References |
1. |
Abman SH,
Kinsella JP.
Inhaled nitric oxide therapy for pulmonary disease in pediatrics.
Curr Opin Pediatr
10:
236–242,
1998.
|
2. |
Abraham E.
Neutrophils and acute lung injury.
Crit Care Med
31:
S195–S199,
2003.
|
3. |
Abraham E,
Matthay MA,
Dinarello CA,
Vincent JL,
Cohen J,
Opal SM,
Glauser M,
Parsons P,
Fisher F,
Repine JE.
Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: Time for a reevaluation.
Crit Care Med
28:
232–235,
2000.
|
4. |
Agarwal R,
Aggarwal AN,
Gupta D,
Behera D,
Jindal SK.
Etiology and outcomes of pulmonary and extrapulmonary acute lung injury/ARDS in a respiratory ICU in north India.
Chest
130:
724–729,
2006.
|
5. |
Alayash AI.
Oxygen therapeutics: Can we tame haemoglobin?
Nat Rev Drug Discov
3:
152–159,
2004.
|
6. |
Allen BW,
Piantadosi CA.
How do red blood cells cause hypoxic vasodilation? The SNO‐hemoglobin paradigm.
Am J Physiol Heart Circ Physiol
291:
H1507–H1512,
2006.
|
7. |
Angelo M,
Hausladen A,
Singel DJ,
Stamler JS,
Robert KP.
Interactions of NO with hemoglobin: From microbes to man. In:
Methods in Enzymology Globins and Other Nitric Oxide‐Reactive Proteins, Part A.
Elsevier Academic Press, San Diego, CA,
2008, p.
131–168.
|
8. |
Angelo M,
Singel DJ,
Stamler JS.
An S‐nitrosothiol (SNO) synthase function of hemoglobin that utilizes nitrite as a substrate.
Proc Natl Acad Sci U S A
103:
8366–8371,
2006.
|
9. |
Angus DC,
Linde‐Zwirble WT,
Lidicker J,
Clermont G,
Carcillo J,
Pinsky MR.
Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care.
Crit Care Med
29:
1303–1310,
2001.
|
10. |
Arciero JC,
Carlson BE,
Secomb TW.
Theoretical model of metabolic blood flow regulation: Roles of ATP release by red blood cells and conducted responses.
Am J Physiol Heart Circ Physiol
295:
H1562–H1571,
2008.
|
11. |
Arnelle DR,
Stamler JS.
NO+, NO, and NO− donation by S‐nitrosothiols: Implications for regulation of physiological functions by S‐nitrosylation and acceleration of disulfide formation.
Arch Biochem Biophys
318:
279–285,
1995.
|
12. |
Arnold WP,
Mittla CK,
Katsuki S,
Murad F.
Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′‐cyclic monophosphate levels in various tissue preparations.
Proc Natl Acad Sci U S A
74:
3203–3207,
1977.
|
13. |
Azarov I,
Huang KT,
Basu S,
Gladwin MT,
Hogg N,
Kim‐Shapiro DB.
Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation.
J Biol Chem
280:
39024–39032,
2005.
|
14. |
Barry PH,
Diamond JM.
Effects of unstirred layers on membrane phenomena.
Physiol Rev
64:
763–872,
1984.
|
15. |
Barvitenko NN,
Adragna NC,
Weber RE.
Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.
Cell Physiol Biochem
15:
1–18,
2005.
|
16. |
Bennett‐Guerrero E,
Veldman TH,
Doctor A,
Telen MJ,
Ortel TL,
Reid TS,
Mulherin MA,
Zhu H,
Buck RD,
Califf RM,
McMahon TJ.
Evolution of adverse changes in stored RBCs.
Proc Natl Acad Sci U S A
104:
17063–17068,
2007.
|
17. |
Besarab A.
The effects of normal as compared to low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin.
N Engl J Med
339:
584–590,
1998.
|
18. |
Beuhler PW,
Layash AI.
All hemoglobin based oxygen carriers are not created equally.
Biochim Biophys Acta
1784:
1378–1381,
2008.
|
19. |
Bhattacharya J,
Staub NC.
Direct measurement of microvascular pressures in the isolated perfused dog lung.
Science
210:
327–328,
1980.
|
20. |
Bonaventura C,
Taboy CH,
Low PS,
Stevens RD,
Lafon C,
Crumbliss AL.
Heme redox properties of S‐nitrosated hemoglobin Ao and hemoglobin S. Implications for interactions of nitric oxide with normal and sickle red blood cells.
J Biol Chem
277:
14557–14563,
2002.
|
21. |
Bone RC.
Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome).
JAMA
268:
3452–3455,
1992.
|
22. |
Bone RC.
Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS).
Ann Intern Med
125:
680–687,
1996.
|
23. |
Bone RC,
Grodzin CJ,
Balk RA.
Sepsis: A new hypothesis for pathogenesis of the disease process.
Chest
112:
235–243,
1997.
|
24. |
Bosworth CA,
Toledo JC,
Zmijewski JW,
Li Q,
Lancaster JR.
Dinitrosyl iron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide.
Proc Natl Acad Sci U S A
106:
4671–4676,
2009.
|
25. |
Brower RG,
Gottlieb J,
Wise RA,
Permutt S,
Sylvester JT.
Locus of hypoxic vasoconstriction in isolated ferret lungs.
J Appl Physiol
63:
58–65,
1987.
|
26. |
Brunner F,
Leonhard B,
Kukovetz WR,
Mayer B.
Role of endothelin, nitric oxide and l‐arginine release in ischaemia/reperfusion injury of rat heart.
Cardiovasc Res
36:
60–66,
1997.
|
27. |
Brunner F,
Stessel H,
Kukovetz WR.
Novel guanylyl cyclase inhibitor, ODQ reveals role of nitric oxide, but not of cyclic GMP in endothelin‐1 secretion.
FEBS Lett
376:
262–266,
1995.
|
28. |
Brunori M,
Taylor JF,
Antonini E,
Wyman J,
Rossi‐Fanelli A.
Studies on the oxidation‐reduction potentials of heme proteins. VI. Human hemoglobin treated with various sulfhydryl reagents.
J Biol Chem
242:
2295–2300,
1967.
|
29. |
Buehler PW,
Alayash AI.
All hemoglobin‐based oxygen carriers are not created equally.
Biochim Biophys Acta
1784:
1378–1381,
2008.
|
30. |
Bunn HF,
Nathan DG,
Dover GJ,
Hebbel RP,
Platt OS,
Rosse WF,
Ware RE.
Pulmonary hypertension and nitric oxide depletion in sickle cell disease.
Blood
116(5):
687–692,
2010.
|
31. |
Butler AR,
Megson IL,
Wright PG.
Diffusion of nitric oxide and scavenging by blood in the vasculature.
Biochim Biophys Acta
1425:
168–176,
1998.
|
32. |
Cannon RO III,
Schechter AN,
Panza JA,
Ognibene FP,
Pease‐Fye ME,
Waclawiw MA,
Shelhamer JH,
Gladwin MT.
Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery.
J Clin Invest
108:
279–287,
2001.
|
33. |
Carlsen E,
Comroe JH.
The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes.
J Gen Physiol
42:
83–107,
1958.
|
34. |
Cedergvist B,
Persson MG,
Gustafsson LE.
Direct demonstration of NO formation in vivo from organic nitrites and nitrates, and correlation to effects on blood pressure and to in vitro effects.
Biochem Pharmacol
47:
1047–1053,
1994.
|
35. |
Ceron PÃIB,
Cremonez DC,
Bendhack LM,
Tedesco AC.
The relaxation induced by S‐nitroso‐glutathione and S‐nitroso‐N‐acetylcysteine in rat aorta is not related to nitric oxide production.
J Pharmacol Exp Ther
298:
686–694,
2001.
|
36. |
Chakraborty S,
Balakotaiah V,
Bidani A.
Diffusing capacity reexamined: Relative roles of diffusion and chemical reaction in red cell uptake of O2, CO, CO2, and NO.
J Appl Physiol
97:
2284–2302,
2004.
|
37. |
Chan NL,
Kavanaugh JS,
Rogers PH,
Arnone A.
Crystallographic analysis of the interaction of nitric oxide with quaternary‐T human hemoglobin.
Biochemistry
43:
118–132,
2004.
|
38. |
Chan NL,
Rogers PH,
Arnone A.
Crystal structure of the S‐nitroso form of liganded human hemoglobin.
Biochemistry
37:
16459–16464,
1998.
|
39. |
Chen X,
Jaron D,
Barbee KA,
Buerk DG.
The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport.
J Appl Physiol
100:
482–492,
2006.
|
40. |
Chetrite G,
Cassoly R.
Affinity of hemoglobin for the cytoplasmic fragment of human erythrocytemembrane band 3. Equilibrium measurements at physiological pH using matrix‐bound proteins: The effects of ionic strength, deoxygenation and of 2,3‐diphosphoglycerate.
J Mol Biol
185:
639–644,
1985.
|
41. |
Chiancone E,
Currell DL,
Vecchini P,
Antonini E,
Wyman J.
Kinetics of the reaction of the “masked” and “free” sulfhydryl groups of human hemoglobin with p‐mercuribenzoate.
J Biol Chem
245:
4105–4111,
1970.
|
42. |
Chu H,
Breite A,
Ciraolo P,
Franco RS,
Low PS.
Characterization of the deoxyhemoglobin binding site on human erythrocyte band 3: Implications for O2 regulation of erythrocyte properties.
Blood
111:
932–938,
2008.
|
43. |
Cirillo M,
Laurenzi M,
Trevisan M,
Stamler J.
Hematocrit, blood pressure, and hypertension. The Gubbio Population Study.
