References |
1. |
Afzelius, B. A.
Electron microscopy of the sperm tail: results obtained with a new fixative.
J. Biophys. Biochem. Cytol.
5:
269–278,
1959.
|
2. |
Albrecht‐Buehler, G.
The orientation of centrioles in migrating 3T3 cells.
Exp. Cell Res.
120:
111–118,
1979.
|
3. |
Allen, R. D.,
D. G. Weiss,
J. H. Hayden,
D. T. Brown,
H. Fujiwake, and
M. Simpson.
Gliding movement of and bidirectional organelle transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport.
J. Cell Biol.
100:
1736–1752,
1985.
|
4. |
Amos, L. A.
Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules.
J. Cell Biol.
72:
642–654,
1977.
|
5. |
Amos, L. A., and
W. B. Amos.
Molecules of the Cytoskeleton.
New York:
Guilford Press,
1991,
253 pp.
|
6. |
Asai, D. J., and
C. J. Brokaw.
Dynein heavy chain isoforms and axonemal motility.
Trends Cell Biol.
3:
398–402,
1993.
|
7. |
Asai, D. J.,
S. M. Beckwith,
K. A. Kandl,
H. H. Keating,
H. Tjandra, and
J. D. Forny.
The dynein genes of Paramecium tetraurelia.
J. Cell Sci.
107:
839–847.
|
8. |
Avolio, J.,
S. Lebduska, and
P. Satir.
Dynein arm substructure and the orientation of arm‐microtubule attachments.
J. Mol. Biol.
173:
389–401,
1984.
|
9. |
Bacallao, R.,
C. Anthony,
C. Dotti,
E. Karsenti,
E. H. Stelzer, and
K. Simons.
The subcellular organization of Madin‐Darby canine kidney cells during the formation of a polarized epithelium.
J. Cell Biol.
109:
2817–2832,
1989.
|
10. |
Bailey, E., and
N. Bornens.
Centrosome and cell division.
Nature
355:
300–301,
1992.
|
11. |
Ballowitz, E.
Untersuchungen uber die Structur der Spermatozoen, zugleich ein Beitrag zur Lehre von Feineren bau der contractilen Elemente.
Arch. Mikr. Anat.
32:
401–473,
1888.
|
12. |
Barkalow, K.,
J. Avolio,
M.E.J. Holwill, and
P. Satir.
Structural and geometrical constraints on the outer dynein arm in situ.
Cell Motil. Cytoskeleton
27:
299–312,
1994.
|
13. |
Barkalow, K.,
T. Hamasaki, and
P. Satir.
Regulation of 22S dynein by a 29 kDa light chain.
J. Cell Biol.
126:
727–735,
1994.
|
14. |
Beckwith, S.,
K. Kandl,
J. Forney, and
D. Asai.
Ciliary and cytoplasmic dynein isoform expression in Paramecium tetraurelia,
1993
(personal communication).
|
15. |
Beese, L.,
G. Stubbs, and
C. Cohen.
Microtubule structure at 18Å resolution.
J. Mol. Biol.
194:
257–264,
1987.
|
16. |
Behnke, O., and
A. Forer.
Evidence for four classes of microtubules in individual cells.
J. Cell Sci.
2:
169–192,
1967.
|
17. |
Bessen, M.,
R. B. Fay, and
G. B. Witman.
Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas.
J. Cell Biol.
86:
446–455,
1980.
|
18. |
Block, S. M.,
L.S.B. Goldstein, and
B. J. Schnapp.
Bead movement by single kinesin molecules. Studied with optical tweezers.
Nature
348:
348–352,
1990.
|
19. |
Bloodgood, R. A.
Ciliary and Flagellar Membranes.
New York:
Plenum,
1990,
431 pp.
|
20. |
Bloom, G. S.,
M. C. Wagner,
K. K. Pfister, and
S. T. Brady.
Native structure and physical properties of bovine brain kinesin, and identification of the ATP‐binding subunit polypeptide.
Biochemistry
27:
3409–3416,
1988.
|
21. |
Bonini, N. M.,
T. C. Evan,
L.A.P. Miglietta, and
D. L. Nelson.
The regulation of ciliary motility in Paramecium by Ca2+ and cyclic nucleotides.
Adv. 2nd Messenger Phosphoprotein Res.
23:
227–272,
1991.
|
22. |
Bonini, N. M.,
M. C. Gustin, and
D. L. Nelson.
Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP.
Cell Motil. Cytoskeleton
6:
256–272,
1986.
|
23. |
Bonini, N. M., and
D. L. Nelson.
Differential regulation of Paramecium ciliary motility by cAMP and cGMP.
J. Cell Biol.
106:
1615–1623,
1988.
|
24. |
Bonini, N. M., and
D. L. Nelson.
Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium.
J. Cell Sci.
95:
219–230,
1990.
|
25. |
Borisy, G. G., and
E. W. Taylor.
The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus.
J. Cell Biol.
34:
535–548,
1967.
|
26. |
Bowser, S. S., and
L. Leonard.
Properties of primary (9 + 0) cilia in cultured kidney epithelial cells.
Anat. Rec.
232:
14A,
1992.
|
27. |
Bozkurt, H. H., and
D. M. Woolley.
Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum.
Cell Motil. Cytoskeleton
24:
109–118,
1993.
|
28. |
Bradfield, J. R. G.
Fibre patterns in animal flagella and cilia.
Soc. Exp. Biol. Symp.
9:
306–334,
1955.
|
29. |
Bre, M., and
E. Karsenti.
Effect of brain microtubule‐associated proteins on microtubule dynamics and nucleating activity of centrosomes.
Cell Motil. Cytoskeleton
15:
88–98,
1990.
|
30. |
Brinkley, B. R.
Microtubule‐organizing centers.
Annu. Rev. Cell Biol.
1:
145–172,
1985.
|
31. |
Brokaw, C. J.
Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella.
Science
243:
1593–1596,
1989a.
|
32. |
Brokaw, C. J.,
Operation and regulation of the flagellar oscillator.
