References |
1. |
Abercrombie, R. F.,
R. W. Putnam, and
A. Roos.
The intracellular pH of frog skeletal muscle: Its regulation in isotonic solutions.
J. Physiol. (Lond.)
345:
175–187,
1983.
|
2. |
Abercrombie, R. F., and
R. A. Sjodin.
Sodium efflux in Myxicola giant axons.
J. Gen. Physiol.
69:
765–778,
1977.
|
3. |
Altenberg, G. A.,
C. G. Vanoye,
J. K. Horton, and
L. Reuss.
Unidirectional fluxes of rhodamine 123 in multidrug‐resistant cells: Evidence against direct drug extrusion from the plasma membrane.
Proc. Natl. Acad. Sci. U.S.A.
91:
4654–4657,
1994.
|
4. |
Altenberg, G. A.,
J. Copello,
C. Cotton,
K. Dawson,
Y. Segal,
F. Wehner, and
L. Reuss.
Electrophysiological methods for studying ion and water transport in Necturus gall bladder epithelium.
Methods Enzymol.
192:
650–683,
1990.
|
5. |
Andreoli, T. E.,
M. Tieffenberg, and
D. C. Tosteson.
The effect of valinomycin on the ionic permeability of thin lipid membranes.
J. Gen. Physiol.
50:
2527–2545,
1967.
|
6. |
Apell, H.‐J.
Electrogenic properties of the Na,K pump.
J. Membr. Biol.
110:
103–114,
1989.
|
7. |
Apell, H.‐J.,
V. Haring, and
M. Roudna.
Na,K‐ATPase in artificial lipid vesicles. Comparison of Na,K and Na‐only pumping mode.
Biochim. Biophys. Acta
1023:
81–90,
1990.
|
8. |
Aronson, P. S.
Electrochemical driving forces for secondary active transport: Energetics and kinetics of Na+‐H+ exchange and Na+‐glucose cotransport.
Soc. Gen Physiol. Ser.
38:
49–70,
1984.
|
9. |
Bahinski, A.,
M. Nakao, and
D. C. Gadsby.
Potassium translocation by the Na/K pump is voltage insensitive.
Proc. Natl. Acad. Sci. U.S.A.
85:
3412,
1988.
|
10. |
Bear, C. E.
A nonselective cation channel in rat liver cells is activated by membrane stretch.
Am. J. Physiol.
258
(Cell Physiol. 27):
C421–C428,
1990.
|
11. |
Bennekou, P., and
P. Christophersen.
Flux ratio of vaolinomycin‐mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP.
J. Membr. Biol.
93:
221–227,
1986.
|
12. |
Benson, S. W.
The Foundations of Chemical Kinetics,
edited by S. W. Benson.
New York:
McGraw‐Hill,
1960.
|
13. |
Bidani, A., and
E. D. Crandall.
Velocity of CO2 exchanges in the lungs.
Annu. Rev. Physiol.
50:
639–652,
1988.
|
14. |
Blostein, R.
Measurement of Na and K transport and Na,K‐ATPase activity in inside‐out vesicles from mammalian erythrocytes.
Methods. Enzymol.
156:
171,
1988.
|
15. |
Blostein, R.
Sodium pump‐catalyzed sodium‐sodium exchange associated with ATP hydrolysis.
J. Biol. Chem.
258
(13):
7948–7953,
1983.
|
16. |
Borlinghaus, R.,
H.‐J. Apell, and
P. Läuger.
Fast charge translocations associated with partial reactions of the Na,K‐pump: I. Current and voltage transients after photochemical release of ATP.
J. Membr. Biol.
97:
161–178,
1987.
|
17. |
Boyum, A.
Isolation of mononuclear cells and granulocytes from human blood.
Scand. J. Clin. Lab. Invest.
21
(Suppl. 97):
77–89,
1968.
|
18. |
Brahm, J.
Temperature‐dependent changes of chloride transport kinetics in human red cells.
J. Gen. Physiol.
70:
283–306,
1977.
|
19. |
Breitwieser, G. E.,
A. A. Altamirano, and
J. M. Russell.
Osmotic stimulation of Na(+)‐K(+)‐Cl‐cotransport in squid giant axon is [Cl‐]i dependent.
Am. J. Physiol.
258
(Cell Physiol. 27):
C749–753,
1990.
|
20. |
Brinley, F. J., Jr., and
L. J. Mullins.
Sodium extrusion by internally dialyzed squid axons.
J. Gen. Physiol.
50:
2303–2331,
1967.
|
21. |
Brugnara, C.,
H. F. Bunn, and
D. C. Tosteson.
Regulation of erythrocyte cation and water content in sickle cell anemia.
Science
232:
388–390,
1986.
|
22. |
Brugnara, C.,
A. S. Kopin,
H. F. Bunn,
D. C. Tosteson.
Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin disease.
J. Clin. Invest.
75:
1608–1617,
1985.
|
23. |
Chrispeels, M. J., and
P. Agre.
Aquaporins: Water channel proteins of plant and animal cells.
Trends Biol. Sci.
19:
421–425,
1994.
|
24. |
Christensen, O.
Mediation of cell volume regulation by Ca influx through stretch‐activated channels.
Nature
330:
66–68,
1987.
|
25. |
Cleland, W. W.
The kinetics of enzyme‐catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations.
Biochim. Biophys. Acta
67:
104–137,
1963.
|
26. |
Cleland, W. W.
Statistical analysis of enzyme kinetic data,
Methods Enzymol., S. P.
63:
103–137,
1988.
|
27. |
Cornelius, F.
Functional reconstitution of the sodium pump. Kinetics of exchange reactions performed by reconstituted Na/K‐ATPase.
Biochim. Biophys. Acta
1071:
19–66,
1991.
|
28. |
Cornelius, F., and
J. C. Skou.
Na+ ‐Na+ exchange mediated by (Na+ + K+)‐ATPase reconstituted into lipsomes. Evalaution of pump stoichiometry and response to ATP and ADP.
Biochim Biophys. Acta
818
(2):
211–221,
1985.
|
29. |
Covarrubias, Y.G.‐M., and
P. De Weer.
Kinetics of magnesium interaction with (Na+ + K+)‐ATPase.
J. Gen. Physiol.
96:
48a–49a,
1990.
|
30. |
Dalmark, M.
Effects of halides and bicarbonate on chloride transport in human red blood cells.
J. Gen. Physiol.
67:
223–234,
1976.
|
31. |
Dalmark, M., and
J. O. Weith.
Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells.
J. Physiol. (Lond.)
224:
583–610,
1972.
|
32. |
Darmon, A.,
O. Eidelman, and
Z. I. Cabantchik.
A method for measuring anion transfer across membranes of hemoglobin‐free cells and vesicles by continuous monitoring of fluorescence.
Anal. Biochem.
119:
313–321,
1982.
|
33. |
Demuth, D. R.,
L. C. Showe,
M. Ballantine,
A. Palumbo,
P. J. Fraser,
L. Cioe,
G. Rovera, and
P. J. Curtis.
Cloning and structural characterization of a human non‐erythroid band 3‐like protein.
EMBO J.
