Comprehensive Physiology Wiley Online Library

Epithelial Cell Polarity: Challenges and Methodologies

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Questions
2 Tools and Techniques with Which to Study Epithelial Polarity
2.1 Epithelial Monolayers Grown on Permeable Substrata
2.2 Morphological Techniques
2.3 Biochemical Techniques
3 Protein Trafficking Pathways in Epithelial Cells
3.1 Biogenetic Pathways
3.2 Transcytosis
3.3 Recycling Pathways
3.4 Tissue‐Specific Variation of Protein Polarity and Targeting Pathways in Epithelial Cells
4 Sorting Signals and Mechanisms
5 Establishment of Epithelial Polarity
5.1 The Role of E‐Cadherin
6 Future Prospects: In Vitro Systems, Genetic Models, and the Search for Sorting Machinery
Figure 1. Figure 1.

Vectorial transport of fluid and solutes is dependent on polarized distribution of membrane proteins in apical and basolateral plasma membrane domains of epithelial cells. Resorption of glucose by epithelial cells of small intestine and renal proximal tubule involves participation of apical Na, glucose cotransporter, basolateral glucose carrier, and basolateral Na,K‐ATPase. Low intracellular Na concentration maintained by the Na,K‐ATPase allows apical Na, glucose transporter to mediate uphill glucose transport. Glucose flows down concentration gradient and out of cell through basolateral glucose carrier. Scheme functions productively only if asymmetric distributions of transport proteins are maintained.

Figure 2. Figure 2.

Polarized budding of enveloped viruses in cultured MDCK cells. Confluent MDCK monolayers were infected with either influenza HA (A) or Vesicular Stomatitis Virus (VSV) (B). Influenza virus buds exclusively from apical membrane and VSV is assembled at basolateral membrane. Sites of assembly of viruses are determined by prior accumulation of their envelope glycoproteins—namely, influenza hemagglutinin and VSV G protein.

Figure 3. Figure 3.

Three mechanisms function in generation and maintenance of epithelial polarity. Left: Schematic representation of tight junction. Though several protein components have been identified, precise structural organization within the junction remains to be elucidated. 22. Tight junctions block lateral diffusion of membrane components and regulate passage of molecules between adjacent cells (paracellular pathway) OCL, occludin; CING, cingulin. Middle: Direct and indirect pathways direct polarized targeting of proteins in epithelia. In direct pathway, apically and basolaterally destined proteins pass through secretory pathway together until sorted and segregated at the TGN into apical and basolateral specific transport vesicles. Vesicles are then directly targeted to either apical (1) or basolateral surface (2). In indirect pathway, all proteins are first shunted to basolateral surface (2). Apical proteins are then endocytosed (3) and sorted and redirected to apical surface via transcytotic vesicles (4). TGN is also site of sorting of lysosomal hydrolases toward the lysosome (5). G, Golgi complex; TGN, trans‐Golgi network; ER, endoplasmic reticulum; BLE, basolateral endosome; TJ, tight junction. Right: Simplified model depicting selective retention of Na,K‐ATPase at basolateral membrane due to cytoskeletal interactions. Figure presents only subset of proteins making up polarized cytoskeleton. Gray arrows demonstrate delivery of Na,K‐ATPase to basolateral surface and inhibition of its internalization.

Figure 4. Figure 4.

Membrane protein sorting is developmentally regulated in Drosophila embryos. GPI‐linked human placental alkaline phosphatase (PLAP) and chimeric version of this protein coupled to transmembrane segment of the VSV G protein (PLAPG) were expressed in transgenic Drosophila embryos. Distributions of both proteins in embryonic epithelial structures were determined by confocal immunofluorescence microscopy. Panel I (top left): In surface ectoderm of early (A and B) and late‐stage embryos (C and D), both PLAPG (A and C) and PLAP (B and D) share basolateral localization characteristic of Na,K‐ATPase (E). Panel II (top right): In salivary gland (A and B) and gut (C, D and E) PLAP behaves as apical protein (B and D) while PLAP “G” (A and C) and Na,K‐ATPase (E) retain their basolateral distributions. Panel III (bottom left): Transition in PLAP sorting is coincident with invagination from surface ectoderm. PLAPG is basolateral in cells of a surface‐connected tracheal pit (A), whereas PLAPG is present at apical surface in this structure (B).

Adapted with permission from M. J. Shiel and M. J. Caplan 141,142


Figure 1.

Vectorial transport of fluid and solutes is dependent on polarized distribution of membrane proteins in apical and basolateral plasma membrane domains of epithelial cells. Resorption of glucose by epithelial cells of small intestine and renal proximal tubule involves participation of apical Na, glucose cotransporter, basolateral glucose carrier, and basolateral Na,K‐ATPase. Low intracellular Na concentration maintained by the Na,K‐ATPase allows apical Na, glucose transporter to mediate uphill glucose transport. Glucose flows down concentration gradient and out of cell through basolateral glucose carrier. Scheme functions productively only if asymmetric distributions of transport proteins are maintained.



Figure 2.

Polarized budding of enveloped viruses in cultured MDCK cells. Confluent MDCK monolayers were infected with either influenza HA (A) or Vesicular Stomatitis Virus (VSV) (B). Influenza virus buds exclusively from apical membrane and VSV is assembled at basolateral membrane. Sites of assembly of viruses are determined by prior accumulation of their envelope glycoproteins—namely, influenza hemagglutinin and VSV G protein.



Figure 3.