Hypertension
20:
319–326,
1992.
|
44. |
Clough AV,
Haworth ST,
Ma W,
Dawson CA.
Effects of hypoxia on pulmonary microvascular volume.
Am J Physiol Heart Circ Physiol
279:
H1274–1282,
2000.
|
45. |
Cosby K,
Partovi KS,
Crawford JH,
Patel RP,
Reiter CD,
Martyr S,
Yang BK,
Waclawiw MA,
Zalos G,
Xu X,
Huang KT,
Shields H,
Kim‐Shapiro DB,
Schechter AN,
Cannon RO III,
Gladwin MT.
Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation.
Nat Med
9:
1498–1505,
2003.
|
46. |
Crawford JH,
Chacko BK,
Kevil CG,
Patel RP.
The red blood cell and vascular function in health and disease.
Antioxid Redox Signal
6:
992–999,
2004.
|
47. |
Crawford JH,
Chacko BK,
Pruitt HM,
Piknova B,
Hogg N,
Patel RP.
Transduction of NO‐bioactivity by the red blood cell in sepsis: Novel mechanisms of vasodilation during acute inflammatory disease.
Blood
104:
1375–1382,
2004.
|
48. |
Crawford JH,
Isbell TS,
Huang Z,
Shiva S,
Chacko BK,
Schechter AN,
Darley‐Usmar VM,
Kerby JD,
Lang JD Jr,
Kraus D,
Ho C,
Gladwin MT,
Patel RP.
Hypoxia, red blood cells, and nitrite regulate NO‐dependent hypoxic vasodilation.
Blood
107:
566–574,
2006.
|
49. |
Crawford JH,
White CR,
Patel RP.
Vasoactivity of S‐nitrosohemoglobin: Role of oxygen, heme, and NO oxidation states.
Blood
101:
4408–4415,
2003.
|
50. |
Creagh‐Brown B,
Griffiths M,
Evans T.
Bench‐to‐bedside review: Inhaled nitric oxide therapy in adults.
Crit Care
13:
221,
2009.
|
51. |
Daiber A,
Schildknecht S,
Muller J,
Kamuf J,
Bachschmid MM,
Ullrich V.
Chemical model systems for cellular nitros(yl)ation reactions.
Free Radic Biol Med
47:
458–467,
2009.
|
52. |
Dalsgaard T,
Simonsen U,
Fago A.
Nitrite‐dependent vasodilation is facilitated by hypoxia and is independent of known NO‐generating nitrite reductase activities.
Am J Physiol Heart Circ Physiol
292:
H3072–H3078,
2007.
|
53. |
Datta B,
Tufnell‐Barrett T,
Bleasdale RA,
Jones CJ,
Beeton I,
Paul V,
Frenneaux M,
James P.
Red blood cell nitric oxide as an endocrine vasoregulator: A potential role in congestive heart failure.
Circulation
109:
1339–1342,
2004.
|
54. |
Davies P,
Burke G,
Reid L.
The structure of the wall of the rat intraacinar pulmonary artery: An electron microscopic study of microdissected preparations.
Microvasc Res
32:
50–63,
1986.
|
55. |
Davison GW,
George L,
Jackson SK,
Young IS,
Davies B,
Bailey DM,
Peters JR,
Ashton T.
Exercise, free radicals, and lipid peroxidation in type 1 diabetes mellitus.
Free Radic Biol Med
33:
1543–1551,
2002.
|
56. |
Davisson RL,
Travis MD,
Bates JN,
Lewis SJ.
Hemodynamic effects of l‐ and d‐S‐nitrosocysteine in the rat. Stereoselective S‐nitrosothiol recognition sites.
Circ Res
79:
256–262,
1996.
|
57. |
Dawson CA,
Grimm DJ,
Linehan JH.
Influence of hypoxia on the longitudinal distribution of pulmonary vascular resistance.
J Appl Physiol
44:
493–498,
1978.
|
58. |
Deem S,
Bishop MJ,
Alberts MK.
Effect of anemia on intrapulmonary shunt during atelectasis in rabbits.
J Appl Physiol
79:
1951–1957,
1995.
|
59. |
Deem S,
Kim JU,
Manjula BN,
Acharya AS,
Kerr ME,
Patel RP,
Gladwin MT,
Swenson ER.
Effects of S‐nitrosation and cross‐linking of hemoglobin on hypoxic pulmonary vasoconstriction in isolated rat lungs.
Circ Res
91:
626–632,
2002.
|
60. |
Deem S,
Kim SS,
Min JH,
Eveland R,
Moulding J,
Martyr S,
Wang X,
Swenson ER,
Gladwin MT.
Pulmonary vascular effects of red blood cells containing S‐nitrosated hemoglobin.
Am J Physiol Heart Circ Physiol
287(6):
H2561‐H2568,
2004.
|
61. |
Deem S,
Swenson ER,
Alberts MK,
Hedges RG,
Bishop MJ.
Red blood cell augmentation of hypoxic pulmonary vasoconstriction: Hematocrit dependence and the importance of nitric oxide.
Am J Respir Crit Care Med
157:
1181–1186,
1998.
|
62. |
Diesen DL,
Hess DT,
Stamler JS.
Hypoxic vasodilation by red blood cells: Evidence for an S‐nitrosothiol‐based signal.
Circ Res
103:
545–553,
2008.
|
63. |
Doctor A,
Gaston B,
Kim‐Shapiro DB.
Detecting physiologic fluctuations in the S‐nitrosohemoglobin micropopulation: Triiodide versus 3C.
Blood
108:
3225–3227,
2006.
|
64. |
Doctor A,
Platt R,
Sheram ML,
Eischeid A,
McMahon T,
Maxey T,
Doherty J,
Axelrod M,
Kline J,
Gurka M,
Gow A,
Gaston B.
Hemoglobin conformation couples erythrocyte S‐nitrosothiol content to O2 gradients.
Proc Natl Acad Sci U S A
102:
5709–5714,
2005.
|
65. |
Doerschuk CM.
Mechanisms of leukocyte sequestration in inflamed lungs.
Microcirculation
8:
71–88,
2001.
|
66. |
Doughty LA,
Kaplan SS,
Carcillo JA.
Inflammatory cytokine and nitric oxide responses in pediatric sepsis and organ failure.
Crit Care Med
24:
1137–1143,
1996.
|
67. |
Doyle MP,
Hoekstra JW.
Oxidation of nitrogen oxides by bound dioxygen in hemoproteins.
J Inorg Biochem
14:
351–358,
1981.
|
68. |
Doyle MP,
Pickering RA,
DeWeert TM,
Hoekstra JW,
Pater D.
Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites.
J Biol Chem
256:
12393–12398,
1981.
|
69. |
Duke H,
Killick E.
Pulmonary vasomotor responses of isolated perfused cat lungs to anoxia.
J Physiol
117:
303–315,
1952.
|
70. |
Duling BR,
Berne RM.
Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow.
Circ Res
27:
669–678,
1970.
|
71. |
Duling BR,
Berne RM.
Oxygen and the local regulation of blood flow; possible significance of longitudinal gradients in arterial blood oxygen tension.
Circ Res
28
(Suppl 1):
65–69,
1971.
|
72. |
Ellsworth ML,
Ellis CG,
Goldman D,
Stephenson AH,
Dietrich HH,
Sprague RS.
Erythrocytes: Oxygen sensors and modulators of vascular tone.
Physiology
24:
107–116,
2009.
|
73. | From the bench to the bedside: The future of sepsis research. Executive summary of an American College of Chest Physicians, National Institute of Allergy and Infectious Disease, and National Heart, Lung, and Blood Institute Workshop.
Chest
111:
744–753,
1997.
|
74. |
Ferranti P,
Malorni A,
Mamone G,
Sannolo N,
Marino G.
Characterisation of S‐nitrosohaemoglobin by mass spectrometry.
FEBS Lett
400:
19–24,
1997.
|
75. |
Ferranti P,
Mamone G,
Malorni A.
Preparation and mass spectometric analysis of S‐nitrosohemoglobin.
Methods Mol Biol
146:
147–165,
2000.
|
76. |
Fischer SR,
Deyo DJ,
Bone HG,
McGuire R,
Traber LD,
Traber DL.
Nitric oxide synthase inhibition restores hypoxic pulmonary vasoconstriction in sepsis.
Am J Respir Crit Care Med
156:
833–839,
1997.
|
77. |
Foresti R,
Clark JE,
Green CJ,
Motterlini R.
Thiol compounds interact with nitric oxide in regulating heme oxygenase‐1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions.
J Biol Chem
272:
18411–18417,
1997.
|
78. |
Fortune JB,
FeustelP.J,
Saifi J,
Stratton HH,
Newell JC,
Shah DM.
Influence of hematocrit on cardiopulmonary function after acute hemorrhage.
J Trauma
27:
243–249,
1987.
|
79. |
Foster MW,
McMahon TJ,
Stamler JS.
S‐Nitrosylation in health and disease.
Trends Mol Med
9:
160–168,
2003.
|
80. |
Fox GA,
McCormack DG.
A new look at the pulmonary circulation in acute lung injury.
Thorax
47:
743–747,
1992.
|
81. |
Fox‐Robichaud A,
Payne D,
Hasan SU,
Ostrovsky L,
Fairhead T,
Reinhardt P,
Kubes P.
Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds.
J Clin Invest
101:
2497–2505,
1998.
|
82. |
Fox‐Robichaud A,
Payne D,
Kubes P.
Inhaled NO reaches distal vasculatures to inhibit endothelium—but not leukocyte‐dependent cell adhesion.