5:
1205–1214,
1986.
|
34. |
De Weer, P.
Na, K.
ATPase: Reaction mechanisms and ion translocating steps.
Curr. Top. Membr. Transp.
19:
599–623,
1983.
|
35. |
De Weer, P.
Electrogenic pumps: Theoretical and practical considerations.
Soc. Gen. Physiol. Ser.
38:
1–15,
1984.
|
36. |
De Weer, P.,
The Na/K pump: A current generating enzyme.
In: Regulation of Potassium Transport Across Biological Membranes,
edited by L. Reuss,
J. M. Russell, and
G. Szabo.
Austin:
University of Texas Press
1990,
p. 5–28.
|
37. |
De Weer, P.,
D. C. Gadsby, and
R. F. Rakowski.
Voltage dependence of the Na‐K pump.
Annu. Rev. Physiol.
50:
225,
1988.
|
38. |
De Weer, P.,
D. C. Gadsby, and
R. F. Rakowski.
Overview: Stoichiometry and voltage dependence of the Na/K pump.
Prog. Clin. Biol. Res.
268A:
421–434,
1988.
|
39. |
De Weer, P.,
R. F. Rakowski.
Current generated by backward‐running electrogenic Na pump in squid giant axons.
Nature
309
(5967):
450–452,
1984.
|
40. |
De Weer P.,
D. C. Gadsby, and
R. F. Rakowski.
Voltage dependence of the Na‐K pump.
Annu. Rev. Physiol.
50:
225–41,
1988.
|
41. |
De Weer, P.,
R. F. Rakowski, and
D. C. Gadsby.
Voltage sensitivity of the Na+/K+ pump: Structural implications.
In: The Sodium Pump,
edited by E. Bamberg and
W. Schoner.
New York:
Springer,
1994,
p. 472–481.
|
42. |
Dissing, S., and
J. F. Hoffman.
Anion‐coupled Na efflux mediated by the Na/K pump in human red blood cells.
Curr. Top. Membr. Transp.
19:
693,
1983.
|
43. |
Dissing, S., and
J. F. Hoffman.
Anion‐coupled Na efflux mediated by the human red blood cell Na/K pump.
J. Gen. Physiol.
96:
167–193,
1990.
|
44. |
Esmann, M., and
J. C. Skou.
Temperature‐dependencies of various catalytic activities of membrane‐bound Na+/K+‐ATPase from ox brain, ox kidney and shark rectal gland and of C12E8‐solubilized shark Na+/K+‐ATPase.
Biochim. Biophys. Acta
944
(3):
344–350,
1988.
|
45. |
Fabry, M. E., and
M. Eistenstadt.
Water exchange across red cell membranes: II. Measurement by nuclear magnetic resonance T1, T2 and T12 hydrid relaxation. The effects of osmolarity, cell volume, and medium.
J. Membr. Biol.
42:
375–398,
1978.
|
46. |
Falke, J. J.,
K. J. Kanes, and
S. I. Chan.
The kinetic equation for the chloride transport cycle of band 3.
J. Biol. Chem.
260:
9545–9551,
1985.
|
47. |
Fendler, K.,
E. Grell,
E. Bamberg.
Kinetics of pump currents generated by the Na+, K+ ‐ATPase.
FEBS Lett.
224:
83–88,
1987.
|
48. |
Fendler, K.,
S. Jaruschewski,
A. S. Hobbs,
R. W. Albers,
J. P. Froehlich.
Presteady state charge translocation in NaK‐ATPase from eel electric organ.
J. Gen. Physiol.
102:
631–666,
1993.
|
49. |
Forbush III, B.
Na+ movement in a single turnover of the Na pump.
Proc. Natl. Acad. Sci. U.S.A.
81:
5310–5314,
1984.
|
50. |
Forbush III, B.
Rapid release of K and Rb from an occluded state of the Na,K‐pump in the presence of ATP or ADP.
J. Biol. Chem.
262:
III04,
1987.
|
51. |
Forbush III, B.,
Overview: Occluded ions and Na,K‐ATPase.
In: The Na+, K+ ‐pump, Part A: Molecular Aspects,
edited by J. C. Skou et al.
Alan R. Liss, Inc.,
1988,
p. 229–248.
|
52. |
Forbush III, B., and
I. Klodos.
Rate‐limiting steps in Na translocation by the Na/K pump.
Soc. Gen. Physiol. Ser.
46:
210–225,
1991.
|
53. |
Fozzard, H. A.
Cellular basis for inotropic changes in the heart.
Am. Heart J.
116
(1):
230–235,
1988.
|
54. |
Fozzard, H. A., and
M. F. Sheets.
Cellular mechanism of action of cardiac glycosides.
J. Am. Coll. Cardiol.
5
(5):
10A–15A,
1985.
|
55. |
Froehlich, J. P. and
Fendler, K.
The partial reactions of the Na+ ‐ and Na+ + K+‐activated adenosine triphosphatases.
Soc. Gen. Physiol. Ser.
46:
227–247,
1991.
|
56. |
Fröhlich, O.
Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes.
J. Gen. Physiol.
84:
887–893,
1984.
|
57. |
Fröhlich, O., and
R. B. Gunn.
Erythrocyte anion transport: The kinetics of a single‐site obligatory exchange system.
Biochim. Biophys. Acta
864:
169–194,
1986.
|
58. |
Fröhlich, O.,
C. Liebson, and
R. B. Gunn.
Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site.
J. Gen. Physiol.
81:
127–152,
1983.
|
59. |
Furuya, W.,
T. Tarshis,
F.‐Y. Law, and
P. A. Knauf.
Transmembrane effects of intracellular H2DIDS. Evidence for two conformations of the transport site of human erythrocyte anion exchange protein.
J. Gen. Physiol.
83:
657–681,
1984.
|
60. |
Gadsby, D. C.
Hyperpolarization of frog skeletal muscle fibers and of canine cardiac purkinje fibers during enhanced Na+ ‐ K+ exchange: Extracellular K+ depletion or increased pump current?
Cur. Top. Membr. Transp.
16:
17–33,
1982.
|
61. |
Gadsby, D. C.
The Na/K pump of cardiac cells.
Annu. Rev. Biophys. Bioeng.
13:
373–398,
1984.
|
62. |
Gadsby, D. C., and
M. Nakao.
Steady‐state current‐voltage relationship of the Na/K pump in guinea pig ventricular mycoytes.
J. Gen. Physiol.
94
(3):
511–537,
1989.
|
63. |
Gadsby, D. C.,
M. Nakao, and
A. Bahinski.
Voltage dependence of transient and steady‐state Na/K pump currents in myocytes.
Mol. Cell. Biochem.
89
(2):
141–146,
1989.
|
64. |
Gadsby, D. C,
M. Nakao,
A. Bahinski,
G. Nagel, and
M. Suenson.
Charge movements via the cardiac Na,K‐ATPase.
Acta Physiol. Scand.
146:
111–123,
1992.
|
65. |
Gadsby, D. C.,
J. Kumura, and
A. Noma.
Voltage dependence of Na/K pump current in isolated heart cells.