Three mechanisms function in generation and maintenance of epithelial polarity. Left: Schematic representation of tight junction. Though several protein components have been identified, precise structural organization within the junction remains to be elucidated. 22. Tight junctions block lateral diffusion of membrane components and regulate passage of molecules between adjacent cells (paracellular pathway) OCL, occludin; CING, cingulin. Middle: Direct and indirect pathways direct polarized targeting of proteins in epithelia. In direct pathway, apically and basolaterally destined proteins pass through secretory pathway together until sorted and segregated at the TGN into apical and basolateral specific transport vesicles. Vesicles are then directly targeted to either apical (1) or basolateral surface (2). In indirect pathway, all proteins are first shunted to basolateral surface (2). Apical proteins are then endocytosed (3) and sorted and redirected to apical surface via transcytotic vesicles (4). TGN is also site of sorting of lysosomal hydrolases toward the lysosome (5). G, Golgi complex; TGN, trans‐Golgi network; ER, endoplasmic reticulum; BLE, basolateral endosome; TJ, tight junction. Right: Simplified model depicting selective retention of Na,K‐ATPase at basolateral membrane due to cytoskeletal interactions. Figure presents only subset of proteins making up polarized cytoskeleton. Gray arrows demonstrate delivery of Na,K‐ATPase to basolateral surface and inhibition of its internalization.



Figure 4.

Membrane protein sorting is developmentally regulated in Drosophila embryos. GPI‐linked human placental alkaline phosphatase (PLAP) and chimeric version of this protein coupled to transmembrane segment of the VSV G protein (PLAPG) were expressed in transgenic Drosophila embryos. Distributions of both proteins in embryonic epithelial structures were determined by confocal immunofluorescence microscopy. Panel I (top left): In surface ectoderm of early (A and B) and late‐stage embryos (C and D), both PLAPG (A and C) and PLAP (B and D) share basolateral localization characteristic of Na,K‐ATPase (E). Panel II (top right): In salivary gland (A and B) and gut (C, D and E) PLAP behaves as apical protein (B and D) while PLAP “G” (A and C) and Na,K‐ATPase (E) retain their basolateral distributions. Panel III (bottom left): Transition in PLAP sorting is coincident with invagination from surface ectoderm. PLAPG is basolateral in cells of a surface‐connected tracheal pit (A), whereas PLAPG is present at apical surface in this structure (B).

