Comprehensive Physiology Wiley Online Library

Pathophysiology of the Diabetic Kidney

Full Article on Wiley Online Library



Abstract

Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end‐stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a “tubulocentric” concept of early diabetic kidney function. The latter also explains the “salt paradox” of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin‐angiotensin system and of diabetes‐induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease. © 2011 American Physiological Society. Compr Physiol 1:1175‐1232, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Simplified biochemistry of advanced glycation end product formation. Prolonged hyperglycemia, but also dyslipidemia and oxidative stress in diabetes result in the production and accumulation of advanced glycation end products (AGEs) in the kidney, and at other sites of diabetic complications. AGEs are formed by nonenzymatic Maillard or “browning” reaction between carbonyl groups of reducing sugars, like glucose, and amino groups on proteins, lipids, or nucleic acids. The first stable adduct between glucose and protein is the Amadori product. In addition, the glycation of intracellular proteins is initiated by the elevation of intracellular glucose degradation products or decomposition of early glycation products leading to formation of intermediates such as glyoxal or methylglyoxal. Subsequent rearrangement and fragmentation reactions lead to the formation of AGEs. Under physiological conditions these reactions are slow. However, in diabetes, persistent hyperglycemia, dyslipidemia, and oxidative stress all act to hasten the formation of AGEs.

Figure 2. Figure 2.

Consequences of accelerated formation of advanced glycation end products (AGEs) in the diabetic kidney. The schematic shows major mechanisms whereby AGEs exert their harmful effects in the diabetic kidney. AGEs typically crosslink and alter protein structure and function in extracellular compartment, modify cytosolic molecules and exert receptor‐mediated effects that lead to activation of multiple signaling pathways and genes implicated in a variety of pathophysiological mechanisms in the diabetic kidney. RAGE, receptor for AGEs; ROS, reactive oxygen species; MAPKs, mitogen‐activated protein kinases; ROCKs, Rho kinases; NO, nitric oxide; BM, basement membrane; ECM, extracellular matrix; NF‐κB, nuclear factor kappa B.

Figure 3. Figure 3.

Activation and downstream targets of the hexosamine pathway in diabetes. When the intracellular concentrations of glucose are high, fructose‐6‐phosphate, an intermediate in the glycolytic pathway, is partially diverted into the hexosamine pathway. After a series of enzymatic steps glucosamine (GlcNAc) is transferred in O‐linkage to specific serine/threonine residues of numerous proteins, including transcription factors as well as cytosolic and nuclear enzymes, with pathophysiological consequences in affected cells. Key enzymes in the pathway are highlighted in yellow. More detailed description is provided in the text. G‐6‐P, fructose‐6‐phosphate; F‐6‐P, fructose‐6‐phosphate; GFAT, glutamine:fructose 6‐phosphate amidotransferase; GlcN‐6‐P, glucosamine 6‐phosphate; UDP‐GlcNAc, UDP‐N‐acetylglucosamine; OGT, O‐GlcNAc transferase; eNOS, endothelial NO synthase; mTOR, mammalian target of rapamycin; TGF‐β, transforming growth factor‐β; PAI‐I, plasminogen activator inhibitor‐I.

Figure 4. Figure 4.

Mechanisms of enhanced formation of reactive oxygen species (ROS) in renal cells in diabetes. High intracellular glucose, stimulation of RAGE, as well as increased activity of vasoactive and pro‐growth factors, such as the renin‐angiotensin system, lead to formation of cytosolic and mitochondrial ROS via multiple mechanisms. ROS alter protein, lipid and DNA structure, and act as signaling molecules in pathways implicated in the pathophysiology of diabetic complications. See text for further details. Ang II, angiotensin II; AT1R, angiotensin II type 1 receptor; AGEs, advanced glycation end products; RAGE, receptor for AGEs.

Figure 5. Figure 5.

Diabetes‐induced alterations of glomerular filtration barrier. The schematic presentation describes major consequences of diabetes‐induced changes in glomerular endothelial cells, glomerular basement membrane, and podocytes, as discussed in more detail in the text.

Figure 6. Figure 6.

Podocyte foot process effacement and glomerular basement membrane (GBM) thickening in experimental diabetes. Transmission electron microscopy was used to investigate the glomerular filtration barrier (GFB) in normal (C) and STZ‐diabetic DBA/2J mice (V, L, DL, L + DL, and L + DH). Compare the appearance of the GFB in normal (C) and diabetic mice (V), and the effects of nephroprotective treatments [L, DL, L + DL, and L + DH; for details on treatments see 741]. Stars indicate the areas of podocyte foot process effacement; arrow pairs point to both sides of the glomerular basement membrane (GBM). Adapted with permission from 741.

Figure 7. Figure 7.

Regulation of tubular growth in the diabetic kidney. Illustrated is a conceptional frame work that links hyperglycemia to tubular growth including an early phase of hyperplasia that is followed by G1 cell‐cycle arrest and development of hypertrophy and a senescence‐like phenotype. Potential links to enhanced formation of extracellular matrix, inflammation, and tubulointerstitial injury are shown. See text for further explanations. ECM, extracellular matrix; EMT, epithelial mesenchymal transition; TSC, tuberous sclerosis complex.

Figure 8. Figure 8.

Hyperglycemia induces glycogen accumulation in thick ascending limb and further distal cortical nephron segments. Glycogen accumulation, also know as glycogen nephrosis or Armanni‐Ebstein lesions, may relate to increased delivery of glucose via the tubular fluid or peritubular capillaries. Glycogen accumulation may also reflect activation of glycogen synthase, due to accumulation of the allosteric activator, glucose‐6‐phosphate. Adiponectin is secreted from white adipocytes and signals through its receptor, ADIPOR1, to activate AMP‐activated protein kinase (AMPK) thereby inhibiting glycogen synthase. Thus, glycogen synthase can be activated as a consequence of reduced adiponectin levels or adiponectin resistance with impaired activation of AMPK due to activation of phosphatase PP2A. See text for further details.

Figure 9. Figure 9.

Mechanisms of tubulointerstitial injury in the diabetic kidney. Illustrated is the interplay of hyperglycemia, luminal factors (derived from glomerular filtration and tubular release), reabsorption, and blood flow in the interaction of tubular cells with fibroblasts and inflammatory cells. TGF‐β, chemokines, and the complex interactions between advanced glycation end products (AGE), hypoxia and oxidative stress play key roles in the development of diabetic tubulointerstitial injury. ECM, extracellular matrix. See text for further details.

Figure 10. Figure 10.

Renal hemodynamic changes in diabetes at the whole kidney and single nephron level. Early stages of diabetes are associated with specific renal hemodynamic changes schematically presented in this figure. The schematic shows regulators of afferent and efferent arteriolar tone, which have been implicated in these changes. GFR, glomerular filtration rate; RPF, renal plasma flow; SNGFR, single nephron glomerular filtration rate; QA, glomerular plasma flow rate; RA, afferent arteriolar resistance; RE, efferent arteriolar resistance; PGC, glomerular capillary pressure; Kf, ultrafiltration coefficient.

Figure 11. Figure 11.

Primary increase in proximal tubular reabsorption and inhibition by high NaCl diet in the early diabetic kidney. Absolute proximal fluid reabsorption (Jprox) shown as a function of SNGFR. SNGFR was manipulated by perfusing Henle's loop to activate TGF to characterize proximal reabsorption as a function of SNGFR in control rats (CON) and diabetic rats (STZ) on normal versus high NaCl diet. *P < 0.05 for a GFR‐independent effect of STZ (left panel) or high NaCl diet (right panel) on proximal tubular reabsorption. Adapted with permission from 651.

Figure 12. Figure 12.

Tubular basis of glomerular hyperfiltration in the early diabetic kidney. Hyperglycemia causes a primary increase in proximal tubular reabsorption through enhanced tubular growth and Na+‐glucose (Gluc) cotransport (1). The enhanced reabsorption reduces the signal of the tubuloglomerular feedback (TGF) at the macula densa ([Na‐Cl‐K]MD) (2) and via TGF increases SNGFR (4). Enhanced growth and tubular reabsorption also reduce the hydrostatic pressure in Bowman space (PBOW) (3), which by increasing effective filtration pressure can also increase SNGFR (4). The resulting increase in SNGFR serves to partly restore the fluid and electrolyte load to the distal nephron (5). SNGFR0 is the input to SNGFR independent of TGF. Adapted with permission from 648.

Figure 13. Figure 13.

Lower efficiency of tubuloglomerular feedback (TGF) in the diabetic kidney. (A) In vivo free‐flow perturbation analysis of tubular flow rate in control and STZ‐diabetic rats. The fractional compensation profiles illustrate the ability of the TGF system to stabilize tubular flow in response to a perturbation in late proximal tubular flow (by adding or subtracting tubular fluid). The data show that the efficiency of the TGF system to stabilize tubular flow rate (as an indirect measure of stabilizing SNGFR or PGC) is reduced in diabetic rats with a compensation of small perturbations around the operating point of 40% versus 70% in control rats. (B) Data from perturbation analysis of late proximal tubular flow rate were combined with data for fractional proximal reabsorption to synthesize “traditional” TGF functions describing the dependence of SNGFR on late proximal tubular flow rate. The triangles indicate the operating points. The gain of the curve at the operating point is modestly reduced in diabetic rats (red lines). Adapted with permission from 647.

Figure 14. Figure 14.

Tubular basis of the salt paradox in the early diabetic kidney. (A) In classical physiology, renal function and total body NaCl are linked by several parallel feedback loops. Paths from dietary NaCl to GFR and renal blood flow (RBF) are highlighted (black arrows). Each highlighted path contains only “+” signs or an even number of “−” signs, indicating a positive influence of dietary NaCl on GFR and RBF. Interfering with these processes can alter the strength of this influence, but cannot make it paradoxical. (B) Incorporating tubuloglomerular feedback (TGF) provides a pathway whereby dietary NaCl can inversely impact GFR and RBF via a primary change in proximal (i.e., upstream to macula densa) reabsorption (note the odd number of “−” signs along the dotted path). Thus, GFR and RBF are subject to competing influences in response to changes in dietary NaCl. The NaCl paradox arises when TGF prevails. Adapted with permission from 648.

Figure 15. Figure 15.

Diabetes‐induced upregulation of the renin‐angiotensin‐system in glomeruli. Illustrated is a proposed role of succinate acting on its receptor (SUCNR1) in glomerular endothelial cells and macula densa cells in the activation of renin. Renin and prorenin can induce angiotensin II‐dependent and independent effects by activation of renin receptors on glomerular structures including mesangial cells and podocytes. See text for further details. ADO, adenosine; Ado A1, adenosine A1 receptor; Agten, angiotensinogen; RR, renin receptor.



Figure 1.

Simplified biochemistry of advanced glycation end product formation. Prolonged hyperglycemia, but also dyslipidemia and oxidative stress in diabetes result in the production and accumulation of advanced glycation end products (AGEs) in the kidney, and at other sites of diabetic complications. AGEs are formed by nonenzymatic Maillard or “browning” reaction between carbonyl groups of reducing sugars, like glucose, and amino groups on proteins, lipids, or nucleic acids. The first stable adduct between glucose and protein is the Amadori product. In addition, the glycation of intracellular proteins is initiated by the elevation of intracellular glucose degradation products or decomposition of early glycation products leading to formation of intermediates such as glyoxal or methylglyoxal. Subsequent rearrangement and fragmentation reactions lead to the formation of AGEs. Under physiological conditions these reactions are slow. However, in diabetes, persistent hyperglycemia, dyslipidemia, and oxidative stress all act to hasten the formation of AGEs.



Figure 2.

Consequences of accelerated formation of advanced glycation end products (AGEs) in the diabetic kidney. The schematic shows major mechanisms whereby AGEs exert their harmful effects in the diabetic kidney. AGEs typically crosslink and alter protein structure and function in extracellular compartment, modify cytosolic molecules and exert receptor‐mediated effects that lead to activation of multiple signaling pathways and genes implicated in a variety of pathophysiological mechanisms in the diabetic kidney. RAGE, receptor for AGEs; ROS, reactive oxygen species; MAPKs, mitogen‐activated protein kinases; ROCKs, Rho kinases; NO, nitric oxide; BM, basement membrane; ECM, extracellular matrix; NF‐κB, nuclear factor kappa B.