Am J Physiol Lung Cell Mol Physiol
277:
L1224–L1231,
1999.
|
83. |
Frandsen U,
Bangsbo J,
Sander M,
Hoffner L,
Betak A,
Saltin B,
Hellsten Y.
Exercise‐induced hyperaemia and leg oxygen uptake are not altered during effective inhibition of nitric oxide synthase with N(G)‐nitro‐l‐arginine methyl ester in humans.
J Physiol
531:
257–264,
2001.
|
84. |
Frei AC,
Guo Y,
Jones DW,
Pritchard KA Jr,
Fagan KA,
Hogg N,
Wandersee NJ.
Vascular dysfunction in a murine model of severe hemolysis.
Blood
112:
398–405,
2008.
|
85. |
Fujii M,
Hori H,
Miyazaki G,
Morimoto H,
Yonetani T.
The porphyrin‐iron hybrid hemoglobins. Absence of the Fe‐His bonds in one type of subunits favors a deoxy‐like structure with low oxygen affinity.
J Biol Chem
268:
15386–15393,
1993.
|
86. |
Funai EF,
Davidson A,
Seligman SP,
Finlay TH.
S‐Nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation.
Biochem Biophys Res Commun
239:
875–877,
1997.
|
87. |
Furchgott RF,
Zawadzki JV.
The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.
Nature
288:
373–376,
1980.
|
88. |
Gaston B.
Nitric oxide and thiol groups [Review].
Biochim Biophys Acta
1411:
323–333,
1999.
|
89. |
Gaston B,
Reilly J,
Drazen JM,
Fackler J,
Ramdev P,
Arnelle D,
Mullins ME,
Sugarbaker DJ,
Chee C,
Singel DJ.
Endogenous nitrogen oxides and bronchodilator S‐nitrosothiols in human airways.
Proc Natl Acad Sci U S A
90:
10957–10961,
1993.
|
90. |
Gaston B,
Singel D,
Doctor A,
Stamler JS.
S‐Nitrosothiol signaling in respiratory biology.
Am J Respir Crit Care Med
173:
1186–1193,
2006.
|
91. |
Gattinoni L,
Pelosi P,
Suter PM,
Pedoto A,
Vercesi P,
Lissoni A.
Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease, different syndromes?
Am J Respir Crit Care Med
158:
3–11,
1998.
|
92. |
Gerbino AJ,
McKinney S,
Glenny RW.
Correlation between ventilation and perfusion determines V A/Q heterogeneity in endotoxemia.
J Appl Physiol
88:
1933–1942,
2000.
|
93. |
Gladwin MT.
Evidence mounts that nitrite contributes to hypoxic vasodilation in the human circulation.
Circulation
117:
594–597,
2008.
|
94. |
Gladwin MT,
Ognibene FP,
Pannell LK,
Nichols JS,
Pease‐Fye ME,
Shelhamer JH,
Schechter AN.
Relative role of heme nitrosylation and beta‐cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation.
Proc Natl Acad Sci U S A
97:
9943–9948,
2000.
|
95. |
Gladwin MT,
Shelhamer JH,
Schechter AN,
Pease‐Fye ME,
Waclawiw MA,
Panza JA,
Ognibene FP,
Cannon RO III.
Role of circulating nitrite and S‐nitrosohemoglobin in the regulation of regional blood flow in humans.
Proc Natl Acad Sci U S A
97:
11482–11487,
2000.
|
96. |
Gladwin MT,
Wang X,
Reiter CD,
Yang BK,
Vivas EX,
Bonaventura C,
Schechter AN.
S‐nitrosohemoglobin is unstable in the reductive erythrocyte environment and lacks O2/NO‐linked allosteric function.
J Biol Chem
277:
27818–27828,
2002.
|
97. |
Gonzalez‐Alonso J,
Mortensen SP,
Dawson EA,
Secher NH,
Damsgaard R.
Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: Role of erythrocyte count and oxygenation state of haemoglobin.
J Physiol
572:
295–305,
2006.
|
98. |
Gonzalez‐Alonso J,
Olsen DB,
Saltin B.
Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: Role of circulating ATP.
Circ Res
91:
1046–1055,
2002.
|
99. |
Gonzalez‐Alonso J,
Richardson RS,
Saltin B.
Exercising skeletal muscle blood flow in humans responds to reduction in arterial oxyhaemoglobin, but not to altered free oxygen.
J Physiol Online
530:
331–341,
2001.
|
100. |
Gow A,
Doctor A,
Mannick J,
Gaston B.
S‐Nitrosothiol measurements in biological systems.
J Chromatogr B
851:
140–151,
2007.
|
101. |
Gow AJ,
Buerk DG,
Ischiropoulos H.
A novel reaction mechanism for the formation of S‐nitrosothiol in vivo.
J Biol Chem
272:
2841–2845,
1997.
|
102. |
Gow AJ,
Farkouh CR,
Munson DA,
Posencheg MA,
Ischiropoulos H.
Biological significance of nitric oxide‐mediated protein modifications.
Am J Physiol Lung Cell Mol Physiol
287:
L262–L268,
2004.
|
103. |
Gow AJ,
Luchsinger BP,
Pawloski JR,
Singel DJ,
Stamler JS.
The oxyhemoglobin reaction of nitric oxide.
Proc Natl Acad Sci U S A
96:
9027–9032,
1999.
|
104. |
Gow AJ,
Stamler JS.
Reactions between nitric oxide and haemoglobin under physiological conditions.
Nature
391:
169–173,
1998.
|
105. |
Granillo OM,
Brahmajothi MV,
Li S,
Whorton AR,
Mason SN,
McMahon TJ,
Auten RL.
Pulmonary alveolar epithelial uptake of S‐nitrosothiols is regulated by L‐type amino acid transporter.
Am J Physiol Lung Cell Mol Physiol
295:
L38–L43,
2008.
|
106. |
Guastadisegni C,
Minghetti L,
Nicolini A,
Polazzi A,
Levi G.
Prostaglandin E2 synthesis is differentially affected by reactive nitrogen intermediates in cultured rat microglia and RAW 264.7 cells.
FEBS Lett
413:
314–318,
1997.
|
107. |
Gurney AM.
Multiple sites of oxygen sensing and their contributions to hypoxic pulmonary vasoconstriction.
Respir Physiol Neurobiol
132:
43–53,
2002.
|
108. |
Guz A,
Kurland GS,
Freedberg AS.
Relation of coronary flow to oxygen supply.
Am J Physiol
199:
179–182,
1960.
|
109. |
Hammerman SI,
Klings ES,
Hendra KP,
Upchurch GR Jr,
Rishikof DC,
Loscalzo J,
Farber HW.
Endothelial cell nitric oxide production in acute chest syndrome.
Am J Physiol Heart Circ Physiol
277:
H1579–H1592,
1999.
|
110. |
Han TH,
Liao JC.
Erythrocyte nitric oxide transport reduced by a submembrane cytoskeletal barrier.
Biochim Biophys Acta
1723:
135–142,
2005.
|
111. |
Han TH,
Qamirani E,
Nelson AG,
Hyduke DR,
Chaudhuri G,
Kuo L,
Liao JC.
Regulation of nitric oxide consumption by hypoxic red blood cells.
Proc Natl Acad Sci U S A
100:
12504–12509,
2003.
|
112. |
Hanssen H,
Brunini TM,
Conway M,
Banning AP,
Roberts NB,
Mann GE,
Ellory JC,
Mendes RAC.
Increased l‐argenine transport in human erythrocytes in chronic heart failure.
Clin Sci (Lond)
94:
43–48,
1998.
|
113. |
Harada S,
Tokunaga S,
Momohara M,
Masaki H,
Tagawa T,
Imaizumi T,
Takeshita A.
Inhibition of nitric oxide formation in the nucleus tractus solitarius increases renal sympathetic nerve activity in rabbits.
Circ Res
72:
511–516,
1993.
|
114. |
Hare JM,
Stamler JS.
NO/redox disequilibrium in the failing heart and cardiovascular system.
J Clin Invest
115:
509–517,
2005.
|
115. |
Hart RG,
Kanter MC.
Hematologic disorders and ischemic stroke.
Stroke
21:
1111–1121,
1990.
|
116. |
Hausladen A,
Rafikov R,
Angelo M,
Singel DJ,
Nudler E,
Stamler JS.
Assessment of nitric oxide signals by triiodide chemiluminescence.
Proc Natl Acad Sci U S A
104:
2157–2162,
2007.
|
117. |
Hebbel RP,
Morgan WT,
Eaton JW,
Hedlund BE.
Accelerated autooxidation and heme loss due to instability of sickle hemoglobin.
Proc Natl Acad Sci U S A
85:
237–241,
1988.
|
118. |
Hebert PC,
Wells G,
Blajchamn MA,
Marshall J.
A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care.
N Engl J Med
340:
409–417,
1999.
|
119. |
Herold S,
Exner M,
Nauser T.
Kinetic and mechanistic studies of the NO‐mediated oxidation of oxymyoglobin and oxyhemoglobin.
Biochemistry
40:
3385–3395,
2001.
|
120. |
Herold S,
Rock G.
Reactions of deoxy‐, oxy‐, and methemoglobin, with nitrogen monoxide. mechanistic studies of the S‐nitrosothiol formation under different mixing conditions.
J Biol Chem
278:
6623–6634,
2002.
|
121. |
Herrera M,
Garvin JL.
Novel role of AQP‐1 in NO‐dependent vasorelaxation.
Am J Physiol Renal Physiol
292:
F1443–F1451,
2007.
|
122. |
Herrera M,
Hong NJ,
Garvin JL.
Aquaporin‐1 transports NO across cell membranes.
