Comprehensive Physiology Wiley Online Library

Osmolytes and Cell‐Volume Regulation: Physiological and Evolutionary Principles

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 What Makes a Solute an Osmolyte?
2 The Basic Osmoregulatory Response: Conservation Paired with Change
3 Osmolyte Taxonomy: Evolutionary Convergence and Conservation
3.1 The Discovery of Organic Osmolytes
3.2 Polyols and Sugars
3.3 Free Amino Acids and Their Derivatives
3.4 Methylated Ammonium and Sulfonium Compounds
3.5 Urea and Urea with Methylamines
4 Osmolyte Effects: Perturbation, Stabilization, and Compatibility
4.1 Changes in Concentrations of Inorganic Ions Are Generally Perturbing of Biochemical Systems
4.2 Organic Osmolyte Compatibility with Biochemical Functions In Vitro
4.3 Organic Osmolyte Compatibility with Protein Structure In Vitro
4.4 Compatibility of Organic Osmolytes: In Vivo and Cell Culture Studies
5 Organic Osmolyte Effects: Counteracting Solute Systems
5.1 Counteracting Solute Effects In Vitro
5.2 Urea Counteraction in Living Systems
5.3 Salt Counteraction (Haloprotection)
5.4 Exceptions to Counteraction
6 Regulation of Osmolyte Concentrations
6.1 Interspecific Similarities in Basic Regulatory Strategies
6.2 Osmolyte Regulation in Bacteria and Plants
6.3 Osmolyte Regulation in Invertebrates
6.4 Osmolyte Regulation in Lower Vertebrates
6.5 The Mammalian Kidney
6.6 Stress Protein Induction in Hyperosmotic Stress
7 Mechanisms of Solute Effects—and Non‐Effects
7.1 The Hofmeister Series and Organic Osmolyte Structures
7.2 Preferential Exclusion of Compatible Osmolytes from the Protein Surface
7.3 Solute Interactions with Ligands in Solution
7.4 Nonreactivity of Modified Amino Acid Osmolytes
7.5 Monosaccharide Reactivity with Proteins
7.6 Favorable Effects of Compatible Solutes Not Related to Osmoregulation
7.7 Inorganic Ions: Perturbation and Compatibility
8 Evolutionary Perspectives
8.1 Macromolecular vs. “Micromolecular” Evolution
8.2 Evolution of Osmolyte Molecules: An Overview of Principles of Selection
8.3 Summary: The Adaptive Significance of Osmolyte System Evolution
Figure 1. Figure 1.

Time courses of change in intracellular contents of starch, glycerol, proline, and potassium ion in the unicellular green alga Chlorococcum submarinium exposed to rapid changes in salinity. Upper panel. Shift from 0.1 M to 0.5 M NaCl. Lower panel. Shift from 0.5 M to 0.1 M NaCl.

Redrawn from Blackwell and Gilmour 22
Figure 2. Figure 2.

Structures of the major classes of organic osmolytes.

Figure 3. Figure 3.

Effects of salts on in vitro activities of protein translation systems and enzymes. Upper left panel. Effects of KCl and K‐acetate on protein synthesis by a cell‐free translation system from mouse L‐cells.[Redrawn from Weber et al. 216]. Lower left panel. Effects of K‐acetate, glycine betaine, and proline on protein synthesis by a cell‐free translation system from wheat germ, using wheat leaf mRNA. [Redrawn from Wyn‐Jones 228.] Upper right panel. Effects of variations in KCl concentration on the maximal velocity of the pyruvate kinase reactions of diverse animals. [Redrawn from Bowlus and Somero 25.] Lower right panel. Effects of variations in NaCl concentration on activities of malate dehydrogenases from pig heart, a salt‐sensitive plant (Phaseolus vulgaris), and a salt‐tolerant plant (Atriplex spongiosa).

Redrawn from Greenway and Osmond 97
Figure 4. Figure 4.

Compatibility of organic osmolytes with in vitro biochemical functions. Upper left panel: Effects of solutes on the apparent Michaelis–Menten constant (Km) of phosphoenolpyruvate (PEP) for the pyruvate kinase reaction of the marine crab Pachygrapsus crassipes. [Redrawn from Bowlus and Somero 25.] Lower left panel. Effects of solutes on activity of malate dehydrogenase from leaves of Rhizophora mangle. [Redrawn from Sommer et al. 200.] Upper right and middle right panels. Effects of solutes on two mammalian renal enzymes, uricase (Km of uric acid) (upper) and argininosuccinase (Vmax) (middle). [Redrawn from Yancey 233.] Lower right panel. Effects of solutes on translation of wheat germ RNA by wheat germ ribosomes.

Redrawn from Gibson et al. 86
Figure 5. Figure 5.

The effects of organic solutes and inorganic ions on protein structure. Panel A. Solute effects on the thermal stability of bovine pancreatic ribonuclease. [Data from Bowlus and Somero 25, Yancey and Somero 239.] Panel B. Effects of proline, glycine betaine, and sorbitol on resistance of malate dehydrogenase from leaves of the plant Salsola soda to thermal denaturation. [Redrawn from Nikolopoulos and Manetas 161.] Panel C. Effects of different polyhydric alcohols on the resistance of chymotrypsin to heat inactivation. [Redrawn from Gekko and Morikawa 85.] Panel D. Effects of polyhydric alcohols on the thermal stability of lysozyme. [Redrawn from Fujita et al. 78.] Panel E. Effects of polyhydric alcohols on the rate of reassociation of urea‐denatured asparaginase.

Redrawn from Shifrin and Parrot 188
Figure 6. Figure 6.

The effects of the osomoprotectants choline‐O‐sulfate and glycine betaine on growth of E. coli cells in medium containing 0.65 M NaCl.

Redrawn from Hanson 105. β‐alanine betaine showed osmoprotection similar to that afforded by glycine betaine (not shown)
Figure 7. Figure 7.

A. Effects of exogenous tolrestat (Tol, an aldose reductase inhibitor), glycine betaine (Bet, 5 mM), or glucose on the number of successful colonies formed (from seeded individual cells) and cellular osmolyte contents (mmol/kg protein, normalized to control amount of sorbitol) of mammalian renal cells (PAP‐HT25) after 7–14 days in culture, in 500–550 mosmolar media (* = significant change). [Redrawn from Yancey et al. 236 and Moriyama et al. 154.] B. Effects of various dietary manipulations on osmolytes of rat renal inner medulla (contents in mmol/kg wet wet or mmol/kg protein, expressed as percent of appropriate control contents). Sorbinil: animals treated for 10 days with the aldose reductase inhibitor sorbinil in the diet at 40 mg/kg/d [data from Yancey et al. 238]; Galactosemia: animals with 50% dietary galactose for 10 days [data from Bondy et al. 23]; High Protein and Low Protein: animals on 50% or 4.5% protein, respectively (compared to 20% for controls) [data from Peterson et al. 163]. (* = significant change.) C. Effects of high glucose and the aldose reductase inhibitor tolrestat on cloning efficiency of PAP‐HT25 cells. At near normal osmolality high glucose inhibits cloning efficiency, but tolrestat offsets this effect through limiting the accumulation of sorbitol.

Redrawn after Yancey et al. 236
Figure 8. Figure 8.

Counteracting effects of urea and methylamines on in vitro biochemical systems. Panel A. Effects on Km of ADP for pyruvate kinase of the stingray (Urolophis halleri). Horizontal dashed line shows the 95% confidence interval around the control (no urea or methylamines) Km value. [Redrawn after Yancey and Somero 241.] Panel B. Effects on Vmax of the porcine kidney argininosuccinase reaction (unpublished data of T. Arnell, M. Blykowski, and P. H. Yancey). Panel C. Effects on activity of MDCK cell c‐AMP‐phosphodiesterase. [Data from Subramaniam and Jackson 204.] Rates are expressed relative to control (no added urea or methylamine). For all but the treatment “1 M urea + 0.5 M GPC” rates were significantly lower than control rates. Panel D. Effects on degree of phosphorylation of sarcoplasmic reticulum ATPase. [Data from deMeis and Inesi 61.] Panel E. Effects on thermal denaturation of bovine pancreatic ribonuclease. [Redrawn after Yancey and Somero 240]. Panel F. Labeling of sulfhydryl (−SH) groups of glutamate dehydrogenase (mammalian) by 4‐chloro‐7‐nitrobenzofurazan.

Redrawn after Yancey and Somero 240
Figure 9. Figure 9.