Figure 3.

Activation and downstream targets of the hexosamine pathway in diabetes. When the intracellular concentrations of glucose are high, fructose‐6‐phosphate, an intermediate in the glycolytic pathway, is partially diverted into the hexosamine pathway. After a series of enzymatic steps glucosamine (GlcNAc) is transferred in O‐linkage to specific serine/threonine residues of numerous proteins, including transcription factors as well as cytosolic and nuclear enzymes, with pathophysiological consequences in affected cells. Key enzymes in the pathway are highlighted in yellow. More detailed description is provided in the text. G‐6‐P, fructose‐6‐phosphate; F‐6‐P, fructose‐6‐phosphate; GFAT, glutamine:fructose 6‐phosphate amidotransferase; GlcN‐6‐P, glucosamine 6‐phosphate; UDP‐GlcNAc, UDP‐N‐acetylglucosamine; OGT, O‐GlcNAc transferase; eNOS, endothelial NO synthase; mTOR, mammalian target of rapamycin; TGF‐β, transforming growth factor‐β; PAI‐I, plasminogen activator inhibitor‐I.



Figure 4.

Mechanisms of enhanced formation of reactive oxygen species (ROS) in renal cells in diabetes. High intracellular glucose, stimulation of RAGE, as well as increased activity of vasoactive and pro‐growth factors, such as the renin‐angiotensin system, lead to formation of cytosolic and mitochondrial ROS via multiple mechanisms. ROS alter protein, lipid and DNA structure, and act as signaling molecules in pathways implicated in the pathophysiology of diabetic complications. See text for further details. Ang II, angiotensin II; AT1R, angiotensin II type 1 receptor; AGEs, advanced glycation end products; RAGE, receptor for AGEs.



Figure 5.

Diabetes‐induced alterations of glomerular filtration barrier. The schematic presentation describes major consequences of diabetes‐induced changes in glomerular endothelial cells, glomerular basement membrane, and podocytes, as discussed in more detail in the text.



Figure 6.

Podocyte foot process effacement and glomerular basement membrane (GBM) thickening in experimental diabetes. Transmission electron microscopy was used to investigate the glomerular filtration barrier (GFB) in normal (C) and STZ‐diabetic DBA/2J mice (V, L, DL, L + DL, and L + DH). Compare the appearance of the GFB in normal (C) and diabetic mice (V), and the effects of nephroprotective treatments [L, DL, L + DL, and L + DH; for details on treatments see 741]. Stars indicate the areas of podocyte foot process effacement; arrow pairs point to both sides of the glomerular basement membrane (GBM). Adapted with permission from 741.



Figure 7.

Regulation of tubular growth in the diabetic kidney. Illustrated is a conceptional frame work that links hyperglycemia to tubular growth including an early phase of hyperplasia that is followed by G1 cell‐cycle arrest and development of hypertrophy and a senescence‐like phenotype. Potential links to enhanced formation of extracellular matrix, inflammation, and tubulointerstitial injury are shown. See text for further explanations. ECM, extracellular matrix; EMT, epithelial mesenchymal transition; TSC, tuberous sclerosis complex.



Figure 8.

Hyperglycemia induces glycogen accumulation in thick ascending limb and further distal cortical nephron segments. Glycogen accumulation, also know as glycogen nephrosis or Armanni‐Ebstein lesions, may relate to increased delivery of glucose via the tubular fluid or peritubular capillaries. Glycogen accumulation may also reflect activation of glycogen synthase, due to accumulation of the allosteric activator, glucose‐6‐phosphate. Adiponectin is secreted from white adipocytes and signals through its receptor, ADIPOR1, to activate AMP‐activated protein kinase (AMPK) thereby inhibiting glycogen synthase. Thus, glycogen synthase can be activated as a consequence of reduced adiponectin levels or adiponectin resistance with impaired activation of AMPK due to activation of phosphatase PP2A. See text for further details.



Figure 9.

Mechanisms of tubulointerstitial injury in the diabetic kidney. Illustrated is the interplay of hyperglycemia, luminal factors (derived from glomerular filtration and tubular release), reabsorption, and blood flow in the interaction of tubular cells with fibroblasts and inflammatory cells. TGF‐β, chemokines, and the complex interactions between advanced glycation end products (AGE), hypoxia and oxidative stress play key roles in the development of diabetic tubulointerstitial injury. ECM, extracellular matrix. See text for further details.



Figure 10.

Renal hemodynamic changes in diabetes at the whole kidney and single nephron level. Early stages of diabetes are associated with specific renal hemodynamic changes schematically presented in this figure. The schematic shows regulators of afferent and efferent arteriolar tone, which have been implicated in these changes. GFR, glomerular filtration rate; RPF, renal plasma flow; SNGFR, single nephron glomerular filtration rate; QA, glomerular plasma flow rate; RA, afferent arteriolar resistance; RE, efferent arteriolar resistance; PGC, glomerular capillary pressure; Kf, ultrafiltration coefficient.



Figure 11.

Primary increase in proximal tubular reabsorption and inhibition by high NaCl diet in the early diabetic kidney. Absolute proximal fluid reabsorption (Jprox) shown as a function of SNGFR. SNGFR was manipulated by perfusing Henle's loop to activate TGF to characterize proximal reabsorption as a function of SNGFR in control rats (CON) and diabetic rats (STZ) on normal versus high NaCl diet. *P < 0.05 for a GFR‐independent effect of STZ (left panel) or high NaCl diet (right panel) on proximal tubular reabsorption. Adapted with permission from 651.



Figure 12.

Tubular basis of glomerular hyperfiltration in the early diabetic kidney. Hyperglycemia causes a primary increase in proximal tubular reabsorption through enhanced tubular growth and Na+‐glucose (Gluc) cotransport (1). The enhanced reabsorption reduces the signal of the tubuloglomerular feedback (TGF) at the macula densa ([Na‐Cl‐K]MD) (2) and via TGF increases SNGFR (4). Enhanced growth and tubular reabsorption also reduce the hydrostatic pressure in Bowman space (PBOW) (3), which by increasing effective filtration pressure can also increase SNGFR (4). The resulting increase in SNGFR serves to partly restore the fluid and electrolyte load to the distal nephron (5). SNGFR0 is the input to SNGFR independent of TGF. Adapted with permission from 648.



Figure 13.

Lower efficiency of tubuloglomerular feedback (TGF) in the diabetic kidney. (A) In vivo free‐flow perturbation analysis of tubular flow rate in control and STZ‐diabetic rats. The fractional compensation profiles illustrate the ability of the TGF system to stabilize tubular flow in response to a perturbation in late proximal tubular flow (by adding or subtracting tubular fluid). The data show that the efficiency of the TGF system to stabilize tubular flow rate (as an indirect measure of stabilizing SNGFR or PGC) is reduced in diabetic rats with a compensation of small perturbations around the operating point of 40% versus 70% in control rats. (B) Data from perturbation analysis of late proximal tubular flow rate were combined with data for fractional proximal reabsorption to synthesize “traditional” TGF functions describing the dependence of SNGFR on late proximal tubular flow rate. The triangles indicate the operating points. The gain of the curve at the operating point is modestly reduced in diabetic rats (red lines). Adapted with permission from 647.



Figure 14.

Tubular basis of the salt paradox in the early diabetic kidney. (A) In classical physiology, renal function and total body NaCl are linked by several parallel feedback loops. Paths from dietary NaCl to GFR and renal blood flow (RBF) are highlighted (black arrows). Each highlighted path contains only “+” signs or an even number of “−” signs, indicating a positive influence of dietary NaCl on GFR and RBF. Interfering with these processes can alter the strength of this influence, but cannot make it paradoxical. (B) Incorporating tubuloglomerular feedback (TGF) provides a pathway whereby dietary NaCl can inversely impact GFR and RBF via a primary change in proximal (i.e., upstream to macula densa) reabsorption (note the odd number of “−” signs along the dotted path). Thus, GFR and RBF are subject to competing influences in response to changes in dietary NaCl. The NaCl paradox arises when TGF prevails. Adapted with permission from 648.



Figure 15.

Diabetes‐induced upregulation of the renin‐angiotensin‐system in glomeruli. Illustrated is a proposed role of succinate acting on its receptor (SUCNR1) in glomerular endothelial cells and macula densa cells in the activation of renin. Renin and prorenin can induce angiotensin II‐dependent and independent effects by activation of renin receptors on glomerular structures including mesangial cells and podocytes. See text for further details. ADO, adenosine; Ado A1, adenosine A1 receptor; Agten, angiotensinogen; RR, renin receptor.