Nature
315
(6104):
63–65,
1985.
|
66. |
Gadsby, D. C.,
R. F. Rakowski, and
P. De Weer.
Extracellular access to the Na,K pump: Pathway similar to ion channel.
Science
260:
100–103,
1993.
|
67. |
Galey, W. R.,
J. D. Owen, and
A. K. Solomon.
Temperature dependence of nonelectrolyte permeation across red cell membranes.
J. Gen. Physiol.
61:
727–746,
1973.
|
68. |
Garay, R. P., and
P. J. Garrahan.
The interaction of sodium and potassium with the sodium pump in red cells.
J. Physiol.
231:
297–325,
1973.
|
69. |
Garrahan, P. J., and
R. P. Garay.
The distinction between sequential and simultaneous models for sodium and potassium transport.
Curr. Top. Membr. Transp.
8:
19–97,
1976.
|
70. |
Garrahan, P. J., and
I. M. Glynn.
The behavior of the sodium pump in red cells in the absence of external potassium.
J. Physiol. (Lond.)
192:
159–174,
1967.
|
71. |
Geek, P.,
C. Pietrzyk,
B.‐C. Burckhardt,
B. Pfeiffer, and
E. Heinz.
Electrically silent cotransport of Na, K, and Cl in Ehrlich cells.
Biochim. Biophys. Acta
600:
432–447,
1980.
|
72. |
Glynn, I. M.
The electrogenic sodium pump.
Soc. Gen. Physiol. Ser.
38:
33–48,
1984.
|
73. |
Glynn, I. M,
The Na+, K+‐transporting adenosine triphosphatase.
In: The Enzymes of Biological Membranes,
edited by A. N. Martonosi.
New York:
Plenum Press,
1985,
p. 35–114.
|
74. |
Glynn, I. M.
How does the sodium pump pump?
Soc. Gen. Physiol. Ser.
43:
1–17,
1988.
|
75. |
Glynn, I. M.
Overview: The coupling of enzymatic steps to the translocation of sodium and potassium.
Prog. Clin. Biol. Res.
268A:
435–460,
1988.
|
76. |
Glynn, I. M., and
S.J.D. Karlish.
ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium.
J. Physiol.
256:
465–496,
1976.
|
77. |
Glynn, I. M., and
S.J.D. Karlish.
Occluded cations in active transport.
Annu. Rev. Biochem.
59:
171–205,
1990.
|
78. |
Goldman, D. E.
Potential, impedence, and rectification in membranes.
J. Gen. Physiol.
27:
37–60,
1943.
|
79. |
Goldshleger, R.,
Y. Shahak, and
S.J.D. Karlish.
Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes.
J. Membr. Biol.
113:
139–154,
1990.
|
80. |
Goldshleger, R.,
S.J.D. Karlish,
A. Rephaeli, and
W. D. Stein.
The effect of membrane potential on the mammalian sodium‐potassium pump reconstituted into phospholipid vesicles.
J. Physiol.
387:
331–355,
1987.
|
81. |
Grinstein, S.,
S. Cohen,
J. D. Goetz, and
A. Rothstein.
Osmotic and phorbol ester–induced activation of Na/H exchange: Possible role of protein phosphorylation in lymphocyte volume regulation.
J. Cell Biol.
101:
269–276,
1985.
|
82. |
Grygorczyk, R.,
W. Schwarz, and
H. Passow.
Potential dependence of the “electrically silent” anion exchange across the plasma membrane of Xenopus oocytes mediated by the band 3 protein of mouse red blood cells.
J. Membr. Biol.
99:
127–136,
1987.
|
83. |
Gunn, R. B.,
M. Dalmark,
D. C. Tosteson, and
J. O. Wieth.
Characteristics of chloride transport in human red blood cells.
J. Gen. Physiol.
61:
185–206,
1973.
|
84. |
Gunn, R. B., and
O. Fröhlich.
Asymmetry in the mechanism for anion exchange in human red blood cell membranes (Evidence for reciprocating sites that react with one transported anion at a time).
J. Gen. Physiol.
74:
351–374,
1979.
|
85. |
Haas, M.
Properties and diversity of (Na‐K‐Cl) cotransporters.
Annu. Rev. Physiol.
51:
443–457,
1989.
|
86. |
Hallows, K. R., and
P. A. Knauf.
Principles of cell volume regulation.
In: Cellular and Molecular Physiology of Cell Volume Regulation,
edited by K. Strange.
Boca Raton, FL:
CRC Press,
1994,
p. 3–29.
|
87. |
Hansen, U.‐P.,
D. Gradmann,
D. Sanders, and
C. L. Slayman.
Interpretation of current‐voltage relationships for “active” ion transport systems: I. Steady‐state reaction‐kinetic analysis of class‐I mechanisms.
J. Membr. Biol.
63:
165–190,
1981.
|
88. |
Harris, E. J., and
B. C. Pressman.
Obligate cation exchanges in red cells.
Nature
216:
918–920,
1967.
|
89. |
Hautmann, M., and
K. F. Schnell.
Concentration dependence of the chloride self‐exchange and homoexchange fluxes in human red cell ghosts.
Pflugers Arch.
405:
193–201,
1985.
|
90. |
Heyse, S.,
I. Wuddel,
H.‐J. Apell, and
W. Stürmer.
Partial reactions of the Na,K‐ATPase: Determination of rate constants.
J. Gen. Physiol.
104:
197–240,
1994.
|
91. |
Hilgemann, D. W.
Giant excised cardiac sarcolemmal membrane patches: Sodium and sodium‐calcium exchange currents.
Pflugers Arch.
415:
247–249,
1989.
|
92. |
Hilgemann, D. W.,
Flexibility and constraint in the interpretation of Na+/K+ pump electrogenicity: What is an access channel?
In: The Sodium Pump: Structure Mechanism, Hormonal Control and Its Role in Disease,
edited by E. Bamberg and
W. Schoner.
New York:
Springer,
1994,
p. 507.
|
93. |
Hilgemann, D. W.
Channel‐like function of the Na,K pump probed at microsecond resolution in giant membrane patches.
Science
263:
14,
1994.
|
94. |
Hodgkin, A. L., and
B. Katz.
The effect of sodium ions on the electrical activity of the giant axon of the squid.
J. Physiol. (Lond.)
108:
37–77,
1949.
|
95. |
Hoffman, E. K.
Anion transport systems in the plasma membrane of vertebrate cells.
Biochim. Biophys. Acta
684:
1–31,
1986.
|
96. |
Hoffman, J. F., and
P. C. Laris.
Determination of membrane potential in human and Amphiuma red blood cells by means of a fluorescent probe.
J. Physiol. (Lond.)
239:
519–552,
1974.
|
97. |
Hoffman, J. F.,
J. H. Kaplan,
T. J. Callahan.
The Na/K pump in red cells is electrogenic.
Federation Proc.
38:
2440,
1979.
|
98. |
Hoffman, J. F.,
J. H. Kaplan,
T. J. Callahan, and
J. C. Freedman.
Electrical resistance of the red cell membrane and the relation between net anion transport and the anion exchange mechanism.
Ann. NY Acad. Sci.