Adapted with permission from M. J. Shiel and M. J. Caplan 141,142
References
 1. Alvarez, E., N. Girones, and R. J. Davis. A point mutation in the cytoplasmic domain of the transferrin receptor inhibits endocytosis. Biochem. J. 267: 31–35, 1990.
 2. Bacallao, R., C. Antony, C. Dotti, E. Karsenti, E.H.K. Stelzer, and K. Simons. The subcellular organization of Madin‐Darby Canine Kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109: 2817–2832, 1989.
 3. Barroso, M., and E. S. Sztul. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J. Cell Biol. 124: 83–100, 1994.
 4. Beltzer, J. P., and M. Spiess. In vitro binding of the asialoglyco‐protein receptor to the b adaptin of plasma membrane coated vesicles. EMBO J 10: 3735–3742, 1991.
 5. Bergmann, J. E., A. Kupfer, and S. J. Singer. Membrane insertion at the leading edge of motile fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 80: 1367–1371, 1983.
 6. Bergmann, J. E., and S. J. Singer. Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells. J. Cell Biol. 97: 1777–1787, 1983.
 7. Berridge, M. J., and J. L. Oschman. Transporting Epithelia. N.Y.: Academic Press, 1972.
 8. Bomsel, M., R. Parton, S. A. Kuznetsov, T. A. Schroer, and J. Gruenberg. Microtubule‐ and motor‐dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62: 719–731, 1990.
 9. Bomsel, M., K. Prydz, R. G. Parton, J. Gruenberg, and K. Simons. Endocytosis in filter grown Madin‐Darby canine kidney cells. J. Cell Biol. 109: 3243–3258, 1989.
 10. Breitfeld, P. P., W. C. Mckinnon, and K. E. Mostov. Effect of nocodazole on vesicular traffic to the apical and basolateral surfaces of polarized Madin‐Darby canine kidney cells. J. Cell Biol. 111: 2365–2373, 1990.
 11. Brewer, C. B., and M. G. Roth. A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza viral hemagglutin. J. Cell Biol. 114: 413–421, 1991.
 12. Brown, D. A., B. Crise, and J. K. Rose. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245: 1499–1501, 1989.
 13. Brown, D. A., and J. K. Rose. Sorting of GPI‐anchored proteins to glycolipid enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544, 1992.
 14. Campos‐Ortega, J. A., and V. Hartenstein. The Embryonic Development of Drosophila melanogaster. Berlin: Springer‐Verlag, 1985, 227 pp.
 15. Caplan, M. J., Biosynthesis and sorting of the sodium potassium‐ATPase. In: Regulation of Potassium Transport Across Biological Membranes, edited by L. Reuss, J. M. Russell, and G. Szabo. Austin: University of Texas Press, 1990, p. 77–101.
 16. Caplan, M. J., and K. S. Matlin. Sorting of membrane and secretory proteins in polarized epithelial cells. In: Functional Epithelial Cells in Culture, edited by K. S. Matlin and J. D. Valentich. N.Y.: Alan R. Liss, 1989, p. 71–127.
 17. Caplan, M. J., G. E. Palade, and J. D. Jamieson. Newly synthesized Na,K‐ATPase alpha‐subunit has no cytosolic intermediate in MDCK cells. J. Biol. Chem. 261: 2860–2865, 1986.
 18. Caplan, M. J., J. L. Stow, A. P. Newman, J. Madri, H. C. Anderson, M. G. Farquhar, G. E. Palade, and J. D. Jamieson. Dependence on pH of polarized sorting of secreted proteins. Nature 329: 632–635, 1987.
 19. Casanova, J. E., G. Apodaca, and K. E. Mostov. An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 66: 65–75, 1991.
 20. Casanova, J. E., P. P. Breitfeld, S. A. Ross, and K. E. Mostov. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science 248: 742–745, 1990.
 21. Casanova, J. E., Y. Mishumi, Y. Ikehara, A. L. Hubbard, and K. E. Mostov. Direct apical sorting of rat liver dipeptidylpeptidase IV expressed in Madin‐Darby Kidney Cells. J. Biol. Chem. 266: 24428–24432, 1991.
 22. Cereijido, M., A. Ponce, and L. Gonzalez‐Mariscal. Tight junctions and apical/basolateral polarity. J. Membr. Biol. 110: 1–9, 1989.
 23. Chambard, M., B. Verrier, J. Gabrion, and J. Mauchamp. Polarity reversal of inside‐out thyroid follicles cultured within collagen gel: reexpression of specific functions. Biol. Cell 51: 315–325, 1984.
 24. Chaney, L. K., and B. S. Jacobson. J. Biol. Chem. 258: 10062–10072, 1983.
 25. Chou, J. Y. Establishment of rat fetal liver lines and characterization of their metabolic and hormonal properties: use of temperature sensitive SV40 mutants. Methods Enzymol. 109: 385–396, 1985.
 26. Collawn, J. F., M. Stangel, L. A. Kuhn, V. Esekogwu, S. Jing, I. S. Trowbridge, and J. A. Tainer. Transferrin receptor internalization sequence YXRF implicates a tight turn as a structural recognition motif for endocytosis. Cell 63: 1061–1072, 1990.
 27. Compton, T., I. E. Ivanov, T. Gottlieb, M. Rindler, M. Adesnik, and D. D. Sabatini. A sorting signal for the basolateral delivery of the vesicular stomatitis virus (VSV) G protein lies in its luminal domain: analysis of the targeting of VSV G‐influenza hemagglutinin chimeras. Proc. Natl. Acad. Sci. U.S.A., 86: 4112–4116, 1989.
 28. Contreras, G., G. Avila, C. Gutierrez, J. J. Bolivar, L. Gonzalez‐Mariscal, A. Darzon, G. Beaty, E. Rodriguez‐Boulan, and M. Cereijido. Repolarization of NaK pumps to the basolateral membrane during establishment of epithelial monolayers. Am. J. Physiol. 257 (Cell Physiol. 26): C896–C905, 1989.
 29. Corvera, S., A. Chawla, R. Chakrabarti, M. Joly, J. Buxton, and M. P. Czech. A double leucine within the Glut4 Glucose transporter COOH terminal domain functions as an endocytosis signal. J. Cell Biol. 126: 979–989, 1994.