References
 1. Aaltonen P, Luimula P, Astrom E, Palmen T, Gronholm T, Palojoki E, Jaakkola I, Ahola H, Tikkanen I, Holthofer H. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest 81: 1185‐1185, 2001.
 2. Abbate M, Remuzzi G. Proteinuria as a mediator of tubulointerstitial injury. Kidney Blood Press Res 22: 37‐37, 1999.
 3. Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol 9: 1213‐1213, 1998.
 4. Abdel‐Wahab N, Weston BS, Roberts T, Mason RM. Connective tissue growth factor and regulation of the mesangial cell cycle: Role in cellular hypertrophy. J Am Soc Nephrol 13: 2437‐2437, 2002.
 5. Abraham NG, Kappas A. Heme oxygenase and the cardiovascular‐renal system. Free Radic Biol Med 39: 1‐1, 2005.
 6. Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective‐tissue growth factor (CTGF) modulates cell signalling by BMP and TGF‐beta. Nat Cell Biol 4: 599‐599, 2002.
 7. Ackermann TF, Boini KM, Volkl H, Bhandaru M, Bareiss PM, Just L, Vallon V, Amann K, Kuhl D, Feng Y, Hammes HP, Lang F. SGK1‐sensitive renal tubular glucose reabsorption in diabetes. Am J Physiol Renal Physiol 296: F859‐F866, 2009.
 8. Adachi T, Yasuda K, Okamoto Y, Shihara N, Oku A, Ueta K, Kitamura K, Saito A, Iwakura I, Yamada Y, Yano H, Seino Y, Tsuda K. T‐1095, a renal Na+‐glucose transporter inhibitor, improves hyperglycemia in streptozotocin‐induced diabetic rats. Metabolism 49: 990‐990, 2000.
 9. Adler S, Chen X. Anti‐Fx1A antibody recognizes a beta 1‐integrin on glomerular epithelial cells and inhibits adhesion and growth. Am J Physiol 262: F770‐F776, 1992.
 10. Adler SG, Kang SW, Feld S, Cha DR, Barba L, Striker L, Striker G, Riser BL, Lapage J, Nast CC. Glomerular mRNAs in human type 1 diabetes: Biochemical evidence for microalbuminuria as a manifestation of diabetic nephropathy. Kidney Int 60: 2330‐2330, 2001.
 11. Adler SG, Schwartz S, Williams ME, Arauz‐Pacheco C, Bolton WK, Lee T, Li D, Neff TB, Urquilla PR, Sewell KL. Phase 1 study of anti‐CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 5: 1420‐1420, 2010.
 12. Advani A, Gilbert RE, Thai K, Gow RM, Langham RG, Cox AJ, Connelly KA, Zhang Y, Herzenberg AM, Christensen PK, Pollock CA, Qi W, Tan SM, Parving HH, Kelly DJ. Expression, localization, and function of the thioredoxin system in diabetic nephropathy. J Am Soc Nephrol 20: 730‐730, 2009.
 13. Ahmed N, Thornalley PJ. Advanced glycation endproducts: What is their relevance to diabetic complications? Diabetes Obes Metab 9: 233‐233, 2007.
 14. Akai Y, Homma T, Burns KD, Yasuda T, Badr KF, Harris RC. Mechanical stretch/relaxation of cultured rat mesangial cells induces protooncogenes and cyclooxygenase. Am J Physiol 267: C482‐C490, 1994.
 15. Albertoni Borghese MF, Majowicz MP, Ortiz MC, Passalacqua MR, Sterin Speziale NB, Vidal NA. Expression and activity of SGLT2 in diabetes induced by streptozotocin: Relationship with the lipid environment. Nephron Physiol 112: 45‐45, 2009.
 16. Al‐Douahji M, Brugarolas J, Brown PA, Stehman‐Breen CO, Alpers CE, Shankland SJ. The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int 56: 1691‐1691, 1999.
 17. Alexander K, Hinds PW. Requirement for p27(KIP1) in retinoblastoma protein‐mediated senescence. Mol Cell Biol 21: 3616‐3616, 2001.
 18. Allen RG, Tresini M, Keogh BP, Doggett DL, Cristofalo VJ. Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI‐38). J Cell Physiol 180: 114‐114, 1999.
 19. Allen TJ, Cooper ME, Lan HY. Use of genetic mouse models in the study of diabetic nephropathy. Curr Atheroscler Rep 6: 197‐197, 2004.
 20. Allen TJ, Waldron MJ, Casley D, Jerums G, Cooper ME. Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabetes. Diabetes 46: 19‐19, 1997.
 21. Alpers CE, Hudkins KL, Floege J, Johnson RJ. Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury. J Am Soc Nephrol 5: 201‐201, 1994.
 22. Amin R, Turner C, van AS, Bahu TK, Watts A, Lindsell DR, Dalton RN, Dunger DB. The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: The Oxford Regional Prospective Study. Kidney Int 68: 1740‐1740, 2005.
 23. Anderson S. Progression of chronic renal disease: Role of systemic and glomerular hypertension. Am J Kidney Dis 13: 8‐8, 1989.
 24. Anderson S, Jung FF, Ingelfinger JR. Renal renin‐angiotensin system in diabetes: Functional, immunohistochemical, and molecular biological correlations. Am J Physiol 265: F477‐F486, 1993.
 25. Aragones J, Schneider M, Van GK, Fraisl P, Dresselaers T, Mazzone M, Dirkx R, Zacchigna S, Lemieux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez‐Juan A, Harten SK, Van NP, De BK, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Vandendriessche T, Deroose C, Wijeyekoon B, Nuyts J, Jordan B, Silasi‐Mansat R, Lupu F, Dewerchin M, Pugh C, Salmon P, Mortelmans L, Gallez B, Gorus F, Buyse J, Sluse F, Harris RA, Gnaiger E, Hespel P, Van HP, Schuit F, Van VP, Ratcliffe P, Baes M, Maxwell P, Carmeliet P. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40: 170‐170, 2008.
 26. Arakawa K, Ishihara T, Oku A, Nawano M, Ueta K, Kitamura K, Matsumoto M, Saito A. Improved diabetic syndrome in C57BL/KsJ‐db/db mice by oral administration of the Na(+)‐glucose cotransporter inhibitor T‐1095. Br J Pharmacol 132: 578‐578, 2001.
 27. Ardura JA, Rayego‐Mateos S, Ramila D, Ruiz‐Ortega M, Esbrit P. Parathyroid hormone‐related protein promotes epithelial‐mesenchymal transition. J Am Soc Nephrol 21: 237‐237, 2010.
 28. Arici M, Chana R, Lewington A, Brown J, Brunskill NJ. Stimulation of proximal tubular cell apoptosis by albumin‐bound fatty acids mediated by peroxisome proliferator activated receptor‐gamma. J Am Soc Nephrol 14: 17‐17, 2003.
 29. Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67: 1890‐1890, 2005.
 30. Asanuma K, Yanagida‐Asanuma E, Faul C, Tomino Y, Kim K, Mundel P. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat Cell Biol 8: 485‐485, 2006.
 31. Atchley DW, Loeb RF, Richards DW, Benedict EM, Driscoll ME. On diabetic acidosis: A detailed study of electrolyte balances following the withdrawal and reestablishment of insulin therapy. J Clin Invest 12: 297‐297, 1933.
 32. Awazu M, Omori S, Ishikura K, Hida M, Fujita H. The lack of cyclin kinase inhibitor p27(Kip1) ameliorates progression of diabetic nephropathy. J Am Soc Nephrol 14: 699‐699, 2003.
 33. Bader R, Bader H, Grund KE, Mackensen‐Haen S, Christ H, Bohle A. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract 167: 204‐204, 1980.
 34. Baelde HJ, Eikmans M, Lappin DW, Doran PP, Hohenadel D, Brinkkoetter PT, Van Der Woude FJ, Waldherr R, Rabelink TJ, de HE, Bruijn JA. Reduction of VEGF‐A and CTGF expression in diabetic nephropathy is associated with podocyte loss. Kidney Int 71: 637‐637, 2007.
 35. Bahlmann FH, Fliser D. Erythropoietin and renoprotection. Curr Opin Nephrol Hypertens 18: 15‐15, 2009.
 36. Ballermann BJ. Contribution of the endothelium to the glomerular permselectivity barrier in health and disease. Nephron Physiol 106: 19‐19, 2007.
 37. Ballermann BJ, Dardik A, Eng E, Liu A. Shear stress and the endothelium. Kidney Int Suppl 67: S100‐S108, 1998.
 38. Ballermann BJ, Skorecki KL, Brenner BM. Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rat. Am J Physiol 247: F110‐F116, 1984.
 39. Bamri‐Ezzine S, Ao ZJ, Londono I, Gingras D, Bendayan M. Apoptosis of tubular epithelial cells in glycogen nephrosis during diabetes. Lab Invest 83: 1069‐1069, 2003.
 40. Bank N, Aynedjian HS. Progressive increases in luminal glucose stimulate proximal sodium absorption in normal and diabetic rats. J Clin Invest 86: 309‐309, 1990.
 41. Bank N, Lahorra G, Aynedjian HS, Wilkes BM. Sodium restriction corrects hyperfiltration of diabetes. Am J Physiol 254: F668‐F676, 1988.
 42. Bank N, Mower P, Aynedjian HS, Wilkes BM, Silverman S. Sorbinil prevents glomerular hyperperfusion in diabetic rats. Am J Physiol 256: F1000‐F1006, 1989.
 43. Baumbach L, Leyssac PP, Skinner SL. Studies on renin release from isolated superfused glomeruli: Effects of temperature, urea, ouabain and ethacrynic acid. J Physiol 258: 243‐243, 1976.
 44. Baumgartl HJ, Sigl G, Banholzer P, Haslbeck M, Standl E. On the prognosis of IDDM patients with large kidneys. Nephrol Dial Transplant 13: 630‐630, 1998.
 45. Bautista R, Manning R, Martinez F, Avila‐Casado MC, Soto V, Medina A, Escalante B. Angiotensin II‐dependent increased expression of Na+‐glucose cotransporter in hypertension. Am J Physiol Renal Physiol 286: F127‐F133, 2004.
 46. Beck JA, Lloyd S, Hafezparast M, Lennon‐Pierce M, Eppig JT, Festing MF, Fisher EM. Genealogies of mouse inbred strains. Nat Genet 24: 23‐23, 2000.
 47. Beisswenger PJ, Makita Z, Curphey TJ, Moore LL, Jean S, Brinck‐Johnsen T, Bucala R, Vlassara H. Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes 44: 824‐824, 1995.
 48. Bell TD, DiBona GF, Wang Y, Brands MW. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis. J Am Soc Nephrol 17: 2184‐2184, 2006.
 49. Benigni A, Colosio V, Brena C, Bruzzi I, Bertani T, Remuzzi G. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes 47: 450‐450, 1998.
 50. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119: 524‐524, 2009.
 51. Benigni A, Gagliardini E, Tomasoni S, Abbate M, Ruggenenti P, Kalluri R, Remuzzi G. Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney Int 65: 2193‐2193, 2004.
 52. Berkman J, Rifkin H. Unilateral nodular diabetic glomerulosclerosis (Kimmelstiel‐Wilson): Report of a case. Metabolism 22: 715‐715, 1973.
 53. Berthier CC, Zhang H, Schin M, Henger A, Nelson RG, Yee B, Boucherot A, Neusser MA, Cohen CD, Carter‐Su C, Argetsinger LS, Rastaldi MP, Brosius FC, Kretzler M. Enhanced expression of Janus kinase‐signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58: 469‐469, 2009.
 54. Biava C, Grossman A, West M. Ultrastructural observations on renal glycogen in normal and pathologic human kidneys. Lab Invest 15: 330‐330, 1966.
 55. Bickel CA, Knepper MA, Verbalis JG, Ecelbarger CA. Dysregulation of renal salt and water transport proteins in diabetic Zucker rats. Kidney Int 61: 2099‐2099, 2002.
 56. Bickel CA, Verbalis JG, Knepper MA, Ecelbarger CA. Increased renal Na‐K‐ATPase, NCC, and beta‐ENaC abundance in obese Zucker rats. Am J Physiol Renal Physiol 281: F639‐F648, 2001.
 57. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83: 876‐876, 2005.
 58. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP. Diabetes‐associated sustained activation of the transcription factor nuclear factor‐kappaB. Diabetes 50: 2792‐2792, 2001.
 59. Birk C, Richter K, Huang DY, Piesch C, Luippold G, Vallon V. The salt paradox of the early diabetic kidney is independent of renal innervation. Kidney Blood Press Res 26: 344‐344, 2003.
 60. Blanco S, Bonet J, Lopez D, Casas I, Romero R. ACE inhibitors improve nephrin expression in Zucker rats with glomerulosclerosis. Kidney Int Suppl 93: S10‐S14, 2005.
 61. Blantz RC, Peterson OW, Gushwa L, Tucker BJ. Effect of modest hyperglycemia on tubuloglomerular feedback activity. Kidney Int Suppl 12: S206‐S212, 1982.