Hypertension
48:
157–164,
2006.
|
123. |
Herring N,
Paterson DJ.
Neuromodulators of peripheral cardiac sympatho‐vagal balance.
Exp Physiol
94:
46–53,
2009.
|
124. |
Hess DT,
Foster MW,
Stamler JS.
Assays for S‐nitrosothiols and S‐nitrosylated proteins and mechanistic insights into cardioprotection.
Circulation
120:
190–193,
2009.
|
125. |
Hess DT,
Matsumoto A,
Kim SO,
Marshall HE,
Stamler JS.
Protein S‐nitrosylation: Purview and parameters.
Nat Rev Mol Cell Biol
6:
150–166,
2005.
|
126. |
Hickey MJ,
Sihota E,
Amrani A,
Santamaria P,
Zbytnuik LD,
Ng ES,
Ho W,
Sharkey KA,
Kubes P.
Inducible nitric oxide synthase (iNOS) in endotoxemia: Chimeric mice reveal different cellular sources in various tissues.
FASEB J
16:
1141–1143,
2002.
|
127. |
Hildebrandt W,
Alexander S,
Bartsch P,
Droge W.
Effect of N‐acetyl‐cysteine on the hypoxic ventilatory response and erythropoietin production: Linkage between plasma thiol redox state and O2 chemosensitivity.
Blood
99:
1552–1555,
2002.
|
128. |
Hille R,
Olson JS,
Palmer G.
Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin.
J Biol Chem
254:
12110–12120,
1979.
|
129. |
Hillier SC,
Graham JA,
Hanger CC,
Godbey PS,
Glenny RW,
Wagner WW Jr.
Hypoxic vasoconstriction in pulmonary arterioles and venules.
J Appl Physiol
82:
1084–1090,
1997.
|
130. |
Ho J,
Sibbald WJ,
Chin‐Yee IH.
Effects of storage on efficacy of red cell transfusion: When is it not safe?
Crit Care Med
31:
S687–S697,
2003.
|
131. |
Hogg N,
Singh RJ,
Konorev E,
Joseph J,
Kalyanaraman B.
S‐Nitrosoglutathione as a substrate for γ‐glutamyl transpeptidase.
Biochem J
323:
477–481,
1997.
|
132. |
Holland RA,
Shibata H,
Scheid P,
Piiper J.
Kinetics of O2 uptake and release in a stopped flow apparatus: Effects of the unstirred layer.
Respir Physiol
59:
71–91,
1985.
|
133. |
Hrinczenko BW,
Schechter AN,
Wojtkowski TL,
Pannell LK,
Cashon RE,
Alayash AI.
Nitric oxide‐mediated heme oxidation and selective [beta]‐globin nitrosation of hemoglobin from normal and sickle erythrocytes.
Biochem Biophys Res Commun
275:
962–967,
2000.
|
134. |
Huang KT,
Han TH,
Hyduke DR,
Vaughn MW,
Van Herle H,
Hein TW,
Zhang C,
Kuo L,
Liao JC.
Modulation of nitric oxide bioavailability by erythrocytes.
Proc Natl Acad Sci U S A
98:
11771–11776,
2001.
|
135. |
Huang KT,
Huang Z,
Kim‐Shapiro DB.
Nitric oxide red blood cell membrane permeability at high and low oxygen tension.
Nitric Oxide
16:
209–216,
2007.
|
136. |
Huang Z,
Shiva S,
Kim‐Shapiro DB,
Patel RP,
Ringwood LA,
Irby CE,
Huang KT,
Ho C,
Hogg N,
Schechter AN,
Gladwin MT.
Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control.
J Clin Invest
115:
2099–2107,
2005.
|
137. |
Hudson LD,
Milberg JA,
Anardi D,
Maunder RJ.
Clinical risks for development of the acute respiratory distress syndrome.
Am J Respir Crit Care Med
151:
293–301,
1995.
|
138. |
Huxley VH,
Kutchai H.
Effect of diffusion boundary layers on the initial uptake of O2 by red cells. Theory versus experiment.
Microvasc Res
26:
89–107,
1983.
|
139. |
Ignarro L.
Biosynthesis and metabolism of endothelium‐derived nitric oxide.
Annu Rev Pharmacol Toxicol
30:
535–560,
1990.
|
140. |
Ignarro LJ.
Nitric Oxide: Biology and Pathobiology.
Academic Press,
San Diego, CA,
2000.
|
141. |
Ignarro LJ,
Buga GM,
Wood KS,
Byrns RE,
Chaudhuri G.
Endothelium‐derived relaxing factor produced and released from artery and veins is nitric oxide.
Proc Natl Acad Sci U S A
1987:
9265–9269,
1987.
|
142. |
Isbell TS,
Koenitzer JR,
Crawford JH,
White CR,
Kraus D,
Patel RP.
Assessing NO‐dependent vasodilatation using vessel bioassays at defined oxygen tensions.
Methods Enzymol
396:
553–568,
2005.
|
143. |
Isbell TS,
Sun CW,
Wu LC,
Teng X,
Vitturi DA,
Branch BG,
Kevil CG,
Peng N,
Wyss JM,
Ambalavanan N,
Schwiebert L,
Ren J,
Pawlik KM,
Renfrow MB,
Patel RP,
Townes TM.
SNO‐hemoglobin is not essential for red blood cell‐dependent hypoxic vasodilation.
Nat Med
14:
773–777,
2008.
|
144. |
Jacob, C,
Knight I,
Winyard PG.
Aspects of the biological redox chemistry of cysteine: From simple redox responses to sophisticated signalling pathways.
Biol Chem
387:
1385–1397,
2006.
|
145. |
Jagger JE,
Bateman RM,
Ellsworth ML,
Ellis CG.
Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation.
Am J Physiol Heart Circ Physiol
280:
H2833–H2839,
2001.
|
146. |
James PE,
Lang D,
Tufnell‐Barret T,
Milsom AB,
Frenneaux MP.
Vasorelaxation by red blood cells and impairment in diabetes: Reduced nitric oxide and oxygen delivery by glycated hemoglobin.
Circ Res
94:
976–983,
2004.
|
147. |
James PE,
Tufnell‐Barret T,
Milsom AB,
Frenneaux MP,
Lang D.
Red blood cell‐mediated hypoxic vasodilatation: A balanced physiological viewpoint.
Circ Res
95:
e8–e9,
2004.
|
148. |
Jeffers A,
Gladwin MT,
Kim‐Shapiro DB.
Computation of plasma hemoglobin nitric oxide scavenging in hemolytic anemias.
Free Radic Biol Med
41:
1557–1565,
2006.
|
149. |
Jia L,
Bonaventura C,
Bonaventura J,
Stamler JS.
S‐Nitrosohaemoglobin: A dynamic activity of blood involved in vascular control.
Nature
380:
221–226,
1996.
|
150. |
Jiang J,
Corbett J,
Hogg N,
Mason RP.
An electron paramagnetic resonance investigation of the oxygen dependence of the arterial‐venous gradient of nitrosyl hemoglobin in blood circulation.
Free Radic Biol Med
43:
1208–1215,
2007.
|
151. |
Johnson D,
Mayers I.
Multiple organ dysfunction syndrome: A narrative review.
Can J Anesth
48:
502–509,
2001.
|
152. |
Jones DP,
Go YM,
Anderson CL,
Ziegler TR,
Kinkade JM Jr,
Kirlin WG.
Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
FASEB J
18:
1246–1248,
2004.
|
153. |
Jourd'heuil D,
Gray L,
Grisham MB.
S‐Nitrosothiol formation in blood of lipopolysaccharide‐treated rats.
Biochem Biophys Res Commun
273:
22–26,
2000.
|
154. |
Kantrow SP,
Huang YC,
Whorton AR,
Grayck EN,
Knight JM,
Millington DS,
Piantadosi CA.
Hypoxia inhibits nitric oxide synthesis in isolated rabbit lung.
Am J Physiol Lung Cell Mol Physiol
272:
L1167–L1173,
1997.
|
155. |
Kato M,
Staub NC.
Response of small pulmonary arteries to unilobar hypoxia and hypercapnia.
Circ Res
19:
426–440,
1966.
|
156. |
Kaye DM,
Wiviott SD,
Kobzik L,
Kelly RA,
Smith TW.
S‐Nitrosothiols inhibit neuronal norepinephrine transport.
Am J Physiol
272:
H875–H883,
1997.
|
157. |
Ketcham EM,
Cairns CB.
Hemoglobin based oxygen carriers: Development and clinical potential.
Ann Emerg Med
33:
326–337,
1999.
|
158. |
Kilbourn RG,
Joly G,
Cashon B,
DeAngelo J,
Bonaventura J.
Cell‐free hemoglobin reverses the endotoxin‐mediated hyporesponsivity of rat aortic rings to alpha‐adrenergic agents.
Biochem Biophys Res Commun
199:
155–162,
1994.
|
159. |
Kim S,
Kong RL,
Popel AS,
Intaglietta M,
Johnson PC.
Temporal and spatial variations of cell‐free layer width in arterioles.
Am J Physiol Heart Circ Physiol
293:
H1526–H1535,
2007.
|
160. |
Kim SF,
Huri DA,
Snyder SH.
Inducible nitric oxide synthase binds, S‐nitrosylates, and activates cyclooxygenase‐2.
Science
310:
1966–1970,
2005.
|
161. |
Kim‐Shapiro DB,
Schechter AN,
Gladwin MT.
Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics.
Arterioscler Thromb Vasc Biol
26:
697–705,
2006.
|
162. |
Kosaka H.
Nitric oxide and hemoglobin interactions in the vasculature.
