References |
1. |
Allen, R. D.,
N. S. Allen, and
J. L. Travis.
Video‐enhanced contrast, differential interference contrast (AVEC‐DIC) microscopy: a new method capable of analyzing microtubule related motility in the reticulopodial network of Allogromia laticollans.
Cell Motil.
1:
291–302,
1981.
|
2. |
Allen, R. D.,
D. G. Weiss,
J. H. Hayden,
D. T. Brown,
H. Fujiwake,
M. Simpson.
Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport.
J. Cell Biol.
100:
1736–1752,
1985.
|
3. |
Allen, R. D.,
J. Metuzals,
I. Tasaki,
S. T. Brady, and
S. P. Gilbert.
Fast axonal transport in squid giant axon.
Science
218:
1127–1129,
1982.
|
4. |
Baas, P. W.,
J. S. Deitch,
M. M. Black, and
G. A. Banker.
Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.
Proc. Natl. Acad. Sci. U.S.A.
85:
8335–8339,
1988.
|
5. |
Brady, S. T.
A novel brain ATPase with properties expected for the fast axonal transport motor.
Nature
317:
73–75,
1985.
|
6. |
Dabora, S. L., and
M. P. Sheetz.
The microtubule‐dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts.
Cell
54:
27–35,
1988.
|
7. |
Endow, S. A., and
M. A. Titus.
Genetic approaches to molecular motors [Review].
Annu. Rev. Cell Biol.
8:
29–66,
1992.
|
8. |
Fuller, M. T., and
P. G. Wilson.
Force and counterforce in the mitotic spindle [Review].
Cell
71:
547–50,
1992.
|
9. |
Gibbons, I. R.
Dynein ATPases as microtubule motors [Review].
J. Biol. Chem.
263:
15837–15840,
1988.
|
10. |
Goldstein, L. S.
With apologies to Scheherazade: tails of 1001 kinesin motors [Review].
Annu. Rev. Genet.
27:
319–351,
1993.
|
11. |
Hirokawa, N.
Mechanism of axonal transport. Identification of new molecular motors and regulations of transports [Review].
Neurosci. Res.
18:
1–9,
1993.
|
12. |
Holzbaur, E. L.,
J. A. Hammarback,
B. M. Paschal,
N. G. Kravit,
K. K. Pfister, and
R. B. Vallee.
Homology of a 150K cytoplasmic dynein‐associated polypeptide with the Drosophila gene Glued [published erratum appears in Nature 1992 Dec 17;360(6405):695].
Nature
351:
579–583,
1991.
|
13. |
Hoyt, M. A.
Cellular roles of kinesin and related proteins [Review].
Curr. Opin. Cell Biol.
6:
63–68,
1994.
|
14. |
Inoue, S.
Video image processing greatly enhances contrast, quality, and speed in polarization‐based microscopy.
j. Cell Biol.
89:
346–356,
1981.
|
15. |
Jellali, A.,
B. M. Metz,
I. Surgucheva,
V. Jancsik,
C. Schwartz,
D. Filliol,
V. I. Gelfand, and
A. Rendon.
Structural and biochemical properties of kinesin heavy chain associated with rat brain mitochondria.
Cell Motil. Cytoskeleton
28:
79–93,
1994.
|
16. |
Kondo, S.,
Y. R. Sato,
Y. Noda,
H. Aizawa,
T. Nakata,
Y. Matsuura, and
N. Hirokawa.
KIF3A is a new microtubule‐based anterograde motor in the nerve axon.
J. Cell Biol.
125:
1095–1107,
1994.
|
17. |
Kuo, S. C., and
M. P. Sheetz.
Force of single kinesin molecules measured with optical tweezers.
Science
260:
232–234,
1993.
|
18. |
Lasek, R. J., and
S. T. Brady.
Adenylyl imidodiphosphate (AMP‐PNP), a non‐hydrolyzable analogue of ATP produces a stable intermediate in the motility cycle of fast axonal transport.
Nature
316:
645–647,
1985.
|
19. |
Lillie, S. H., and
S. S. Brown.
Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin‐related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae.
J. Cell Biol.
125:
825–842,
1994.
|
20. |
Lopez, L. A., and
M. P. Sheetz.
Steric inhibition of cytoplasmic dynein and kinesin motility by MAP2.
Cell Motil. Cytoskeleton
24:
1–16,
1993.
|
21. |
Luby‐Phelps, K., and
D. L. Taylor.
Subcellular compartmentalization by local differentiation of cytoplasmic structure.
Cell Motil. Cytoskeleton
10:
28–37,
1988.
|
22. |
Lye, R. J.,
M. E. Porter,
J. M. Scholey, and
J. R. Mclntosh.
Identification of a microtubule‐based cytoplasmic motor in the nematode C. elegans.
Cell
51:
309–318,
1987.
|
23. |
Mclntosh, J. R., and
C. M. Pfarr.
Mitotic motors [Review].