 62. Bleyer AJ, Fumo P, Snipes ER, Goldfarb S, Simmons DA, Ziyadeh FN. Polyol pathway mediates high glucose‐induced collagen synthesis in proximal tubule. Kidney Int 45: 659‐659, 1994.
 63. Bobulescu IA, Dubree M, Zhang J, McLeroy P, Moe OW. Effect of renal lipid accumulation on proximal tubule Na+/H+ exchange and ammonium secretion. Am J Physiol Renal Physiol 294: F1315‐F1322, 2008.
 64. Bognetti E, Zoja A, Meschi F, Paesano PL, Chiumello G. Relationship between kidney volume, microalbuminuria and duration of diabetes mellitus. Diabetologia 39: 1409, 1996.
 65. Bohle A, Wehrmann M, Bogenschutz O, Batz C, Muller CA, Muller GA. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract 187: 251‐251, 1991.
 66. Bondeva T, Ruster C, Franke S, Hammerschmid E, Klagsbrun M, Cohen CD, Wolf G. Advanced glycation end‐products suppress neuropilin‐1 expression in podocytes. Kidney Int 75: 605‐605, 2009.
 67. Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z. Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia 44: 874‐874, 2001.
 68. Border WA, Brees D, Noble NA. Transforming growth factor‐beta and extracellular matrix deposition in the kidney. Contrib Nephrol 107: 140‐140, 1994.
 69. Border WA, Noble NA. Interactions of transforming growth factor‐beta and angiotensin II in renal fibrosis. Hypertension 31: 181‐181, 1998.
 70. Border WA, Noble N. Maximizing hemodynamic‐independent effects of angiotensin II antagonists in fibrotic diseases. Semin Nephrol 21: 563‐563, 2001.
 71. Border WA, Noble NA, Ketteler M. TGF‐beta: A cytokine mediator of glomerulosclerosis and a target for therapeutic intervention. Kidney Int Suppl 49: S59‐S61, 1995.
 72. Bover J, Izquierdo A, Arce Y, Ortega A, Fernández S, Romero M, Algaba F, Calero F, Ballarin J, Esbrit P, Bosch RJ. Parathyroid hormone‐related protein (PTHrP) up‐regulation in glomeruli and tubuli of human glomerular nephropathies. Nephrol Dial Transplant 21: iv25 (Abstract), 2006.
 73. Bowden DW, Sale M, Howard TD, Qadri A, Spray BJ, Rothschild CB, Akots G, Rich SS, Freedman BI. Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy. Diabetes 46: 882‐882, 1997.
 74. Brands MW, Hall JE, Keen HL. Is insulin resistance linked to hypertension? Clin Exp Pharmacol Physiol 25: 70‐70, 1998.
 75. Brands MW, Hildebrandt DA, Mizelle HL, Hall JE. Sustained hyperinsulinemia increases arterial pressure in conscious rats. Am J Physiol 260: R764‐R768, 1991.
 76. Brands MW, Lee WF, Keen HL, Alonso‐Galicia M, Zappe DH, Hall JE. Cardiac output and renal function during insulin hypertension in Sprague‐Dawley rats. Am J Physiol 271: R276‐R281, 1996.
 77. Breiteneder‐Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, Schaffner G, Kerjaschki D. Podoplanin, novel 43‐kd membrane protein of glomerular epithelial cells, is down‐regulated in puromycin nephrosis. Am J Pathol 151: 1141‐1141, 1997.
 78. Brenner BM, Cooper ME, de ZD, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345: 861‐861, 2001.
 79. Breyer MD, Bottinger E, Brosius FC, Coffman TM, Harris RC, Heilig CW, Sharma K. Mouse models of diabetic nephropathy. J Am Soc Nephrol 16: 27‐27, 2005.
 80. Brito PL, Fioretto P, Drummond K, Kim Y, Steffes MW, Basgen JM, Sisson‐Ross S, Mauer M. Proximal tubular basement membrane width in insulin‐dependent diabetes mellitus. Kidney Int 53: 754‐754, 1998.
 81. Brochner‐Mortensen J, Stockel M, Sorensen PJ, Nielsen AH, Ditzel J. Proximal glomerulo‐tubular balance in patients with type 1 (insulin‐dependent) diabetes mellitus. Diabetologia 27: 189‐189, 1984.
 82. Brodsky SV, Morrishow AM, Dharia N, Gross SS, Goligorsky MS. Glucose scavenging of nitric oxide. Am J Physiol Renal Physiol 280: F480‐F486, 2001.
 83. Brooimans RA, Stegmann AP, van Dorp WT, Van Der Ark AA, Van Der Woude FJ, van Es LA, Daha MR. Interleukin 2 mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells. J Clin Invest 88: 379‐379, 1991.
 84. Brosius FC III, Alpers CE, Bottinger EP, Breyer MD, Coffman TM, Gurley SB, Harris RC, Kakoki M, Kretzler M, Leiter EH, Levi M, McIndoe RA, Sharma K, Smithies O, Susztak K, Takahashi N, Takahashi T. Mouse models of diabetic nephropathy. J Am Soc Nephrol 20: 2503‐2503, 2009.
 85. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813‐813, 2001.
 86. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615‐1615, 2005.
 87. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318: 1315‐1315, 1988.
 88. Bruce CR, Mertz VA, Heigenhauser GJ, Dyck DJ. The stimulatory effect of globular adiponectin on insulin‐stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes 54: 3154‐3154, 2005.
 89. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium‐dependent vasodilatation in experimental diabetes. J Clin Invest 87: 432‐432, 1991.
 90. Burns WC, Kantharidis P, Thomas MC. The role of tubular epithelial‐mesenchymal transition in progressive kidney disease. Cells Tissues Organs 185: 222‐222, 2007.
 91. Burns WC, Twigg SM, Forbes JM, Pete J, Tikellis C, Thallas‐Bonke V, Thomas MC, Cooper ME, Kantharidis P. Connective tissue growth factor plays an important role in advanced glycation end product‐induced tubular epithelial‐to‐mesenchymal transition: Implications for diabetic renal disease. J Am Soc Nephrol 17: 2484‐2484, 2006.
 92. Busch M, Franke S, Ruster C, Wolf G. Advanced glycation end‐products and the kidney. Eur J Clin Invest 40: 742‐742, 2010.
 93. Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: Current status. Am J Physiol Endocrinol Metab 290: E1‐E8, 2006.
 94. Butt E, Bernhardt M, Smolenski A, Kotsonis P, Frohlich LG, Sickmann A, Meyer HE, Lohmann SM, Schmidt HH. Endothelial nitric‐oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide‐dependent protein kinases. J Biol Chem 275: 5179‐5179, 2000.
 95. Cammisotto PG, Londono I, Gingras D, Bendayan M. Control of glycogen synthase through ADIPOR1‐AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol 294: F881‐F889, 2008.
 96. Campbell DJ, Kelly DJ, Wilkinson‐Berka JL, Cooper ME, Skinner SL. Increased bradykinin and “normal” angiotensin peptide levels in diabetic Sprague‐Dawley and transgenic (mRen‐2)27 rats. Kidney Int 56: 211‐211, 1999.
 97. Campese VM, Wurgaft A, Safa M, Bianchi S. Dietary salt intake, blood pressure and the kidney in hypertensive patients with non‐insulin dependent diabetes mellitus. J Nephrol 11: 289‐289, 1998.
 98. Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: Is albumin excretion rate sufficient? Diabetes 49: 1399‐1399, 2000.
 99. Carmines PK, Ohishi K, Ikenaga H. Functional impairment of renal afferent arteriolar voltage‐gated calcium channels in rats with diabetes mellitus. J Clin Invest 98: 2564‐2564, 1996.
 100. Catanuto P, Doublier S, Lupia E, Fornoni A, Berho M, Karl M, Striker GE, Xia X, Elliot S. 17 beta‐estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int 75: 1194‐1194, 2009.
 101. Ceolotto G, Gallo A, Miola M, Sartori M, Trevisan R, Del PS, Semplicini A, Avogaro A. Protein kinase C activity is acutely regulated by plasma glucose concentration in human monocytes in vivo. Diabetes 48: 1316‐1316, 1999.
 102. Chen HC, Chen CA, Guh JY, Chang JM, Shin SJ, Lai YH. Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci 67: 2345‐2345, 2000.
 103. Chen S, Cohen MP, Lautenslager GT, Shearman CW, Ziyadeh FN. Glycated albumin stimulates TGF‐beta 1 production and protein kinase C activity in glomerular endothelial cells. Kidney Int 59: 673‐673, 2001.
 104. Chen S, Ge Y, Si J, Rifai A, Dworkin LD, Gong R. Candesartan suppresses chronic renal inflammation by a novel antioxidant action independent of AT1R blockade. Kidney Int 74: 1128‐1128, 2008.
 105. Chen S, Hoffman BB, Lee JS, Kasama Y, Jim B, Kopp JB, Ziyadeh FN. Cultured tubule cells from TGF‐beta1 null mice exhibit impaired hypertrophy and fibronectin expression in high glucose. Kidney Int 65: 1191‐1191, 2004.
 106. Chen S, Kasama Y, Lee JS, Jim B, Marin M, Ziyadeh FN. Podocyte‐derived vascular endothelial growth factor mediates the stimulation of alpha3(IV) collagen production by transforming growth factor‐beta1 in mouse podocytes. Diabetes 53: 2939‐2939, 2004.
 107. Cheng HF, Wang CJ, Moeckel GW, Zhang MZ, McKanna JA, Harris RC. Cyclooxygenase‐2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int 62: 929‐929, 2002.
 108. Cheng S, Lovett DH. Gelatinase A (MMP‐2) is necessary and sufficient for renal tubular cell epithelial‐mesenchymal transformation. Am J Pathol 162: 1937‐1937, 2003.
 109. Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH. Matrix metalloproteinase 2 and basement membrane integrity: A unifying mechanism for progressive renal injury. FASEB J 20: 1898‐1898, 2006.
 110. Cherney DZ, Konvalinka A, Zinman B, Diamandis EP, Soosaipillai A, Reich H, Lorraine J, Lai V, Scholey JW, Miller JA. Effect of protein kinase Cbeta inhibition on renal hemodynamic function and urinary biomarkers in humans with type 1 diabetes: A pilot study. Diabetes Care 32: 91‐91, 2009.
 111. Cherney DZ, Miller JA, Scholey JW, Bradley TJ, Slorach C, Curtis JR, Dekker MG, Nasrallah R, Hebert RL, Sochett EB. The effect of cyclooxygenase‐2 inhibition on renal hemodynamic function in humans with type 1 diabetes. Diabetes 57: 688‐688, 2008.
 112. Chiarelli F, Gaspari S, Marcovecchio ML. Role of growth factors in diabetic kidney disease. Horm Metab Res 41: 585‐585, 2009.
 113. Chin E, Zamah AM, Landau D, Gronbcek H, Flyvbjerg A, LeRoith D, Bondy CA. Changes in facilitative glucose transporter messenger ribonucleic acid levels in the diabetic rat kidney. Endocrinology 138: 1267‐1267, 1997.
 114. Chin E, Zhou J, Bondy C. Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. J Clin Invest 91: 1810‐1810, 1993.
 115. Christensen CK, Christiansen JS, Christensen T, Hermansen K, Mogensen CE. The effect of six months continuous subcutaneous insulin infusion on kidney function and size in insulin‐dependent diabetics. Diabet Med 3: 29‐29, 1986.
 116. Christiansen JS, Gammelgaard J, Frandsen M, Parving HH. Increased kidney size, glomerular filtration rate and renal plasma flow in short‐term insulin‐dependent diabetics. Diabetologia 20: 451‐451, 1981.
 117. Christiansen JS, Gammelgaard J, Orskov H, Andersen AR, Telmer S, Parving HH. Kidney function and size in normal subjects before and during growth hormone administration for one week. Eur J Clin Invest 11: 487‐487, 1981.
 118. Christiansen JS, Gammelgaard J, Tronier B, Svendsen PA, Parving HH. Kidney function and size in diabetics before and during initial insulin treatment. Kidney Int 21: 683‐683, 1982.
 119. Cohen MP, Sharma K, Guo J, Eltayeb BO, Ziyadeh FN. The renal TGF‐beta system in the db/db mouse model of diabetic nephropathy. Exp Nephrol 6: 226‐226, 1998.
 120. Coimbra TM, Janssen U, Grone HJ, Ostendorf T, Kunter U, Schmidt H, Brabant G, Floege J. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int 57: 167‐167, 2000.
 121. Cooper ME, Rumble JR, Allen TJ, O'Brien RC, Jerums G, Doyle AE. Antihypertensive therapy in a model combining spontaneous hypertension with diabetes. Kidney Int 41: 898‐898, 1992.