 30. Creutz, C. E. The annexins and exocytosis. Science 258: 924–932, 1992.
 31. Davis, C. G., M. A. Lehrman, D. W. Russell, R.G.W. Anderson, M. S. Brown, and J. L. Goldstein. The J. D. mutation in familial hypercholesterol amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 45: 15–24, 1986.
 32. De Pont, J.J.H.H.M., M. L. Helmich‐de Jong, A.T.P. Skrabanja, and H.T.W.M. van der Hijden. H,K‐ATPase: Na,K‐ATPase's Stepsister. In: The Na,K Pump edited by J. C. Skou, J. G. Norby, A. V. Maunsbach, and M. Esmann. N.Y.: Alan R. Liss, 1988, p. 585–602.
 33. Esparis‐Ogando, A., C. Zurzolo, and E. Rodriguez‐Boulan. Permeabilization of MDCK cells with cholesterol binding agents: dependence on substratum and confluencty. Am. J. Physiol. 267 (Cell Physiol. 36): C166–C176, 1994.
 34. Ferro‐Novick, S., and R. Jahn. Vesicle fusion from yeast to man. Nature 370: 191–193, 1994.
 35. Ferro‐Novick, S., and P. Novick. The role of GTP‐binding proteins in transport along the exocytic pathway. Annu. Rev. Cell Biol. 9: 575–599, 1993.
 36. Fiedler, K., F. LaFont, R. G. Parton, and K. Simons. Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J. Cell Biol. 128: 1043–1053, 1995.
 37. Fiedler, K., R. G. Parton, R. Kellner, T. Etzold, and K. Simons. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J. 13: 1729–1740, 1994.
 38. Fuhrer, C., I. Geffen, K. Huggel, and M. Spiess. The two subunits of the asialoglycoprotein receptor contain different sorting information. J. Biol. Chem. 269: 3277–3282, 1994.
 39. Fuhrer, C., I. Geffen, and M. Speiss. Endocytosis of the ASGP receptor H1 is reduced by mutation of Tyrosine‐5 but still occurs via coated pits. J. Cell Biol. 114: 423–432, 1991.
 40. Fuller, S. D., R. Bravo, and K. Simons. An enzymatic assay reveals that proteins destined for the apical or basolateral domains of an epithelial cell line share the same late Golgi compartments. EMBO J. 4: 297–307, 1985.
 41. Fuller, S. D., and K. Simons. Transferrin receptor polarity and recycling accuracy in “tight” and “leaky” strains of Madin‐Darby canine kidney cells. J. Cell Biol. 103: 1767–1779, 1986.
 42. Geffen, I., C. Fuhrer, B. Leitinger, M. Weiss, K. Huggel, G. Griffiths, and M. Speiss. Related signals for endocytosis and basolateral sorting of the asialoglycoprotein receptor. J. Biol. Chem. 268: 20772–20777, 1993.
 43. Gilbert, T., A. Le Bivic, A. Quaroni, and E. Rodriguez‐Boulan. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco‐2 intestinal epithelial cells. J. Cell Biol. 113: 275–288, 1991.
 44. Girones, N., E. Alvarez, A. Seth, I. M. Lin, D. A. Latour, and R. J. Davis. Mutational analysis of the cytoplasmic tail of the human transferrin receptor: identification of a sub‐domain that is required for rapid endocytosis. J. Biol. Chem. 266: 19006–19012, 1991.
 45. Gonzalez, A., L. Rizzolo, M. Rindler, M. Adesnik, D. D. Sabatini, T. Gottlieb. Nonpolarized secretion of truncated forms of the influenza hemagglutinin and the vesicular stomatitis virus G protein from MDCK cells. Proc. Natl. Acad. Sci. U.S.A. 84: 3738–3742, 1987.
 46. Gonzalez‐Mariscal, L., B. Chavez de Ramirez, and M. Cereijido. Tight‐junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86: 113–125, 1985.
 47. Gottardi, C., L. A. Dunbar, and M. J. Caplan. Biotinylation and the assessment of epithelial membrane protein polarity. Am. J. Physiol. 268: (Renal Fluid Electrolyte Physiol. 37): F285–F295, 1995.
 48. Gottardi, C. J., and M. J. Caplan. Delivery of Na,K‐ATPase in polarized epithelial cells. Science 260: 550–552, 1993b.
 49. Gottardi, C. J., and M. J. Caplan. An ion‐transporting ATPase encodes multiple apical localization signals. J. Cell Biol. 121: 283–293, 1993c.
 50. Gottardi, C. J., H. Y. Naim, M. G. Roth, and M. J. Caplan. Tyrosine‐based membrane protein sorting signals are differentially interpreted by polarized MDCK and LLC‐PK1 cells. (manuscript in preparation), 1996.
 51. Gottlieb, T. A., G. Baudry, L. Rizzolo, A. Colman, M. Rindler, M. Adesnik, and D. D. Sabatini. Secretion of endogenous and exogenous proteins from polarized MDCK cell monolayers. Proc. Natl. Acad. Sci. U.S.A., 83: 2100–2104, 1986.
 52. Gravotta, D., M. Adesnik, and D. D. Sabatini. Transport of influenza HA from the trans‐Golgi network to the apical surface of MDCK cells permeabilized in their basolateral membranes: energy dependence and involvement of GTP‐binding proteins. J. Cell Biol. 111: 2893–2908, 1990.
 53. Griffiths, G., and K. Simons. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234: 438–443, 1986.
 54. Griffiths, G., K. Simons, G. Warren, and K. T. Tokuyasu. Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki Forest virus spike glycoproteins. Methods Enzymol. 96: 466–485, 1983.
 55. Gstraunthaler, G.J.A. Epithelial cells in tissue culture. Renal Physiol. Biochem. 11: 1–42, 1988.
 56. Gumbiner, B., and K. Simons. The role of uvomorulin in the formation of epithelial occluding junctions. Ciba Found. Symp. 125: 168–186, 1987.
 57. Gundersen, D., J. Orlowski, and E. Rodriguez‐Boulan. Apical polarity of Na,K‐ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin‐fodrin submembrane cytoskeleton. J. Cell Biol. 112: 863–872, 1991.