314:
357–360,
1980.
|
99. |
Hoffman, P. G., and
D. C. Tosteson.
Active sodium and potassium transport in high potassium and low potassium sheep red cells.
J. Gen. Physiol.
58:
438–466,
1971.
|
100. |
Holmgren, M., and
R. F. Rakowski.
Pre‐steady state transient currents mediated by the Na/K pump in internally perfused Xenopus oocytes.
Biophys. J.
66:
912–922,
1994.
|
101. |
Horowitz, B.,
K. A. Eakle,
G. Scheiner‐Bobis,
G. R. Randolph,
C. Y. Chen,
R. A. Hitzeman, and
R. A. Farley.
Synthesis and assembly of functional mammalian Na,K‐ATPase in yeast.
J. Biol. Chem.
265:
4189–4192,
1990.
|
102. |
Hunter, M. J. A.
quantitative estimate of the non‐exchange restricted chloride permeability of the human red cell.
J. Physiol. (Lond.)
218:
49P–50P,
1971.
|
103. |
Jencks, W. P.
Utilization of binding energy and coupling rules for active transport and other coupled vectorial processes.
Methods Enzymol.
171:
145–64,
1989.
|
104. |
Jenks, W. P.
Catalysis in Chemistry and Enzymology.
New York:
McGraw‐Hill,
1969.
|
105. |
Jennings, M. L.
Proton fluxes associated with erythrocyte membrane anion exchange.
J. Membr. Biol.
28:
187–205,
1976.
|
106. |
Jennings, M. L.,
Apparent.
“recruitment” of sulfate transport sites by the Cl gradient across the human erythrocyte membrane.
In: Membrane Transport in Erythrocytes,
edited by U. V. Lassen,
H. H. Ussing, and
J. O. Wieth.
Copenhagen:
Munksgaard,
1980,
p. 450–463.
|
107. |
Jennings, M. L.
Stoichiometry of a half‐turnover of band 3, the chloride transport protein of human erythrocytes.
J. Gen. Physiol.
79:
169–185,
1982.
|
108. |
Jennings, M. L.
Structure and function of the red blood cell anion transport protein.
Annu. Rev. Biophys. Chem.
18:
397–430,
1989.
|
109. |
Jennings, M. L.
Rapid electrogenic sulfate‐chloride exchange mediated band 3 in human erythrocytes.
J. Gen. Physiol.
105:
21–47,
1995.
|
110. |
Jennings, M. L.,
M. Allen, and
R. K. Schulz.
Effects of membrane potential on electrically silent transport.
J. Gen. Physiol.
96:
991–1012,
1990.
|
111. |
Jennings, M. L., and
R. K. Schulz.
Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N‐ethylmaleimide.
J. Gen. Physiol.
97:
799–817,
1991.
|
112. |
Jennings, M. L., and
J. S. Smith.
Anion‐proton co‐transport through the human red blood cell band 3 protein. Role of glutamate 681.
J. Biol. Chem.
267:
13964–13971,
1992.
|
113. |
Jentsch, T. J.,
T. R. Stahlknecht,
H. Hollwede,
D. G. Fischer,
S. K. Keller, and
M. Widerholt.
A bicarbonate‐dependent process inhibitable by disulfonic stilbenes and a sodium/hydrogen exchange mediate 22Na+ uptake into cultured bovine corneal endothelium.
J. Biol. Chem.
260:
795–801,
1985.
|
114. |
Jewell, E. A., and
J. B. Lingrel.
Comparison of the substrate dependence properties of the rat, Na,K‐ATPase α1, α2, and α3 isoforms expressed in HeLa cells.
J. Biol. Chem.
266:
16925–16930,
1991.
|
115. |
Jørgensen, P. L.
Conformational transitions in the alpha‐subunit and ion occlusion.
Soc. Gen. Physiol. Ser.
46:
189–200,
1991.
|
116. |
Jørgensen, P. L., and
J. P. Andersen.
Structural basis for E1‐E2 conformational transitions in Na,K‐pump and Ca‐pump proteins.
J. Membr. Biol.
103:
95–120,
1988.
|
117. |
Kaji, D., and
Y. Tsukitani.
Role of protein phosphatase in activation of KCl cotransport in human erythrocytes.
Am. J. Physiol.
260
(Cell Physiol. 29):
C178–C182,
1991.
|
118. |
Kaplan, J. H.
Sodium pump‐mediated ATP:ADP exchange: The sided effect of sodium and potassium ions.
J. Gen. Physiol.
80:
915,
1982.
|
119. |
Kaplan, J. H.
Sodium ions and the sodium pump: Transport and enzymatic activity.
Am. J. Physiol.
245
(Gastrointest. Liver Physiol. 5):
G327–G333,
1983.
|
120. |
Kaplan, J. H.
Ion movements through the sodium pump.
Annu. Rev. Physiol.
47:
535,
1985.
|
121. |
Kaplan, J. H., and
L. J. Kenney.
ADP supports ouabain‐sensitive K‐K exchange in human red blood cells.
Ann. N.Y. Acad. Sci.
402:
292,
1982.
|
122. |
Kaplan, J. H., and
L. J. Kenney.
Temperature effects of sodium pump phosphoenzyme distribution in human red blood cells.
J. Gen. Physiol.
85:
123–136,
1985.
|
123. |
Karlish, S.J.D.
Measurement of active and passive Na+ and K+ fluxes in reconstituted vesicles.
Methods Enzymol.
156:
179–88,
1988.
|
124. |
Karlish, S J.
The mechanism of active cation transport by the Na/K‐pump.
Prog. Clin. Biol. Res.
273:
207–216,
1988.
|
125. |
Karlish, S.J.D.,
R. Goldschleger,
Y. Shanak, and
A. Rephaeli.
Charge transfer by the Na/K pump.
In: The Na,K pump, Part A: Molecular Aspects,
edited by J. C. Skou,
J. G. Nørby,
A. B. Maunsbach, and
M. Esmann.
New York:
Alan R. Liss, Inc.,
1988,
p. 519–524.
|
126. |
Kimmich, G. A.
Preparation and properties of mucosal epithelial cells isolated from small intestine.
Biochemistry
9:
3659–3668,
1970.
|
127. |
Kinne, R.K.H.
Transport in isolated cells from defined nephron segments.
Methods Enzymol.
191:
380–409,
1990.
|
128. |
Knauf, P. A.
Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure.
Curr. Top. Membr. Transp.
12:
249–363,
1979.
|
129. |
Knauf, P. A.,
G. F. Fuhrmann,
S. Rothstein, and
A. Rothstein.
The relationship between exchange and net anion flow across the human red blood cell membrane.
J. Gen. Physiol.
69:
363–386,
1977.
|
130. |
Knauf, P. A.,
F.‐Y. Law,
T. Tarshis, and
W. Furuya.
Effects of the transport site conformation on the binding of external NAP‐tauring to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry.
J. Gen. Physiol.
83:
683–701,
1984.
|
131. |
Knauf, P. A., and
N. A. Mann.
Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system.
J. Gen. Physiol.
83:
703–725,
1984.
|
132. |
Knauf, P. A., and
N. A. Mann.
Location of the chloride self‐inhibitory site of the human erythrocyte anion exchange system.