 122. Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, Casley DJ, Bach LA, Kelly DJ, Gilbert RE. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR‐2 in experimental diabetes. Diabetes 48: 2229‐2229, 1999.
 123. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, Tan AL, Fukami K, Thallas‐Bonke V, Nawroth PP, Brownlee M, Bierhaus A, Cooper ME, Forbes JM. RAGE‐induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol 20: 742‐742, 2009.
 124. Craven PA, Caines MA, DeRubertis FR. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: Relationship to the hyperfiltration of early diabetes. Metabolism 36: 95‐95, 1987.
 125. D'Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int 63: 809‐809, 2003.
 126. D'Amico G, Ferrario F, Rastaldi MP. Tubulointerstitial damage in glomerular diseases: Its role in the progression of renal damage. Am J Kidney Dis 26: 124‐124, 1995.
 127. da SX Gabriela, Leclerc I, Salt IP, Doiron B, Hardie DG, Kahn A, Rutter GA. Role of AMP‐activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci U S A 97: 4023‐4023, 2000.
 128. Dahlquist G, Stattin EL, Rudberg S. Urinary albumin excretion rate and glomerular filtration rate in the prediction of diabetic nephropathy; a long‐term follow‐up study of childhood onset type‐1 diabetic patients. Nephrol Dial Transplant 16: 1382‐1382, 2001.
 129. Dai C, Yang J, Bastacky S, Xia J, Li Y, Liu Y. Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice. J Am Soc Nephrol 15: 2637‐2637, 2004.
 130. Dai T, Natarajan R, Nast CC, Lapage J, Chuang P, Sim J, Tong L, Chamberlin M, Wang S, Adler SG. Glucose and diabetes: Effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton. Kidney Int 69: 806‐806, 2006.
 131. Das EN, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 55: 498‐498, 2007.
 132. Davis B, Dei CA, Long DA, White KE, Hayward A, Ku CH, Woolf AS, Bilous R, Viberti G, Gnudi L. Podocyte‐specific expression of angiopoietin‐2 causes proteinuria and apoptosis of glomerular endothelia. J Am Soc Nephrol 18: 2320‐2320, 2007.
 133. De'Oliveira JM, Price DA, Fisher ND, Allan DR, McKnight JA, Williams GH, Hollenberg NK. Autonomy of the renin system in type II diabetes mellitus: Dietary sodium and renal hemodynamic responses to ACE inhibition. Kidney Int 52: 771‐771, 1997.
 134. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 12: 993‐993, 2001.
 135. Deb DK, Chen Y, Zhang Z, Zhang Y, Szeto FL, Wong KE, Kong J, Li YC. 1,25‐Dihydroxyvitamin D3 suppresses high glucose‐induced angiotensinogen expression in kidney cells by blocking the NF‐{kappa}B pathway. Am J Physiol Renal Physiol 296: F1212‐F1218, 2009.
 136. Deckert T, Feldt‐Rasmussen B, Borch‐Johnsen K, Jensen T, Kofoed‐Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32: 219‐219, 1989.
 137. DeFronzo RA. The effect of insulin on renal sodium metabolism. A review with clinical implications. Diabetologia 21: 165‐165, 1981.
 138. DeFronzo RA, Cooke CR, Andres R, Faloona GR, Davis PJ. The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J Clin Invest 55: 845‐845, 1975.
 139. Deng A, Baylis C. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Physiol 264: F212‐F215, 1993.
 140. Deng A, Munger KA, Valdivielso JM, Satriano J, Lortie M, Blantz RC, Thomson SC. Increased expression of ornithine decarboxylase in distal tubules of early diabetic rat kidneys: Are polyamines paracrine hypertrophic factors? Diabetes 52: 1235‐1235, 2003.
 141. Deng D, Evans T, Mukherjee K, Downey D, Chakrabarti S. Diabetes‐induced vascular dysfunction in the retina: Role of endothelins. Diabetologia 42: 1228‐1228, 1999.
 142. DeRubertis FR, Craven PA, Melhem MF, Salah EM. Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: Evidence for reduced superoxide‐nitric oxide interaction. Diabetes 53: 762‐762, 2004.
 143. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt‐dependent phosphorylation. Nature 399: 601‐601, 1999.
 144. Docherty NG, Calvo IF, Quinlan MR, Perez‐Barriocanal F, McGuire BB, Fitzpatrick JM, Watson RW. Increased E‐cadherin expression in the ligated kidney following unilateral ureteric obstruction. Kidney Int 75: 205‐205, 2009.
 145. Dominguez JH, Camp K, Maianu L, Feister H, Garvey WT. Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am J Physiol 266: F283‐F290, 1994.
 146. Dominguez JH, Wu P, Hawes JW, Deeg M, Walsh J, Packer SC, Nagase M, Temm C, Goss E, Peterson R. Renal injury: Similarities and differences in male and female rats with the metabolic syndrome. Kidney Int 69: 1969‐1969, 2006.
 147. Dorup J, Morsing P, Rasch R. Tubule‐tubule and tubule‐arteriole contacts in rat kidney distal nephrons. A morphologic study based on computer‐assisted three‐dimensional reconstructions. Lab Invest 67: 761‐761, 1992.
 148. Doublier S, Salvidio G, Lupia E, Ruotsalainen V, Verzola D, Deferrari G, Camussi G. Nephrin expression is reduced in human diabetic nephropathy: Evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 52: 1023‐1023, 2003.
 149. Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 51: 1580‐1580, 2002.
 150. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108: 1341‐1341, 2001.
 151. Durvasula RV, Shankland SJ. Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol 294: F830‐F839, 2008.
 152. Economou CG, Kitsiou PV, Tzinia AK, Panagopoulou E, Marinos E, Kershaw DB, Kerjaschki D, Tsilibary EC. Enhanced podocalyxin expression alters the structure of podocyte basal surface. J Cell Sci 117: 3281‐3281, 2004.
 153. Eddy AA, Neilson EG. Chronic kidney disease progression. J Am Soc Nephrol 17: 2964‐2964, 2006.
 154. Eddy AA, Schnaper HW. The nephrotic syndrome: From the simple to the complex. Semin Nephrol 18: 304‐304, 1998.
 155. Edelstein D, Brownlee M. Aminoguanidine ameliorates albuminuria in diabetic hypertensive rats. Diabetologia 35: 96‐96, 1992.
 156. Efendiev R, Bertorello AM, Pedemonte CH. PKC‐beta and PKC‐zeta mediate opposing effects on proximal tubule Na+,K+‐ATPase activity. FEBS Lett 456: 45‐45, 1999.
 157. Efendiev R, Budu CE, Cinelli AR, Bertorello AM, Pedemonte CH. Intracellular Na+ regulates dopamine and angiotensin II receptors availability at the plasma membrane and their cellular responses in renal epithelia. J Biol Chem 278: 28719‐28719, 2003.
 158. Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: A review. Diabetes Metab Res Rev 21: 31‐31, 2005.
 159. Embark HM, Bohmer C, Vallon V, Luft F, Lang F. Regulation of KCNE1‐dependent K(+) current by the serum and glucocorticoid‐inducible kinase (SGK) isoforms. Pflugers Arch 445: 601‐601, 2003.
 160. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12: 413‐413, 2001.
 161. Esmatjes E, Fernandez MR, Halperin I, Camps J, Gaya J, Arroyo V, Rivera F, Figuerola D. Renal hemodynamic abnormalities in patients with short term insulin‐dependent diabetes mellitus: Role of renal prostaglandins. J Clin Endocrinol Metab 60: 1231‐1231, 1985.
 162. Etienne‐Manneville S, Hall A. Rho GTPases in cell biology. Nature 420: 629‐629, 2002.
 163. Fan YP, Weiss RH. Exogenous attenuation of p21(Waf1/Cip1) decreases mesangial cell hypertrophy as a result of hyperglycemia and IGF‐1. J Am Soc Nephrol 15: 575‐575, 2004.
 164. Faulhaber‐Walter R, Chen L, Oppermann M, Kim SM, Huang Y, Hiramatsu N, Mizel D, Kajiyama H, Zerfas P, Briggs JP, Kopp JB, Schnermann J. Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury. J Am Soc Nephrol 19: 722‐722, 2008.
 165. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R. Insulin‐dependent activation of endothelial nitric oxide synthase is impaired by O‐linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106: 466‐466, 2002.
 166. Feldt‐Rasmussen B, Mathiesen ER, Deckert T, Giese J, Christensen NJ, Bent‐Hansen L, Nielsen MD. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin‐dependent) diabetes mellitus. Diabetologia 30: 610‐610, 1987.
 167. Feliers D, Frank MA, Riley DJ. Activation of cyclin D1‐Cdk4 and Cdk4‐directed phosphorylation of RB protein in diabetic mesangial hypertrophy. Diabetes 51: 3290‐3290, 2002.
 168. Feng Y, Wang Q, Wang Y, Yard B, Lang F. SGK1‐mediated fibronectin formation in diabetic nephropathy. Cell Physiol Biochem 16: 237‐237, 2005.
 169. Feraille E, Marsy S, Cheval L, Barlet‐Bas C, Khadouri C, Favre H, Doucet A. Sites of antinatriuretic action of insulin along rat nephron. Am J Physiol 263: F175‐F179, 1992.
 170. Ferrannini E, Natali A. Insulin resistance and hypertension: Connections with sodium metabolism. Am J Kidney Dis 21: 37‐37, 1993.
 171. Fervenza FC, Tsao T, Hoffman AR, Rabkin R. Regional changes in the intrarenal insulin‐like growth factor‐I axis in diabetes. Kidney Int 51: 811‐811, 1997.
 172. Ficociello LH, Perkins BA, Roshan B, Weinberg JM, Aschengrau A, Warram JH, Krolewski AS. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care 32: 889‐889, 2009.
 173. Fine LG, Ong AC, Norman JT. Mechanisms of tubulo‐interstitial injury in progressive renal diseases. Eur J Clin Invest 23: 259‐259, 1993.
 174. Fine LG, Orphanides C, Norman JT. Progressive renal disease: The chronic hypoxia hypothesis. Kidney Int Suppl 65: S74‐S78, 1998.
 175. Fioretto P, Sambataro M, Cipollina MR, Giorato C, Carraro A, Opocher G, Sacerdoti D, Brocco E, Morocutti A, Mantero F. Role of atrial natriuretic peptide in the pathogenesis of sodium retention in IDDM with and without glomerular hyperfiltration. Diabetes 41: 936‐936, 1992.
 176. Flyvbjerg A, Dagnaes‐Hansen F, de Vriese AS, Schrijvers BF, Tilton RG, Rasch R. Amelioration of long‐term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51: 3090‐3090, 2002.
 177. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57: 1446‐1446, 2008.
 178. Forbes JM, Soulis T, Thallas V, Panagiotopoulos S, Long DM, Vasan S, Wagle D, Jerums G, Cooper ME. Renoprotective effects of a novel inhibitor of advanced glycation. Diabetologia 44: 108‐108, 2001.
 179. Franch HA. Pathways of proteolysis affecting renal cell growth. Curr Opin Nephrol Hypertens 11: 445‐445, 2002.
 180. Francis J, Zhang J, Farhi A, Carey H, Geller DS. A novel SGLT2 mutation in a patient with autosomal recessive renal glucosuria. Nephrol Dial Transplant 19: 2893‐2893, 2004.
 181. Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira‐Souza M, Bordin S, Machado UF. Na(+)‐glucose transporter‐2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: Involvement of hepatocyte nuclear factor‐1alpha expression and activity. Endocrinology 149: 717‐717, 2008.
 182. Freitas HS, Schaan BD, David‐Silva A, Sabino‐Silva R, Okamoto MM, Alves‐Wagner AB, Mori RC, Machado UF. SLC2A2 gene expression in kidney of diabetic rats is regulated by HNF‐1alpha and HNF‐3beta. Mol Cell Endocrinol 305: 63‐63, 2009.
 183. Fridlyand LE, Philipson LH. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches. Ann N Y Acad Sci 1066: 136‐136, 2005.
 184. Fridovich I. Superoxide anion radical (O2‐.), superoxide dismutases, and related matters. J Biol Chem 272: 18515‐18515, 1997.