A. The effects of additions of NaCl, urea, glycerol, inositol, and glycine betaine to the growth medium on the colony‐forming efficiency of MDCK cells. Colony‐forming efficiency values are the number of colonies formed per number of single cells seeded on the growth plates, as normalized to control values (no test solutes added to the growth medium, which had an osmolality of 305 mosm/kg). Error bars represent SDs. Open squares connected by dashed lines represent glycine betaine added to cultures containing urea. (* = 2:1 ratio of urea to glycine betaine.) [Redrawn from Yancey and Burg 235.] B. GPC and urea contents in renal inner medulla of rats subjected to various combinations of dietary protein and salt load. Upper regression line: Diets are low protein/high salt (LPHS), normal protein/normal salt (NPNS), and high protein/reduced salt (HPRS). Lower regression line: Diets are all low salt (salt load lower than HS, NS, and RS diets on upper line). LP = low protein, RP = reduced protein (two separate experiments), HP = high protein, LC = low calorie diet (animals restricted to maintenance level of food).

Redrawn from Peterson et al. 163
Figure 10. Figure 10.

The protection of Aphanothece halophytica ribulosebisphosphate carboxylase/oxygenase activity from inhibition by KCl by organic solutes with different degrees of methylation.

Redrawn from Incharoensakdi et al. 119
Figure 11. Figure 11.

Left panels. Distributions of osmolytes in kidneys of antidiuretic rabbits (held without water for 2 days). The kidneys were cut into seven sections, from the outer cortex 7 to the tip of the inner medulla 7, as shown on the abscissa. “Total” in the bottom frame indicates the sum of methylamines + polyols. [Redrawn after Yancey and Burg 234.] Right panels. Correlations between renal contents of sodium and total methylamines and polyols for rat, rabbit, and wild rodents (mesic montane whole, Microtus montanus; deer mouse, Peromyscus m. gambeli; and xeric desert pocket mouse, Perognathus parvus). Each point represents four to seven animals. The upper points in each frame represent values for the inner medulla, the middle points are for the outer medulla, and the lowest points are for cortex. The upper panel is for antidiuretic animals and the lower panel is for diuretic animals (given water for 3 or more days); “x” values in lower panel are data replotted from upper panel.

Redrawn after Yancey 233
Figure 12. Figure 12.

Summary model of organic osmolyte accumulation and loss in mammalian renal medullary cells. The kinetics of the different processes differ. When extracellular osmolality is changed, activities of transporters and enzymes change slowly (left side of model), but permeability to solutes changes rapidly (right side of model).

Model after Burg 34
Figure 13. Figure 13.

Hofmeister series of ions.

Figure 14. Figure 14.

Preferential hydration model of Timasheff, illustrating distribution of water (open circles) and solute (closed circles) following equilibrium dialysis of a protein. Solutes that show preferential binding to a protein (that is, destabilizing solutes) occur at higher concentration inside dialysis bag than in solution outside bag (frame A). Structure‐stabilizing solutes are excluded from the water near protein and thus occur at higher concentrations outside dialysis bag (frame B). Because structure‐stabilizing solutes increase the surface tension of water, they also tend to be excluded from the water‐air interface.

Redrawn after Timasheff 205
Figure 15. Figure 15.

The opposite effects of binding solutes and preferentially excluded solutes on protein conformation, assembly, and solubility. Upper panel. Binding solute (S) favors unfolding of the protein (native coil) to the denatured state (random, extended coil). Lower panel. Preferentially excluded solute (S) favors conversion of unfolded protein (left) into compact, folded conformation of the protein (center). Higher concentrations of excluded solute favor enhanced protein‐protein interactions (right), and, at sufficiently high solute concentrations, protein precipitation.

Redrawn from Low 143


Figure 1.

Time courses of change in intracellular contents of starch, glycerol, proline, and potassium ion in the unicellular green alga Chlorococcum submarinium exposed to rapid changes in salinity. Upper panel. Shift from 0.1 M to 0.5 M NaCl. Lower panel. Shift from 0.5 M to 0.1 M NaCl.

Redrawn from Blackwell and Gilmour 22


Figure 2.

Structures of the major classes of organic osmolytes.



Figure 3.

Effects of salts on in vitro activities of protein translation systems and enzymes. Upper left panel. Effects of KCl and K‐acetate on protein synthesis by a cell‐free translation system from mouse L‐cells.[Redrawn from Weber et al. 216]. Lower left panel. Effects of K‐acetate, glycine betaine, and proline on protein synthesis by a cell‐free translation system from wheat germ, using wheat leaf mRNA. [Redrawn from Wyn‐Jones 228.] Upper right panel. Effects of variations in KCl concentration on the maximal velocity of the pyruvate kinase reactions of diverse animals. [Redrawn from Bowlus and Somero 25.] Lower right panel. Effects of variations in NaCl concentration on activities of malate dehydrogenases from pig heart, a salt‐sensitive plant (Phaseolus vulgaris), and a salt‐tolerant plant (Atriplex spongiosa).

Redrawn from Greenway and Osmond 97


Figure 4.

Compatibility of organic osmolytes with in vitro biochemical functions. Upper left panel: Effects of solutes on the apparent Michaelis–Menten constant (Km) of phosphoenolpyruvate (PEP) for the pyruvate kinase reaction of the marine crab Pachygrapsus crassipes. [Redrawn from Bowlus and Somero 25.] Lower left panel. Effects of solutes on activity of malate dehydrogenase from leaves of Rhizophora mangle. [Redrawn from Sommer et al. 200.] Upper right and middle right panels. Effects of solutes on two mammalian renal enzymes, uricase (Km of uric acid) (upper) and argininosuccinase (Vmax) (middle). [Redrawn from Yancey 233.] Lower right panel. Effects of solutes on translation of wheat germ RNA by wheat germ ribosomes.

Redrawn from Gibson et al. 86


Figure 5.

The effects of organic solutes and inorganic ions on protein structure. Panel A. Solute effects on the thermal stability of bovine pancreatic ribonuclease. [Data from Bowlus and Somero 25, Yancey and Somero 239.] Panel B. Effects of proline, glycine betaine, and sorbitol on resistance of malate dehydrogenase from leaves of the plant Salsola soda to thermal denaturation. [Redrawn from Nikolopoulos and Manetas 161.] Panel C. Effects of different polyhydric alcohols on the resistance of chymotrypsin to heat inactivation. [Redrawn from Gekko and Morikawa 85.] Panel D. Effects of polyhydric alcohols on the thermal stability of lysozyme. [Redrawn from Fujita et al. 78.] Panel E. Effects of polyhydric alcohols on the rate of reassociation of urea‐denatured asparaginase.

Redrawn from Shifrin and Parrot 188


Figure 6.

The effects of the osomoprotectants choline‐O‐sulfate and glycine betaine on growth of E. coli cells in medium containing 0.65 M NaCl.

Redrawn from Hanson 105. β‐alanine betaine showed osmoprotection similar to that afforded by glycine betaine (not shown)


Figure 7.

A. Effects of exogenous tolrestat (Tol, an aldose reductase inhibitor), glycine betaine (Bet, 5 mM), or glucose on the number of successful colonies formed (from seeded individual cells) and cellular osmolyte contents (mmol/kg protein, normalized to control amount of sorbitol) of mammalian renal cells (PAP‐HT25) after 7–14 days in culture, in 500–550 mosmolar media (* = significant change). [Redrawn from Yancey et al. 236 and Moriyama et al. 154.] B. Effects of various dietary manipulations on osmolytes of rat renal inner medulla (contents in mmol/kg wet wet or mmol/kg protein, expressed as percent of appropriate control contents). Sorbinil: animals treated for 10 days with the aldose reductase inhibitor sorbinil in the diet at 40 mg/kg/d [data from Yancey et al. 238]; Galactosemia: animals with 50% dietary galactose for 10 days [data from Bondy et al. 23]; High Protein and Low Protein: animals on 50% or 4.5% protein, respectively (compared to 20% for controls) [data from Peterson et al. 163]. (* = significant change.) C. Effects of high glucose and the aldose reductase inhibitor tolrestat on cloning efficiency of PAP‐HT25 cells. At near normal osmolality high glucose inhibits cloning efficiency, but tolrestat offsets this effect through limiting the accumulation of sorbitol.

Redrawn after Yancey et al. 236


Figure 8.