Biochem Biophys Acta
1411:
370–377,
1999.
|
163. |
Kosaka H,
Sawai Y,
Sakaguchi H,
Kumura E,
Harada N,
Watanabe M,
Shiga T.
ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine‐treated rats.
Am J Physiol Cell Physiol
266:
C1400–C1405,
1994.
|
164. |
Kosaka H,
Seiyama A.
Elevation of oxygen release by nitroglycerin without an increase in blood flow in the hepatic microcirculation.
Nat Med
3:
456–459,
1997.
|
165. |
Kosaka H,
Watanabe M,
Yoshihara H,
Harada N,
Shiga T.
Detection of nitric oxide production on lipopolysaccharide‐treated rats by ESR using carbon monoxide hemoglobin.
Biochem Biophys Res Commun
184:
1119–1124,
1992.
|
166. |
Kowaluk EA,
Fung HL.
Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S‐nitrosothiols.
J Pharmacol Exp Ther
255:
1256–1264,
1990.
|
167. |
Kruszyna R,
Kruszyna H,
Smith RP,
Wilcox DE.
Generation of valency hybrids and nitrosylated species of hemoglobin in mice by nitric oxide vasodilators.
Toxicol Appl Pharmacol
94:
458–465,
1988.
|
168. |
Kubes P,
Payne D,
Grisham MB,
Jourd'heuil D,
Fox‐Robichaud A.
Inhaled NO impacts vascular but not extravascular compartments in postischemic peripheral organs.
Am J Physiol
277:
H676–H682,
1999.
|
169. |
Lancaster JR.
Simulation of the diffusion and reaction of endogenously produced nitric oxide.
Proc Natl Acad Sci U S A
91:
8137–8141,
1994.
|
170. |
Landry DW,
Oliver JA.
The pathogenesis of vasodilatory shock.
N Engl J Med
345:
588–595,
2001.
|
171. |
Leal‐Noval SR,
Jara‐Lopez I,
Garcia‐Garmendia JL,
Marin‐Niebla A,
Herruzo‐Aviles AMD,
Camacho‐Larana P,
Loscertales J.
Influence of erythrocyte concentrate storage time on postsurgical morbidity in cardiac surgery patients.
Anesthesiology
98:
815–822,
2003.
|
172. |
Leal‐Noval SR,
Munoz‐Gomez M,
Arellano‐Orden V,
Marin‐Caballos A,
Amaya‐villar R,
Marin A,
Puppo‐Moreno A,
Ferrandiz‐millon C,
Flores‐cordero JM,
Murillo‐Cabezas F.
Impact of age of transfused blood on cerebral oxygenation in male patients with severe traumatic brain injury.
Crit Care Med
36:
1290–1296,
2008.
|
173. |
Leone AM,
Palmer RM,
Knowles RG,
Francis PL,
Ashton DS,
Moncada S.
Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline.
J Biol Chem
266:
23790–23795,
1991.
|
174. |
Li S,
Whorton AR.
Identification of stereoselective transporters for S‐nitroso‐l‐cysteine: Role of LA1 and LA1 in biological activity of nitrosothiols.
J Biol Chem
280:
20102–20110,
2005.
|
175. |
Li S,
Whorton AR.
Functional characterization of two S‐nitroso‐l‐cysteine transporters, which mediate movement of NO equivalents into vascular cells.
Am J Physiol Cell Physiology
292:
C1263–C1271,
2007.
|
176. |
Liao JC,
Hein TW,
Vaughn MW,
Huang KT,
Kuo L.
Intravascular flow decreases erythrocyte consumption of nitric oxide.
Proc Natl Acad Sci U S A
96:
8757–8761,
1999.
|
177. |
Lima B,
Lam GKW,
Xie L,
Diesen DL,
Villamizar N,
Nienaber J,
Messina E,
Bowles D,
Kontos CD,
Hare JM,
Stamler JS,
Rockman HA.
Endogenous S‐nitrosothiols protect against myocardial injury.
Proc Natl Acad Sci U S A
106:
6297–6302,
2009.
|
178. |
Lipton AJ,
Johnson MA,
Macdonald T,
Lieberman MW,
Gozal D,
Gaston B.
S‐Nitrosothiols signal the ventilatory response to hypoxia.
Nature
413:
171–174,
2001.
|
179. |
Lipton SA.
Physiology: Nitric oxide and respiration.
Nature
413:
118–121,
2001.
|
180. |
Liu L,
Hausladen A,
Zeng M,
Que L,
Heitman J,
Stamler JS.
A metabolic enzyme for S‐nitrosothiol conserved from bacteria to humans.
Nature
410:
490–494,
2001.
|
181. |
Liu L,
Hausladen A,
Zeng M,
Que L,
Heitman J,
Stamler JS,
Steverding D.
Nitrosative stress: Protection by glutathione‐dependent formaldehyde dehydrogenase.
Redox Rep
6:
209–210,
2001.
|
182. |
Liu L,
Yan Y,
Zeng M,
Zhang J,
Hanes MA,
Ahearn G,
McMahon TJ,
Dickfeld T,
Marshall HE,
Que LG,
Stamler JS.
Essential roles of S‐nitrosothiols in vascular homeostasis and endotoxic shock.
Cell
116:
617–628,
2004.
|
183. |
Liu X,
Miller MJ,
Joshi MS,
Sadowska‐Krowicka H,
Clark DA,
Lancaster JR.
Diffusion‐limited reaction of free nitric oxide with erythrocytes.
J Biol Chem
273:
18709–18713,
1998.
|
184. |
Luchsinger BP,
Rich EN,
Gow AJ,
Williams EM,
Stamler JS,
Singel DJ.
Routes to S‐nitroso‐hemoglobin formation with heme redox and preferential reactivity in the beta subunits.
Proc Natl Acad Sci U S A
100:
461–466,
2003.
|
185. |
Luchsinger BP,
Rich EN,
Yan Y,
Williams EM,
Stamler JS,
Singel DJ.
Assessments of the chemistry and vasodilatory activity of nitrite with hemoglobin under physiologically relevant conditions.
J Inorg Biochem
99:
912–921,
2005.
|
186. |
Mamone G,
Sannolo N,
Malorni A,
Ferranti P.
In vitro formation of S‐nitrosohemoglobin in red cells by inducible nitric oxide synthase.
FEBS Lett
462:
241–245,
1999.
|
187. |
Marik PE,
Sibbald WJ.
Effect of stored blood transfusion on oxygen delivery in patients with sepsis.
JAMA
269:
3024–3029,
1993.
|
188. |
Maritim AC,
Sanders RA,
Watkins JB.
Diabetes, oxidative stress, and antioxidants.
J Biochem Mol Toxicol
17:
24–38,
2003.
|
189. |
Martinez‐Ruiz A,
Lamas S.
Nitrosylation of thiols in vascular homeostasis and disease.
Curr Atheroscler Rep
7:
213–218,
2005.
|
190. |
Matsuda T,
Bates JN,
Lewis SJ,
Abboud FM,
Chapleau MW.
Modulation of baroreceptor activity by nitric oxide and S‐nitrosocysteine.
Circ Res
76:
426–433,
1995.
|
191. |
Mayer B,
Pfeiffer S,
Schrammel. A,
Koesling. D,
Schmidt K,
Brunner F.
A new pathway of nitric oxide cyclic GMP signaling involving S‐nitrosoglutathione.
J Biol Chem
273:
3264–3270,
1998.
|
192. |
McCann UG,
Schiller HJ,
Gatto LA,
Steinberg JM,
Carney DE,
Nieman GF.
Alveolar mechanics alter hypoxic pulmonary vasoconstriction.
Crit Care Med
30:
1315–1321,
2002.
|
193. |
McMahon TJ,
Ahearn GS,
Moya MP,
Gow AJ,
Huang YC,
Luchsinger BP,
Nudelman R,
Yan Y,
Krichman AD,
Bashore TM,
Califf RM,
Singel DJ,
Piantadosi CA,
Tapson VF,
Stamler JS.
A nitric oxide processing defect of red blood cells created by hypoxia: Deficiency of S‐nitrosohemoglobin in pulmonary hypertension.
Proc Natl Acad Sci U S A
102:
14801–14806,
2005.
|
194. |
McMahon TJ,
Doctor A.
Extrapulmonary effects of inhaled nitric oxide: Role of reversible S‐nitrosylation of erythrocytic hemoglobin.
Proc Am Thorac Soc
3:
153–160,
2006.
|
195. |
McMahon TJ,
Exton SA,
Bonaventura J,
Singel DJ,
Solomon SJ.
Functional coupling of oxygen binding and vasoactivity in S‐nitrosohemoglobin.
J Biol Chem
275:
16738–16745,
2000.
|
196. |
McMahon TJ,
Moon RE,
Luschinger BP,
Carraway MS,
Stone AE,
Stolp BW,
Gow AJ,
Pawloski JR,
Watke P,
Singel DJ,
Piantadosi CA,
Stamler JS.
Nitric oxide in the human respiratory cycle.
Nat Med
8:
711–717,
2002.
|
197. |
McMahon TJ,
Stamler JS.
Concerted nitric oxide/oxygen delivery by hemoglobin.
Methods Enzymol
301:
99–114,
1999.
|
198. |
McMurtry IF,
Hookway BW,
Roos SD.
Red blood cells but not platelets prolong vascular reactivity of isolated rat lungs.
Am J Physiol Heart Circ Physiol
234:
H186–H191,
1978.
|
199. |
Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine.
Crit Care Med
20:
864–874,
1992.
|
200. |
Mendes Ribeiro AC,
Brunini TMC,
Ellory JC,
Mann GE.
Abnormalities in l‐arginine transport and nitric oxide biosynthesis in chronic renal and heart failure.