In: Cell Movement,
edited by F. D. Warner,
P. Satir, and
I. R. Gibbons.
New York:
Alan Liss,
1989b,
vol. 1,
p. 267–278.
|
33. |
Brokaw, C. J.
Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa.
J. Cell Biol.
114:
1201–1215,
1991.
|
34. |
Brokaw, C. J., and
I. R. Gibbons.
Mechanisms of movement in flagella and cilia.
In: Swimming and Flying in Nature,
edited by T. Y‐T Wu,
C. J. Brokaw, and
C. Brennan.
New York:
Plenum,
1975,
vol. 1,
p. 89–126.
|
35. |
Brokaw, C. J., and
R. Kamiya.
Bending patterns of Chlamydomonas flagella IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function.
Cell Motil. Cytoskeleton
8:
68–75,
1987.
|
36. |
Burnside, B.,
Microtubule sliding and the generation of force for cell shape change.
In: Cell Movement,
edited by F. D. Warner and
J. R. McIntosh.
New York:
Alan Liss,
1989,
vol. 2,
p. 169–189.
|
37. |
Caplow, M.
Microtubule dynamics.
Curr. Opin. Cell Biol.
4:
58–65,
1992.
|
38. |
Carlier, M. F.,
D. Didry, and
D. Pantaloni.
Microtubule elongation and guanosine 5′‐triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics.
Biochemistry
26:
4428–4437,
1987.
|
39. |
Chen, Y.‐T., and
M. Schliwa.
Direct observation of microtubule dynamics in Reticulomyxa: unusually rapid length changes and microtubule sliding.
Cell Motil. Cytoskeleton
17:
214–226,
1990.
|
40. |
Collins, C. A.
Dynamin: a novel microtubule‐associated GTPase.
Trends Cell Biol.
1:
57–60,
1991.
|
41. |
Davidson, L. A.
Studies of the Actinopods Heterophyrs marina and Ciliophyrs Marina: Energetic and Structural Analysis of Their Contractile Axopods, General Ultrastructure and Phylogenetic Relationships.
Berkeley: University of California,
1975.
PhD thesis.
|
42. |
Dellinger, O. P.
The cilium as a key to the structure of contractile protoplasm.
J. Morphol.
20:
171–210,
1909.
|
43. |
Dirksen, E.
Centriole and basal body formation during ciliogenesis revisited.
Biol. Cell
72:
31–38,
1991.
|
44. |
Dustin, P.
Microtubules
(2nd ed.)
New York:
Springer‐Verlag,
1984,
482 pp.
|
45. |
Eshel, D.,
S. Shingyoji,
K. Yoshimura,
C. R. Gibbons, and
K. Takahashi.
The phase of sperm flagellar beating is not conserved over a brief imposed interruption.
Exp. Cell Res.
202:
552,
1992.
|
46. |
Fawcett, D. W., and
K. R. Porter.
A study of the fine structure of ciliated epithelia.
J. Morphol.
94:
221–281,
1954.
|
47. |
Fey, E. G.,
D. G. Capeo,
G. Krochmalnic, and
S. Penman.
Epithelial structure revealed by clinical dissection and unembedded electron microscopy.
J. Cell Biol.
99:
203s–208s,
1984.
|
48. |
Fonte, V. G.,
R. L. Searls, and
S. R. Hilfer.
The relationship of cilia with cell division and differentiation.
J. Cell Biol.
49:
226–229,
1971.
|
49. |
Gelfand, V. I.
Cytoplasmic microtubular motors.
Curr. Opin. Cell Biol.
1:
63–66,
1989.
|
50. |
Gelfand, V. I., and
A. D. Bershadsky.
Microtubule dynamics: mechanisms, regulation and function.
Annu. Rev. Cell Biol.
7:
93–116,
1991.
|
51. |
Gibbons, B. H., and
I. R. Gibbons.
Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X‐100.
J. Cell Biol.
54:
75–97,
1972.
|
52. |
Gibbons, I. R.
The relationship between fine structure and beat in the gill cilia of a lammelibranch mollusc.
J. Biophys. Biochem. Cytol.
11:
179–205,
1961.
|
53. |
Gibbons, I. R.
Studies on the protein components of cilia from Tetrahymena pyriformis.
Proc. Natl. Acad. Sci. USA
50:
1002–1010,
1963.
|
54. |
Gibbons, I. R.
Cilia and flagella of eukaryotes.
J. Cell Biol.
91
(3)
2:
107s–124s,
1981.
|
55. |
Gibbons, I. R.
Sliding and bending in sea urchin flagella.
Symp. Soc. Exp. Biol.
35:
225–287,
1982.
|
56. |
Gibbons, I. R.,
M. P. Cosson,
J. A. Evans,
B. H. Gibbons,
B. Houck,
K. H. Martinson,
W. S. Sale, and
W. J‐Y. Tang.
Potent inhibition of dynein adenosine triphosphatase and of the motility of cilia and flagella by vanadate.
Proc. Natl. Acad. Sci. U.S.A.
75:
2220–2224,
1978.
|
57. |
Gibbons, I. R.,
B. H. Gibbons,
G. Mocz, and
D. J. Asai.
Multiple nucleotide‐binding sites in the sequence of dynein β‐heavy chain.
Nature
352:
640–643,
1991.
|
58. |
Gibbons, I. R., and
A. V. Grimstone.
On flagellar structure in certain flagellates.
J. Biophys. Biochem. Cytol.
7:
697–716,
1960.
|
59. |
Gibbons, I. R.,
A. Lee Eiford,
G. Mocz,
C. A. Phillipson,
W.J.Y. Tang, and
B. H. Gibbons.
Photosensitized cleavage of dynein heavy chains.
J. Biol. Chem.
262:
2780–2786,
1987.
|
60. |
Gibbons, I. R., and
A. J. Rowe.
Dynein: a protein with adenosine triphosphatase activity from cilia.