Am. J. Physiol.
251
(Cell Physiol. 20):
C1–C9,
1986.
|
133. |
Knauf, P. A.,
L. J. Spinelli, and
N. A. Mann.
Flufenamic acid senses conformation and asymmetry of human erythrocyte band 3 anion transport protein.
Am. J. Physiol.
257
(Cell Physiol. 26):
C277–C289,
1989.
|
134. |
Krupka, R. M.
Role of substrate binding forces in exchange‐only transport systems: I. Transition‐state theory.
J. Membr. Biol.
109:
151–158,
1989.
|
135. |
Krupka, R. M.
Role of substrate binding forces in exchange‐only transport systems: II. Implications for the mechanism of the anion exchanger of red cells.
J. Membr. Biol.
109:
159–171,
1989.
|
136. |
Ku, C.‐P.,
M. L. Jennings, and
H. Passow.
A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane.
Biochim. Biophys. Acta.
553:
132–141,
1979.
|
137. |
Labotka, R. J., and
A. Omachi.
Erythrocyte anion transport of phosphate analogus.
J. Biol. Chem.
262:
305–311,
1987.
|
138. |
Lafaire, A. V., and
W. Schwarz.
Voltage dependence of the rheogenic Na+/K+‐A ATPase in the membrane of oocytes of Xenopus laevis.
J. Membl. Biol.
91
(1):
43–51,
1986.
|
139. |
Lambert, I. H.,
E. K. Hoffmann, and
P. Christensen.
Role of prostaglandins and leukotrienes in volume regulation in Ehrlich ascites tumor cells.
J. Membr. Biol.
98:
247–256,
1987.
|
140. |
Laris, P. C., and
J. F. Hoffman.
Optical determination of electrical properties of red blood cell and Ehrlich ascites tumor cell membranes with fluorescent dyes.
In: Optical Methods in Cell Physiology, Vol. 40,
edited by P. De Weer and
B. M. Salzberg.
New York:
John Wiley and Sons,
1986,
p. 199.
|
141. |
Lassen, U. V.,
Membrane potential and membrane resistance of red blood cells.
In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status,
edited by M. Rorth and
P. Astrup.
Copenhagen:
Munksgaard,
1972,
p. 291–306.
|
142. |
Lauf, P. K.
K+:Cl− cotransport: sulfhydryls, divaltne cations, and the mechanism of volume activation in a red cell.
J. Membr. Biol.
88:
1–13,
1985.
|
143. |
Läuger, P.
Electrogenic Ion Pumps.
Sunderland, MA:
Sinauer Associates, Inc.,
1991,
p. 313.
|
144. |
Läuger, P., and
H.‐J. Apell.
Transient behavior of the Na+/K+‐pump: Microscopic analysis of nonstationary ion‐translocation.
Biochim. Biophys. Acta
944:
451–464,
1988.
|
145. |
Läuger, P., and
H.‐J. Apell.
Voltage dependence of partial reactions of the Na+/K+ pump: Predictions from microscopic models.
Biochim. Biophys. Acta
945:
1–10,
1988.
|
146. |
Läuger, P., and
P. Jauch.
Microscopic description of voltage effects on ion‐driven cotransport systems.
J. Membr. Biol.
91:
275–284,
1986.
|
147. |
Läuger, P.
Voltage dependence of sodium‐calcium exchange: Prediction from kinetic models.
J. Membr. Biol.
99:
1–11,
1987.
|
148. |
Lee, B. S.,
R. B. Gunn, and
R. R. Kopito.
Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line.
J. Biol. Chem.
266:
11448–11454,
1991.
|
149. |
Lee, K. H., and
R. Blostein.
Red cell sodium fluxes catalysed by the sodium pump in the absence of K+ and ADP.
Nature
285:
338–339,
1980.
|
150. |
Lepke, S., and
H. Passow.
The permeability of the human red blood cell to sulfate ions.
J. Membr. Biol.
6:
158–182,
1971.
|
151. |
Levinson, C.
Sodium‐dependent ion cotransport in a steady‐state Ehrlich ascites tumor cells.
J. Membr. Biol.
87:
121–130,
1985.
|
152. |
Lieberman, M.,
S. D. Hauschka,
Z. W. Hall,
B. R. Eisenberg,
R. Horn,
J. V. Walsh,
R. W. Tsien,
A. W. Jones,
J. L. Wlaker,
M. Poenie,
F. Fay,
F. Fabiato, and
C. C. Ashley.
Isolated muscle cells as a physiological model.
Am. J. Physiol.
253
(Cell Physiol. 22):
C349–C363,
1987.
|
153. |
Lingrel, J. B., and
T. Kuntzweiler.
Na+, K(+)‐ATPase.
J. Biol. Chem.
269
(31):
19659–19662,
1994.
|
154. |
Maloney, P. C.,
S. V. Ambudkar,
V. Anantharam,
L. A. Sonna, and
A. Varadhachary.
Anion‐exchange mechanisms in bacteria.
Microbiol. Rev.
54:
1–17,
1990.
|
155. |
Marin, R., and
J. F. Hoffman.
Cytoplasmic anions and substrate‐derived PO4 are simultaneously transported with Na in “uncoupled” Na efflux mediated by the red cell Na/K pump.
J. Gen. Physiol.
88:
37a,
1986.
|
156. |
Marin, R., and
J. F. Hoffman.
Phosphate from the phosphointermediate (EP) of the human red blood cell Na/K pump is coeffluxed with Na, in the absence of external K.
J. Gen. Physiol.
104:
1–32,
1994.
|
157. |
Marin, R., and
J. F. Hoffman.
ADP + orthophosphate (P1) stimulates an Na/K pump‐mediated coefflux of P1 and Na in human red blood cell ghosts.
J. Gen. Physiol.
104:
33–55,
1994.
|
158. |
Marx, A.,
J. P. Rubbersberg, and
R. Rudel.
Dependence of the electrogenic pump current of Xenopus oocytes on external potassium.
Pflusers Arch.
408
(5):
537–539,
1987.
|
159. |
Matsuoka, S., and
D. W. Hilgemann.
Steady state and dynamic properties of cardiac sodium‐calcium exchange. Ion and voltage dependencies of the transport cycle.
J. Gen. Physiol.
100:
963–1001,
1992.
|
160. |
McRoberts, J. A.,
C. T. Tran, and
M. H. Saier, Jr..
Characterization of low potassium‐resistant mutants of the Madin‐Darby canine kidney cell line with defects in NaCl/KCl symport.
J. Biol. Chem.
258:
12320–12326,
1983.
|
161. |
Milanick, M. A.
A branched reaction mechanism for the Na/K pump as an alternative explanation for a non‐monotonic current vs. membrane potential response.
J. Membr. Biol.
119:
33–39,
1991.
|
162. |
Milanick, M. A.
Na‐Ca exchange: Evidence against a ping‐pong mechanism and against a Ca pool in ferret red blood cells.
Am. J. Physiol.
261
(Cell Physiol. 30): 261:
C185–193,
1991.
|
163. |
Milanick, M. A., and
M.D.S. Frame.