Cardiovasc Res
49:
697–712,
2001.
|
201. |
Meyer DJ,
Kramer H,
Ozer N,
Coles B,
Ketterer B.
Kinetics and equilibria of S‐nitrosothiol‐thiol exchange between glutathione, cysteine, penicillamines and serum albumin.
FEBS Lett
345:
177–180,
1994.
|
202. |
Milsom AB,
Jones CJ,
Goodfellow J,
Frenneaux MP,
Peters JR,
James PE.
Abnormal metabolic fate of nitric oxide in type I diabetes.
Diabetologia
45(11):
1515–1512,
2002.
|
203. |
Motterlini R,
Foresti R,
Bassi R,
Calabrese V,
Clark JE,
Green CJ.
Endothelial heme oxygenase‐1 induction by hypoxia. Modulation by inducible nitric oxide synthase and S‐nitrosothiols.
J Biol Chem
275:
13613–13620,
2000.
|
204. |
Moudgil R,
Michelakis ED,
Archer SL.
Hypoxic pulmonary vasoconstriction.
J Appl Physiol
98:
390–403,
2005.
|
205. |
Moya MP,
Gow AJ,
Califf RM,
Goldberg RN,
Stamler JS.
Inhaled ethyl nitrite gas for persistent pulmonary hypertension of the newborn.
Lancet
360:
141–143,
2002.
|
206. |
Moya MP,
Gow AJ,
McMahon TJ,
Toone EJ,
Cheifetz IM,
Goldberg RN,
Stamler JS.
S‐Nitrosothiol repletion by an inhaled gas regulates pulmonary function.
Proc Natl Acad Sci U S A
98:
5792–5797,
2001.
|
207. |
Murad F.
Cyclic guanosine monophosphate as a mediator of vasodilation.
J Clin Invest
78:
1–5,
1986.
|
208. |
Myers PR,
Minor RL,
Guerra R,
Bates JN,
Harrison DG.
Vasorelaxant properties of the endothelium‐derived relaxing factor more closely resemble S‐nitrosocysteine than nitric oxide.
Nature
345:
161–163,
1990.
|
209. |
Nagababu E,
Ramasamy S,
Abernethy DR,
Rifkind JM.
Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin‐mediated nitrite reduction.
J Biol Chem
278:
46349–46356,
2003.
|
210. |
Nagababu E,
Ramasamy S,
Rifkind JM.
S‐Nitrosohemoglobin: A mechanism for its formation in conjunction with nitrite reduction by deoxyhemoglobin.
Nitric Oxide
15:
20–29,
2006.
|
211. |
Nagatomo S,
Nagai M,
Tsuneshige A,
Yonetani T,
Kitagawa T.
UV resonance Raman studies of alpha‐nitrosyl hemoglobin derivatives: Relation between the alpha 1‐2 subunit interface interactions and the Fe‐histidine bonding of alpha heme.
Biochemistry
38:
9659–9666,
1999.
|
212. |
Nakai S,
Sakuma I,
Togashi H,
Yoshoika M.
S‐Nitrosylated polyethylene glycol‐conjugated hemoglobin derivative as a candidate material for oxygen therapeutics.
Adv Exp Med Biol
519:
216,
2003.
|
213. |
Nakamura H,
Nakamura K,
Yoidi J.
Redox regulation of cellular activation.
Annu Rev Immunol
15:
351–369,
1997.
|
214. |
Nozic‐Grayck E,
McMahon T,
Huang YCT,
Dieterle C,
Stamler JS,
Piantadosi C.
Pulmonary vasoconstriction by serotonin is inhibited by S‐nitrosoglutathione.
Am J Physiol
282:
L1057–L1065,
2001.
|
215. |
Nozik‐Grayck E,
Whalen EJ,
Stamler JS,
McMahon TJ,
Chitano P,
Piantadosi CA.
S‐Nitrosoglutathione inhibits {alpha}1‐adrenergic receptor‐mediated vasoconstriction and ligand binding in pulmonary artery.
Am J Physiol Lung Cell Mol Physiol
290:
L136–L143,
2006.
|
216. |
Nwose EU,
Jelinek HF,
Richards RS,
Kerr PG.
Erythrocyte oxidative stress in diabetes and its cardiovascular complications.
Br J Biomed Sci
64:
35–43,
2007.
|
217. |
Okishio M,
Ohikawa S,
Ichimori Y,
Kondo K.
Interaction between endothelium‐derived relaxing factors, S‐nitrosothiols, and endothelin‐1 on Ca2+ mobilization in rat vascular smooth muscle cells.
Biochem Biophys Res Commun
183:
849–855,
1992.
|
218. |
Ottesen LH,
Harry D,
Frost M,
Davies S,
Khan K,
Halliwell B,
Moore K.
Increased formation of S‐nitrothiols and nitrotyrosine in cirrhotic rats during endotoxemia.
Free Radic Biol Med
31:
790–798,
2001.
|
219. |
Owen JA,
Bates JN,
Lewis SJ.
Endogenous nitrosyl factors may inhibit the desensitization of 5‐HT3 receptors on vagal cardiopulmonary afferents.
Brain Res
1059:
167–172,
2005.
|
220. |
Paddenberg R,
Konig P,
Faulhammer P,
Goldenberg A,
Pfeil U,
Kummer W.
Hypoxic vasoconstriction of partial muscular intra‐acinar pulmonary arteries in murine precision cut lung slices.
Respir Res
7:
93,
2006.
|
221. |
Padron J,
Peiro C,
Cercas E,
Llergo JL,
Sanchez‐Ferrer CF.
Enhancement of S‐nitrosylation in glycosylated hemoglobin.
Biochem Biophys Res Commun
271:
217–221,
2000.
|
222. |
Paiva M,
Engel LA.
Model analysis of intra‐acinar gas exchange.
Respir Physiol
62:
257–272,
1985.
|
223. |
Palmer LA,
Doctor A,
Chhabra P,
Sheram ML,
Laubach VE,
Karlinsey MZ,
Forbes MS,
Macdonald T,
Gaston B.
S‐Nitrosothiols signal hypoxia‐mimetic vascular pathology.
J Clin Invest
117:
2592–2601,
2007.
|
224. |
Palmer LA,
Doctor A,
Gaston B.
SNO‐hemoglobin and hypoxic vasodilation.
Nat Med
14:
1009,
2008.
|
225. |
Patel RP.
Biochemical aspects of the reaction of hemoglobin and NO: Implications for Hb‐based blood substitutes.
Free Radic Biol Med
28:
1525,
2000.
|
226. |
Pawloski JR,
Hess DT,
Stamler JS.
Export by red blood cells of nitric oxide bioactivity.
Nature
409:
622–626,
2001.
|
227. |
Pawloski JR,
Hess DT,
Stamler JS.
Impaired vasodilation by red blood cells in sickle cell disease.
Proc Natl Acad Sci U S A
102:
2531–2536,
2005.
|
228. |
Pawloski JR,
Swaminathan RV,
Stamler JS.
Cell‐free and erythrocytic S‐nitrosohemoglobin inhibits human platelet aggregation.
Circulation
97:
263–267,
1998.
|
229. |
Pelosi P,
Gattinoni L.
Acute respiratory distress syndrome of pulmonary and extrapulmonary origin.
Intensive Care Med
27:
457–460,
2001.
|
230. |
Pezacki JP,
Ship NJ,
Kluger R.
Release of nitric oxide from S‐nitrosohemoglobin. Electron transfer as a response to deoxygenation.
J Am Chem Soc
123:
4615–4616,
2001.
|
231. |
Purdy FR,
Tweeddale MG,
Merrick PM.
Association of mortality with age of blood transfused in septic ICU patients.
Can J Anesth
44:
1256–1261,
1997.
|
232. |
Que LG,
Liu L,
Yan Y,
Whitehead GS,
Gavett SH,
Schwartz DA,
Stamler JS.
Protection from experimental asthma by an endogenous bronchodilator.
Science
308:
1618–1621,
2005.
|
233. |
Rask‐Madsen C,
King GL.
Mechanisms of disease: Endothelial dysfunction in insulin resistance and diabetes.
Nat Clin Pract Endocrinol Metab
3:
46–56,
2007.
|
234. |
Rassaf T,
Bryan NS,
Maloney RE,
Specian V,
Kelm M,
Kalyanaraman B,
Rodriguez J,
Feelisch M.
NO adducts in mammalian red blood cells: Too much or too little?
Nat Med
9:
481–482,
2003.
|
235. |
Reischl E,
Dafre AL,
Franco JL,
Wilhelm Filho D.
Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins.
Comp Biochem Physiol C Toxicol Pharmacol
146:
22–53,
2007.
|
236. |
Reiter CD,
Wang X,
Tanus‐Santos JE,
Hogg N,
Cannon RO,
Schecter AN,
Gladwin MT.
Cell‐free hemoglobin limits nitric oxide bioavailability in sickle‐cell disease.
Nat Med
8:
1383–1389,
2002.
|
237. |
Rengasamy A,
Johns RA.
Determination of Km for oxygen of nitric oxide synthase isoforms.
J Pharmacol Exp Ther
276:
30–33,
1996.
|
238. |
Reutov V,
Sorokina E.
NO‐synthase and nitrite‐reductase components of nitric oxide cycle.
Biochemistry (Mosc)
63:
874–884,
1998.
|
239. |
Reynolds JD,
Ahearn GS,
Angelo M,
Zhang J,
Cobb F,
Stamler JS.
S‐Nitrosohemoglobin deficiency: A mechanism for loss of physiological activity in banked blood.