Science
149:
424–425,
1965.
|
61. |
Gilula, N. B., and
P. Satir.
The ciliary necklace: a ciliary membrane specialization.
J. Cell Biol.
53:
494–509,
1972.
|
62. |
Goldstein, L.S.B.
The kinesin superfamily: tails of functional redundancy.
Trends Cell Biol.
1:
93–98,
1991.
|
63. |
Goldstein, S. F.,
Morphology of developing bends in sperm flagella.
In: Swimming and Flying in Nature,
edited by T. Y‐T Wu,
C. J. Brokaw, and
C. Brennan.
New York:
Plenum,
1975,
vol. 1,
p.
127–132.
|
64. |
Goldstein, S. F.,
M.E.J. Holwill,
N. R. Silvester.
The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti.
J. Exp. Biol.
53:
401–409,
1970.
|
65. |
Goltz, J. S.,
A. W. Wolkoff,
P. Novikoff,
R. J. Stockert, and
P. Satir.
A role for microtubules in sorting of endocytic vesicles in rat hepatocytes.
Proc. Natl. Acad. Sci.
89:
7026–7030,
1992.
|
66. |
Goodenough, U. W., and
J. E. Heuser.
Structural comparison of purified dynein proteins with in situ dynein arms.
J. Mol. Biol.
180:
1083–1118,
1984.
|
67. |
Goodenough, U. W., and
J. E. Heuser.
Structure of the soluble and in situ ciliary dyneins visualized by quick‐freeze deep etch microscopy
In: Cell Movement,
edited by F. D. Warner,
P. Satir, and
I. R. Gibbons.
New York:
Alan Liss,
1989,
vol. 1,
p. 121–140.
|
68. |
Gray, J.
Ciliary Movement.
U.K.:
Cambridge University Press,
1928,
162 pp.
|
69. |
Gray, J.
The movement of sea‐urchin spermatozoa.
J. Exp. Biol.
32:
775–801,
1955.
|
70. |
Greer, K., and
J. L. Rosenbaum.
Post‐translational modifications of tubulin.
In: Cell Movement,
edited by F. D. Warner and
J. R. McIntosh.
New York:
Alan Liss,
1989,
vol. 2,
p. 47–66.
|
71. |
Gyoeva, F. K., and
V. I. Gelfand.
Coalignment of vimentin intermediate filaments with microtubules depends on kinesin.
Nature
353:
445–448,
1991.
|
72. |
Haimo, L. T.,
B. R. Telzer, and
J. L. Rosenbaum.
Dynein binds to and crossbridges cytoplasmic microtubules.
Proc. Natl. Acad. Sci. U.S.A.
76:
5759–5763,
1979.
|
73. |
Hall, J. L.,
Z. Ramanis, and
D. J. L. Luck.
Basal body/centriolar DNA: molecular genetic studies in Chlamydomonas.
Cell
59:
121–132,
1989.
|
74. |
Hamasaki, T.,
K. Barkalow,
J. Richmond, and
P. Satir.
A cAMP‐stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium.
Proc. Natl. Acad. Sci. U.S.A.
88:
7918–7922,
1991.
|
75. |
Hamasaki, T.,
T. Murtaugh,
B. H. Satir, and
P. Satir.
In vitro phosphorylation of paramecium axonemes and permeabilized cells.
Cell Motil. Cytoskeleton
12:
1–11,
1989.
|
76. |
Hill, T., and
M. F. Carlier.
Steady‐state theory of the interference of GTP hydrolysis in the microtubule assembly.
Proc. Natl. Acad. Sci. U.S.A.
80:
7234–7238,
1983.
|
77. |
Hirokawa, N.,
K. K. Pfister,
H. Yori Fuji,
M. C. Wagner,
S. T. Brady, and
G. S. Bloom.
Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration.
Cell
56:
867–878,
1989.
|
78. |
Hirokawa, N.,
R. Sato‐Yoshitake,
T. Yoshida, and
T. Kawashima.
Brain dynein (MAP 1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo.
J. Cell Biol.
111:
1027–1037,
1990.
|
79. |
Ho, P. T‐C., and
R. M. Tucker.
Centriole ciliation and cell cycle variability during G1 phase of BALB/C 3T3 cells.
J. Cell Physiol.
139:
398–406,
1989.
|
80. |
Hoffmann‐Berling, H.
Geisselmodele und Adenosinetriphosphate.
Biochem. Biophys. Acta
16:
146–154,
1955.
|
81. |
Holwill, M. E. J., and
P. Satir.
A physical model of microtubule sliding in ciliary axonemes.
Biophys. J.
58:
905–918,
1990.
|
82. |
Horio, T., and
H. Hotani.
Visualization of the dynamic instability of individual microtubules by dark‐field microscopy.
Nature
321:
605–607,
1986.
|
83. |
Horwitz, S. B.,
J. Parness,
P. B. Schiff, and
J. J. Manfredi.
Taxol: a new probe for studying the structure and function of microtubules.
Cold Spring Harb. Symp. Quant. Biol.
46:
219–226,
1981.
|
84. |
Hotani, H., and
T. Horio.
Dynamics of microtubules visualized by darkfield microscopy, treadmilling and dynamic instability.
Cell Motil. Cytoskeleton
10:
229–236,
1988.
|
85. |
Hoyle, H. D., and
E. C. Raff.
Two Drosophila beta tubulin isoforms are not functionally equivalent.
J. Cell Biol.
111:
1009–1026,
1990.
|
86. |
Huang, B. P‐H.
Chlamydomonas reinhardtii: a model system for the genetic analysis of flagellar motility.
Int. Rev. Cytol.
99:
181–215,
1986.
|
87. |
Hyams, J., and
G. G. Borisy.
Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of wave form and reversal of swimming by calcium ions in vitro.
J. Cell Sci.
33:
235–253,
1978.
|
88. |
Inoue, S.
Cell division and the mitotic spindle.