J. Cell Biol.
115:
577–585,
1991.
|
24. |
Paschal, B. M.,
H. S. Shpetner, and
R. B. Vallee.
MAP 1C is a microtubule‐activated ATPase which translocates microtubules in vitro and has dynein‐like properties.
J. Cell Biol.
105:
1273–1282,
1987.
|
25. |
Patel, N.,
M. D. Thierry, and
J. R. Mancillas.
Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain.
Proc. Natl. Acad. Sci. U.S.A.
90:
9181–9185,
1993.
|
26. |
Schnapp, B. J.,
T. S. Reese, and
R. Bechtold.
Kinesin is bound with high affinity to squid axon organelles that move to the plus‐end of microtubules.
J. Cell Biol.
119:
389–399,
1992.
|
27. |
Schnapp, B. J.,
R. D. Vale,
M. P. Sheetz, and
T. S. Reese.
Single microtubules from squid axoplasm support bidirectional movement of organelles.
Cell
40:
455–462,
1985.
|
28. |
Scholey, J. M.,
M. E. Porter,
P. M. Grissom, and
J. R. Mclntosh.
Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle.
Nature
318:
483–486,
1985.
|
29. |
Schroer, T. A.
New insights into the interaction of cytoplasmic dynein with the actin‐related protein, Arp 1 [Review].
J. Cell Biol.
127:
1–4,
1994.
|
30. |
Schroer, T. A.
Structure, function and regulation of cytoplasmic dynein. [Review].
Curr. Opin, Cell Biol.
6:
69–73,
1994.
|
31. |
Schroer, T. A., and
M. P. Sheetz.
Functions of microtubule‐based motors.
Annu. Rev. Physiol.
53:
629–652,
1991.
|
32. |
Schroer, T. A., and
M. P. Sheetz.
Two activators of microtubule‐based vesicle transport.
J. Cell Biol.
115:
1309–1318.
|
33. |
Sekine, Y.,
Y. Okada,
Y. Noda,
S. Kondo,
H. Aizawa,
R. Takemura, and
N. Hirokawa.
A novel microtubule‐based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally.
J. Cell Biol.
127:
187–201,
1994.
|
34. |
Shakir, M. A.,
T. Fukushige,
H. Yasuda,
J. Miwa, and
S. S. Siddiqui.
C. elegans osm‐3 gene mediating osmotic avoidance behaviour encodes a kinesin‐like protein.
Neuroreport
4:
891–894,
1993.
|
35. |
Sheetz, M. P., and
J. A. Spudich.
Movement of myosin‐coated fluorescent beads on actin cables in vitro.
Nature,
303:
31–35,
1983.
|
36. |
Skoufias, D. A., and
J. M. Scholey.
Cytoplasmic microtubule‐based motor proteins [Review].
Curr. Opin. Cell Biol.
5:
95–104,
1993.
|
37. |
Svoboda, K., and
S. M. Block.
Force and velocity measured for single kinesin molecules.
Cell
77:
773–84,
1994.
|
38. |
Svoboda, K.,
C. F. Schmidt,
B. J. Schnapp, and
S. M. Block.
Direct observation of kinesin stepping by optical trapping interferometry [see comments].
Nature
365:
721–727,
1993.
|
39. |
Toyoshima, I.,
H. Yu,
E. R. Steuer, and
M. P. Sheetz.
Kinectin, a major kinesin‐binding protein on ER.
J. Cell Biol.
118:
1121–1131,
1992.
|
40. |
Vale, R. D.,
T. S. Reese, and
M. P. Sheetz.
Identification of a novel force‐generating protein, kinesin, involved in microtubule‐based motility.
Cell
42:
39–50,
1985.
|
41. |
Vale, R. D.,
B. J. Schnapp,
T. S. Reese, and
M. P. Sheetz.
Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon.
Cell
40:
559–569,
1985.
|
42. |
Vale, R. D.,
B. J. Schnapp,
T. Mitchison,
E. Steuier,
T. S. Reese,
M. P. Sheetz.
Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro.
Cell
43:
623–632,
1985.
|
43. |
Vallee, R.
Molecular analysis of the microtubule motor dynein [Review].
Proc. Natl. Acad. Sci. U.S.A.
90:
8769–8772,
1993.
|
44. |
Wadsworth, P.
Mitosis: spindle assembly and chromosome motion [Review].
Curr. Opin. Cell Biol.
5:
123–128,
1993.
|
45. |
Walker, R. A., and
M. P. Sheetz.
Cytoplasmic microtubule‐associated motors [Review].
Annu. Rev. Biochem.
62:
429–451,
1993.
|
46. |
Yu, H.,
C. V. Nicchitta,
J. Kumar,
M. Becker,
I. Toyoshima, and
M. P. Sheetz.
Characterization of kinectin, a kinesin‐binding protein: primary sequence and N‐terminal topogenic signal analysis.
J. Cell Biol.
6:
171–183,
1995.
|