Proc Natl Acad Sci U S A
104:
17058–17062,
2007.
|
240. |
Rifkind JM,
Ramasamy S,
Manoharan PT,
Nagababu E,
Mohanty JG.
Redox reactions of hemoglobin.
Antioxid Redox Signal
6:
657–666,
2004.
|
241. |
Rigobello MP,
Scutari G,
Boscolo R,
Bindoli A.
Oxidation of adrenaline and its derivatives by S‐nitrosoglutathione.
Nitric Oxide
5:
39–46,
2001.
|
242. |
Roccatello D,
Mengozzi G,
Alfieri V,
Pignone E,
Menegatti E,
Cavalli G,
Cesano G,
Rossi D,
Fromica M,
Inconis T,
Martina G,
Paradisi L,
Sena L,
Piccoli G.
Early increase in blood nitric oxide, detected by electron paramagnetic resonance as nitrosylhaemoglobin, in haemodialysis.
Nephrol Dial Transplant
12:
292–297,
1997.
|
243. |
Romeo AA,
Capobianco JA,
English AM.
Superoxide dismutase targets NO from GSNO to Cysbeta93 of oxyhemoglobin in concentrated but not dilute solutions of the protein.
J Am Chem Soc
125:
14370–14378,
2003.
|
244. |
Ross JM,
Fairchild HM,
Weldy J,
Guyton AC.
Autoregulation of blood flow by oxygen lack.
Am J Physiol Legacy
202:
21–24,
1962.
|
245. |
Rother RP,
Bell L,
Hillmen P,
Gladwin MT.
The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: A novel mechanism of human disease.
JAMA
293:
1653–1662,
2005.
|
246. |
Ryter SW,
Morse D,
Choi AMK.
Carbon monoxide: To boldly go where NO has gone before.
Sci STKE
2004:
re6,
2004.
|
247. |
Sand AE,
Andersson AE,
Fried G.
Effects of nitric oxide donors and inhibitors of nitric oxide signalling on endothelin‐ and serotonin‐induced contractions in human placental arteries.
Acta Physiol Scand
174:
217–223,
2003.
|
248. |
Satoh S,
Kimura T,
Toda M,
Miyazaki H,
Ono S,
Narita H,
Murayama T,
Nomura Y.
NO donors stimulate noradrenaline release from rat hippocampus in a calmodulin‐dependent manner in the presence of l‐cysteine.
J Cell Physiol
169:
87–96,
2003.
|
249. |
Scharfstein JS,
Keaney JF,
Slivka A,
Welch GN,
Vita JA,
Stamler JS,
Loscalzo J.
In vivo transfer of nitric oxide between a plasma protein‐bound reservoir and low molecular weight thiols.
J Clin Invest
94:
1432–1439,
1994.
|
250. |
Shimazutsu K,
Uemura K,
Auten K,
Baldwin M,
Belknap S,
La Banca F,
Jones M,
McClaine D,
Eubanks W,
Stamler J,
Reynolds J.
Inclusion of a nitric oxide congener in the insufflation gas repletes S‐nitrosohemoglobin and stabilizes physiologic status during prolonged carbon dioxide pneumoperitoneum.
Clin Transl Sci
2:
405–412,
2009.
|
251. |
Shirai M,
Sada K,
Ninomiya I.
Effects of regional alveolar hypoxia and hypercapnia on small pulmonary vessels in cats.
J Appl Physiol
61:
440–448,
1986.
|
252. |
Singel DJ,
Stamler JS.
Blood traffic control.
Nature
430:
297–297,
2004.
|
253. |
Singel DJ,
Stamler JS.
Chemical physiology of blood flow regulation by red blood cells: Role of nitric oxide and S‐nitrosohemoglobin.
Annu Rev Physiol
67:
99–145,
2005.
|
254. |
Sommer N,
Dietrich A,
Schermuly RT,
Ghofrani HA,
Gudermann T,
Schulz R,
Seeger W,
Grimminger F,
Weissmann N.
Regulation of hypoxic pulmonary vasoconstriction: Basic mechanisms.
Eur Respir J
32:
1639–1651,
2008.
|
255. |
Sonveaux P,
Kaz AM,
Snyder SA,
Richardson RA,
Cardenas‐Navia LI,
Braun RD,
Pawloski JR,
Tozer GM,
Bonaventura J,
McMahon TJ,
Stamler JS,
Dewhirst MW.
Oxygen regulation of tumor perfusion by S‐nitrosohemoglobin reveals a pressor activity of nitric oxide.
Circ Res
96:
1119–1126,
2005.
|
256. |
Spencer NY,
Zeng H,
Patel RP,
Hogg N.
Reaction of S‐nitrosoglutathione with the heme group of deoxyhemoglobin.
J Biol Chem
275:
36562–36567,
2000.
|
257. |
Staab CA,
Lander J,
Morgenstern R,
Grafström RC,
Höög JO.
The Janus face of alcohol dehydrogenase 3.
Chem Biol Interact
178:
29–35,
2009.
|
258. |
Stamler JS.
Redox signaling: Nitrosylation and related target interactions of nitric oxide.
Cell
78:
931–936,
1994.
|
259. |
Stamler JS.
S‐Nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups.
Curr Top Microbiol Immunol
196:
19–36,
1995.
|
260. |
Stamler JS.
S‐Nitrosothiols in the blood: Roles, amounts, and methods of analysis.
Circ Res
94:
414–417,
2004.
|
261. |
Stamler JS,
Hausladen A.
Oxidative modifications in nitrosative stress.
Nat Struct Biol
5:
247–249,
1998.
|
262. |
Stamler JS,
Jia L,
Eu JP,
McMahon TJ,
Demchenko IT,
Bonaventura J,
Gernert K,
Piantadosi CA.
Blood flow regulation by S‐nitrosohemoglobin in the physiological oxygen gradient.
Science
276:
2034–2037,
1997.
|
263. |
Stamler JS,
Lamas S,
Fang FC.
Nitrosylation. The prototypic redox‐based signaling mechanism.
Cell
106:
675–683,
2001.
|
264. |
Stamler JS,
Meissner G.
Physiology of nitric oxide in skeletal muscle.
Physiol Rev
81:
209–237,
2001.
|
265. |
Stamler JS,
Simon DI,
Osborne JA,
Mullins ME,
Jaraki O,
Michel T,
Singel DJ,
Loscalzo J.
S‐Nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds.
Proc Natl Acad Sci U S A
89:
444–448,
1992.
|
266. |
Stamler JS,
Singel DJ,
Loscalzo J.
Biochemistry of nitric oxide and its redox‐activated forms.
Science
258:
1898–1902,
1992.
|
267. |
Stamler JS,
Singel D,
Piantadosi C.
SNO‐hemoglobin and hypoxic vasodilation.
Nat Med
14:
1009,
2008.
|
268. |
Stamler JS,
Toone EJ,
Lipton SA,
Sucher NJ.
(S)NO signals: Translocation, regulation, and a consensus motif.
Neuron
18:
691–696,
1997.
|
269. |
Staub NC.
Site of hypoxic pulmonary vasoconstriction.
Chest
88:
240S–245S,
1985.
|
270. |
Stephansson O,
Dickman PW,
Johansson A,
Cnattingius S.
Maternal hemoglobin concentration during pregnancy and risk of stillbirth.
JAMA
284:
2611–2617,
2000.
|
271. |
Strand OA,
Leone A,
Giercksky KE,
Kirkeboen KA.
Nitric oxide indices in human septic shock.
Crit Care Med
28:
2779–2785,
2000.
|
272. |
Subasinghe W,
Spence DM.
Simultaneous determination of cell aging and ATP release from erythrocytes and its implications in type 2 diabetes.
Anal Chim Acta
618:
227–233,
2008.
|
273. |
Sugerman HJ,
Davidson DT,
Vibul S,
Delivoria‐Papadopoulos M,
Miller LD,
Oski FA.
The basis of defective oxygen delivery from stored blood.
Surg Gynecol Obstet
131:
733–741,
1970.
|
274. |
Suzuki K,
Naoki K,
Kudo H,
Nishio K,
Sato N,
Aoki T,
Suzuki Y,
Takeshita KEI,
Miyata A,
Tsumura H,
Yamakawa Y,
Yamaguchi K.
Impaired hypoxic vasoconstriction in intraacinar microvasculature in hyperoxia‐exposed rat lungs.
Am J Respir Crit Care Med
158:
602–609,
1998.
|
275. |
Swan A,
Hunter P,
Tawhai M.
Pulmonary gas exchange in anatomically‐based models of the lung. In:
Integration in Respiratory Control.
2008, p.
184–189.
|
276. |
Sylvester JT,
Mitzner W,
Ngeow Y,
Permutt S.
Hypoxic constriction of alveolar and extra‐alveolar vessels in isolated pig lungs.
J Appl Physiol
54:
1660–1666,
1983.
|
277. |
Szabo C.
Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction.
Br J Pharmacol
156:
713–727,
2009.
|
278. |
Tabuchi A,
Mertens M,
Kuppe H,
Pries AR,
Kuebler WM.
Intravital microscopy of the murine pulmonary microcirculation.
J Appl Physiol
104:
338–346,
2008.
|
279. |
Tawhai MH,
Burrowes KS,
Hoffman EA.
Computational models of structure‐function relationships in the pulmonary circulation and their validation.
Exp Physiol
91:
285–293,
2006.
|
280. |
Tejedor C,
Lorente JA,
Delgado MA,
Fernandez‐Segoviano P,
De PM,
Tobalina R,
Alonso M,
Moscoso A,
Soto F,
Blazquez J,
Esteban A.
Interaction between hemoglobin and glutathione in the regulation of blood flow in normal and septic pigs.