Counteracting effects of urea and methylamines on in vitro biochemical systems. Panel A. Effects on Km of ADP for pyruvate kinase of the stingray (Urolophis halleri). Horizontal dashed line shows the 95% confidence interval around the control (no urea or methylamines) Km value. [Redrawn after Yancey and Somero 241.] Panel B. Effects on Vmax of the porcine kidney argininosuccinase reaction (unpublished data of T. Arnell, M. Blykowski, and P. H. Yancey). Panel C. Effects on activity of MDCK cell c‐AMP‐phosphodiesterase. [Data from Subramaniam and Jackson 204.] Rates are expressed relative to control (no added urea or methylamine). For all but the treatment “1 M urea + 0.5 M GPC” rates were significantly lower than control rates. Panel D. Effects on degree of phosphorylation of sarcoplasmic reticulum ATPase. [Data from deMeis and Inesi 61.] Panel E. Effects on thermal denaturation of bovine pancreatic ribonuclease. [Redrawn after Yancey and Somero 240]. Panel F. Labeling of sulfhydryl (−SH) groups of glutamate dehydrogenase (mammalian) by 4‐chloro‐7‐nitrobenzofurazan.

Redrawn after Yancey and Somero 240


Figure 9.

A. The effects of additions of NaCl, urea, glycerol, inositol, and glycine betaine to the growth medium on the colony‐forming efficiency of MDCK cells. Colony‐forming efficiency values are the number of colonies formed per number of single cells seeded on the growth plates, as normalized to control values (no test solutes added to the growth medium, which had an osmolality of 305 mosm/kg). Error bars represent SDs. Open squares connected by dashed lines represent glycine betaine added to cultures containing urea. (* = 2:1 ratio of urea to glycine betaine.) [Redrawn from Yancey and Burg 235.] B. GPC and urea contents in renal inner medulla of rats subjected to various combinations of dietary protein and salt load. Upper regression line: Diets are low protein/high salt (LPHS), normal protein/normal salt (NPNS), and high protein/reduced salt (HPRS). Lower regression line: Diets are all low salt (salt load lower than HS, NS, and RS diets on upper line). LP = low protein, RP = reduced protein (two separate experiments), HP = high protein, LC = low calorie diet (animals restricted to maintenance level of food).

Redrawn from Peterson et al. 163


Figure 10.

The protection of Aphanothece halophytica ribulosebisphosphate carboxylase/oxygenase activity from inhibition by KCl by organic solutes with different degrees of methylation.

Redrawn from Incharoensakdi et al. 119


Figure 11.

Left panels. Distributions of osmolytes in kidneys of antidiuretic rabbits (held without water for 2 days). The kidneys were cut into seven sections, from the outer cortex 7 to the tip of the inner medulla 7, as shown on the abscissa. “Total” in the bottom frame indicates the sum of methylamines + polyols. [Redrawn after Yancey and Burg 234.] Right panels. Correlations between renal contents of sodium and total methylamines and polyols for rat, rabbit, and wild rodents (mesic montane whole, Microtus montanus; deer mouse, Peromyscus m. gambeli; and xeric desert pocket mouse, Perognathus parvus). Each point represents four to seven animals. The upper points in each frame represent values for the inner medulla, the middle points are for the outer medulla, and the lowest points are for cortex. The upper panel is for antidiuretic animals and the lower panel is for diuretic animals (given water for 3 or more days); “x” values in lower panel are data replotted from upper panel.

Redrawn after Yancey 233


Figure 12.

Summary model of organic osmolyte accumulation and loss in mammalian renal medullary cells. The kinetics of the different processes differ. When extracellular osmolality is changed, activities of transporters and enzymes change slowly (left side of model), but permeability to solutes changes rapidly (right side of model).

Model after Burg 34


Figure 13.

Hofmeister series of ions.



Figure 14.

Preferential hydration model of Timasheff, illustrating distribution of water (open circles) and solute (closed circles) following equilibrium dialysis of a protein. Solutes that show preferential binding to a protein (that is, destabilizing solutes) occur at higher concentration inside dialysis bag than in solution outside bag (frame A). Structure‐stabilizing solutes are excluded from the water near protein and thus occur at higher concentrations outside dialysis bag (frame B). Because structure‐stabilizing solutes increase the surface tension of water, they also tend to be excluded from the water‐air interface.

Redrawn after Timasheff 205


Figure 15.

The opposite effects of binding solutes and preferentially excluded solutes on protein conformation, assembly, and solubility. Upper panel. Binding solute (S) favors unfolding of the protein (native coil) to the denatured state (random, extended coil). Lower panel. Preferentially excluded solute (S) favors conversion of unfolded protein (left) into compact, folded conformation of the protein (center). Higher concentrations of excluded solute favor enhanced protein‐protein interactions (right), and, at sufficiently high solute concentrations, protein precipitation.