 185. Friedberg CE, van BM, Bijlsma JA, Koomans HA. Insulin increases sodium reabsorption in diluting segment in humans: Evidence for indirect mediation through hypokalemia. Kidney Int 40: 251‐251, 1991.
 186. Friederich M, Fasching A, Hansell P, Nordquist L, Palm F. Diabetes‐induced up‐regulation of uncoupling protein‐2 results in increased mitochondrial uncoupling in kidney proximal tubular cells. Biochim Biophys Acta 1777: 935‐935, 2008.
 187. Friederich M, Hansell P, Palm F. Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev 5: 120‐120, 2009.
 188. Frojdo S, Sjolind L, Parkkonen M, Makinen VP, Kilpikari R, Pettersson‐Fernholm K, Forsblom C, Fagerudd J, Tikellis C, Cooper ME, Wessman M, Groop PH. Polymorphisms in the gene encoding angiotensin I converting enzyme 2 and diabetic nephropathy. Diabetologia 48: 2278‐2278, 2005.
 189. Fujita H, Fujishima H, Chida S, Takahashi K, Qi Z, Kanetsuna Y, Breyer MD, Harris RC, Yamada Y, Takahashi T. Reduction of renal superoxide dismutase in progressive diabetic nephropathy. J Am Soc Nephrol 20: 1303‐1303, 2009.
 190. Fujita H, Omori S, Ishikura K, Hida M, Awazu M. ERK and p38 mediate high‐glucose‐induced hypertrophy and TGF‐beta expression in renal tubular cells. Am J Physiol Renal Physiol 286: F120‐F126, 2004.
 191. Fukami K, Ueda S, Yamagishi S, Kato S, Inagaki Y, Takeuchi M, Motomiya Y, Bucala R, Iida S, Tamaki K, Imaizumi T, Cooper ME, Okuda S. AGEs activate mesangial TGF‐beta‐Smad signaling via an angiotensin II type I receptor interaction. Kidney Int 66: 2137‐2137, 2004.
 192. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium‐derived nitric oxide production by the protein kinase Akt. Nature 399: 597‐597, 1999.
 193. Furuta T, Saito T, Ootaka T, Soma J, Obara K, Abe K, Yoshinaga K. The role of macrophages in diabetic glomerulosclerosis. Am J Kidney Dis 21: 480‐480, 1993.
 194. Gambardella S, Andreani D, Cancelli A, Di MU, Cardamone I, Stirati G, Cinotti GA, Pugliese F. Renal hemodynamics and urinary excretion of 6‐keto‐prostaglandin F1 alpha and thromboxane B2 in newly diagnosed type I diabetic patients. Diabetes 37: 1044‐1044, 1988.
 195. Gealekman O, Brodsky SV, Zhang F, Chander PN, Friedli C, Nasjletti A, Goligorsky MS. Endothelial dysfunction as a modifier of angiogenic response in Zucker diabetic fat rat: Amelioration with Ebselen. Kidney Int 66: 2337‐2337, 2004.
 196. Gesek FA, Schoolwerth AC. Insulin increases Na(+)‐H+ exchange activity in proximal tubules from normotensive and hypertensive rats. Am J Physiol 260: F695‐F703, 1991.
 197. Gilbert RE, Akdeniz A, Weitz S, Usinger WR, Molineaux C, Jones SE, Langham RG, Jerums G. Urinary connective tissue growth factor excretion in patients with type 1 diabetes and nephropathy. Diabetes Care 26: 2632‐2632, 2003.
 198. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int 56: 1627‐1627, 1999.
 199. Gilbert RE, Cox A, McNally PG, Wu LL, Dziadek M, Cooper ME, Jerums G. Increased epidermal growth factor in experimental diabetes related kidney growth in rats. Diabetologia 40: 778‐778, 1997.
 200. Gill PS, Wilcox CS. NADPH oxidases in the kidney. Antioxid Redox Signal 8: 1597‐1597, 2006.
 201. Gimeno‐Alcaniz JV, Sanz P. Glucose and type 2A protein phosphatase regulate the interaction between catalytic and regulatory subunits of AMP‐activated protein kinase. J Mol Biol 333: 201‐201, 2003.
 202. Gojo A, Utsunomiya K, Taniguchi K, Yokota T, Ishizawa S, Kanazawa Y, Kurata H, Tajima N. The Rho‐kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin‐induced diabetic rats. Eur J Pharmacol 568: 242‐242, 2007.
 203. Goligorsky MS, Chen J, Brodsky S. Workshop: Endothelial cell dysfunction leading to diabetic nephropathy: Focus on nitric oxide. Hypertension 37: 744‐744, 2001.
 204. Gonzalez‐Rodriguez E, Gaeggeler HP, Rossier BC. IGF‐1 vs insulin: Respective roles in modulating sodium transport via the PI‐3 kinase/Sgk1 pathway in a cortical collecting duct cell line. Kidney Int 71: 116‐116, 2007.
 205. Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL, Abboud HE. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280: 39616‐39616, 2005.
 206. Goto Y, Kakizaki M. The spontaneous diabetes rat: A model of non‐insulin‐dependent diabetes mellitus. Proc Jpn Acad 57: 381‐381, 1981.
 207. Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 280: F193‐F206, 2001.
 208. Griendling KK, Ushio‐Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 91: 21‐21, 2000.
 209. Griendling KK, Ushio‐Fukai M, Lassegue B, Alexander RW. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29: 366‐366, 1997.
 210. Griffin KA, Abu‐Naser M, Abu‐Amarah I, Picken M, Williamson GA, Bidani AK. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/fa cp) model of type 2 diabetes. Am J Physiol Renal Physiol 293: F1605‐F1613, 2007.
 211. Gruden G, Zonca S, Hayward A, Thomas S, Maestrini S, Gnudi L, Viberti GC. Mechanical stretch‐induced fibronectin and transforming growth factor‐beta1 production in human mesangial cells is p38 mitogen‐activated protein kinase‐dependent. Diabetes 49: 655‐655, 2000.
 212. Guha M, Xu ZG, Tung D, Lanting L, Natarajan R. Specific down‐regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J 21: 3355‐3355, 2007.
 213. Guijarro C, Egido J. Transcription factor‐kappa B (NF‐kappa B) and renal disease. Kidney Int 59: 415‐415, 2001.
 214. Gurley SB, Coffman TM. The renin‐angiotensin system and diabetic nephropathy. Semin Nephrol 27: 144‐144, 2007.
 215. Hall JE. Hyperinsulinemia: A link between obesity and hypertension? Kidney Int 43: 1402‐1402, 1993.
 216. Hall JE, Brands MW, Mizelle HL, Gaillard CA, Hildebrandt DA. Chronic intrarenal hyperinsulinemia does not cause hypertension. Am J Physiol 260: F663‐F669, 1991.
 217. Hall JE, Brands MW, Zappe DH, Alonso‐Galicia M. Cardiovascular actions of insulin: Are they important in long‐term blood pressure regulation? Clin Exp Pharmacol Physiol 22: 689‐689, 1995.
 218. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP‐9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3: 589‐589, 2003.
 219. Han DC, Hoffman BB, Hong SW, Guo J, Ziyadeh FN. Therapy with antisense TGF‐beta1 oligodeoxynucleotides reduces kidney weight and matrix mRNAs in diabetic mice. Am J Physiol Renal Physiol 278: F628‐F634, 2000.
 220. Han DC, Isono M, Chen S, Casaretto A, Hong SW, Wolf G, Ziyadeh FN. Leptin stimulates type I collagen production in db/db mesangial cells: Glucose uptake and TGF‐beta type II receptor expression. Kidney Int 59: 1315‐1315, 2001.
 221. Han DC, Isono M, Hoffman BB, Ziyadeh FN. High glucose stimulates proliferation and collagen type I synthesis in renal cortical fibroblasts: Mediation by autocrine activation of TGF‐beta. J Am Soc Nephrol 10: 1891‐1891, 1999.
 222. Han HJ, Lee YJ, Park SH, Lee JH, Taub M. High glucose‐induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. Am J Physiol Renal Physiol 288: F988‐F996, 2005.
 223. Hannedouche TP, Delgado AG, Gnionsahe DA, Boitard C, Lacour B, Grunfeld JP. Renal hemodynamics and segmental tubular reabsorption in early type 1 diabetes. Kidney Int 37: 1126‐1126, 1990.
 224. Hartner A, Cordasic N, Klanke B, Wittmann M, Veelken R, Hilgers KF. Renal injury in streptozotocin‐diabetic Ren2‐transgenic rats is mainly dependent on hypertension, not on diabetes. Am J Physiol Renal Physiol 292: F820‐F827, 2007.
 225. Hashimoto Y, Ideura T, Yoshimura A, Koshikawa S. Autoregulation of renal blood flow in streptozocin‐induced diabetic rats. Diabetes 38: 1109‐1109, 1989.
 226. Hayashi K, Epstein M, Loutzenhiser R, Forster H. Impaired myogenic responsiveness of the afferent arteriole in streptozotocin‐induced diabetic rats: Role of eicosanoid derangements. J Am Soc Nephrol 2: 1578‐1578, 1992.
 227. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L. Citric acid cycle intermediates as ligands for orphan G‐protein‐coupled receptors. Nature 429: 188‐188, 2004.
 228. Heilig CW, Kreisberg JI, Freytag S, Murakami T, Ebina Y, Guo L, Heilig K, Loberg R, Qu X, Jin Y, Henry D, Brosius FC III. Antisense GLUT‐1 protects mesangial cells from glucose induction of GLUT‐1 and fibronectin expression. Am J Physiol Renal Physiol 280: F657‐F666, 2001.
 229. Hellermann GR, Solomonson LP. Calmodulin promotes dimerization of the oxygenase domain of human endothelial nitric‐oxide synthase. J Biol Chem 272: 12030‐12030, 1997.
 230. Henry CB, Duling BR. TNF‐alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 279: H2815‐H2823, 2000.
 231. Herman WH, Emancipator SN, Rhoten RL, Simonson MS. Vascular and glomerular expression of endothelin‐1 in normal human kidney. Am J Physiol 275: F8‐17, 1998.
 232. Hickok NJ, Wahlfors J, Crozat A, Halmekyto M, Alhonen L, Janne J, Janne OA. Human ornithine decarboxylase‐encoding loci: Nucleotide sequence of the expressed gene and characterization of a pseudogene. Gene 93: 257‐257, 1990.
 233. Hills CE, Brunskill NJ, Squires PE. C‐Peptide as a Therapeutic Tool in Diabetic Nephropathy. Am J Nephrol 31: 389‐389, 2010.
 234. Hills CE, Squires PE. TGF‐beta1‐induced epithelial‐to‐mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol 31: 68‐68, 2010.
 235. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88: E14‐E22, 2001.
 236. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha‐smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12: 2730‐2730, 2001.
 237. Hirschberg R, Wang S. Proteinuria and growth factors in the development of tubulointerstitial injury and scarring in kidney disease. Curr Opin Nephrol Hypertens 14: 43‐43, 2005.
 238. Hohenstein B, Hausknecht B, Boehmer K, Riess R, Brekken RA, Hugo CP. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int 69: 1654‐1654, 2006.
 239. Holck P, Rasch R. Structure and segmental localization of glycogen in the diabetic rat kidney. Diabetes 42: 891‐891, 1993.
 240. Holian J, Qi W, Kelly DJ, Zhang Y, Mreich E, Pollock CA, Chen XM. Role of Kruppel‐like factor 6 in transforming growth factor‐beta1‐induced epithelial‐mesenchymal transition of proximal tubule cells. Am J Physiol Renal Physiol 295: F1388‐F1396, 2008.
 241. Hollenberg NK, Price DA, Fisher ND, Lansang MC, Perkins B, Gordon MS, Williams GH, Laffel LM. Glomerular hemodynamics and the renin‐angiotensin system in patients with type 1 diabetes mellitus. Kidney Int 63: 172‐172, 2003.
 242. Hommel E, Mathiesen E, Arnold‐Larsen S, Edsberg B, Olsen UB, Parving HH. Effects of indomethacin on kidney function in type 1 (insulin‐dependent) diabetic patients with nephropathy. Diabetologia 30: 78‐78, 1987.
 243. Hopfer U, Hopfer H, Meyer‐Schwesinger C, Loeffler I, Fukai N, Olsen BR, Stahl RA, Wolf G. Lack of type VIII collagen in mice ameliorates diabetic nephropathy. Diabetes 58: 1672‐1672, 2009.
 244. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 19: 410‐410, 1981.
 245. Hovis JG, Stumpo DJ, Halsey DL, Blackshear PJ. Effects of mitogens on ornithine decarboxylase activity and messenger RNA levels in normal and protein kinase C‐deficient NIH‐3T3 fibroblasts. J Biol Chem 261: 10380‐10380, 1986.