J. Cell Biol.
91
(3)
2:
131s–147s,
1981.
|
89. |
Inoue, S., and
H. Sato.
Cell motility by labile association of molecules: the nature of the mitotic spindle fibers and their role in chromosome movement.
J. Gen. Physiol.
50
(6)
2:
259–288,
1967.
|
90. |
Johnson, K. A.
Pathway of the microtubule‐dynein ATPase and the structure of dynein: a comparison with actomyosin.
Annu. Rev. Biophys. Chem.
14:
161–188,
1985.
|
91. |
Johnson, K. A., and
J. L. Rosenbaum.
Basal bodies and DNA.
Trends Cell Biol.
1:
145–149,
1991.
|
92. |
Johnson, K. A., and
J. L. Rosenbaum.
Replication of basal bodies and centrioles.
Curr. Opin. Cell Biol.
4:
80–85,
1992a.
|
93. |
Johnson, K. A., and
J. L. Rosenbaum.
Polarity of flagellar assembly in Chlamydomonas.
J. Cell Biol.
119:
1605–1611,
1992b.
|
94. |
Johnson, K. A., and
J. S. Wall.
Structure and molecular weight of the dynein ATPase.
J. Cell Biol.
96:
669–678,
1983.
|
95. |
Kalt, A., and
M. Schliwa.
Molecular components of the centrosome.
Trends Cell Biol.
3:
118–128,
1993.
|
96. |
Kamimura, S., and
E. Mandelkow.
Tubulin protofilaments and kinesin‐dependent motility.
J. Cell Biol.
118:
865–875,
1992.
|
97. |
Kamimura, S., and
K. Takahashi.
Direct measurement of the force of microtubule sliding in flagella.
Nature
293:
566–568,
1981.
|
98. |
Kamiya, R., and
G. B. Witman.
Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas.
J. Cell Biol.
98:
97–107,
1984.
|
99. |
King, S., and
G. B. Witman.
Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy.
J. Biol. Chem.
265:
19807–19811,
1990.
|
100. |
Kobayashi, T.,
T. Martensen,
J. Nath, and
M. Flavin.
Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility.
Biochem. Biophy. Res. Commun.
81:
1313–1318,
1978.
|
101. |
Koonce, M. P.,
P. M. Grissom, and
J. R. McIntosh.
Dynein from Dictyostelium: primary structure comparisons between a cytoplasmic motor enzyme and flagellar dynein.
J. Cell Biol.
119:
1597–1604,
1992.
|
102. |
Kosik, K. S.
Tau protein and Alzheimer's disease.
Curr. Opin. Cell Biol.
2:
101–104,
1990.
|
103. |
Kuznetsov, S. A., and
V. I. Gelfand.
Bovine brain kinesin is a microtubule‐activated ATPase.
Proc. Natl. Acad. Sci. USA
83:
8530–8534,
1986.
|
104. |
Kuznetsov, S. A.,
E. A. Vaisberg,
N. A. Sharina,
N. N. Magretova,
V. Y. Chenryak, and
V. I. Gelfand.
The quarternary structure of bovine brain kinesin.
EMBO J.
7:
353–356,
1988.
|
105. |
Lasek, R. J., and
S. T. Brady.
Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP‐PNP.
Nature
316:
645–647,
1985.
|
106. |
Leadbeater, B. S. C.
Developmental studies on the loricate choanoflagellate Stephanoeca diplocosta.
Protoplasma
136:
1–15,
1987.
|
107. |
Lee Eiford, A.,
R. A. Ow, and
I. R. Gibbons.
Specific cleavage of dynein heavy chains by ultraviolet irradiation in the presence of ATP and vanadate.
J. Biol. Chem.
261:
2337–2342,
1986.
|
108. |
Lieberman, S. J.,
T. Hamasaki, and
P. Satir.
Ultrastructure and motion analysis of permeabilized Paramecium capable of motility and regulation of motility.
Cell Motil. Cytoskeleton
9:
73–84,
1988.
|
109. |
Lin, S.X.H., and
C. A. Collins.
Immunolocalization of cytoplasmic dynein to lysosomes in cultured cells.
J. Cell. Sci.
101:
125–137,
1992.
|
110. |
Lindemann, C. B., and
J. S. Goltz.
Calcium regulation of flagellar curvature and swimming pattern in Triton X‐100 extracted rat sperm.
Cell Motil. Cytoskeleton
10:
420–431,
1988.
|
111. |
Lindemann, C. B.,
A. Orlando, and
K. S. Kanous.
The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition.
J. Cell Sci.
102:
249–260,
1992.
|
112. |
Little, M., and
T. Seehaus.
Comparative analysis of tubulin sequence.
Compar. Biochem. Physiol.
90B:
655–670,
1988.
|
113. |
Luck, D.
Genetic and biochemical dissection of the eucaryotic flagellum.
J. Cell Biol.
98:
789–794,
1984.
|
114. |
Maeda, K.,
T. Nakata,
Y. Noda,
R. Sato‐Yoshitake, and
N. Hirokawa.
Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin.
Mol. Biol. Cell
3:
1181–1194,
1992.
|
115. |
Mandelkow, E., and
E.‐M. Mandelkow.
Microtubular structure and tubulin polymerization.
Curr. Opin. Cell Biol.
1:
5–9,
1989.
|
116. |
Mandelkow, E., and
E.‐M. Mandelkow.
Microtubular structure and tubulin polymerization.
Curr. Opin. Cell Biol.
2:
3–9,
1990.
|
117. |
Mandelkow, E. M.,
E. Mandelkow, and
R. A. Milligan.
Microtubule dynamics and microtubule caps: a time‐resolved cryo‐electron microscopy study.
J. Cell Biol.
114:
977–991,
1991.
|
118. |
Manton, I.
The fine structure of plant cilia.
Soc. Exp. Biol. Symp.
6:
306–319,
1952.
|
119. |
Margolis, R. L., and
L. Wilson.
Opposite end assembly and disassembly of microtubules at steady state in vitro.