Redrawn from Low 143
References
 1. Adler, L., and L. Gustafsson. Polyhydric alcohol production and amino acid pool in relation to halotolerance of the yeast Debaryomyces hansenii. Arch. Microbiol. 124: 123–130, 1980.
 2. Altringham, J. D., P. H. Yancey, and I. A. Johnston. The effects of osmoregulatory solutes on tension generation by dogfish skinned muscle fibres. J. Exp. Zool. 96: 443–445, 1982.
 3. Anchordoguy, T. J., J. F. Carpenter, C. A. Cecchine, J. H. Crowe, and L. M. Crowe. Effects of protein perturbants on phospholipid bilayers. Arch. Biochem. Biophys. 283: 356–361, 1990.
 4. Anderson, P. M. Purification and properties of the glutamine‐and N‐acetyl‐L‐glutamate‐dependent carbamoyl phosphate synthetase from liver of Squalus acanthias. J. Biol. Chem. 256: 12228–12238, 1981.
 5. Anderson, P. M. Ketone body and phosphoenolpyruvate formation by isolated hepatic mitochondria from Squalus acanthias spiny dogfish. J. Exp. Zool. 254: 144–154, 1990.
 6. Arakawa, T., J. F. Carpenter, Y. A. Kita, and J. H. Crowe. The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27: 401–415, 1990.
 7. Arakawa, T., and S. N. Timasheff. The stabilization of proteins by osmolytes. Biophys. J. 47: 411–414, 1985.
 8. Avison, M. J., D. L. Rothman, T. W. Nixon, W. S. Long, and N. J. Siegel. 1H NMR study of renal trimethylamine responses to dehydration and acute volume loading in man. Proc. Natl. Acad. Sci. U.S.A. 88: 6053–6057, 1991.
 9. Bagnasco, S., R. Balaban, H. Fales, Y.‐M. Yang, and M. Burg. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J. Biol. Chem. 261: 5872–5877, 1986.
 10. Bagnasco, S., S. Uchida, R. Balaban, P. Kador, and M. Burg. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci U.S.A. 84: 1718–1720, 1987.
 11. Bagnasco, S. M., M. H. Montrose, and J. S. Handler. Role of calcium in organic osmolyte efflux when MDCK cells are shifted from hypertonic to isotonic medium. Am. J. Physiol. 264 (Cell Physiol. 33): C1165–1170, 1993.
 12. Balaban, R., and M. B. Burg. Osmotically active organic solutes in the renal inner medulla. Kidney Int. 31: 562–564, 1987.
 13. Balaban, R., and M. A. Knepper. Nitrogen‐14 nuclear magnetic resonance spectroscopy of mammalian tissues. Am. J. Physiol. 245 (Cell Physiol. 14): C439–C444, 1983.
 14. Balinsky, J. B. Adaptation of nitrogen metabolism to hyperosmotic environment in amphibia, J. Exp. Zool. 215: 350–356, 1981.
 15. Ballantyne, J. S., and T. W. Moon. The effects of urea, trimethylamine oxide and ionic strength on the oxidation of acyl carnitines by mitochondria isolated from the liver of the little skate Raja erinacea. J. Comp. Physiol. 156B: 845–851, 1986.
 16. Ballantyne, J. S., C. D. Moyes, and T. W. Moon. Compatible and counteracting solutes and the evolution of ion and osmoregulation in fishes. Can. J. Zool. 65: 1883–1888, 1987.
 17. Bateman, J. B., G. F. Evans, P. R. Brown, C. Gabriel, and E. H. Grant. Dielectric properties of the system bovine albumin:urea:‐betaine in aqueous solution. Phys. Med. Biol. 37: 175–182, 1992.
 18. Beck, F., A. Dorge, R. Rick, and K. Thurau. Intra‐ and extracellular elemental concentrations of rat inner papilla in antidiuresis. Kidney Int. 25: 397–403, 1984.
 19. Beck, F. X., M. Schmolke, W. G. Guder, A. Dorge, and K. Thurau. Osmolytes in renal medulla during rapid changes in papillary tonicity. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F849–F856, 1992.
 20. Beever, R. E., and E. P. Laracy. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J. Bacteriol. 168: 1358–1365, 1986.
 21. Beltmans, D., and A. Van Laere. Glycerol cycle enzymes and intermediates during adaptation of Dunaliella teriolecta cells to hyperosmotic stress. Plant Cell Environ. 10: 185–190, 1987.
 22. Blackwell, J. R., and Gilmour, D. J. Physiological response of the unicellular green alga Chlorococcum submarinum to rapid changes in salinity. Arch. Microbiol. 157: 86–91, 1991.
 23. Bondy, C, B. D. Cowley, Jr., S. L. Lightman, and P. F. Kador. Feedback inhibition of aldose reductase gene expression in rat renal medulla:galactitol accumulation reduces enzyme messenger RNA levels and depletes cellular inositol content. J. Clin. Invest. 86: 1103–1108, 1990.
 24. Borowitzka, L., Glycerol and other carbohydrate osmotic effectors. In: Transport Processes, Iono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Ballien, Berlin: Springer‐Verlag, 1985, p. 437–453.
 25. Bowlus, R. D., and G. N. Somero. Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end‐products of anaerobic metabolism in marine invertebrates. J. Exp. Zool. 208: 137–152, 1979.
 26. Boylan, J. W., Gill permeability in Squalus acanthia. In: Sharks, Skates and Rays, edited by P. W. Gilbert, R. F. Mathewson, and D. P. Rail. Baltimore, MD: Johns Hopkins Press, 1967, p. 197–206.
 27. Bradley, T. J. Physiology of osmoregulation in mosquitoes. Annu. Rev. Entomol. 32: 439–462, 1987.
 28. Brown, A. D. Compatible solutes and extreme water stress in eukaryotic micro‐organisms. Adv. Microbial Physiol. 17: 181–242, 1978.
 29. Brown, A. D. Microbial Water Stress Physiology: Principles and Perspectives. New York: Wiley, 1990.
 30. Brown, A. D., and J. Simpson. Water relations of sugar‐tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72: 589–591, 1972.
 31. Brown, L. M., and J. A. Hellebust. The contribution of organic solutes to osmotic balance in some green and eustigmatophyte algae. J. Phycol. 16: 265–270, 1980.
 32. Buche, A., P. Colson, and C. Houssier. Organic osmotic effectors and chromatin structure. J. Biomol. Struct. Dynam. 8: 601–618, 1990.
 33. Bunn, H. F., and P. J. Higgins. Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213: 222–224, 1982.
 34. Burg, M. B., Molecular basis for accumulation of compatible osmolytes in mammalian renal cells. In: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis, Berlin: Springer‐Verlag, 1992, p. 33–51.
 35. Burg, M. B., and A. Garcia‐Perez. How tonicity regulates gene expression. J. Am. Soc. Nephrol. 3: 121–127, 1992.
 36. Burg, M. B., and P. F. Kador. Sorbitol, osmoregulation, and the complications of diabetes. J. Clin. Invest. 81: 635–640, 1988.
 37. Burton, R. F. The composition of animal cells: solutes contributing to osmotic pressure and charge balance. Comp. Biochem. Physiol. 76B: 663–671, 1983.
 38. Burton, R. S. Incorporation of 14C‐bicarbonate into the free amino acid pool during hyperosmotic stress in an intertidal copepod. J. Exp. Zool. 238: 55–61, 1986.
 39. Burton, R. S. Regulation of proline synthesis during osmotic stress in the copepod Tigriopus californicus. J. Exp. Zool. 259: 166–173, 1991.
 40. Burton, R. S. Regulation of proline synthesis in osmotic reponse: effects of protein synthesis inhibitors. J. Exp. Zool. 259: 272–277, 1991.
 41. Carpenter, J. F., and J. H. Crowe. Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 25: 459–470, 1988.
 42. Carpenter, J. S., S. J. Prestrelski, and T. Arakawa. Separation of freezing‐ and drying‐induced denaturation of lyophilized proteins using stress‐specific stabilization: I. Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303: 456–464, 1993.
 43. Cayley, S., B. A. Lewis, H. J. Guttman, and M. T. Record. Characterization of the cytoplasm of Escherichia coli K‐12 as a function of external osmolarity. Implications for protein‐DNA interactions in vivo. J. Mol. Biol. 222: 281–300, 1991.
 44. Cayley, S., B. A. Lewis, and M. T. Record. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K‐12. J. Bacteriol. 174: 1586–1595, 1992.
 45. Chamberlin, M. E., and K. Strange. Anisosmotic cell volume regulation: a comparative view. Am. J. Physiol. 257 (Cell Physiol. 26): C159–173, 1989.
 46. Chambers, S. T., and C. M. Kunin. The osmoprotective properties of urine for bacteria: the protective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars and urea. J. Infect. Dis. 152: 1308–1315, 1985.
 47. Chauncey, B., M. V. Leite, and L. Goldstein. Renal sorbitol accumulation and associated enzyme activities in diabetes. Enzyme 39: 231–234, 1988.
 48. Clark, M. E., The osmotic role of amino acids: discovery and function. In: Transport Processes, Iono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Ballien, Berlin: Springer‐Verlag, 1985, p. 412–423.