Intracellular Na, extracellular Ca, Cd and Mn: Implications for kinetic models of Na/Ca exchange in ferret red blood cells.
Ann. NY Acad. Sci.
639:
604–615,
1991.
|
164. |
Milanick, M. A., and
R. B. Gunn.
Proton‐sulfate cotransport: Mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells.
J. Gen. Physiol.
79:
87–113,
1982.
|
165. |
Milanick, M. A., and
R. B. Gunn.
Proton‐sulfate cotransport: External proton activation of sulfate influx into human red blood cells.
Am. J. Physiol.
247
(Cell Physiol. 16):
247:
C247–C259,
1984.
|
166. |
Milanick, M. A., and
R. B. Gunn.
Proton inhibition of chloride exchange: A synchrony of band 3 proton and anion transport sites.
Am. J. Physiol.
250
(Cell Physiol. 19)
C955,
1986.
|
167. |
Milanick, M. A. and
J. F. Hoffman.
Ion transport and volume regulation in red blood cells.
Ann. NY Acad. Sci.
25:
174–186,
1987.
|
168. |
Mills, J. W.,
E. M. Schwiebert, and
B. A. Stanton.
The cytoskeleton and cell volume regulation.
In: Cellular and Molecular Physiology of Cell Volume Regulation,
edited by R. Strange.
Ann Arbor, MI:
CRC Press,
Chap. 14,
p. 241–253.
|
169. |
Minton, A. P.
The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences.
Mol. Cell. Biochem.
55:
119–140,
1992.
|
170. |
Minton, A. P.,
G. C. Colclasure, and
J. C. Parker.
Model for the role of macromolecular crowding in the regulation of cellular volume.
Proc. Natl. Acad. Sci. U.S.A.
89:
10504–10506,
1992.
|
171. |
Morgan, M.,
P. Hanke,
R. Grygorczyk,
A. Tintschl,
H. Fasold, and
H. Passow.
Mediation of anion transport in oocytes of Xenopus laevis by biosynthetically inserted band 3 protein from mouse spleen erythroid cells.
EMBO J.
4:
1927–1931,
1985.
|
172. |
Nakao, M., and
D. C. Gadsby.
Voltage dependence of Na translocation by the Na/K pump.
Nature
323:
628–630,
1986.
|
173. |
Nakao, M., and
D. C. Gadsby.
[Na] and [K] dependence of the Na/K pump current‐voltage relationship in guinea pig ventricular myocytes.
J. Gen. Physiol.
94
(3):
539–565,
1989.
|
174. |
Newton, A. C., and
W. H. Huestis.
Efflux of dipicolinic acid from human erythrocytes, sealed membrane fragments, and band 3‐liposome complexes: A fluorescence probe for the erythrocyte anion transporter.
Anal. Biochem.
156:
56–60,
1986.
|
175. |
Norby, J. G., and
I. Kodos.
Overview: The phosphointermediates of Na,K‐ATPase.
Prog. Clin. Biol. Res.
263A:
249–70,
1988.
|
176. |
Oberleithner, H.,
U. Kersting, and
M. Hunter.
Cytoplasmic pH determines K+ conductance in fused renal epithelial cells.
Proc. Natl. Acad. Sci. U.S.A.
85:
8345–8349,
1988.
|
177. |
Omay, H. S., and
W. Schwarz.
Voltage‐dependent stimulation of Na+/K(+)‐pump current by external cations: Selectivity of different K+ cogeners.
Biochim. Biophys. Acta
1104
(1):
167–173,
1992.
|
178. |
Palfrey, H. C.,
Protein phosphorylation control in the activity of volume‐sensitive transport systems.
In: Cellular and Molecular Physiology of Cell Volume Regulation,
edited by K. Stunga.
Boca Raton, IL:
CRC Press.
Chap. 12
1994.
|
179. |
Palfrey, H. C., and
E. B. Pewitt.
The ATP and Mg2+ dependence of Na+ ‐K+ ‐2Cl‐cotransport reflects a requirement for protein phosphorylation: Studies using calyculin A.
Pflugers Arch.
425:
321–328,
1993.
|
180. |
Parent, L.,
S. Supplisson,
D.D.F. Loo, and
E. M. Wright.
Electrogenic properties of the cloned Na/glucose cotransporter: I. Voltage‐clamp studies.
J. Membr. Biol.
125:
49–62,
1992.
|
181. |
Parker, J. C.
Sodium and calcium movements in dog red blood cells.
J. Gen. Physiol.
71:
1–17,
1978.
|
182. |
Parker, J. C.,
C. Colclasure, and
T. J. McManus.
Coordinated regulation of shrinkage‐induced Na/H exchange and swelling‐induced [K‐Cl] cotransport in dog red cells. Further evidence from activation kinetics and phosphatase inhibition.
J. Gen. Physiol.
98:
869–892,
1991.
|
183. |
Parker, J. C.,
H. J. Gitelman,
P. S. Glosson, and
D. L. Leonard.
Role of calcium in volume regulation by dog red blood cells.
J. Gen. Physiol.
65:
84–96,
1975.
|
184. |
Parker, J. C.,
T. J. McManus,
L. C. Starke, and
J. H. Gitelman.
Coordinated regulation of Na/H exchange and [K‐Cl] cotransport in dog red cells.
J. Gen. Physiol.
96:
1141–1152,
1990.
|
185. |
Passow, H.
Passive ion permeability of the erythrocyte membrane.
Prog. Biophys. Mol. Biol.
19:
425–467,
1969.
|
186. |
Passow, H.
Molecular aspects of band 3 protein‐mediated anion transport across the red blood cell membrane.
Rev. Physiol. Biochem. Pharmacol.
103:
62–203,
1986.
|
187. |
Pedemonte, C. H., and
Kaplan, J. H.
Chemical modification as an approach to elucidation of sodium pump structure‐function relations.
Am. J. Physiol.
258
(Cell Physiol. 27):
C1–C23,
1990.
|
188. |
Pewitt, E. G.,
R. S. Hegde,
M. Haas, and
H. C. Palfrey.
The regulation of Na/K/2Cl cotransport and bumetanide binding in avian erythrocytes by protein phosphorylation and dephosphorylation.
J. Biol. Chem.
265:
20747–20756,
1990.
|
189. |
Plesner, I. W.
Use of experimental isotope‐exchange fluxes in reversible enzyme and membrane transport models, assessed by simultaneous computer simulation of unidirectional and net chemical rates.
Biochem. J.
286:
295–303,
1992.
|
190. |
Polvani, D., and
R. Blostein.
Protons as substitutes for sodium and potassium pump reaction.
J. Biol. Chem.
263:
16757,
1988.
|
191. |
Polvani, D., and
R. Blostein.
Effects of cytoplasmic sodium concentration on the electrogenicity of the sodium pump.
J. Biol. Chem.
264
(26):
15182–15185,
1989.
|
192. |
Pratap, P. R., and
J. D. Robinson.
Rapid kinetic analyses of the Na +/K(+)‐ATPase distinguish among different criteria for conformational change.