Cell
13:
1–8,
1978.
|
120. |
Mitchison, T. J., and
M. W. Kirschner.
Dynamic instability of microtubule growth.
Nature
312:
237–242,
1984.
|
121. |
Mohri, H.
Amino acid composition of ‘tubulin’ constituting microtubules of sperm flagella.
Nature
217:
1053–1054,
1968.
|
122. |
Moran, D. T.,
F. G. Varela, and
J. C. Rowley III..
Evidence for an active role of cilia in sensory transduction.
Proc. Natl. Acad. Sci. U.S.A.
74:
793–797,
1977.
|
123. |
Moss, A.,
W. S. Sale,
L. A. Fox, and
G. B. Witman.
The α subunit of sea urchin outer arm dynein mediates structural and rigor binding to microtubules.
J. Cell Biol.
118:
1189–200,
1992.
|
124. |
Multigner, L.,
J. Gagnon,
A. Dorsselaer, and
D. Job.
Stabilization of sea urchin flagellar microtubules by histone H1.
Nature
360:
33–39,
1992.
|
125. |
Murakami, A.
Control of ciliary beat frequency in the gill of Mytilus—I. Activation of the lateral cilia by cyclic AMP.
Compar. Biochem. Physiol.
86C:
273–279,
1987.
|
126. |
Nasr, A., and
P. Satir.
Alloaffinity filtration: a general approach to the purification of dynein and dynein‐like molecules.
Anal. Biochem.
151:
97–108,
1985.
|
127. |
Nislow, C.,
V. Lombillo,
R. Kuriyama, and
J. R. McIntosh.
A plus‐end directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles.
Nature
359:
543–547,
1992.
|
128. |
Novikoff, P.,
M. Cammer,
L. Tao,
H. Oda,
R. Stockert,
A. W. Wolkoff and
P. Satir.
Three dimensional organization of the rat hepatocyte cytoskeleton: relation to the asialoglycoprotein endocytosis pathway.
J. Cell Sci.
109:
21–32,
1996.
|
129. |
Nurse, P.
Universal control mechanism regulating onset of M phase.
Nature
344:
503–507,
1990.
|
130. |
Oakley, B. R.
γ‐tubulin: the microtubule organizer?
Trends Cell Biol.
2:
1–5,
1992.
|
131. |
Ogawa, K.
Four ATP‐binding sites in the midregion of the β‐heavy chain of dynein.
Nature
352:
643–645,
1991.
|
132. |
Olmsted, J. B.
Microtubule‐associated proteins.
Annu. Rev. Cell Biol.
2:
421–457,
1986.
|
133. |
Olmsted, J. B.
Non‐motor microtubule‐associated proteins.
Curr. Opin. Cell Biol.
3:
52–58,
1991.
|
134. |
Omoto, C. K., and
K. A. Johnson.
Activation of the dynein adenosine triphasphatase by microtubules.
Biochemistry
25:
419–427,
1986.
|
135. |
Omoto, C. K., and
C. Kung.
Rotation and twist of the central‐pair microtubules in the cilia of Paramecium.
Nature
279:
532–534,
1980.
|
136. |
Otter, T.,
Calmodulin and control of flagellar movement
in: Cell Movement,
edited by F. D. Warner,
P. Satir, and
I. R. Gibbons.
New York:
Alan Liss,
1989,
vol. 1,
p. 281–289.
|
137. |
Otter, T.,
B. H. Satir, and
P. Satir.
Trifluoperazine‐induced changes in swimming behavior of Paramecium: evidence for two sites of drug action.
Cell Motil.
4:
249–267,
1984.
|
138. |
Pallini, V.,
M. Bugnoli,
C. Mencarelli, and
G. Scapigliati.
Biochemical properties of ciliary, flagellar and cytoplasmic dyneins.
Symp. Soc. Exp. Biol.
35:
339–352,
1982.
|
139. |
Paschal, B. M.,
S. M. King,
A. G. Moss,
C. A. Collins,
R. B. Vallee, and
G. B. Witman.
Isolated flagella outer arm dynein translocates brain microtubules in vitro.
Nature
330:
672–674,
1987.
|
140. |
Pfarr, C. M.,
M. Cove,
P. M. Grissom,
T. S. Hays,
M. E. Porter, and
J. R. McIntosh.
Cytoplasmic dynein is localized to kinetochores during mitosis.
Nature
345:
263–265,
1990.
|
141. |
Phillips, M. J., and
P. Satir.
The cytoskeleton of the hepatocyte: organization, relationship, and pathology
In: The Liver: Biology and Pathobiology
(2nd ed.),
edited by I. M. Arias,
W. B. Jakoby,
H. Popper,
D. Schachter, and
D. A. Shafritz.
New York:
Raven Press,
1988,
p.
11–27.
|
142. |
Piperno, G.,
K. Mead, and
W. Shestak.
The inner dynein arms 12 interact with a “dynein regulatory complex” in Chlamydomonas flagella.
J. Cell Biol.
118:
1455–1463,
1992.
|
143. |
Piperno, G.,
Z. Ramanis,
E. F. Smith, and
W. S. Sale.
Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme.
J. Cell Biol.
110:
379–389,
1990.
|
144. |
Poole, C. A.,
M. H. Flint, and
B. W. Beaumont.
Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe?
Cell Motil.
5:
175–193,
1985.
|
145. |
Porter, K. R.
The submicroscopic morphology of protoplasm.
Harvey Lect. Ser.
51:
175–228,
1957.
|
146. |
Porter, K. R.,
Cytoplasmic microtubules and their functions.
In: Principles of Biomolecular Organization,
edited by G. E. W. Wolstenholme, and
M. O'Connor.
Ciba Foundation Symp.,
Boston:
Little Brown,
1966,
p. 308–335.
|
147. |
Porter, M. E., and
K. A. Johnson.
Dynein structure and function.
Annu. Rev. Cell Biol.
5:
119–151,
1989.
|
148. |
Redenbach, D. M., and
A. W. Vogl.
Microtubule polarity in Sertoli cells: a model for microtubule‐based spermatid transport.