 49. Clark, M. E. Non‐Donnan effects of organic osmolytes in cell volume changes. Curr. Top. Membr. Transp. 30: 251–271, 1987.
 50. Clark, M. E., J.A.M. Hinke, and M. E. Todd. Studies on water in barnacle muscle fibres. II. Role of ions and organic solutes in swelling of chemically‐skinned fibres. J. Exp. Biol. 90: 43–63, 1981.
 51. Clark, M. E., and M. Zounes. The effects of selected cell osmolytes on the activity of lactate dehydrogenase from the euryhaline polychaete, Nereis succinea. Biol. Bull. Woods Hole 153: 468–484, 1977.
 52. Cohen, D. M., J. C. Wasserman, and S. R. Gullans. Immediate early gene and HSP70 expression in hyperosmotic stress in MDCK cells. Am. J. Physiol. 261 (Cell Physiol. 30): C594–C601, 1991.
 53. Collins, K. D., and M. W. Washabaugh. The Hofmeister effect and the behavior of water at interfaces. Q. Rev. Biophys. 18: 323–422, 1985.
 54. Corder, C. N., J. G. Collins, T. S. Brannan, and J. Sharma. Aldose reductase and sorbitol dehydrogenase distribution in rat kidney. J. Histochem. Cytochem. 25: 1–8, 1977.
 55. Cowley, B. D., Jr., J. D. Ferraris, D. Carper, and M. B. Burg. In vivo osmotic regulation of aldose reductase mRNA, protein, and sorbitol content in rat renal medulla. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F154–F161, 1990.
 56. Crowe, J. Transport of exogenous substrate and cell volume regulation in bivalve molluscs. J. Exp. Zool. 233: 21–28, 1977.
 57. Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. Anhydrobiosis, Annu. Rev. Physiol. 54: 579–599, 1992.
 58. Csonka, L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53: 121–147, 1989.
 59. Csonka, L. N., and A. D. Hanson. Prokaryotic osmoregulation: genetics and physiology. Annu. Rev. Microbiol. 45: 569–606, 1991.
 60. Cumme, G. A., A. Horn and W. Achilles. Metal complex formation and its importance for enzyme regulation. Acta Biol. Med. Ger. 31: 349–363, 1973.
 61. De Meis, L., and G. Inesi. Effects of organic solvents, methylamines, and urea on affinity for Pi of the Ca2+‐ATPase of sarcoplasmic reticulum. J. Biol. Chem. 263: 157–161, 1988.
 62. Deaton, L. E. Hyperosmotic cellular volume regulation in the ribbed mussel Geukensia demissa: inhibition by lysosomal and proteinase inhibitors. J. Exp. Zool. 244: 375–382, 1987.
 63. Deaton, L. E., T. J. Hilbish, and R. K. Koehn. Protein as a source of amino nitrogen during hyperosmotic volume regulation in the mussel Mytilus edulis. Physiol. Zool. 57: 609–619, 1984.
 64. DeLaney, R. G., Lahiri, S., Hamilton, R., and Fishman, A. P. Acid‐base balance and plasma composition in the aestivating lungfish (Protopterus), Am. J. Physiol. 232 (Regulatory Integrative Comp. Physiol. 3): R10–R17, 1977.
 65. Dickinson, D.M.J., and G. O. Kirst. Osmotic adjustment in marine eukaryotic algae: the role of inorganic ions, quaternary ammonium, tertiary sulphonium and carbohydrate solutes. I. Diatoms and a Rhodophyte. New Phytol. 106: 645–655, 1987.
 66. Dickinson, D.M.J., and G. O. Kirst. Osmotic adjustment in marine eukaryotic algae: the role of inorganic ions, quaternary ammonium, tertiary sulphonium and carbohydrate solutes. II. Prasinophytes and Haptophytes. New Phytol. 106: 657–666, 1987.
 67. Dickinson, D.M.J., and G. O. Kirst. The role of β‐dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 167: 536–543, 1986.
 68. Dinnibier, U., E. Limpinsel, R. Schmid, and E. P. Bakker. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K‐12 to elevated sodium chloride concentrations, Arch. Microbiol. 150: 348–357, 1988.
 69. Duman, J. G., D. W. Wu, L. Xu, D. Tursman, and T. M. Olsen. Adaptations of insects to subzero temperatures, Q. Rev. Biol. 66: 387–410, 1991.
 70. Edmands, S., and P. H. Yancey. Effects on rat renal osmolytes of extended treatment with an aldose reductase inhibitor. Comp. Biochem. Physiol. 103C: 499–502, 1992.
 71. Edwards, D. M, R. H. Reed, and W.D.P. Stewart. Osmoaccumulation in Enteromorpha intestinalis: long‐term effects of osmotic stress on organic solute accumulation. Mar. Biol. 98: 467–476, 1988.
 72. Emyanitoff, R. G. and B. E. Wright. Effect of intracellular carbohydrates on heat resistance of Dictyostelium discoideum spores. J. Bacteriol. 140: 1008–1012, 1979.
 73. Evans, R. D., R. A. Black, W. H. Loescher, and R. J. Fellows. Osmotic relations of the drought‐tolerant shrub Artemisia tridentata in response to water stress. Plant Cell Environ. 15: 49–59, 1992.
 74. Fenstermacher, J., F. Sheldon, J. Ratner, and A. Roomet. The blood to tissue distribution of various polar materials in the dogfish, Squalus acanthias. Comp. Biochem. Physiol. 42A: 195–204, 1972.
 75. Fincham, D. A., M. W. Wolowyk, and J. D. Young. Volume‐sensitive taurine transport in fish erythrocytes. J. Membr. Biol. 96: 45–56, 1987.
 76. Ford, C. W. Accumulation of O‐methyl‐inositols in water‐stressed Vigna species. Phytochemistry 21: 1149–1151, 1982.
 77. Frédericq, L. Sur la concentration moleculaire du sang et des tissus chez les animaux aquaticques. Bull. Acad. Belg. Cl. Sci. 1901: 428–454, 1901.
 78. Fujita, Y., Y. Iwasa, and Y. Noda. The effect of polyhydric alcohols on the thermal denaturation of lysozyme as measured by differential scanning calorimetry. Bull. Chem. Soc. Jpn. 55: 1896–1900, 1982.
 79. Fulton, A. B. How crowded is the cytoplasm? Cell 30: 345–347, 1982.
 80. Furlong, T. J., T. Moriyama, J. Capdevila, D. T. Rice, and K. R. Spring. Activation of osmolyte efflux from cultured renal papillary epithelial cells. J. Membr. Biol. 123: 269–277, 1991.
 81. Galinski, E. A., and R. M. Herzog. The role of trehalose as a substitute for nitrogen‐containing compatible solutes in Ectothiorhodospira halochloris. Arch. Microbiol. 153: 607–613, 1990.
 82. Galinski, E. A., and A. Oren. Isolation and structure determination of a novel compatible solute from the moderately halophilic purple sulfur bacterium Ectothiorhodospira marismortui. Eur. J. Biochem. 198: 593–598, 1991.
 83. Garcia‐Perez, A., and M. B. Burg. Renal medullary organic osmolytes. Physiol. Rev. 71: 1081–1114, 1991.
 84. Garret, M. A., and T. J. Bradley. Extracellular accumulation of proline, serine and trehalose in the haemolymph of osmoconforming brackish‐water mosquitoes. J. Exp. Biol. 129: 231–238, 1987.
 85. Gekko, K., and T. Morikawa. Thermodynamics of polyol‐induced thermal stabilization of chymotrypsinogen. J. Biochem. 90: 51–60, 1981.
 86. Gibson, T. S., J. Speirs, and C. J. Brady. Salt‐tolerance in plants. II. In vitro translation of m‐RNAs from salt‐tolerant and salt‐sensitive plants on wheat germ ribosomes. Responses to ions and compatible organic solutes. Plant Cell Environ. 7: 579–587, 1984.
 87. Gilles, R. Volume regulation in cells of euryhaline invertebrates. Curr. Top. Membr. Transp. 30: 205–247, 1987.
 88. Ginzburg, M. Dunaliella: a green alga adapted to salt. Adv. Bot. Res. 14: 93–183, 1987.
 89. Glous, K., and D. Le Rudulier. Transport and catabolism of proline betaine in salt‐stressed Rhizobium meliloti. Arch. Microbiol. 151: 143–148, 1989.
 90. Godt, R. E., R.T.H. Fogaca, M.A.W. Andrews, and T. M. Nosek. Influence of ionic strength on contractile force and energy consumption of skinned fibers from mammalian and crustacean striated muscle. In: Advances in Experimental Medicine and Biology, vol. 332. Mechanism of Myofilament Sliding in Muscle Contraction, edited by H. Sugi, G. H. Pollack. New York: Plenum, 1993, p. 763–774.
 91. Goldstein, L. Volume regulation in the erythrocyte of the little skate, Raja erinacea. J. Exp. Zool. Suppl. 2: 136–142, 1989.
 92. Goldstein, L., and A. Kleinzeller. Cell volume regulation in lower vertebrates. Curr. Top. Membr. Transp. 30: 181–204, 1987.
 93. Goolish, E. M., and R. S. Burton. Energetics of osmoregulation in an intertidal copepod: effects of anoxia and lipid reserves on the pattern of free amino acid accumulation. Tunc. Ecol. 3: 81–89, 1989.
 94. Gorman, J., R. G. Wyn Jones, and E. McDonnell. Some mechanisms of salt tolerance in crop plants. Plant Soil 89: 15–40, 1985.
 95. Gouesbet, G., Blanco, C., Hamelin, J., and Bernard, T. Osmotic adjustment in Brevibacterium ammoniagenes: pipecolic acid accumulation at elevated osmolalities. J. Gen. Microbiol. 138: 959–965, 1992.