 246. Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler F, Schindewolf C, Jung T, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R. Genome‐wide, large‐scale production of mutant mice by ENU mutagenesis. Nat Genet 25: 444‐444, 2000.
 247. Hsieh TJ, Fustier P, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Fantus IG, Hamet P, Chan JS. High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells. Endocrinology 144: 4338‐4338, 2003.
 248. Huang DY, Boini KM, Friedrich B, Metzger M, Just L, Osswald H, Wulff P, Kuhl D, Vallon V, Lang F. Blunted hypertensive effect of combined fructose and high‐salt diet in gene‐targeted mice lacking functional serum‐ and glucocorticoid‐inducible kinase SGK1. Am J Physiol Regul Integr Comp Physiol 290: R935‐R944, 2006.
 249. Huang DY, Richter K, Breidenbach A, Vallon V. Human C‐peptide acutely lowers glomerular hyperfiltration and proteinuria in diabetic rats: A dose‐response study. Naunyn Schmiedebergs Arch Pharmacol 365: 67‐67, 2002.
 250. Huang HC, Preisig PA. G1 kinases and transforming growth factor‐beta signaling are associated with a growth pattern switch in diabetes‐induced renal growth. Kidney Int 58: 162‐162, 2000.
 251. Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W. Renin increases mesangial cell transforming growth factor‐beta1 and matrix proteins through receptor‐mediated, angiotensin II‐independent mechanisms. Kidney Int 69: 105‐105, 2006.
 252. Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, Koura Y, Nishiyama A, Okada H, Uddin MN, Nabi AH, Ishida Y, Inagami T, Saruta T. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest 114: 1128‐1128, 2004.
 253. Ichihara A, Sakoda M, Kurauchi‐Mito A, Narita T, Kinouchi K, Murohashi‐Bokuda K, Itoh H. Possible roles of human (pro)renin receptor suggested by recent clinical and experimental findings. Hypertens Res 33: 177‐177, 2010.
 254. Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, Nabi AH, Nishiyama A, Sugaya T, Hayashi M, Inagami T. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor‐deficient mice. J Am Soc Nephrol 17: 1950‐1950, 2006.
 255. Ichinose K, Maeshima Y, Yamamoto Y, Kitayama H, Takazawa Y, Hirokoshi K, Sugiyama H, Yamasaki Y, Eguchi K, Makino H. Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes 54: 2891‐2891, 2005.
 256. Ikenaga H, Bast JP, Fallet RW, Carmines PK. Exaggerated impact of ATP‐sensitive K(+) channels on afferent arteriolar diameter in diabetes mellitus. J Am Soc Nephrol 11: 1199‐1199, 2000.
 257. Ionescu E, Sauter JF, Jeanrenaud B. Abnormal oral glucose tolerance in genetically obese (fa/fa) rats. Am J Physiol 248: E500‐E506, 1985.
 258. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J, Corat MA, Zeier M, Blessing E, Oh J, Gerlitz B, Berg DT, Grinnell BW, Chavakis T, Esmon CT, Weiler H, Bierhaus A, Nawroth PP. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13: 1349‐1349, 2007.
 259. Ishida K, Ishibashi F, Takashina S. Comparison of renal hemodynamics in early non‐insulin‐dependent and insulin‐dependent diabetes mellitus. J Diabet Complications 5: 143‐143, 1991.
 260. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272: 728‐728, 1996.
 261. Ishii H, Tada H, Isogai S. An aldose reductase inhibitor prevents glucose‐induced increase in transforming growth factor‐beta and protein kinase C activity in cultured mesangial cells. Diabetologia 41: 362‐362, 1998.
 262. Ishikawa Y, Nishikimi T, Akimoto K, Ishimura K, Ono H, Matsuoka H. Long‐term administration of rho‐kinase inhibitor ameliorates renal damage in malignant hypertensive rats. Hypertension 47: 1075‐1075, 2006.
 263. Isono M, Mogyorosi A, Han DC, Hoffman BB, Ziyadeh FN. Stimulation of TGF‐beta type II receptor by high glucose in mouse mesangial cells and in diabetic kidney. Am J Physiol Renal Physiol 278: F830‐F838, 2000.
 264. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110: 341‐341, 2002.
 265. Iyengar SK, Abboud HE, Goddard KA, Saad MF, Adler SG, Arar NH, Bowden DW, Duggirala R, Elston RC, Hanson RL, Ipp E, Kao WH, Kimmel PL, Klag MJ, Knowler WC, Meoni LA, Nelson RG, Nicholas SB, Pahl MV, Parekh RS, Quade SR, Rich SS, Rotter JI, Scavini M, Schelling JR, Sedor JR, Sehgal AR, Shah VO, Smith MW, Taylor KD, Winkler CA, Zager PG, Freedman BI. Genome‐wide scans for diabetic nephropathy and albuminuria in multiethnic populations: The family investigation of nephropathy and diabetes (FIND). Diabetes 56: 1577‐1577, 2007.
 266. Iyengar SK, Fox KA, Schachere M, Manzoor F, Slaughter ME, Covic AM, Orloff SM, Hayden PS, Olson JM, Schelling JR, Sedor JR. Linkage analysis of candidate loci for end‐stage renal disease due to diabetic nephropathy. J Am Soc Nephrol 14: S195‐S201, 2003.
 267. Izquierdo A, Lopez‐Luna P, Ortega A, Romero M, Guitierrez‐Tarres MA, Arribas I, Alvarez MJ, Esbrit P, Bosch RJ. The parathyroid hormone‐related protein system and diabetic nephropathy outcome in streptozotocin‐induced diabetes. Kidney Int 69: 2171‐2171, 2006.
 268. Izuhara Y, Nangaku M, Inagi R, Tominaga N, Aizawa T, Kurokawa K, van Ypersele de SC, Miyata T. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J Am Soc Nephrol 16: 3631‐3631, 2005.
 269. Jaffa AA, Miller DH, Bailey GS, Chao J, Margolius HS, Mayfield RK. Abnormal regulation of renal kallikrein in experimental diabetes. Effects of insulin on prokallikrein synthesis and activation. J Clin Invest 80: 1651‐1651, 1987.
 270. Jaffa AA, Rust PF, Mayfield RK. Kinin, a mediator of diabetes‐induced glomerular hyperfiltration. Diabetes 44: 156‐156, 1995.
 271. James LR, Fantus IG, Goldberg H, Ly H, Scholey JW. Overexpression of GFAT activates PAI‐1 promoter in mesangial cells. Am J Physiol Renal Physiol 279: F718‐F727, 2000.
 272. James LR, Le C, Scholey JW. Influence of glucosamine on glomerular meseangial cell turnover: Implications for hyperglycemia and hexosamine pathway flux. Am J Physiol Endocrinol Metab 298: E210‐E221, 2010.
 273. Jefferson JA, Shankland SJ, Pichler RH. Proteinuria in diabetic kidney disease: A mechanistic viewpoint. Kidney Int 74: 22‐22, 2008.
 274. Jensen PK, Christiansen JS, Steven K, Parving HH. Renal function in streptozotocin‐diabetic rats. Diabetologia 21: 409‐409, 1981.
 275. Jensen PK, Steven K, Blaehr H, Christiansen JS, Parving HH. Effects of indomethacin on glomerular hemodynamics in experimental diabetes. Kidney Int 29: 490‐490, 1986.
 276. Jerums G, Premaratne E, Panagiotopoulos S, Macisaac RJ. The clinical significance of hyperfiltration in diabetes. Diabetologia 53: 2093‐2093, 2010.
 277. Jetten AM, Ganong BR, Vandenbark GR, Shirley JE, Bell RM. Role of protein kinase C in diacylglycerol‐mediated induction of ornithine decarboxylase and reduction of epidermal growth factor binding. Proc Natl Acad Sci U S A 82: 1941‐1941, 1985.
 278. Jiang R, Carlson M. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 10: 3105‐3105, 1996.
 279. Jiang T, Wang XX, Scherzer P, Wilson P, Tallman J, Takahashi H, Li J, Iwahashi M, Sutherland E, Arend L, Levi M. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 56: 2485‐2485, 2007.
 280. Johnson DW, Saunders HJ, Baxter RC, Field MJ, Pollock CA. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int 54: 747‐747, 1998.
 281. Johnson DW, Saunders HJ, Brew BK, Ganesan A, Baxter RC, Poronnik P, Cook DI, Gyory AZ, Field MJ, Pollock CA. Human renal fibroblasts modulate proximal tubule cell growth and transport via the IGF‐I axis. Kidney Int 52: 1486‐1486, 1997.
 282. Jones S, Jones S, Phillips AO. Regulation of renal proximal tubular epithelial cell hyaluronan generation: Implications for diabetic nephropathy. Kidney Int 59: 1739‐1739, 2001.
 283. Jones SC, Saunders HJ, Pollock CA. High glucose increases growth and collagen synthesis in cultured human tubulointerstitial cells. Diabet Med 16: 932‐932, 1999.
 284. Jones SG, Morrisey K, Williams JD, Phillips AO. TGF‐beta1 stimulates the release of pre‐formed bFGF from renal proximal tubular cells. Kidney Int 56: 83‐83, 1999.
 285. Juncos R, Garvin JL. Superoxide enhances Na‐K‐2Cl cotransporter activity in the thick ascending limb. Am J Physiol Renal Physiol 288: F982‐F987, 2005.
 286. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor‐beta expression in rat glomerular mesangial cells. J Clin Invest 93: 2431‐2431, 1994.
 287. Kalluri R, Neilson EG. Epithelial‐mesenchymal transition and its implications for fibrosis. J Clin Invest 112: 1776‐1776, 2003.
 288. Kamesaki H, Nishizawa K, Michaud GY, Cossman J, Kiyono T. TGF‐beta 1 induces the cyclin‐dependent kinase inhibitor p27Kip1 mRNA and protein in murine B cells. J Immunol 160: 770‐770, 1998.
 289. Kamran M, Peterson RG, Dominguez JH. Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J Am Soc Nephrol 8: 943‐943, 1997.
 290. Kanai Y, Lee WS, You G, Brown D, Hediger MA. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D‐glucose. J Clin Invest 93: 397‐397, 1994.
 291. Kanda T, Wakino S, Hayashi K, Homma K, Ozawa Y, Saruta T. Effect of fasudil on Rho‐kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats. Kidney Int 64: 2009‐2009, 2003.
 292. Kanetsuna Y, Takahashi K, Nagata M, Gannon MA, Breyer MD, Harris RC, Takahashi T. Deficiency of endothelial nitric‐oxide synthase confers susceptibility to diabetic nephropathy in nephropathy‐resistant inbred mice. Am J Pathol 170: 1473‐1473, 2007.
 293. Kang D, Hamasaki N. Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med 41: 1281‐1281, 2003.
 294. Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol 12: 1448‐1448, 2001.
 295. Kang N, Alexander G, Park JK, Maasch C, Buchwalow I, Luft FC, Haller H. Differential expression of protein kinase C isoforms in streptozotocin‐induced diabetic rats. Kidney Int 56: 1737‐1737, 1999.
 296. Kang SW, Natarajan R, Shahed A, Nast CC, Lapage J, Mundel P, Kashtan C, Adler SG. Role of 12‐lipoxygenase in the stimulation of p38 mitogen‐activated protein kinase and collagen alpha5(IV) in experimental diabetic nephropathy and in glucose‐stimulated podocytes. J Am Soc Nephrol 14: 3178‐3178, 2003.
 297. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR. Diabetic nephropathy: Mechanisms of renal disease progression. Exp Biol Med (Maywood) 233: 4‐4, 2008.
 298. Kasiske BL, Cleary MP, O'Donnell MP, Keane WF. Effects of genetic obesity on renal structure and function in the Zucker rat. J Lab Clin Med 106: 598‐598, 1985.
 299. Kasiske BL, O'Donnell MP, Keane WF. Glucose‐induced increases in renal hemodynamic function. Possible modulation by renal prostaglandins. Diabetes 34: 360‐360, 1985.
 300. Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, Lakatta EG. Improved arterial compliance by a novel advanced glycation end‐product crosslink breaker. Circulation 104: 1464‐1464, 2001.
 301. Katavetin P, Miyata T, Inagi R, Tanaka T, Sassa R, Ingelfinger JR, Fujita T, Nangaku M. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress‐regulated hypoxia‐inducible factor/hypoxia‐responsible element pathway. J Am Soc Nephrol 17: 1405‐1405, 2006.