Eur. J. Cell Biol.
54:
277–290,
1991.
|
149. |
Reed, W.,
J. Avolio, and
P. Satir.
The cytoskeleton of the apical border of the lateral cells of freshwater mussel gill: integration of microtubule‐ and the microfilament‐based organelles.
J. Cell Sci.
68:
1–33,
1984.
|
150. |
Reed, W., and
P. Satir.
Spreading ciliary arrest in a mussel gill epithelium: characterization by quick fixation.
J. Cell Physiol.
126:
191–205,
1986.
|
151. |
Rieder, C. L.
Mitosis: towards a molecular understanding of chromosome behavior.
Curr. Opin. Cell Biol.
3:
59–66,
1991.
|
152. |
Roberts, K., and
J. S. Hyams.
Microtubules.
New York:
Academic Press,
1979,
595pp.
|
153. |
Roth, K. E.,
C. L. Reider, and
S. S. Bowser.
Flexible‐substratum technique for viewing cells from the side: some in vivo properties of primary (9 + 0) cilia in cultured kidney epithelia.
J. Cell Sci.
89:
457–466,
1988.
|
154. |
Sabatini, D. O.,
K. Bensch, and
R. J. Barnett.
Cytochemistry and electron microscopy. The preservation of cellular ultra‐structure and enzymatic activity by aldehyde fixation.
J. Cell Biol.
17:
19–58,
1963.
|
155. |
Sakakibara, H.,
D. R. Mitchell, and
R. Kamiya.
Chlamydomonas outer arm dynein mutant missing the α‐heavy chain.
J. Cell Biol.
113:
615–622,
1991.
|
156. |
Sakakibara, H.,
S. Takada,
S. M. King,
G. B. Witman, and
R. Kamiya.
A Chlamydomonas outer arm dynein mutant lacking the β heavy chain.
J. Cell Biol.
122:
653–661,
1993.
|
157. |
Sale, W. S.
The axonemal axis and Ca2+‐induced asymmetry of active microtubule sliding in sea urchin sperm tails.
J. Cell Biol.
102:
2042–2052,
1986.
|
158. |
Sale, W. S., and
L. A. Fox.
The isolated β‐heavy chain subunit of dynein translocates microtubules in vitro.
J. Cell Biol.
107:
1793–1797,
1988.
|
159. |
Sale, W. S.,
U. W. Goodenough, and
J. E. Heuser.
The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella.
J. Cell Biol.
101:
1400–1422,
1985.
|
160. |
Sale, W. S. and
P. Satir.
Direction of active sliding of microtubules in Tetrahymena cilia.
Proc. Natl. Acad. Sci. U.S.A.
74:
2045–2049,
1977.
|
161. |
Sanders, M. A., and
J. L. Salisbury.
Centrin‐mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii.
J. Cell Biol.
108:
1751–1760,
1989.
|
162. |
Sanderson, M., and
E. R. Dirksen.
Mechanosensitive and beta‐adrenergic control of ciliary beat frequencies of mammalian respiratory tract cells in culture.
Am. Rev. Respir. Dis.
139:
432–440,
1989.
|
163. |
Satir, P.
Structure and function in cilia and flagella.
Protoplamatologia
III‐E:
52,
1965a.
|
164. |
Satir, P.
Studies on cilia: II. Examination of the distal region of the ciliary shaft and the role of filaments in motility.
J. Cell Biol.
26:
805–834,
1965b.
|
165. |
Satir, P.
Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility.
J. Cell Biol.
39:
77–94,
1968.
|
166. |
Satir, P.
Approaches to potential sliding mechanisms of cytoplasmic microtubules.
Cold Spring Harb. Symp. Quant. Biol.
46:
285–292,
1982.
|
167. |
Satir, P.
The cytoplasmic matrix: old and new questions.
J. Cell Biol.
99:
235s–238s,
1984.
|
168. |
Satir, P.
Switching mechanisms in the control of ciliary motility,
Modern Cell Biology
4:
1–46,
1985.
|
169. |
Satir, P.,
Structural analysis of the dynein cross‐bridge cycle.
In: Cell Movement, Vol. 1: The Dynein ATPases,
edited by F. D. Warner et al.
New York:
Alan Liss,
1989a,
p. 219–234.
|
170. |
Satir, P.
The role of axonemal components in ciliary motility.
Compar. Biochem. Physiol.
94A:
351–357,
1989b.
|
171. |
Satir, P.
Mechanisms of ciliary movement: contributions from electron microscopy.
Scanning Microsc. Intl.
6:
573–579,
1992.
|
172. |
Satir, P.,
Motor molecules of the cytoskeleton: possible functions in the hepatocyte.
In: The Liver Biology and Pathology (3rd ed.),
edited by I. Arias et al.
New York:
Raven Press,
1994,
p. 45–52.
|
173. |
Satir, P.,
K. Barkalow, and
T. Hamasaki.
The control of ciliary beat frequency.
Trends Cell Biol.
3:
409–412,
1993.
|
174. |
Satir, P.,
J. S. Goltz,
N. Isaac, and
C. B. Lindemann.
Switching arrest in cilia and the calcium response of rat sperm: a comparison.
In: Comparative Spermatology 20 Years After,
edited by B. Baccetti.
New York:
Raven Press,
1991,
vol. 75,
p. 377–384.
|
175. |
Satir, P.,
J. S. Goltz, and
A. W. Wolkoff.
Microtubule‐based cell motility: the role of microtubules in cell motility and differentiation.
Cancer Invest.
8:
685–690,
1990.
|
176. |
Satir, P., and
T. Matsuoka.
Splitting the ciliary axoneme: implications for a ‘switch point’ model of dynein arm activity in ciliary motion.
Cell Motil. Cytoskeleton.
14:
345–358,
1989.
|
177. |
Satir, P., and
M. A. Sleigh.
The physiology of cilia and mucociliary interactions.
Annu. Rev. Physiol.