 96. Gowrishankar, J., P. Jayashree, and K. Rajkumari. Molecular cloning of an osmoregulatory locus in Escherichia coli: increased proU gene dosage results in enhanced osmotolerance. J. Bacteriol. 168: 1197–1204, 1986.
 97. Greenway, H., and C. B. Osmond. Salt responses of enzymes from species differing in salt tolerance. Plant Physiol. 49: 256–259, 1972.
 98. Griffith, R. W., P.K.T. Pang, and L. A. Benedetto. Urea tolerance in the killifish, Fundulus heteroclitus. Comp. Biochem. Physiol. 62k: 327–330, 1979.
 99. Griffith, R. W., B. L. Umminger, B. F. Grant, P.K.T. Pang, and G. E. Pickford. Serum composition of the coelacanth Latimeria chalumnae Smith. J. Exp. Zool. 187: 87–102, 1974.
 100. Grossman, E. B., and S. C. Hebert. Renal inner medullary choline dehydrogenase activity: characterization and modulation. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F107–F112, 1989.
 101. Grunewald, R. W., and R.K.H. Kinne. Intercellular sorbitol content in isolated rat renal inner medullary collecting duct cells: regulation by extracellular osmolality. Pflugers Arch. 414: 178–184, 1989.
 102. Gullans, S. R., J. D. Blumenfeld, J. A. Balschi, M. Kaleta, R. M. Brenner, C. W. Heilig, and S. C. Hebert. Accumulation of major organic osmolytes in rat renal medulla in dehydration. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F626–F634, 1988.
 103. Hand, S. C., Water content and metabolic organization in anhydrobiotic animals, In: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis, Berlin: Springer‐Verlag, 1992, p. 104–127.
 104. Hand, S. C, and G. N. Somero. Urea and methylamine effects on rabbit muscle phosphofructokinase, J. Biol. Chem. 257: 734–741, 1982.
 105. Hanson, A., Compatible solute synthesis and compartmentation in plants. In: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis, Berlin: Springer‐Verlag, 1992, p. 52–60.
 106. Heilig, C. W., M. E. Stromski, J. D. Blumenfeld, J. P. Lee, and S. R. Gullans. Characterization of the major brain osmolytes that accumulate in salt‐loaded rats. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26) 257: F1108–1116, 1989.
 107. Hellebust, J. A. Mechanisms of response to salinity in halotolerant microalgae. Plant Soil 89: 69–81, 1985.
 108. Henderson, L. J. The Fitness of the Environment. New York: Macmillan, 1913.
 109. Henzel, R., and H. Konig. Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol. Lett. 49: 75–79, 1988.
 110. Herzog, R. M., E. A. Galinski, and H. G. Truper. Degradation of the compatible solute trehalose in Ectothiorhodospira halochloris: isolation and characterization of trehalase. Arch. Microbiol. 153: 600–606, 1990.
 111. Higgins, C. F., J. Cairney, D. A. Stirling, L. Sutherland, and I. R. Booth. Osmotic regulation of gene expression: ionic strength as an intracellular signal? Trends Biochem. Sci. 12: 339–344, 1987.
 112. Hilbish, T. J., L. E. Deaton and R. K. Koehn. Effect of allozyme polymorphism on regulation of cell volume. Nature 298: 688–689, 1982.
 113. Hochachka, P. W. and G. N. Somero. Biochemical Adaptation. Princeton, NJ: Princeton Univ. Press, 1984.
 114. Hofmeister, F. On the understanding of the effect of salts. Second report. On regularities in the precipitating effects of salts and their relationship to their physiological behavior. Naunyn‐Schmiedebergs Arch. Exp. Pathol. Pharmakol. 24: 247–260, 1888.
 115. Home, F. R. Accumulation of urea by a pulmonate snail during estivation. Comp. Biochem. Physiol. 38A: 565–570, 1971.
 116. Hosono, K. Effect of salt stress on lipid composition and membrane fluidity of the salt‐tolerant yeast Zygosaccharomyces rouxii. J. Gen. Microbiol. 138: 91–96, 1992.
 117. Hottiger, T., T. Boller, and A. Wiemken. Rapid changes of heat and desiccation tolerance correlated with changes in trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett. 220: 113–115, 1987.
 118. Impellizzeri, G., S. Mangiafico, G. Oriente, M. Piattelli, and S. Sciuto. Amino acids and low‐molecular‐weight carbohydrates of some marine red algae. Phytochemistry 14: 1549–1557, 1975.
 119. Incharoensakdi, A., T. Takabe, and T. Akazawa. Effect of betaine on enzyme activity and subunit interaction of ribulose‐1, 5‐bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Plant Physiol. 81: 1044–1049, 1986.
 120. Jebbar, M., T. Taliban, K. Glous, T. Bernard, and C. Blanco. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J. Bacteriol. 174: 5027–5035, 1992.
 121. Kaneshiro, E. S., Holz, G. G., Jr., and Dunham, P. B. Osmoregulation in a marine ciliate, Miamiensis avidus. II. Regulation of intracellular free amino acids. Biol. Bull. Woods Hole 137: 161–169, 1969.
 122. Kauss, H., K. S. Thomson, M. Thomson and W. Jeblick. Osmotic regulation. Physiological significance of proteolytic and nonproteolytic activation of isofloridoside‐phosphate synthetase. Plant Physiol. 63: 455–459, 1979.
 123. Keller, M. D. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol. Oceanogr. 6: 375–382, 1988.
 124. King, P. A., and L. Goldstein. Organic osmolytes and cell volume regulation in fish. Mol. Physiol. 4: 53–66, 1983.
 125. Kinne, R.K.H. The role of organic osmolytes in osmoregulation: from bacteria to mammals. J. Exp. Zool. 265: 346–355, 1993.
 126. Kirst, G. O. Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 21–53, 1989.
 127. Kleinzeller, A. Trimethylamine oxide and the maintenance of volume of dogfish shark rectal gland cells. J. Exp. Zool. 236: 11–17, 1985.
 128. Kloiber, O., B. Banjac, and L. R. Drewes. Protection against acute hyperammonemia: the role of quaternary amines. Toxicology 49: 83–90, 1988.
 129. Koehn, R. K., B. L. Bayne, M. N. Moore, and J. F. Siebenaller. Salinity related physiological and genetic differences between populations of Mytilus edulis. Biol. J. Linn. Soc. 14: 319–334, 1980.
 130. Kumazawa, Y., and Arai, K. Suppressive effect of sorbitol on denaturation of carp myosin B induced by neutral salts. Nippon Sui. Gak. 56: 679–686, 1990.
 131. Kwon, H. M., A. Yamauchi, S. Uchida, A. S. Preston, A. Garcia‐Perez, M. B. Burg, and J. S. Handler. CLoning of the cDNA for a Na+/myo‐inositol cotransporter, a hypertonicity stress protein. J. Biol. Chem. 267: 6297–6310, 1992.
 132. Lai, M.‐C, K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173: 5352–5358, 1991.
 133. Landfald, B., and A. R. Strom. Choline‐glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol. 165: 849–855, 1986.
 134. Lanyi, J. Salt‐dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38: 272–290, 1974.
 135. Larsen, P. I., L. K. Syndes, B. Landfald, and A. R. Strom. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch. Microbiol. 147: 1–7, 1987.
 136. Law, R. O. Amino acids as volume‐regulatory osmolytes in mammalian cells. Comp. Biochem. Physiol. 99A: 263–277, 1991.
 137. Lawitts, J. A., and J. D. Biggers. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol. Reprod. Dev. 31: 189–194, 1992.
 138. Le Rudulier, D., and L. Bouillard. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl. Environ. Microbiol. 46: 152–159, 1983.
 139. Lee, J. A., H. A. Lee, and P. J. Sadler. Uraemia: is urea more important than we thought? Lancet 338: 1438–1440, 1991.
 140. Leech, A. R., and L. Goldstein. β‐alanine oxidation in the liver of the little skate, Raja erinacea. J. Exp. Zool. 225: 9–14, 1983.
 141. Lien, Y‐H H., J. I. Shapiro, and L. Chan. Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 85: 1427–1435, 1990.
 142. Loomis, S. H., J. F. Carpenter, and J. H. Crowe. Identification of strombine and taurine as cryoprotectants in the intertidal bivalve Mytilus edulis. Biochim. Biophys. Acta. 943: 113–118, 1988.
 143. Low, P. S., Molecular basis of the biological compatibility of nature's osmolytes. In: Transport Processes, Iono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Ballien, Berlin: Springer‐Verlag, Berlin, 1985, p. 469–477.
 144. MacKay, M. A., R. S. Norton, and L. J. Borowitzka. Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130: 2177–2191, 1984.
 145. Mahan, M. J., and L. N. Csonka. Genetic analysis of the proBA genes of Salmonella typhimurium: physical and genetic analyses of the cloned proB + A + genes of Escherichia coli and of a mutant allele that confers proline overproduction and enhanced osmotolerance. J. Bacteriol. 156: 1249 –???, 1983.