 58. Hammerton, R. W., K. A. Krzeminski, R. W. Mays, T. A. Ryan, D. A. Wollner, and W. J. Nelson. Mechanism for regulating cell surface distribution of Na + K + ‐ATPase in polarized epithelial cells. Science. 254: 847–850, 1991.
 59. Hannan, L. A., M. P. Lisanti, E. Rodriguez‐Boulan, and M. Edidin. Correctly sorted molecules of a GPI‐anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol. 120: 353–358, 1993.
 60. Hanzel, D., I. R. Nabi, C. Zurzolo, S. K. Powell, and E. Rodriguez‐Boulan. New techniques lead to advances in epithelial cell polarity. Semin Cell Biol. 2: 341–353, 1991.
 61. Hirst, B. H., and J. G. Forte. Redistribution and characterization of H, K‐ATPase membranes from resting and stimulated gastric parietal cells. Biochem. J. 231: 641–649, 1985.
 62. Hoschuetzky, H., H. Aberle, R. Kemler. Beta catenin mediates the interaction of the cadherin catenin complex with epidermal growth factor receptor. J. Cell Biol. 127: 1375–1380, 1994.
 63. Hubbard, A. L., and B. Stieger. Biogenesis of endogenous plasma membrane proteins in epithelial cells. Annu. Rev. Physiol. 51: 755–770, 1989.
 64. Huber, L. A., S. Pimplikar, R. Parton, H. Virta, M. Zerial, and K. Simons. Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol. 123: 35–46, 1993a.
 65. Hughson, E. J., D. F. Cutler, and C. R. Hopkins. Basolateral secretion of kappa light chain in the polarised epithelial cell line, Caco‐2. J. Cell Sci. 94: 327–332, 1989.
 66. Humphrey, J. S., P. J. Peters, L. C. Yuan, J. S. Bonifacino. Localization of TGN38 to the trans‐Golgi‐network: involvement of a cytoplasmic Tyrosin‐containing sequence. J. Cell Biol. 120: 1123–1135, 1993.
 67. Hunziker, W., and I. Mellman. Expression of macrophage‐lymphocyte Fc Receptors in Madin‐Darby Canine Kidney cells: polarity and transcytosis differ for isoforms with or without coated pit localization domains. J. Cell Biol. 109: 3291–3302, 1989.
 68. Ikonen, E. M. Tagaya, O. Ullrich, C. Montecucco, and K. Simons. Different requirements for NSF, SNAP, and Rab Proteins in apical and basolateral transport in MDCK cells. Cell 81: 571–580, 1995.
 69. Imhof, B. A., H. P. Vollmers, S. L. Goodman, and W. Birchmeier. Cell‐cell interaction and polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell 35: 667–675, 1983.
 70. Jones, S., J. R. Crosby, J. Salamero, and K. Howell. A cytosolic complex of p62 and rab6 associates with TGN38/41 and is involved in budding of exocytic vesicles from the trans‐Golgi Network. J. Cell Biol. 122: 775–788, 1993.
 71. Kemler, R. Calcium dependent cell‐adhesion molecules. Curr. Opin. Cell Biol. 1: 892–897, 1989.
 72. Kondor‐Koch, C., R. Bravo, S. D. Fuller, D. Cutler, and H. Garoff. Exocytic pathways exist to both the apical and the basolateral cell surface of the polarized epithelial cell MDCK. Cell 43: 297–306, 1985.
 73. Kurzchalia, T. V., P. Dupree, R. G. Parton, R. Kellner, H. Virta, M. Lehnert, and K. Simons. VIP21, a 21‐kD membrane protein is an integral component of Trans‐Golgi‐network‐derived transport vesicles. J. Cell Biol. 118: 1003–1014, 1992.
 74. Lafont, F., J. Burkhardt, and K. Simons. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature 372: 801–803, 1994.
 75. Larue, L., M. Ohsugi, J. Hirchenhain, and R. Kemler. E‐cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl. Acad. Sci. U.S.A. 91: 8263–8267, 1994.
 76. Lazarovits, J., and M. Roth. A single amino acid change in the cytoplasmic domain allows the influenza virus hemagglutinin to be endocytosed through coated pits. Cell 53: 743–752, 1988.
 77. Le Bivic, A., M. Garcia, and E. Rodriguez‐Boulan. Ricin resistant Madin‐Darby Canine Kidney cells missort a major endogenous apical sialoglycoprotein. J. Biol. Chem. 10: 6909–6916, 1993.
 78. Le Bivic, A., A. Quaroni, B. Nichols, and E. Rodriguez‐Boulan. Biogenetic pathways of plasma membrane proteins in Caco‐2, a human intestinal epithelial cell line. J. Cell Biol. 111: 1351–1361, 1990.
 79. Le Bivic, A., F. X. Real, and E. Rodriguez‐Boulan. Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line Proc. Natl. Acad. Sci. U.S.A. 86: 9313–9317, 1989.
 80. Le Bivic, A., Y. Sambuy, K. Mostov, and E. Rodriguez‐Boulan. Vectorial targeting of an endogenous apical membrane sialoglycoprotein and uvomorulin in MDCK cells. J. Cell Biol. 110: 1533–1539, 1990.
 81. Le Bivic, A., Y. Sambuy, A. Patzak, N. Patil, M. Chao, and E. Rodriguez‐Boulan. An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells. J. Cell Biol. 115: 607–618, 1991.
 82. Lisanti, M., I. P. Caras, M. A. Davitz, and E. Rodriguez‐Boulan. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol. 109: 2145–2156, 1989a.
 83. Lisanti, M., A. Le Bivic, M. Sargiacomo, and E. Rodriguez‐Boulan. Steady state distribution and biogenesis of endogenous MDCK glycoproteins: evidence for intracellular sorting and polarized cell surface delivery. J. Cell Biol. 109: 2117–2128, 1989b.
 84. Lisanti, M., M. Sargiacomo, L. Graeve, A. Saltiel, and E. Rodriguez‐Boulan. Polarized apical distribution of glycosyl phosphatidylinositol anchored proteins in a renal epithelial line. Proc. Natl. Acad. Sci. U.S.A. 85: 9557–9561, 1988.
 85. Lisanti, M. P., A. Le Bivic, A. Saltiel, and E. Rodriguez‐Boulan. Preferred apical distribution of glycosyl‐phosphatidylinositol (GPI) anchored proteins: a highly conserved feature of the polarized epithelial cell phenotype. J. Membr. Biol. 113: 155–167, 1990.