52:
137–155,
1990.
|
178. |
Satir, P.,
J. Wais‐Steider,
S. Lebduska,
A. Nasr, and
J. Avolio.
The mechanochemical cycle of the dynein arm.
Cell Motil.
1:
303–327,
1981.
|
179. |
Saxton, W. M.,
J. Hicks,
L. S. B. Goldstein, and
E. C. Raff.
Kinesin heavy chain is essential for viability and neuromuscular function in Drosophila, but mutants show no defect in mitosis.
Cell
64:
1093–1102,
1991.
|
180. |
Schultz, J. E.,
S. Klumpp,
R. Benz,
W.J. Ch. Schürhoff‐Goeters, and
A. Schmid.
Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance.
Science
255:
600–603,
1992.
|
181. |
Shingyoji, C.,
J. Katada,
K. Takahashi, and
I. R. Gibbons.
Rotating the plane of imposed vibration can rotate the plane of flagellar bending in sea‐urchin sperm without twisting the axoneme.
J. Cell Sci.
98:
175–182,
1991.
|
182. |
Shingyoji, C.,
A. Murakawi, and
K. Takahashi.
Local reactivation of Triton‐extracted flagella by iontophoretic application of ATP.
Nature
265:
269–270,
1977.
|
183. |
Singer, S. J.,
E. H. Ball,
B. Geiger, and
W‐T Chen.
Immunolabelling studies of cytoskeletal associations in cultured cells.
Cold Spring Harb. Symp. Quant. Biol.
46:
303–316,
1981.
|
184. |
Slautterback, D. B.
Cytoplasmic microtubules I. Hydra.
J. Cell Biol.
18:
367–388,
1963.
|
185. |
Sleigh, M. A.
The Biology of Cilia and Flagella.
New York:
Macmillan,
1962,
242 pp.
|
186. |
Sleigh, M. A.
Cilia and Flagella.
New York:
Academic Press,
1974,
500 pp.
|
187. |
Sleigh, M. A.
The origin of flagella—autogenous or symbiontic?
Cell Motil. Cytoskeleton
6:
96–98,
1986.
|
188. |
Sloboda, R. D.,
S. A. Rudolph,
J. L. Rosenbaum, and
P. Greengard.
Cyclic AMP‐dependent endogenous phosphorylation of a microtubule‐associated protein.
Proc. Natl. Acad. Sci. U.S.A.
72:
177–181,
1975.
|
189. |
Smith, E. F., and
W. S. Sale.
Structural and functional reconsitututon of inner dyneins arms in Chlamydomonas flagellar axonemes.
J. Cell Biol.
117:
573–581,
1992.
|
190. |
Soifer, D.
The Biology of Cytoplasmic Microtubules.
Ann. NY Acad. Sci.
253:
848 pp.
1975.
|
191. |
Soifer, D.
Dynamic Aspects of Microtubule Biology.
Ann. NY Acad. Sci.
466:
978 pp.
1986.
|
192. |
Spungin, B.,
J. Avolio,
S. Arden, and
P. Satir.
Dynein arm attachment probed with a non‐hydrolyzable ATP analog: Structural evidence of patterns of activity.
J. Mol. Biol.
197:
671–677,
1987.
|
193. |
Steffen, W., and
R. W. Linck.
Tektins in ciliary and flagellar microtubules and their association with other cytoskeletal systems.
In: Cell Movement,
edited by F. D. Warner and
J. R. McIntosh.
New York:
Alan Liss,
1989,
vol. 2,
p. 67–81.
|
194. |
Stephens, R. E., and
E. W. Stommel.
Role of cyclic adenosine monophosphate in ciliary and flagellar motility
In: Cell Movement,
edited by F. D. Warner,
P. Satir, and
I. R. Gibbons.
New York:
Alan Liss,
1989,
vol. 1,
p. 299–316.
|
195. |
Steuer, E. R.,
L. Wordeman,
T. A. Schroer, and
M. P. Sheetz.
Localization of cytoplasmic dynein to mitotic spindles and kinetochores.
Nature
345:
266–268,
1990.
|
196. |
Stewart, R. J.,
P. A. Pesavento,
D. N. Woerpel, and
L.S.B. Goldstein.
Identification and partial characterization of six new members of the kinesin superfamily in Drosophila.
Proc. Natl. Acad. Sci. U.S.A.
88:
8470–8471,
1991.
|
197. |
Sugino, K., and
H. Machemer.
Axial view recordings: an approach to assess the third dimension of the ciliary cycle.
J. Theor. Biol.
25:
67–82,
1987.
|
198. |
Sugino, K., and
H. Machemer.
Depolarization‐controlled parameters of the ciliary cycle and axonemal function.
Cell Motil. Cytoskeleton
16:
251–265,
1990.
|
199. |
Sugrue, P.,
J. Avolio,
P. Satir, and
M.E.J. Holwill.
Computer modelling of Tetrahymena axonemes at macromolecular resolution: interpretation of electron micrographs.
J. Cell Sci.
98:
5–16,
1991.
|
200. |
Sullivan, K. F.
Structure and utilization of tubulin isotypes.
Annu. Rev. Cell Biol.
4:
687–716,
1988.
|
201. |
Summers, K. E., and
I. R. Gibbons.
Adenosine triphosphate‐induced sliding of tubules in trypsin‐treated flagella of sea‐urchin sperm.
Proc. Natl. Acad. Sci. U.S.A.
68:
3092–3096,
1971.
|
202. |
Summers, K. E., and
I. R. Gibbons.
Effects of trypsin digestion on flagellar structures and their relationship to motility.
J. Cell Biol.
58:
618–629,
1973.
|
203. |
Svoboda, K.,
C. F. Schmidt,
B. J. Schapp, and
S. M. Block.
Direct observation of kinesin stepping by optical trapping interferometry.
Nature
365:
721–727,
1993.
|
204. |
Takahashi, K.,
C. Shingyoji, and
S. Kamimura.
Microtubule sliding in reactivated flagella.