Biochim. Biophys. Acta
1151
(1):
89–98,
1993.
|
193. |
Pratap, P. R.,
J. D. Robinson, and
M. I. Steinberg.
The reaction sequence of the Na+/K+ ‐ATPase: Rapid kinetic measurements distinguish between alternative schemes.
Biochim. Biophys. Acta
1069:
288,
1991.
|
194. |
Preston, G. M.,
T. Piazza Carroll,
W. B. Guggino, and
P. Agre.
Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein.
Science
256:
385–387,
1992.
|
195. |
Rakowski, R. F.
Simultaneous measurement of changes in current and tracer flux in voltage‐clamped squid giant axon.
Biophys. J.
55
(4):
663–71,
1989.
|
196. |
Rakowski, R. F.
Stoichiometry and voltage dependence of the Na + /K+ pump in squid giant axons and Xenopus oocytes.
Soc. Gen. Physiol. Ser.
46:
339–353,
1991.
|
197. |
Rakowski, R. F.
Charge movement by the Na/K pump in Xenopus oocytes.
J. Gen. Physiol.
101:
117–144,
1993.
|
198. |
Rakowski, R. F.,
D. C. Gadsby, and
P. De Weer.
Stoichiometry and voltage dependence of the sodium pump in voltage‐clamped, internally dialyzed squid giant axons.
J. Gen. Physiol.
93
(5):
903–941,
1989.
|
199. |
Rakowski, R. F., and
C. L. Paxson.
Voltage dependence of Na/K pump current in Xenopus oocytes.
J. Membr. Biol.
106:
173–182,
1988.
|
200. |
Rakowski, R. F.,
L. A. Vasilets,
J. LaTona, and
W. Schwarz.
A negative slope in the current‐voltage relationship of the Na/K pump in Xenopus oocytes produced by reduction of external K.
J. Mem. Biol.
121:
177–187,
1991.
|
201. |
Ray, W. J., Jr..
Rate‐limiting step: A quantitative definition. Application to steady‐state enzymic reactions.
Biochemistry
22
(20):
4625–4637,
1983.
|
202. |
Reeves, J. P., and
C. C. Hale.
The stoichiometry of the cardiac sodium‐calcium exchange system.
J. Biol. Chem.
259
(12):
7733–7739,
1984.
|
203. |
Rephaeli, A.,
D. E. Richards, and
S.J.D. Karlish.
Electrical potential accelerates the E1P(Na) → E2P conformational transition of (Na,K)‐ATPase in reconstituted vesicles.
J. Biol. Chem.
261:
12437–12440,
1986.
|
204. |
Restrepo, D.,
B. L. Cronise,
R. B. Snyder,
L. J. Spinelli, and
P. A. Knauf.
Kinetics of DIDS inhibition of HL‐60 cell anion exchange rules out ping‐pong model with slippage.
Am. J. Physiol.
260
(Cell Physiol. 29):
C535–C544,
1991.
|
205. |
Restrepo, D.,
D. J. Kozody,
L. J. Spinelli,
P. A. Knauf.
Cl‐Cl exchange in promyelocytic HL‐60 cells follows simultaneous rather than ping‐pong kinetics.
Am. J. Physiol.
257
(Cell Physiol. 26):
C520–527,
1989.
|
206. |
Reuss, L.
Changes in cell volume measured with an electrophysiologic technique.
Proc. Natl. Acad. Sci. U.S.A.
82:
6014–6018,
1985.
|
207. |
Rodbell, M.
Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis.
J. Biol. Chem.
239:
375–380,
1964.
|
208. |
Rosen, B. P.
Recent advances in bacterial ion transport.
Annu. Rev. Microbiol.
40:
263–286,
1986.
|
209. |
Roughton, F.J.W.
Recent work on carbon dioxide transport by the blood.
Physiol. Rev.
15:
241–296,
1935.
|
210. |
Rubin, L. J.,
R. S. Keller,
J. L. Parker, and
H. R. Adams.
Contractile dysfunction of ventricular myocytes isolated from endotoxemic guinea pigs.
Shock
2:
113–120,
1994.
|
211. |
Russell, J. M.
ATP‐dependent chloride influx into internally dialyzed squid giant axons.
J. Membr. Biol.
28:
335–349,
1976.
|
212. |
Russell, J. M., and
M. S. Brodwick.
Properties of chloride transport in barnacle muscle fibers.
J. Gen. Physiol.
73:
343–368,
1979.
|
213. |
Sachs, J. R.
Kinetics of the inhibition of the Na‐K pump by external sodium.
J. Physiol. (Lond.)
264:
449–470,
1977.
|
214. |
Sachs, J. R.
The order of release of sodium and addition of potassium in the sodium‐potassium pump reaction mechanism.
J. Physiol. (Lond.)
302:
219–240,
1980.
|
215. |
Sachs, J. R.
Potassium exchange as part of the overall reaction mechanism of the sodium pump of the human red blood cell.
J. Physiol. (Lond.)
374:
221–244,
1981.
|
216. |
Sachs, J. R.
The order of addition of sodium and release of potassium at the inside of the sodium pump of the human red cell.
J. Physiol. (Lond.)
381:
149–168,
1986.
|
217. |
Sachs, J. R.,
Successes and failures of the Albers‐Post model in predicting ion flux kinetics.
In: The Sodium Pump; Structure, Mechanism, and Regulation,
edited by J. H. Kaplan and
P. De Weer.
New York:
Rockefeller University Press,
1991,
p. 249–266.
|
218. |
Sackin, H.
A stretch‐activated K+ channel sensitive to cell volume.
Proc. Natl. Acad. Sci. USA
86:
1731–1735,
1992.
|
219. |
Sagar, A., and
R. F. Rakowski.
Access channel model for the voltage dependence of the forward‐running Na+/K+ pump.
J. Gen. Physiol.
103:
869–894,
1994.
|
220. |
Salhany, J. M., and
P. B. Rauenbuehler.
Kinetics and mechanism of erythrocyte anion exchange.
J. Biol. Chem.
258:
245–249,
1983.
|
221. |
Salhany, J. M., and
J. C. Swanson.
Kinetics of passive anion transport across the human erythrocyte membrane.
Biochemistry
17:
3354–3362,
1978.
|
222. |
Sanders, D.
Generalized kinetic analysis of ion‐driven cotransport systems: II. Random ligand binding as a simple explanation for non‐michaelian kinetics.
J. Membr. Biol.
90:
67–87,
1986.
|
223. |
Sarkadi, B.,
E. Mack, and
A. Rothstein.
Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume‐activated Cl− and K+ conductance pathways.
J. Gen. Physiol.
83:
497–512,
1984.
|
224. |
Sarkadi, B., and
J. C. Parker.
Activation of ion transport pathways by changes in cell volume.
Biochim. Biophys. Acta
1071:
407–427,
1991.
|
225. |
Schwarz, W., and
L. A. Vasilets.
Variations in voltage‐dependent stimulation of the Na + /K+ pump in Xenopus oocytes by external potassium.
Soc. Gen. Physiol. Ser.