 86. Marrs, J., C. Andersone‐Fissone, M. Jeong, L. Cohen‐Gould, C. Zurzolo, I. Nabi, E. Rodriguez‐Boulan, and W. Nelson. Plasticity in epithelial phenotype: modulation by expression of different cadherin cell adhesion molecules. J. Cell Biol. 129: 507–520, 1995.
 87. Marrs, J. A., E. W. Napolitano, C. Murphy‐Erdosh, R. W. Mays, L. F. Reichardt, and W. J. Nelson. Distinguishing roles of the membrane‐cytoskeleton and cadherin mediated cell‐cell adhesion in generating different Na+,K(+)‐ATPase distributions in polarized epithelia. J. Cell Biol. 123: 149–164, 1993.
 88. Matlin, K. S., and K. Simons. Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylation. Cell 34: 233–243, 1983.
 89. Matlin, K. S., and K. Simons. Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J. Cell Biol. 99: 2131–2139, 1984.
 90. Matter, K., M. Brauchbar, K. Bucher, and H. P. Hauri. Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco‐2). Cell 60: 429–437, 1990a.
 91. Matter, K., K. Bucher, and H. P. Hauri. Microtubule perturbation retards both the direct and the indirect apical pathway but does not affect sorting of plasma membrane proteins in intestinal epithelial cells (Caco‐2). EMBO J. 9: 3163–3170, 1990b.
 92. Matter, K., W. Hunziker, and I. Mellman. Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two Tyrosine‐dependent targeting determinants. Cell 71: 741–753, 1992.
 93. Matter, K., and I. Mellman. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr. Opin. Cell Biol. 6: 545–554, 1994.
 94. Matter, K., J. A. Whitney, E. M. Yamamoto, and I. Mellman. Common signals control low density lipoprotein receptor sorting in endosomes and in the Golgi complex of MDCK cells. Cell 74: 1053–1064, 1993.
 95. Matter, K., E. M. Yamamoto, and I. Mellman. Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells. J. Cell Biol. 126: 991–1004, 1994.
 96. Mayor, S., J. F. Presley, and F. R. Maxfield. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 121: 1257–1269, 1993.
 97. McNeill, J., M. Ozawa, R. Kemler, and J. Nelson. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62: 309–316, 1990.
 98. McQueen, N. L., D. P. Nayak, E. B. Stephens, and R. W. Compans. Polarized expression of a chimeric protein in which the transmembrane and cytoplasmic domains of the influenza virus hemagglutinin have been replaced by those of the vesicular stomatitis virus G protein. Proc. Natl. Acad. Sci. U.S.A. 83: 9318–9322, 1986.
 99. McQueen, N. L., D. P. Nayak, E. B. Stephens, and R. W. Compans. Basolateral expression of a chimeric protein in which the transmembrane and cytoplasmic domains of vesicular stomatitis virus G protein have been replaced by those of the influenza virus hemagglutinin. J. Biol. Chem. 262: 16233–16240, 1987.
 100. Misek, D. E., E. Bard, and E. Rodriguez‐Boulan. Biogenesis of epithelial cell polarity: intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein. Cell 39: 537–546, 1984.
 101. Mooseker, M. S., and R. E. Stephens. Brush‐border alpha‐actinin? Comparison of two proteins of the microvillus core with alpha‐actinin by two‐dimensional peptide mapping. J. Cell Biol. 86: 466–474, 1980.
 102. Mostov, K., G. Apodaca, B. Aroeti, and C. Okamoto. Plasma membrane protein sorting in polarized epithelial cells. J. Cell Biol. 116: 577–583, 1992.
 103. Mostov, K. E. Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 12: 63–84, 1994.
 104. Mostov, K. E., P. Breitfeld, and J. M. Harris. An anchor‐minus form of the polymeric immunoglobulin receptor is secreted predominantly apically in Madin‐Darby canine kidney cells. J. Cell Biol. 105: 2031–2036, 1987.
 105. Mostov, K. E., and D. L. Deitcher. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell 46: 613–621, 1986.
 106. Mostov, K. E., M. Friedlander, and G. Blobel. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin‐like domains. Nature 308: 37–43, 1984.
 107. Muesch, A., H. Xu, D. Shields, and E. Rodriguez‐Boulan. Role of basolateral signals and trimeric G proteins in the assembly of apical and basolateral vesicles from the TGN. (Submitted), 1996.
 108. Nabi, I. R., A. P. Mathews, L. Cohen‐Gould, D. Gundersen, and E. Rodriguez‐Boulan. Immortalization of polarized rat retinal pigment epithelium. J. Cell Science 104: 37–49, 1993.
 109. Nelson, W. J., and P. J. Veshnock. Ankyrin binding to (Na+, K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature 328: 533–536, 1987.
 110. Nitsch, L., and S. H. Wollman. Ultrastructure of intermediate stages in polarity reversal of thyroid epithelium in follicles in suspension culture. J. Cell Biol. 86: 875–880, 1980.
 111. Ojakian, G. K., and R. Schwimmer. Regulation of epithelial cell surface polarity reversal by b1 integrins. J. Cell Sci. 107: 561–576, 1994.
 112. Okamoto, C. T., S. P. Shia, C. Bird, K. E. Mostov, and M. G. Roth. The cytoplasmic domain of the polymeric immunoglobulin receptor contains two internalization signals that are distinct from its basolateral sorting signal. J. Biol. Chem. 267: 9925–9932, 1992.
 113. Ozawa, M., H. Baribault, and R. Kemler. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8: 1711–1717, 1989.
 114. Pearse, B. M., and M. S. Robinson. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6: 151–171, 1990.
 115. Pearse, B.M.F. Receptors compete for adaptors found in plasma membrane coated pits. EMBO J., 7: 3331–3336, 1988.