 146. Manahan, D. T. Adaptations by invertebrate larvae for nutrient acquisition from seawater. Am. Zool. 30: 147–160, 1990.
 147. Mashino, T., and I. Fridovich. Effects of urea and trimethylamine‐N‐oxide on enzyme activity and stability. Arch. Biochem. Biophys. 258: 356–360, 1987.
 148. Mason, T. G., and G. Blunden. Quaternary ammonium and tertiary sulfonium compounds of algal origin as alleviators of osmotic stress. Bot. Mar. 32: 313–316, 1989.
 149. McClanahan, L. Adaptations of the spadefoot toad, Scaphiopus couchi, to desert environments. Comp. Biochem. Physiol. 20: 73–99, 1967.
 150. McConnell, F. M., and L. Goldstein. Intracellular signals and volume regulatory response in skate erythrocytes. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R982–R987, 1988.
 151. McCue, K. F., and A. D. Hanson. Drought and salt tolerance: towards understanding and application. Trends Biotechnol. 8: 358–362, 1990.
 152. Mirsalikhova, N. M. Stabilization of Na+, K+‐adenosine triphosphatase by dimethyl‐sulfoxide in the case of inactivation by urea. Biokhimiya 43: 43–39, 1978.
 153. Moriyama, T., A. Garcia‐Perez, and M. B. Burg. Factors affecting the ratio of different organic osmolytes in renal medullary cells. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F847–F858, 1990.
 154. Moriyama, T., A. Garcia‐Perez, A. D. Olson, and M. B. Burg. Intracellular betaine substitutes for sorbitol in protecting renal medullary cells from hypertonicity. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F494–F497, 1991.
 155. Moyes, C. D., and T. W. Moon. Solute effects on the glycine cleavage system of two osmoconformers Raja erinacea and Mya arenaria and an osmoregulator Pseudopleuronectes americanus. J. Exp. Zool. 242: 1–8, 1987.
 156. Murata, N., P. S. Mohanty, H. Hayashi, G. C. Papageorgiou. Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen‐evolving complex. FEBS Lett. 296: 187–189, 1992.
 157. Nakanishi, T., R. S. Balaban, and M. B. Burg. Survey of osmolytes in renal cell lines. Am. J. Physiol. 255 (Cell Physiol. 24): C181–C191, 1988.
 158. Nakanishi, T., and M. B. Burg. Osmoregulatory fluxes of myo‐inositol and betaine in renal cells. Am. J. Physiol. 257 (Cell Physiol. 26): C964–C970, 1989.
 159. Nakanishi, T., and M. B. Burg. Osmoregulation of glyceropho‐sphorylcholine content of mammalian renal cells. Am. J. Physiol. 257 (Cell Physiol. 26): C795–C801, 1989.
 160. Nakanishi, T., O. Uyama, and M. Sugita. Osmotically regulated taurine content in the rat renal inner medulla. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30): F957–962, 1991.
 161. Nikolopoulos, D., and Y. Manetas. Compatible solutes and in vitro stability of Salsola soda enzymes: proline incompatibility. Phytochemistry 30: 411–413, 1991.
 162. Nishiguchi, M. K. and G. N. Somero. Temperature‐ and concentration‐dependence of compatibility of the organic osmolyte β‐dimethylsulfoniopropionate. Cryobiology 29: 118–124, 1992.
 163. Peterson, D. P., K. M. Murphy, R. Ursino, K. Streeter, and P. H. Yancey. Effects of dietary protein and salt on rat renal osmolytes: co‐variation in urea and glycerophosphorylcholine contents. Am. J. Physiol. 263 (Renal Fluid Electrolyte Physiol. 32): F594–F600, 1992.
 164. Petronini, R. G., E. M. De Angelis, P. Borghetti, A. F. Borghetti, K. P. Wheeler. Modulation by betaine of cellular responses to osmotic stress. Biochem. J. 282: 69–73, 1992.
 165. Pfaller, W., Structure function correlation on rat kidney. In: Advances in Anatomy, Embryology and Cell Biology, edited by W. Hild, J. van Limborgh, R. Ortmann, J. E. Pauly, and T. H. Schiebler, Berlin: Springer‐Verlag, 1982, vol. 70, p. 22.
 166. Pierce, S. K., S. C. Edwards, P. H. Mazzocchi, L. J. Klinger, M. K. Warren. Proline betaine: a unique osmolyte in an extremely euryhaline osmoconformer. Biol. Bull. Woods Hole 167: 495–500, 1984.
 167. Pocard, J.‐A., T. Bernard, L. Smith and D. Le Rudulier. Characterization of three choline transport activities in Rhizobium meliloti: modulation by choline and osmotic stress. J. Bacteriol. 171: 531–537, 1989.
 168. Pollard, A., and R. G. Wyn Jones. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291–298, 1979.
 169. Preston, R. L. Occurrence of D‐amino acids in higher organisms: a survey of the distribution of D‐amino acids in marine invertebrates. Comp. Biochem. Physiol. 87B: 55–62, 1987.
 170. Prince, W. S., and M. R. Villarejo. Osmotic control of proU transcription is mediated through direct action of potassium glutamate on the transcription complex. J. Biol. Chem. 265: 17673–17679, 1990.
 171. Raven, J. A. Regulation of pH and generation of osmolarity in vascular plants: a cost‐benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol. 101: 25–77, 1985.
 172. Raymond, J. A. Glycerol is a colligative antifreeze in some northern fishes. J. Exp. Zool. 262: 347–352, 1992.
 173. Reed, R. H. Measurement and osmotic significance of β‐dimethylsulphonioproionate in marine macroalgae. Mar. Biol. Lett. 4: 173–181, 1983.
 174. Reed, R. H., and W.D.P. Stewart. Physiological responses of Rivularia atra to salinity: osmotic adjustment in hypersaline media. New Phytol. 95: 595–603, 1983.
 175. Reed, R. H., S.R.C. Warr, N. W. Kirby and W.D.P. Stewart. Osmotic shock‐induced release of low molecular weight metabolites from free‐living and immobilized cyanobacteria. Enzyme Microb. Technol. 8: 101–104, 1986.
 176. Reed, R. H., S.R.C. Warr, D. L. Richardson, D. J. Moore, W. D. P. Stewart. Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiol. Lett. 28: 225–229, 1985.
 177. Riordan, J. F., K. D. McElvany and C. L. Borders, Jr.. Arginyl residues: anion recognition sites in enzymes. Science, 195: 884–885, 1977.
 178. Robertson, D. E., and M. F. Roberts. Organic osmolytes in methanogenic archaebacteria. Biofactors 3: 1–9, 1991.
 179. Rozwadowski, K. L., G. G. Khachatourians, and G. Selvaraj. Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 173: 472–478, 1991.
 180. Rudolph, A. S., and B. Goins. The effect of hydration stress solutes on phase behavior of hydrated dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta 1066: 90–94, 1991.
 181. Sacher, R. F., and R. C. Staples. Inositol and sugars in adaptation of tomato to salt. Plant Physiol. 77: 206–210, 1985.
 182. Schmid, W. D. Survival of frogs in low temperature. Science 215: 697–698, 1982.
 183. Schmidt‐Nielsen, B., K. Schmidt‐Nielsen, A. Brokaw, and H. Schneiderman. Water conservation in desert rodents. J. Cell. Comp. Physiol. 32: 331–360, 1948.
 184. Scholnick, D. A., and C. P. Mangum. Sensitivity of hemoglobins to intracellular effectors: primitive and derived features. J. Exp. Zool. 259: 32–42, 1991.
 185. Schrock, H. R., Forster, and L. Goldstein. Renal handling of taurine in marine fish. Am. J. Physiol. 242 (Regulatory Integrative Comp. Physiol. 13): R64–R69, 1982.
 186. Schuh, W., and H. Puff. The crystal structure of ectoine, a novel amino acid of potential osmoregulatory function. Z. Naturforsch. 40c: 780–784, 1985.
 187. Sherman, W. R., P. C. Simpson, and S. L. Goodwin. Scyllo‐inositol and myo‐inositol levels in tissues of the skate Raja erinacea. Comp. Biochem. Physiol. 59B: 201–202, 1978.
 188. Shifrin, S., and C. L. Parrott. Influence of glycerol and other polyhydric alcohols on the quaternary structure of an oligomeric protein. Arch. Biochem. Biophys. 166: 426–432, 1975.
 189. Shihabi, Z. K., H. O. Goodman, R. P. Holmes, and M. I. O'Connor. The taurinecontent of avian erythrocytes and its role in osmoregulation. Comp. Biochem. Physiol. 92A: 545–549, 1989.
 190. Siebens, A. and K. Spring. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F937–F946, 1989.
 191. Skedy‐Winkler, C, and Y. Avi‐Dor. Betaine: induced stimulation of respiration of high osmolarities in halotolerant bacterium. Biochem. J. 150: 219–226, 1975.
 192. Smardo, F. L., Jr., M. B. Burg, and A. Garcia‐Perez. Kidney aldose reductase gene transcription is osmotically regulated. Am. J. Physiol. 262 (Cell Physiol. 31): C776–C782, 1992.
 193. Smirnoff, N., and Q. I. Cumbes. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057–1060, 1989.
 194. Smith, H. W. The retention and physiological role of urea in the elasmobranchii. Biol. Rev. 11: 49–82, 1936.
 195. Smith, L. T., and G. M. Smith. An osmoregulated dipeptide in stressed Rhizobium meliloti. J. Bacteriol. 171: 4714–4717, 1989.