46:
327–338,
1991.
|
226. |
Schwarz, W.,
L. A. Vasilets,
H. Omay,
A. Efthymiadis,
J. Rettinger, and
S. Elsner.
Electrogenic properties of the endogenous and of modified torpedo Na+/K+ ‐pumps in Xenopus oocytes: The access channel for external cations.
In: The Sodium Pump,
edited by E. Bomberg and
W. Schoner.
Darmstadt, Germany:
Steinkopff,
1994,
p. 482–494.
|
227. |
Schweigert, B.,
A. V. Lafaire, and
W. Schwarz.
Voltage dependence of the Na‐K ATPase: Measurements of ouabain‐dependent membrane current and ouabain binding in oocytes of
Xenopus laevis. Pflugers. Arch.
412
(6):
579–588,
1988.
|
228. |
Segel, I. H.
Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady‐State Enzyme Systems,
edited by I. H. Segel.
New York:
John Wiley and Sons,
1975.
|
229. |
Seglen, P. O.
Preparation of isolated rat liver cells.
Methods Cell. Biol.
13:
29–84,
1976.
|
230. |
Sen, A. K., and
W. F. Widdas.
Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit.
J. Physiol. (Lond.)
160:
392–403,
1962.
|
231. |
Sigel, E.
Use of Xenopus oocytes for the functional expression of plasma membrane proteins.
J. Membr. Biol.
117:
201–221,
1990.
|
232. |
Simchowitz, L., and
P. DeWeer.
Chloride movements in human neutrophils. Diffusion, exchange, and active transport.
J. Gen. Physiol.
88:
167–194,
1986.
|
233. |
Skou, J. C.
The fourth Datta lecture. The energy coupled exchange of Na+ for K+ across the cell membrane. The Na+, K(+)‐pump.
FEBS Lett.
268
(2):
314–324,
1990.
|
234. |
Skou, J. C., and
M. Esmann.
The Na, K‐ATPase.
J. Bioenerg. Biomembr.
24
(3):
249–261,
1992.
|
235. |
Slayman, C. L.,
H. Kuroda, and
A. Ballarin‐Denti.
Cation effluxes associated with the utpake of TPP+, TPA+, and TPMP+ by Neurospora: Evidence for a predominantly electroneutral influx process.
Biochim. Biophys. Acta
1190:
57–71,
1994.
|
236. |
Starke, L. C., and
M. J. Jennings.
[K‐Cl] cotransport in rabbit red cells: Further evidence for regulation by protein phosphatase type 1.
Am. J. Physiol.
244
(Cell Physiol. 33):
C118–C124,
1993.
|
237. |
Strange, K., ed.
Cellular and Molecular Physiology of Cell Volume Regulation.
Ann Arbor, MI:
CRC Press.,
1994.
|
238. |
Sturek, M.,
K. Kunda, and
Q. Hu.
Sarcoplasmic reticulum buffering of myoplasmic calcium in bovine coronary artery smooth muscle.
J. Physiol.
451:
25–48,
1992.
|
239. |
Sturek, M.,
P. Smith, and
L. Stehno‐Bittel.
In vitro models of vascular endothelial cell calcium regulation.
In: Ion Channels of Vascular Smooth Muscle Cells and Endothelial Cells,
edited by N. Sperelakis and
H. Kuriyama.
New York:
Elsevier
1991,
349–364.
|
240. |
Stürmer, W.,
R. Bühler,
H.‐J. Apell, and
P. Läger.
Charge translocation by the Na,K‐pump: II. Ion binding and release at the extracellular face.
J. Membr. Biol.
121:
163–176,
1991.
|
241. |
Thomas, J. A.,
R. N. Buchsbaum,
A. Zimniak, and
E. Racker.
Intracellular pH measurement in Ehrlich asictes tumor cells utilizing spectroscopic probes generated in situ.
Biochemistry
18:
2210–2218,
1979.
|
242. |
Thomas, R. C.
Electrogenic sodium pump in nerve and muscle cells.
Physiol. Rev.
52
(3):
563–594,
1972.
|
243. |
Thomas, R. C.
The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones.
J. Physiol. (Lond.)
255:
715–735,
1976.
|
244. |
Tosteson, D. C., and
J. F. Hoffman.
Regulation of cell volume by active cation transport in high and low potassium sheep red cells.
J. Gen. Physiol.
44:
169–194,
1960.
|
245. |
Turin, L.
Electrogenic sodium pumping in Xenopus blastomeres: Apparent pump conductance and reversal potential.
Soc. Gen. Physiol. Ser.
38:
345–351,
1984.
|
246. |
Vasilets, L. A., and
W. Schwarz.
Regulation of endogenous and expressed Na+/K+ pumps in Xenopus oocytes by membrane potential and stimulation of protein kinases.
J. Membr. Biol.
125
(2):
119–132,
1992.
|
247. |
Vasilets, L. A., and
W. Schwarz.
Structure‐function relationships of cation binding in the Na+/K +‐ATPase.
Biochim. Biophys. Acta
1154:
201–222,
1993.
|
248. |
Vasilets, L. A.,
H. S. Omay,
T. Ohata,
S. Noguchi,
M. Kawamura, and
W. Schwarz.
Stimulation of the Na+/K+ pump by external [K+] is regulated by voltage‐dependent gating.
J. Biol. Chem.
266:
16285–16288,
1991.
|
249. |
Vasilets, L. A.,
T. Ohta,
S. Noguchi,
M. Kawamura, and
W. Schwarz.
Voltage‐dependent inhibition of the sodium pump by external sodium: Species differences and possible role of the N‐terminus of the α‐subunit.
Eur. Biophys. J.
21:
433–443,
1993.
|
250. |
Vaughan‐Jones, R. D.
Regulation of chloride in quiescent sheep heart Purkinje fibers studied using intracellular chloride and pH‐sensitive microelectrodes.
J. Physiol. (Lond.)
137:
19203,
1979.
|
251. |
Verkman, A. S., and
J. A. Dix.
Effect of unstirred layers on binding and reaction kinetics at a membrane surface.
Anal. Biochem.
142:
109–116,
1984.
|
252. |
Verkman, A. S.,
M. C. Sellers,
A. C. Chao,
T. Leung, and
R. Ketcham.
Synthesis and characterization of improved chloride‐sensitive fluorescent indicators for biological applications.
Anal. Biochem.
178:
355–361,
1989.
|
253. |
Wang, D. N.,
V. E. Sarabia,
R.A.F. Reithmeier, and
W. Kuhlbrandt.
Three‐dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3.
EMBO J.
13:
3230–3235,
1994.
|
254. |
White, B., and
R. Blostein.
Comparison of red cell and kidney (Na+, K+)‐ATPase at 0°C.
Biochim. Biophys. Acta
688:
685–690,
1982.
|
255. |
Williams, D. A., and
F. S. Fay.
Intracellular calibration of the fluorescent calcium indicator Fura‐2.
Cell Calcium
11:
75–83,
1990.
|
256. |
Zeuthen, T.
The effects of chloride ions on electrodiffusion on the membrane of a leaky epithelium. Studies of intact tissue by microelectrodes.
Pflugers Arch.
408:
267–274,
1987.
|