 116. Perez‐Velazquez, J. L., and K. J. Angelides. Assembly of GABA A receptor subunits determines sorting and localization in polarized cells. Nature 361: 457–460, 1993.
 117. Pimplikar, S. W., E. Ikonen, and K. Simons. Basolateral protein transport in streptolysin O‐permeablized MDCK cells. J. Cell Biol. 125: 1025–1035, 1994.
 118. Pimplikar, S. W., and K. Simons. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature 362: 456–458, 1993.
 119. Pimplikar, S. W., and K. Simons. Activators of protein kinase A stimulate apical but not basolateral transport in epithelial Madin‐Darby canine kidney cells. J. Biol. Chem. 269: 19054–19059, 1994.
 120. Pisam, M., and P. Ripoche. Redistribution of surface macro‐molecules in dissociated epithelial cells. J. Cell Biol. 71: 907–920, 1976.
 121. Podbilewicz, B., and I. Mellman. ATP and cytosol requirements for transferrin recycling in intact and disrupted MDCK cells. EMBO J. 9: 3477–3487, 1980.
 122. Powell, S. K., B. A. Cunningham, G. M. Edelman, and E. Rodriguez‐Boulan. Transmembrane and GPI anchored forms of NCAM are targeted to opposite domains of a polarized epithelial cell. Nature 353: 76–77, 1991.
 123. Puddington, L., C. Woodgett, and J. K. Rose. Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells. Proc. Natl. Acad. Sci. U.S.A. 84: 2756–2760, 1987.
 124. Rindler, M. J., I. E. Ivanov, H. Plesken, E. Rodriguez‐Boulan, and D. D. Sabatini. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin‐Darby canine kidney cells. J. Cell Biol. 98: 1304–1319, 1984.
 125. Rindler, M. J., I. E. Ivanov, and D. D. Sabatini. Microtubule‐acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin‐Darby canine kidney cells. J. Cell Biol. 104: 231–241, 1987.
 126. Rindler, M. J., and M. G. Traber. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. J. Cell Biol. 107: 471–479, 1988.
 127. Ringwald, M., R. Schuh, D. Vestweber, H. Eistetter, F. Lottspeich, J. Engel, R. Dolz, F. Jahnig, J. Epplen, S. Mayer, C. Muller, and R. Kemler. The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of CA2+ ‐dependent cell adhesion. EMBO J. 6: 3647–3653, 1987.
 128. Rodriguez‐Boulan, E., and W. J. Nelson. Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718–725, 1989.
 129. Rodriguez‐Boulan, E., K. T. Paskiet, and D. D. Sabatini. Assembly of enveloped viruses in Madin‐Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J. Cell Biol. 96: 866–874, 1983.
 130. Rodriguez‐Boulan, E., and M. Pendergast. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20: 45–54, 1980.
 131. Rodriguez‐Boulan, E., and S. K. Powell. Polarity of epithelial and neuronal cells. Annu. Rev. Cell Biol. 8: 395–427, 1992.
 132. Rodriguez‐Boulan, E., and D. D. Sabatini. Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc. Natl. Acad. Sci. U.S.A. 75: 5071–5075, 1978.
 133. Roth, M. G., R. W. Compans, L. Giusti, A. R. Davis, D. P. Nayak, M. J. Gething, and J. Sambrook. Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA. Cell 33: 435–443, 1983.
 134. Roth, M. G., D. Gundersen, N. Patil, and E. Rodriguez‐Boulan. The large external domain is sufficient for the correct sorting of secreted or chimeric influenza virus hemagglutinins in polarized monkey kidney cells. J. Cell Biol. 104: 769–782, 1987.
 135. Rothman, J. E., and G. Warren. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4: 220–233, 1994.
 136. Salas, P.J.I., D. Misek, D. E. Vega‐Salas, D. Gundersen, M. Cereijido, and E. Rodriguez‐Boulan. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell polarity. J. Cell Biol. 102: 1853–1857, 1986.
 137. Salas, P.J.I., D. Vega‐Salas, J. Hochman, E. Rodriguez‐Boulan, and M. Edidin. Selective anchoring in the specific plasma membrane domain: a role in epithelial cell polarity. J. Cell Biol. 107: 2363–2376, 1988.
 138. Sambuy, Y., and E. Rodriguez‐Boulan. Isolation and characterization of the apical surface of polarized Madin‐Darby canine kidney epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 85: 1529–1533, 1988.
 139. Sargiacomo, M., M. Lisanti, L. Graeve, A. Le Bivic, and E. Rodriguez‐Boulan. Integral and peripheral protein compositions of the apical and basolateral membrane domains in MDCK cells. J. Membr. Biol. 107: 277–286, 1989.
 140. Schlutz, S. G., Cellular models of epithelial ion transport. In: Physiology of Membrane Disorders, edited by T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz.) N.Y.: Plenum, 1986, p. 519–534.
 141. Shiel, M. J., and M. J. Caplan. Epithelial membrane protein polarity is developmentally regulated during Drosophila embryogenesis. Am. J. Physiol. 269 (Cell Physiol. 38): C207–C216, 1995a.
 142. Shiel, M. J., and M. J. Caplan. The generation of epithelial polarity in mammalian and Drosophila embryos. Semin. Dev. 6: 39–46, 1995b.
 143. Simons, K., and H. Virta. Perforated MDCK cells support intracellular transport. EMBO J. 6: 2241–2247, 1987.
 144. Simons, K., and A. Wandinger‐Ness. Polarized sorting in epithelia. Cell 62: 207–210, 1990.
 145. Stephens, E. B., and R. W. Compans. Assembly of animal viruses at cellular membranes. Annu. Rev. Microbiol. 42: 489–516, 1988.
 146. Stephens, E. B., R. W. Compans, P. Earl, and B. Moss. Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors. EMBO J. 5: 237–245, 1986.
