. Physiol.
254
(Cell Physiol 23):
C699–C674,
1988.
|
100. |
Macgillivary, A. D., and
D. Hare.
Applicability of Goldman's constant field assumption to biological systems.
J. Theor. Biol.
25:
113–126,
1969.
|
101. |
Mauro, A.
Some properties of ionic and nonionic semipermeable membranes.
Circulation
21:
845–854,
1960.
|
102. |
Mauro, A.
The role of negative pressure in osmotic equilibrium and osmotic flow.
In: Water Transport across Epithelia, Alfred Benzon Symposium 15,
edited by H. H. Ussing,
N. A. Lassen, and
O. Sten Knudsen.
Copenhagen:
Munksgaard,
1981,
p. 107–119.
|
103. |
McLaughlin, S.
Electrostatic potentials at membrane‐solution interfaces.
Curr. Top. Membr. Transp.
9:
71–95,
1977.
|
104. |
McLaughlin, S.
The electrostatic properties of membranes.
Annu. Rev. Biophys. Biophys. Chem.
18:
113–136,
1989.
|
105. |
Moura, T. F.,
R. I. Macey,
D. Y. Chien,
D. M. Karan, and
H. Santos.
Thermodynamics of all‐or‐none water channel closure in red cells.
J. Membr. Biol.
81:
105–111,
1984.
|
106. |
Mullins, L. J.
An electrogenic saga: Consequences of sodium‐calcium exchange in cardiac muscle.
In: Electrogenic Transport: Fundamental Principles of Physiological Implications,
edited by M. P. Blaustein and
M. Lieberman,.
New York:
Raven Press,
1984,
p. 161–179.
|
107. |
Mullins, L. J., and
K. Noda.
The influence of sodium‐free solutions on the membrane potential of frog muscle fibers.
J. Gen. Physiol.
47:
117–132,
1963.
|
108. |
Naranjo, D.,
R. Latorre,
D. Cherbavaz,
P. McGill, and
M. F. Schumaker.
A simple model for surface charge on ion channel proteins.
Biophys. J.
66:
59–70,
1994.
|
109. |
Neumcke, B., and
P. Lauger.
Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst‐Planck equations.
Biophys. J.
9:
1160–1170,
1969.
|
110. |
Noble, D., and
G. Bett.
Reconstructing the heart: a challenge for integrative physiology,
Cardiovasc. Res.
27:
1701–1712,
1993.
|
111. |
Patlak, C. S.
Contributions to the theory of active transport.
Bull. Math. Biophys.
18:
271–315,
1956.
|
112. |
Patlak, C. S.
Derivation of an equation for the diffusion potential.
Nature
188
(4754):
944–945,
1960.
|
113. |
Patlak, C. S.,
D. A. Goldstein, and
J. F. Hoffman.
The flow of solute and solvent across a two‐membrane system.
J. Theor. Biol.
5:
426–442,
1963.
|
114. |
Patlak, C. S., and
S. I. Rapoport.
Use of transient and steady‐state measurements of the unidirectional flux ratio for the determination of the free energy change of chemical reactions and active transport systems.
Bull. Math. Biol.
42:
529–537,
1980.
|
115. |
Purcell, E. M.
Electricity and Magnetism.
New York:
McGraw‐Hill,
1985.
|
116. |
Reif, F.
Fundamentals of Statistical and Thermal Physics.
New York:
McGraw‐Hill,
1965.
|
117. |
Robinson, R. A., and
R. H. Stokes.
Electrolyte Solutions.
London:
Butterworth,
1965.
|
118. |
Roux, B., and
M. Karplus.
Ion transport in a gramicidin‐like channel: dynamics and mobility.
J. Phys. Chem.
95:
4856–4868,
1991a.
|
119. |
Roux, B., and
M. Karplus.
Ion transport in a model gramicidin channel. Structure and thermodynamics.
Biophys. J.
59:
961–981,
1991b.
|
120. |
Roux, B., and
M. Karplus.
Ion transport in the gramicidin channel: Free energy of the solvated right‐handed dimer in a model membrane.
J. Am. Chem. Soc.
115:
3250–3262,
1993.
|
121. |
Roux, B., and
M. Karplus.
Molecular dynamics simulations of the gramicidin channel.
Annu. Rev. Biophys. Biomol. Struct.
23:
731–761,
1994.
|
122. |
Salhany, J. M.
1990.
Erythrocyte Band 3 Protein.
Boca Raton, FL:
CRC Press,
1990.
|
123. |
Schultz, S. G.
Basic Principles of Membrane Transport.
London:
Cambridge University Press,
1980.
|
124. |
Spangler, S. G.
Expansion of the constant field equation to include both divalent and monovalent ions.