 196. Smith, L. T., G. M. Smith, and M. A. Madkour. Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine. J. Bacteriol. 172: 6849–6855, 1990.
 197. Somero, G. N., Adapting to water stress: Convergence on common solutions. In: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis, Berlin: Springer‐Verlag, 1992, p. 3–18, 1992.
 198. Somero, G. N. Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. (Regulatory Integrative Comp. Physiol. 20). 251: R197–R213, 1986.
 199. Somero, G. N., C. B. Osmond, and C. L. Bolis (Eds). Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, Berlin: Springer‐Verlag, 1992.
 200. Sommer, C., B. Thonke, and M. Popp. The compatibility of D‐pinitol and 1D‐1‐0‐methyl‐muco‐inositol with malate dehydrogenase activity. Bot. Acta 103: 270–273, 1990.
 201. Star, R. A. Hyperosmolar states. Am. J. Med. Sci. 300: 402–412, 1990.
 202. Steinbach, H. B. The prevalence of K. Perspect. Biol. Med. 5: 338–355, 1962.
 203. Storey, K. B., and J. M. Storey. Freeze tolerance in animals. Physiol. Rev. 68: 27–84, 1988.
 204. Subramaniam, S., and B. A. Jackson. Differential effects of trimethylamines (TMA) on enzyme activity in MDCK cells. FASEB J. 6: A958, 1992.
 205. Timasheff, S., A physicochemical basis for the selection of osmolytes by nature. In: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis, Berlin: Springer‐Verlag, 1992, p. 70–84.
 206. Timasheff, S. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22: 67–97, 1993.
 207. Trachtman, H., R. Barbour, J. A. Sturman, and L. Finberg. Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration. Pediatr. Res. 23: 35–39, 1988.
 208. Truper, H. G., and E. A. Galinski. Concentrated brines as habitats for microorganisms. Experientia 42: 1182–1187, 1986.
 209. Uchida, S., A. Garcia‐Perez, H. Murphy, and M. B. Burg. Signal for induction of aldose reductase in renal medullary cells by high external NaCl. Am. J. Physiol. 256 (Cell Physiol. 25): C614–C620, 1989.
 210. Uchida, S., H. M. Kwon, A. Yamauchi, A. S. Preston, F. Marumo, and J. S. Handler. Molecular cloning of the cDNA for an MDCK cell Na+ and Cl−‐dependent taurine transporter that is regulated by hypertonicity. Proc. Natl. Acad. Sci. U.S.A. 89: 8230–8234, 1992.
 211. Ullrich, K. J. Uber das Vorkommen von Phosphoverbindungen in verschieden Nierenabschnitten und Anderungen ihrer Konzentration in Abhangigkeit vom Divresezustand. Pflugers Arch. 262: 551–561, 1956.
 212. Ullrich, K. J. Glycerophosphorylcholinumsatz und glycerophosphorylcholindiesterase in der Saugetier‐Niere. Biochem. Z. 331: 98–102, 1959.
 213. Van Laere, A. Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63: 201–210, 1989.
 214. Vieyra, A., C. Caruso‐Neves, J. R. Meyer‐Fernandes. ATP—32P exchange catalyzed by plasma membrane Ca2+‐ATPase from kidney proximal tubules. J. Biol. Chem. 266: 10324–10330, 1991.
 215. Von Hippel, P. H., and T. Schleich. The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Structure and Stability of Biological Macromolecules, edited by S. N. Timasheff and G. D. Fasman, New York: Marcel Dekker, 1969, p. 417–574.
 216. Weber, L. A., E. D. Hickey, P. A. Maroney, and C. Baglioni. Inhibition of protein synthesis by Cl−. J. Biol. Chem. 252: 4007–4010, 1977.
 217. Wegmann, K. Osmoregulation in eukaryotic algae. FEMS Microbiol. Rev. 39: 37–43, 1986.
 218. Wiencke, C. The response of pyruvate kinase from the intertidal red alga Porphyra umbilicalis to sodium and potassium ions. J. Plant Physiol. 116: 447–453, 1984.
 219. Wiggins, P. M. Role of water in some biological processes. Microbiol. Rev. 54: 432–449, 1991.
 220. Wilkie, D. R., and S. Wray. The response of the African frog Xenopus laevis to increased salinity demonstrated by 31P‐NMR spectroscopy. J. Physiol. 381: 30P, 1986.
 221. Winzor, C. L., D. J. Winzor, L. G. Paleg, G. P. Jones, and B. P. Naidu. Rationalization of the effects of compatible solutes on protein stability in terms of thermodynamic nonideality. Arch. Biochem. Biophys. 296: 102–107, 1992.
 222. Wirthensohn G, F. Beck, and W. G. Guder. Role and regulation of glycerophosphorylcholine in rat renal papilla. Pflugers Arch. 409: 411–415, 1987.
 223. Wirthensohn G, S. Lefrank, M. Schmolke, and W. Guder. Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F128–F135, 1989.
 224. Wolff, S. D., T. S. Stanton, S. L. James, and R. S. Balaban. Acute regulation of the predominant organic osmolytes of the rabbit renal inner medulla. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F676–F681, 1989.
 225. Woolverton, W., S. Githens, R. O'Dell‐Smith, and C. Bartell. Rat renal papillary tissue expiants survive and produce epithelial monolayers in culture media made hyperosmotic with sodium chloride and urea. J. Exp. Zool. 256: 189–199, 1990.
 226. Wright, S. H., and D. T. Manahan. Integumental nutrient uptake by aquatic organisms. Annu. Rev. Physiol. 51: 585–600, 1989.
 227. Wright, S. H., T. M. Wunz, and A. L. Silva. Betaine transport in the gill of a marine mussel, Mytilus californianus. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 32): R226–R232, 1992.
 228. Wyn Jones, R. G. Phytochemical aspects of osmotic adaptation. Rec. Adv. Phytochem. 18: 55–78, 1984.
 229. Wyn Jones, R. G., R. Storey, R. A. Leigh, N. Ahmad, and A. Pollard. A hypothesis on cytoplasmic osmoregulation. In: Regulation of Cell Membrane Activities in Plants, edited by E. Marre and O. Ciferri, Amsterdam: Elsevier, 1977, p. 121–136.
 230. Yamauchi, A., S. Uchida, H. M. Kwon, A. S. Preston, R. B. Robey, A. Garcia‐Perez, M. B. Burg, and J. S. Handler. Cloning of a Na+‐ and Cl−‐dependent betaine transporter that is regulated by hypertonicity. J. Biol. Chem. 267: 649–652, 1992.
 231. Yancey, P. H., Organic osmotic effectors in cartilaginous fishes. In: Transport Processes, Iono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Ballien, Berlin: Springer‐Verlag, 1985, p. 424–436.
 232. Yancey, P. H. Osmotic effectors in kidneys of xeric and mesic rodents: corticomedullary distributions and changes with water availability. J. Comp. Physiol. 158B: 369–380, 1988.
 233. Yancey, P. H., Compatible and counteracting aspects of organic osmolytes in mammalian kidney cells in vivo and in vitro. In: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels, edited by G. N. Somero, C. B. Osmond, and C. L. Bolis, Berlin: Springer Verlag, 1992, p. 19–32.
 234. Yancey, P. H., and M. B. Burg. Distributions of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F602–607, 1989.
 235. Yancey, P. H., and M. B. Burg. Counteracting effects of urea and betaine on colony‐forming efficiency of mammalian cells in culture. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R198–204, 1990.
 236. Yancey, P. H., M. B. Burg, and S. M. Bagnasco. Effects of NaCl, glucose and aldose reductase inhibitors on cloning efficiency of renal cells. Am. J. Physiol. 258: (Cell Physiol. 27): C156–C163, 1990.
 237. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. Living with water stress: the evolution of osmolyte systems. Science 217: 1212–1222, 1982.
 238. Yancey, P. H., R. G. Haner, and T. Freudenberger. Effects of an aldose reductase inhibitor on osmotic effectors in rat renal medulla. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F733–F738, 1990.
 239. Yancey, P. H., and G. N. Somero. Urea‐requiring lactate dehydrogenases of marine elasmobranch fishes. J. Comp. Physiol. 125: 135–141, 1978.
 240. Yancey, P. H., and G. N. Somero. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem. J. 182: 317–323, 1979.
 241. Yancey, P. H., and G. N. Somero. Methylamine osmoregulatory compounds in elasmobranch fishes reverse urea inhibition of enzymes. J. Exp. Zool. 212: 205–213, 1980.
 242. Zablocki, K., S.P.F. Miller, A. Garcia‐Perez and M. B. Burg. Accumulation of glycerophosphorylcholine (GPC) by renal cells: osmotic regulation of GPC: choline phosphodiesterase. Proc. Natl. Acad. Sci. USA. 88: 7820–7824, 1991.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

George N. Somero, Paul H. Yancey. Osmolytes and Cell‐Volume Regulation: Physiological and Evolutionary Principles. Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 441-484. First published in print 1997. doi: 10.1002/cphy.cp140110