 147. Stow, J. L., and J. B. de Almeida. Distribution and role of heterotrimeric G proteins in the secretory pathway of polarized epithelial cells. J. Cell Sci. 17: 33–39, 1993.
 148. Sztul, E., A. Kaplin, L. Saucan, and G. Palade. Protein traffic between distinct plasma membrane domains: isolation and characterization of vesicular carriers involved in transcytosis. Cell 64: 81–89, 1991.
 149. Tepass, U., and E. Knust. Crumbs and Stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster. Dev. Biol. 159: 311–326, 1993.
 150. Tepass, U., C. Theres, and E. Knust. Crumbs encodes an EGF‐like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61: 787–799, 1990.
 151. Thomas, D. C., C. B. Brewer, and M. G. Roth. Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal dependent upon a tyrosine. J. Biol. Chem. 268: 3313–3320, 1993.
 152. Thomas, D. C., and M. G. Roth. The basolateral targeting signal in the cytoplasmic domain of glycoprotein G from vesicular stomatitis virus resembles a variety of intracellular targeting motifs related by primary sequence but having diverse targeting activities. J. Biol. Chem. 269: 15732–15739, 1994.
 153. Ussing, H. H. The use of tracers in the study of active ion transport across animal membranes. Cold Spring Harbor Symp. Quant. Biol. 13: 193, 1948.
 154. van Meer, G., and K. Simons. Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J. 1: 847–852, 1982.
 155. van Meer, G., K. Simons, K.J.A. Op den, and L. M. van Deenen. Phospholipid asymmetry in Semliki Forest virus grown on baby hamster kidney (BHK‐21) cells. Biochemistry 20: 1974–1981, 1981.
 156. Vega Salas, D. E., P. J. Salas, D. Gundersen, and E. Rodriguez‐Boulan. Formation of the apical pole of epithelial (Madin‐Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell‐cell interactions. J. Cell Biol. 104: 905–916, 1987.
 157. Vogel, L. K., M. Spiess, H. Sjostrom, and O. Noren. Evidence for an apical sorting signal on the ectodomain of human aminopeptidase N. J. Biol. Chem. 267: 2794–2797, 1992.
 158. Walter, P., and A. E. Johnson. Signal sequence receptors and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10: 87–119, 1994.
 159. Wandinger‐Ness, A., M. K. Bennett, C. Antony, and K. Simons. Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J. Cell Biol. 111: 987–1000, 1990.
 160. Wang, A., G. K. Ojakian, and W. J. Nelson. Steps in the morphogenesis of a polarized epithelium. 2. Disassembly and assembly of plasma membrane domains during reversal of epithleial polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95: 153–165, 1990b.
 161. Wang, A. Z., G. K. Ojakian, and W. J. Nelson. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell‐cell and cell substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95: 137–151, 1990a.
 162. Wiley, L. M., G. M. Kidder, and A. J. Watson. Cell polarity and development of the first epithelium. Bioessays 12: 67–73, 1990.
 163. Wodarz, A., F. Grawe, and E. Kinst. CRUMBS is involved in the control of apical protein targeting during Drosophila epithelial development. Mech. Dev. 44: 175–187, 1993.
 164. Wodarz, A., U. Hinz, M. Engelbert, E. Knust. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82: 67–76, 1995.
 165. Wollner, D. A., K. A. Krzeminski, and W. J. Nelson. Remodeling the cell surface distribution of membrane proteins during the development of epithelial cell polarity. J. Cell Biol. 116: 889–899, 1992.
 166. Yeaman, C., M. Heinflink, E. Falck‐Petersen, E. Rodriguez‐Boulan, and M. C. Gershengorn. Polarity of thyrotropin releasing hormone receptors following adenovirus‐mediated gene transfer into Madin‐Darby canine kidney cells 1996 (submitted).
 167. Yokode, M., R. K. Pathak, R. E. Hammer, M. S. Brown, J. L. Goldstein, and R. G. W. Anderson. Cytoplasmic sequence required for basolateral targeting of LDL receptor in livers of transgenic mice. J. Cell Biol. 117: 39–46, 1992.
 168. Ziomek, C. A., S. Schulman, and M. Edidin. Redistribution of membrane proteins in isolated mouse intestinal cells. J. Cell Biol. 86: 849–857, 1980.
 169. Zurzolo, C., A. Le Bivic, A. Quaroni, L. Nitsch, and E. Rodriguez‐Boulan. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO J. 11: 2337–2344, 1992.
 170. Zurzolo, C., M. P. Lisanti, I. W. Caras, L. Nitsch, and E. Rodriguez‐Boulan. Glycosylphosphatidylinositol‐anchored proteins are preferentially targeted to the basolateral surface in Fischer Rat Thyroid epithelial cells. J. Cell Biol. 121: 1031–1039, 1993.
 171. Zurzolo, C., C. Polistina, M. Saini, R. Gentile, G. Migliaccio, S. Bonatti, and L. Nitsch. Opposite polarity of virus budding and of viral envelope glycoprotein distribution in epithelial cells derived from different tissues. J. Cell Biol. 117: 551–564, 1992.
 172. Zurzolo, C., and E. Rodriguez‐Boulan. Delivery of Na+, K+‐ATPase in polarized epithelial cells. Science 260: 550–552, 1993.
 173. Zurzolo, C., W. van't Hof, G. van Meer, and E. Rodriguez‐Boulan. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol anchored proteins in epithelial cells. EMBO J. 13: 42–53, 1994.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Michael J. Caplan, Enrique Rodriguez‐Boulan. Epithelial Cell Polarity: Challenges and Methodologies. Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 665-688. First published in print 1997. doi: 10.1002/cphy.cp140117