Symp. Soc. Exp. Biol.
35:
159–177,
1982.
|
205. |
Takahashi, M., and
Y. Tonomura.
Binding of 30S dynein with a B‐tubule of the outer doublet of axonemes from Tetrahymena pyriformis and adenosine triphosphate‐induced dissociation of the complex.
J. Biochem. (Tokyo)
84:
1339–1355,
1978.
|
206. |
Tamm, S. L., and
S. Tamm.
Ciliary reversal without rotation of axonemal structures in ctenophore comb plates.
J. Cell Biol.
89:
495–509,
1981.
|
207. |
Tamm, S. L., and
S. Tamm.
Alternate patterns of doublet microtubule sliding in ATP‐disintegrated macrocilia of the ctenophore Beröe.
J. Cell Biol.
99:
1364–1371,
1984.
|
208. |
Tilney, L. G.,
Y. Hiramoto, and
D. Marsland.
Studies on the microtubules in heliozoa. III. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett)
J. Cell Biol.
29:
77–96,
1966.
|
209. |
Tucker, R. W.,
A. B. Pardee, and
K. Fujiwara.
Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells.
Cell
17:
527–535,
1979a.
|
210. |
Tucker, R. W.,
C. D. Scher, and
C. D. Stiles.
Centriole deciliation associated with the early response of 3T3 cells to growth factors but not to SV40.
Cell
18:
1065–1072,
1979.
|
211. |
Vale, R. D.
Intracellular transport using microtubule‐based motors.
Annu. Rev. Cell Biol.
3:
347–378,
1987.
|
212. |
Vale, R. D.
Microtubule‐based motor proteins.
Curr. Opin. Cell Biol.
2:
15–22,
1990.
|
213. |
Vale, R. D.,
F. Malik, and
D. Brown.
Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motors.
J. Cell Biol.
119:
1589–1596,
1992.
|
214. |
Vale, R. D.,
T. S. Reese, and
M. P. Sheetz.
Identification of a novel force‐generating protein, kinesin, involved in microtubule‐based motility.
Cell
42:
39–50,
1985a.
|
215. |
Vale, R. D.,
B. J. Schapp,
T. J. Mitchison,
E. Steuer,
T. S. Reese, and
M. P. Sheetz.
Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro.
Cell
43:
623–632,
1985b.
|
216. |
Vale, R. D.,
D. M. Soil, and
I. R. Gibbons.
One dimensional diffusion of microtubules bound to flagellar dynein.
Cell
59:
915–925,
1989.
|
217. |
Vale, R. D., and
Y. Y. Toyoshima.
Rotation and translocation of microtubules in vitro induced by dyneins in Tetrahymena cilia.
Cell
52:
459–469,
1988.
|
218. |
Vallee, R. B.
Cytoplasmic dynein: advances in microtubule‐based motility.
Trends Cell Biol.
1:
25–29,
1991.
|
219. |
Vallee, R. B.
Dynamin: motor protein or regulatory GTPase.
Muscle Res. Cell Motil.
13:
493–496,
1992.
|
220. |
Vallee, R. B., and
G. S. Bloom.
High molecular weight microtubule‐associated proteins (MAPs).
Mod. Cell Biol.
3:
21–75,
1984.
|
221. |
Vallee, R. B.,
G. S. Bloom, and
W. E. Theurkauf.
Microtubule‐associated proteins: subunits of the cytomatrix.
J. Cell Biol.
99:
385s–445s,
1984.
|
222. |
Vallee, R. B.,
J. S. Wall,
B. M. Paschal, and
H. S. Shpetner.
Microtubule‐associated protein 1C from brain is a two‐headed cytosolic dynein.
Nature
332:
561–563,
1988.
|
223. |
Wadsworth, P., and
M. McGrail.
Interphase microtubule dynamics are cell specific.
J. Cell Sci.
95:
23–32,
1990.
|
224. |
Wais‐Steider, C.,
N. S. White,
D. S. Gilbert, and
P.A.M. Eagles.
X‐ray diffraction patterns from microtubules and neurofilaments in axoplasm.
J. Mol. Biol.
197:
205–218,
1989.
|
225. |
Walker, R. A.,
E. T. O'Brien,
N. K. Pryer, and
M. F. Soboeiro.
Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.
J. Cell Biol.
107:
1437–1448,
1988.
|
226. |
Walter, M. F., and
P. Satir.
Calcium does not inhibit active sliding of microtubules from mussel gill cilia.
Nature
278:
69–70,
1979.
|
227. |
Warner, F. D.
Organization of interdoublet links in Tetrahymena cilia.
Cell Motil.
3:
321–332,
1983.
|
228. |
Warner, F. D., and
J. R. McIntosh.
Kinesin, Dynein and Microtubule Dynamics, Cell Movement,
New York:
Alan Liss,
1989,
vol. 2.
|
229. |
Weingarten, M. D.,
A. H. Lockwood,
S‐Y Hwo, and
M. W. Kirschner.
A protein factor essential for microtubule assembly.
Proc. Natl. Acad. Sci. U.S.A.
72:
1858–1862,
1975.
|
230. |
Wheatley, D. N.
The Centriole. A Central Enigma of Cell Biology.
New York:
Elsevier,
1982,
232 pp.
|
231. |
Yen, T. J.,
G. Li,
B. Schaar,
I. Szilak, and
D. W. Cleveland.
CENP‐E is a putative kinetochore motor that accumulates just before mitosis.
Nature
359:
540–543,
1992.
|
232. |
Yen, T. J.,
P. S. Machlin, and
D. W. Cleveland.
Autoregulated instability of β‐tubulin mRNAs by recognition of the nascent amino terminus of β‐tubulin.
Nature
334:
580–584,
1988.
|
233. |
Yeung, C. H., and
D. M. Woolley.
Localized reactivation of the principal piece of demembranated hamster sperm by iontophoretic application of ATP.
J. Submicrosc. Cytol.
15:
327–331,
1983.
|