Alabama J. Med. Sci.
9:
218–223,
1972.
|
125. |
Stein, W. D.
Transport and Diffusion across Cell Membranes.
San Diego:
Academic Press,
1986.
|
126. |
Stein, W. D.
Channels, Carriers, and Pumps: An Introduction to Membrane Transport.
San Diego:
Academic Press,
1990.
|
127. |
Sten‐Knudsen, O.
Passive transport processes.
In: Membrane Transport in Biology,
edited by G. Giebisch,
D. C. Tosteson, and
H. H. Ussing,.
Berlin:
Springer‐Verlag,
1978,
p. 5–114.
|
128. |
Strieter, J.,
J. L. Stephenson,
G. Giebisch, and
A. M. Weinstein.
A mathematical model of the rabbit cortical collecting tubule.
Am. J. Physiol.
263
(Renal Fluid Electrolyte Physiol. 32):
F1063–F1075,
1992.
|
129. |
Strieter, J.,
J. L. Stephenson,
L. G. Palmer, and
A. M. Weinstein.
Volume‐activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium.
J. Gen. Physiol.
96
(2):
319–344,
1990.
|
130. |
Stryer, L.
Biochemistry.
New York:
W. H. Freeman,
1988.
|
131. |
Teorell, T.
Transport processes and electrical phenomena in ionic membranes.
Prog. Biophys. Biophys. Chem.
3:
305–369,
1953.
|
132. |
Turner, R. J., and
A. Moran.
Futher studies of proximal tubular brush border membrane. D‐glucose transport heterogeneity.
J. Membr. Biol.
70:
37–45,
1982a.
|
133. |
Turner, R. J. and
A. Moran.
Heterogeneity of sodium dependent D‐glucose transport sites along the proximal tubule: evidence from vesicle studies.
Am. J. Physiol
242
(Renal Fluid Electrolyte Physiol. 11):
F406–F414,
1982b.
|
134. |
Tyrrell, H. J. V., and
K. R. Harris.
Diffusion in Liquids: A Theoretical and Experimental Study.
London,
Butterworths,
1984.
|
135. |
Urban, B. W., and
S. B. Hladky.
Ion transport in the simplest single file pore.
Biochim. Biophys. Acta
554:
410–429,
1979.
|
136. |
Ussing, H. H.
Distinction by means of tracers between active transport and diffusion.
Acta Physiol. Scand.
19:
43–56,
1949.
|
137. |
Wall, F. T.
Chemical Thermodynamics: A Course of Study.
San Francisco:
W. H. Freeman,
1974.
|
138. |
Walter, A., and
J. Gutknecht.
Permeability of small nonelectrolytes through lipid bilayer membranes.
J. Membr. Biol.
90:
207–217,
1986.
|
139. |
Weinstein, A. M.
Chloride transport in a mathematical model of the rat proximal tubule.
Am. J. Physiol.
263
(Renal Fluid Electrolyte Physiol. 32):
F784–F798,
1992.
|
140. |
Wexler, A. S.,
R. E. Kalaba, and
D. J. Marsh.
Three‐dimensional anatomy and renal concentrating mechanism. I. Modeling results.
Am. J. Physiol.
260
(Renal Fluid Electrolyte Physiol. 29):
F368–F383,
1991.
|
141. |
Wieth, J. O.,
O. S. Andersen,
J. Brahm,
P. J. Bjerrum, and
J. R. Borders.
Chloride‐bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites.
Philos. Trans. R. Soc. Lond. Biol.
299:
383–399,
1982.
|
142. |
Wright, E. M., and
N. Bindslev.
Thermodynamic analysis of nonelectrolyte permeation across the toad urinary bladder.
J. Membr. Biol.
29:
289–312,
1976.
|
143. |
Wright, E. M., and
J. M. Diamond.
Patterns of nonelectrolyte permeability.
Proc. R. Soc. Lond. [Biol.]
172:
227–271,
1969.
|
144. |
Wright, E. M.,
A. P. Smulders, and
J. M. Tormey.
The role of the lateral intracellular spaces and solute polarization effect in the passive flow of water across the rabbit gallbladder.
J. Membr. Biol.
7:
198–219,
1972.
|
145. |
Young, H. D.
University Physics.
Reading, MA:
Addison‐Wesley,
1992.
|
146. |
Yousef, L. W. and
R. I. Macey.
A method to distinguish between pore and carrier kinetics applied to urea transport across the erythrocyte membrane.
Biochim. Biophys. Acta
984:
281–288,
1989.
|
147. |
Zemansky, M. W., and
R. H. Dittman.
Heat and Thermodynamics: An Intermediate Textbook.
New York:
McGraw‐Hill,
1981.
|