Crit Care Med
30:
2493–2500,
2002.
|
281. |
Tinmouth A,
Fergusson D,
Yee IC,
Hebert PC.
Clinical consequences of red cell storage in the critically ill.
Transfusion
46:
2014–2027,
2006.
|
282. |
Titheradge MA.
Nitric oxide in septic shock.
Biochim Biophys Acta
1411:
437–455,
1999.
|
283. |
Tsai AG,
Cabrales P,
Intaglietta M.
Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions.
Transfusion
44:
1626–1634,
2004.
|
284. |
Tse CM,
Fincham DA,
Ellory JC,
Young JD.
Use of membrane vesicles to estimate the numbers of system y+ and system L amino acid transporters in human erythrocytes.
Biochem J
277:
565–568,
1991.
|
285. |
Tsoukias NM.
Nitric oxide bioavailability in the microcirculation: Insights from mathematical models.
Microcirculation
15:
813–834,
2008.
|
286. |
Ullrich R,
Bloch KD,
Ichinose F,
Steudel W,
Zapol WM.
Hypoxic pulmonary blood flow redistribution and arterial oxygenation in endotoxin‐challenged NOS2‐deficient mice.
J Clin Invest
104:
1421–1429,
1999.
|
287. |
Uncles DR,
Daugherty MO,
Frank DU,
Roos CM,
Rich GF.
Nitric oxide modulation of pulmonary vascular resistance is red blood cell dependent in isolated rat lungs.
Anesth Analg
83:
1212–1217,
1996.
|
288. |
Valeri CR,
Hirsch NM.
Restoration in vivo of erythrocyte adenosine triphosphate 2,3‐diphosphoglycerate potassium ion and sodium ion concentrations following the transfusion of acid‐citrate‐dextrose stored human red blood cells.
J Lab Clin Med
73:
722–733,
1969.
|
289. |
Valtis DJ.
Defective gas transport function of stored red blood cells.
Lancet
266:
119–124,
1954.
|
290. |
Vanhoutte PM.
Endothelium‐derived free radicals: For worse and for better.
J Clin Invest
107:
23–25,
2001.
|
291. |
Vaughn MW,
Huang KT,
Kuo L,
Liao JC.
Erythrocytes possess an intrinsic barrier to nitric oxide consumption.
J Biol Chem
275:
2342–2348,
2000.
|
292. |
Vaughn MW,
Kuo L,
Liao JC.
Effective diffusion distance of nitric oxide in the microcirculation.
Am J Physiol
274:
H1705–H1714,
1998.
|
293. |
Vidwans AS,
Uliasz TF,
Hewett JA,
Hewett SJ.
Differential modulation of prostaglandin H synthase‐2 by nitric oxide‐related species in intact cells.
Biochemistry
40:
11533–11542,
2001.
|
294. |
Villagra J,
Shiva S,
Hunter LA,
Machado RF,
Gladwin MT,
Kato GJ.
Platelet activation in patients with sickle disease, hemolysis‐associated pulmonary hypertension, and nitric oxide scavenging by cell‐free hemoglobin.
Blood
110:
2166–2172,
2007.
|
295. |
Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, Meier‐Hellmann A, Nollet G, Peres‐Bota D; ABC (Anemia and Blood Transfusion in Critical Care) Investigators.
Anemia and blood transfusion in critically ill patients.
JAMA
288:
1499–1507,
2002.
|
296. |
Volk T,
Kox WJ.
Endothelium function in sepsis.
Inflamm Res
49:
185–198,
2000.
|
297. |
Walder JA,
Chatterjee R,
Steck TL,
Low PS,
Musso GF,
Kaiser ET,
Rogers PH,
Arnone A.
The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane.
J Biol Chem
259:
10238–10246,
1984.
|
298. |
Wang X,
Tanus‐Santos JE,
Reiter CD,
Dejam A,
Shiva S,
Smith RD,
Hogg N,
Gladwin MT.
Biological activity of nitric oxide in the plasmatic compartment.
Proc Natl Acad Sci U S A
101:
11477–11482,
2004.
|
299. |
Ward JP,
Aaronson PI.
Mechanisms of hypoxic pulmonary vasoconstriction: Can anyone be right?
Respir Physiol
115:
261–271,
1999.
|
300. |
Ware LB,
Matthay MA.
The acute respiratory distress syndrome.
N Engl J Med
342:
1334–1349,
2000.
|
301. |
Weissmann N,
Grimminger F,
Olschewski A,
Seeger W.
Hypoxic pulmonary vasoconstriction.
Am J Physiol
281:
L314–L317,
2001.
|
302. |
Weissmann N,
Grimminger F,
Walmrath D,
Seeger W.
Hypoxic vasoconstriction in buffer‐perfused rabbit lungs.
Respir Physiol
100:
159–169,
1995.
|
303. |
Weissmann N,
Sommer N,
Schermuly RT,
Ghofrani HA,
Seeger W,
Grimminger F.
Oxygen sensors in hypoxic pulmonary vasoconstriction.
Cardiovasc Res
71:
620–629,
2006.
|
304. |
Wheeler AP,
Bernard GR.
Treating patients with severs sepsis.
N Engl J Med
340:
207–214,
1999.
|
305. |
Wink DA,
Cook JA,
Kim SY,
Vodovotz Y,
Pacelli R,
Krishna MC,
Russo A,
Mitchell JB,
Jourd'heuil D,
Miles AM,
Grisham MB.
Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide‐derived reactive intermediates.
J Biol Chem
272:
11147–11151,
1997.
|
306. |
Winslow RM.
Red cell substitutes.
Semin Hematol
44:
51–59,
2007.
|
307. |
Wood KC,
Granger DN.
Sickle cell disease: Role of reactive oxygen and nitrogen metabolites.
Clin Exp Pharmacol Physiol
34:
926–932,
2007.
|
308. |
Wu WC,
Rathore SS,
Wang Y,
Radford MJ,
Krumholz HM.
Blood transfusion in elderly patients with acute myocardial infarction.
N Engl J Med
345:
1230–1236,
2001.
|
309. |
Xue Y,
Liu Z,
Gao X,
Jin C,
Wen L,
Yao X,
Ren J.
GPS‐SNO: Computational prediction of protein S‐nitrosylation sites with a modified GPS algorithm.
PLoS ONE
5:
e11290,
2010.
|
310. |
Yamaguchi K,
Suzuki K,
Naoki K,
Nishio K,
Sato N,
Takeshita K,
Kudo H,
Aoki T,
Suzuki Y,
Miyata A,
Tsumura H.
Response of intra‐acinar pulmonary microvessels to hypoxia, hypercapnic acidosis, and isocapnic acidosis.
Circ Res
82:
722–728,
1998.
|
311. |
Yeo TW,
Lampah DA,
Gitawati R,
Tjitra E,
Kenangalem E,
McNeil YR,
Darcy CJ,
Granger DL,
Weinberg JB,
Lopansri BK,
Price RN,
Duffull SB,
Celermajer DS,
Anstey NM.
Impaired nitric oxide bioavailability and l‐arginine reversible endothelial dysfunction in adults with Falciparum malaria.
J Exp Med
204:
2693–2704,
2007.
|
312. |
Yonetani T,
Tsuneshige A,
Zhou Y,
Chen X.
Electron paramagnetic resonance and oxygen binding studies of alpha‐nitrosyl hemoglobin.
J Biol Chem
273:
20323–20333,
1998.
|
313. |
Zallen G,
Offner PJ,
Moore EE,
Blackwell J,
Ciesla DJ,
Gabriel J,
Denny C,
Silliman CC.
Age of transfused blood is an independent risk factor for postinjury multiple organ failure.
Am J Surg
178:
570–572,
1999.
|
314. |
Zhang Y,
Hogg N.
The mechanism of transmembrane S‐nitrosothiol transport.
Proc Natl Acad Sci U S A
101:
7891–7896,
2004.
|
315. |
Zhao YL,
Houk KN.
Thionitroxides, RSNHO: The structure of the SNO moiety in “S‐nitrosohemoglobin,” a possible NO reservoir and transporter.
J Am Chem Soc
128:
1422–1423,
2006.
|
316. |
Zimmet JM,
Hare JM.
Nitroso‐redox interactions in the cardiovascular system.
Circulation
114:
1531–1544,
2006.
|
317. |
Zingarelli B,
Day BJ,
Crapo JD,
Salzman AL,
Szabo C.
The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock.
Br J Pharmacol
120:
259–267,
1997.
|
Further Reading |
1. |
Singel DJ,
Stamler JS.
Chemical physiology of blood flow regulation by red blood cells: Role of nitric oxide and S‐nitrosohemoglobin.
Annu Rev Physiol
67:
99–145,
2005.
|
2. |
Stamler JS,
Singel DJ,
Loscalzo J.
Biochemistry of nitric oxide and its redox‐activated forms.
Science
258:
1898–1902,
1992.
|
3. |
Gaston B,
Singel D,
Doctor A,
Stamler JS.
S‐Nitrosothiol signaling in respiratory biology.
Am J Respir Crit Care Med
173:
1186–1193,
2006.
|
4. |
Zimmet JM,
Hare JM.
Nitroso‐redox interactions in the cardiovascular system.
Circulation
114:
1531–1544,
2006.
|
5. |
Hess DT,
Matsumoto A,
Kim SO,
Marshall HE,
Stamler JS.
Protein S‐nitrosylation: Purview and parameters.
Nat Rev Mol Cell Biol
6:
150–166,
2005.
|
6. |
Lima B,
Forrester MT,
Hess DT,
Stamler JS.
S‐Nitrosylation in cardiovascular signaling.
Circ Res.
106:
633–46,
2010.
|