 302. Katz A, Caramori ML, Sisson‐Ross S, Groppoli T, Basgen JM, Mauer M. An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int 61: 2058‐2058, 2002.
 303. Kawamura H, Yokote K, Asaumi S, Kobayashi K, Fujimoto M, Maezawa Y, Saito Y, Mori S. High glucose‐induced upregulation of osteopontin is mediated via Rho/Rho kinase pathway in cultured rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 24: 276‐276, 2004.
 304. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long‐term hyperglycemic rat with diabetic complications. Otsuka Long‐Evans Tokushima Fatty (OLETF) strain. Diabetes 41: 1422‐1422, 1992.
 305. Kelly DJ, Chanty A, Gow RM, Zhang Y, Gilbert RE. Protein kinase Cbeta inhibition attenuates osteopontin expression, macrophage recruitment, and tubulointerstitial injury in advanced experimental diabetic nephropathy. J Am Soc Nephrol 16: 1654‐1654, 2005.
 306. Kelly DJ, Gilbert RE, Cox AJ, Soulis T, Jerums G, Cooper ME. Aminoguanidine ameliorates overexpression of prosclerotic growth factors and collagen deposition in experimental diabetic nephropathy. J Am Soc Nephrol 12: 2098‐2098, 2001.
 307. Kelly DJ, Skinner SL, Gilbert RE, Cox AJ, Cooper ME, Wilkinson‐Berka JL. Effects of endothelin or angiotensin II receptor blockade on diabetes in the transgenic (mRen‐2)27 rat. Kidney Int 57: 1882‐1882, 2000.
 308. Kelly DJ, Zhang Y, Hepper C, Gow RM, Jaworski K, Kemp BE, Wilkinson‐Berka JL, Gilbert RE. Protein kinase C beta inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 52: 512‐512, 2003.
 309. Kennefick TM, Oyama TT, Thompson MM, Vora JP, Anderson S. Enhanced renal sensitivity to angiotensin actions in diabetes mellitus in the rat. Am J Physiol 271: F595‐F602, 1996.
 310. Kim KT, Choi HH, Steinmetz MO, Maco B, Kammerer RA, Ahn SY, Kim HZ, Lee GM, Koh GY. Oligomerization and multimerization are critical for angiopoietin‐1 to bind and phosphorylate Tie2. J Biol Chem 280: 20126‐20126, 2005.
 311. Kirchner KA. Insulin increases loop segment chloride reabsorption in the euglycemic rat. Am J Physiol 255: F1206‐F1213, 1988.
 312. Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H, Brownlee M, Araki E. Reactive oxygen species from mitochondria induce cyclooxygenase‐2 gene expression in human mesangial cells: Potential role in diabetic nephropathy. Diabetes 52: 2570‐2570, 2003.
 313. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du YS, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM. N(epsilon)‐(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274: 31740‐31740, 1999.
 314. Klahr S, Morrissey J, Hruska K, Wang S, Chen Q. New approaches to delay the progression of chronic renal failure. Kidney Int Suppl 80: 23‐23, 2002.
 315. Kobayashi E, Sasamura H, Mifune M, Shimizu‐Hirota R, Kuroda M, Hayashi M, Saruta T. Hepatocyte growth factor regulates proteoglycan synthesis in interstitial fibroblasts. Kidney Int 64: 1179‐1179, 2003.
 316. Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 57: 714‐714, 2008.
 317. Komers R, Allen TJ, Cooper ME. Role of endothelium‐derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Diabetes 43: 1190‐1190, 1994.
 318. Komers R, Anderson S. Paradoxes of nitric oxide in the diabetic kidney. Am J Physiol Renal Physiol 284: F1121‐F1137, 2003.
 319. Komers R, Cooper ME. Acute renal hemodynamic effects of ACE inhibition in diabetic hyperfiltration: Role of kinins. Am J Physiol 268: F588‐F594, 1995.
 320. Komers R, Lindsley JN, Oyama TT, Allison KM, Anderson S. Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes. Am J Physiol Renal Physiol 279: F573‐F583, 2000.
 321. Komers R, Lindsley JN, Oyama TT, Schutzer WE, Reed JF, Mader SL, Anderson S. Immunohistochemical and functional correlations of renal cyclooxygenase‐2 in experimental diabetes. J Clin Invest 107: 889‐889, 2001.
 322. Komers R, Oyama TT, Beard DR, Anderson S. Effects of systemic inhibition of Rho kinase on blood pressure and renal hemodynamics in diabetic rats. Br J Pharmacol 162: 163‐163, 2011.
 323. Komers R, Oyama TT, Beard DR, Tikellis C, Xu B, Lotspeich DF, Anderson S. Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney Int 79: 432‐432, 2011.
 324. Komers R, Oyama TT, Chapman JG, Allison KM, Anderson S. Effects of systemic inhibition of neuronal nitric oxide synthase in diabetic rats. Hypertension 35: 655‐655, 2000.
 325. Komers R, Schutzer W, Xue H, Oyama TT, Lindsley JN, Anderson S. Effects of p38 mitogen‐activated protein kinase inhibition on blood pressure, renal hemodynamics, and renal vascular reactivity in normal and diabetic rats. Transl Res 150: 343‐343, 2007.
 326. Komers R, Schutzer WE, Reed JF, Lindsley JN, Oyama TT, Buck DC, Mader SL, Anderson S. Altered endothelial nitric oxide synthase targeting and conformation and caveolin‐1 expression in the diabetic kidney. Diabetes 55: 1651‐1651, 2006.
 327. Komers R, Zdychova J, Cahova M, Kazdova L, Lindsley JN, Anderson S. Renal cyclooxygenase‐2 in obese Zucker (fatty) rats. Kidney Int 67: 2151‐2151, 2005.
 328. Kontessis PS, Jones SL, Barrow SE, Stratton PD, Alessandrini P, De CS, Ritter JM, Viberti GC. Effect of selective inhibition of thromboxane synthesis on renal function in diabetic nephropathy. J Lab Clin Med 121: 415‐415, 1993.
 329. Koop K, Eikmans M, Baelde HJ, Kawachi H, de HE, Paul LC, Bruijn JA. Expression of podocyte‐associated molecules in acquired human kidney diseases. J Am Soc Nephrol 14: 2063‐2063, 2003.
 330. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 14: 439‐439, 2000.
 331. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor‐beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100: 115‐115, 1997.
 332. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859‐859, 1998.
 333. Koya D, Lee IK, Ishii H, Kanoh H, King GL. Prevention of glomerular dysfunction in diabetic rats by treatment with d‐alpha‐tocopherol. J Am Soc Nephrol 8: 426‐426, 1997.
 334. Krepinsky J. Mechanical stretch‐induced signal transduction in cultured mesangial cells. Methods Mol Biol 466: 205‐205, 2009.
 335. Kriz W, Lehir M. Pathways to nephron loss starting from glomerular diseases‐insights from animal models. Kidney Int 67: 404‐404, 2005.
 336. Krolewski AS. Genetics of diabetic nephropathy: Evidence for major and minor gene effects. Kidney Int 55: 1582‐1582, 1999.
 337. Ku CH, White KE, Dei CA, Hayward A, Webster Z, Bilous R, Marshall S, Viberti G, Gnudi L. Inducible overexpression of sFlt‐1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes 57: 2824‐2824, 2008.
 338. Kuan CJ, Al‐Douahji M, Shankland SJ. The cyclin kinase inhibitor p21WAF1, CIP1 is increased in experimental diabetic nephropathy: Potential role in glomerular hypertrophy. J Am Soc Nephrol 9: 986‐986, 1998.
 339. Kumar AM, Gupta RK, Spitzer A. Intracellular sodium in proximal tubules of diabetic rats. Role of glucose. Kidney Int 33: 792‐792, 1988.
 340. Landau D, Israel E, Rivkis I, Kachko L, Schrijvers BF, Flyvbjerg A, Phillip M, Segev Y. The effect of growth hormone on the development of diabetic kidney disease in rats. Nephrol Dial Transplant 18: 694‐694, 2003.
 341. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz‐Seebohm N, Vallon V. (Patho)physiological significance of the serum‐ and glucocorticoid‐inducible kinase isoforms. Physiol Rev 86: 1151‐1151, 2006.
 342. Lang F, Gorlach A, Vallon V. Targeting SGK1 in diabetes. Expert Opin Ther Targets 13: 1303‐1303, 2009.
 343. Lang F, Klingel K, Wagner CA, Stegen C, Warntges S, Friedrich B, Lanzendorfer M, Melzig J, Moschen I, Steuer S, Waldegger S, Sauter M, Paulmichl M, Gerke V, Risler T, Gamba G, Capasso G, Kandolf R, Hebert SC, Massry SG, Broer S. Deranged transcriptional regulation of cell‐volume‐sensitive kinase hSGK in diabetic nephropathy. Proc Natl Acad Sci U S A 97: 8157‐8157, 2000.
 344. Langham RG, Kelly DJ, Cox AJ, Thomson NM, Holthofer H, Zaoui P, Pinel N, Cordonnier DJ, Gilbert RE. Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: Effects of angiotensin converting enzyme inhibition. Diabetologia 45: 1572‐1572, 2002.
 345. Langham RG, Kelly DJ, Maguire J, Dowling JP, Gilbert RE, Thomson NM. Over‐expression of platelet‐derived growth factor in human diabetic nephropathy. Nephrol Dial Transplant 18: 1392‐1392, 2003.
 346. Lansang MC, Price DA, Laffel LM, Osei SY, Fisher ND, Erani D, Hollenberg NK. Renal vascular responses to captopril and to candesartan in patients with type 1 diabetes mellitus. Kidney Int 59: 1432‐1432, 2001.
 347. Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285: R277‐R297, 2003.
 348. Lau C, Sudbury I, Thomson M, Howard PL, Magil AB, Cupples WA. Salt‐resistant blood pressure and salt‐sensitive renal autoregulation in chronic streptozotocin diabetes. Am J Physiol Regul Integr Comp Physiol 296: R1761‐R1770, 2009.
 349. Lawson ML, Sochett EB, Chait PG, Balfe JW, Daneman D. Effect of puberty on markers of glomerular hypertrophy and hypertension in IDDM. Diabetes 45: 51‐51, 1996.
 350. Lee CM, Robinson LJ, Michel T. Oligomerization of endothelial nitric oxide synthase. Evidence for a dominant negative effect of truncation mutants. J Biol Chem 270: 27403‐27403, 1995.
 351. Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, Foretz M, Viollet B, Weinberg JM, Choudhury GG, Kasinath BS. A role for AMP‐activated protein kinase in diabetes‐induced renal hypertrophy. Am J Physiol Renal Physiol 292: F617‐F627, 2007.
 352. Lee YJ, Han HJ. Troglitazone ameliorates high glucose‐induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK‐3{beta}, Snail1, and {beta}‐catenin in renal proximal tubule cells. Am J Physiol Renal Physiol 298: F1263‐F1275, 2010.
 353. Leighton PA, Mitchell KJ, Goodrich LV, Lu X, Pinson K, Scherz P, Skarnes WC, Tessier‐Lavigne M. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410: 174‐174, 2001.
 354. Lemley KV. Diabetes and chronic kidney disease: Lessons from the Pima Indians. Pediatr Nephrol 23: 1933‐1933, 2008.
 355. Lemley KV, Abdullah I, Myers BD, Meyer TW, Blouch K, Smith WE, Bennett PH, Nelson RG. Evolution of incipient nephropathy in type 2 diabetes mellitus. Kidney Int 58: 1228‐1228, 2000.
 356. Leroy P, Mostov KE. Slug is required for cell survival during partial epithelial‐mesenchymal transition of HGF‐induced tubulogenesis. Mol Biol Cell 18: 1943‐1943, 2007.
 357. Lervang HH, Jensen S, Brochner‐Mortensen J, Ditzel J. Early glomerular hyperfiltration and the development of late nephropathy in type 1 (insulin‐dependent) diabetes mellitus. Diabetologia 31: 723‐723, 1988.
 358. Levine JH, Buse MG, Leaming AB, Raskin P. Effect of streptozotocin‐induced diabetes on renal ornithine decarboxylase activity. Diabetes 29: 532‐532, 1980.
 359. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin‐converting‐enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329: 1456‐1456, 1993.
 360. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I. Renoprotective effect of the angiotensin‐receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345: 851‐851, 2001.
 361. Lewis MP, Fine LG, Norman JT. Pexicrine effects of basement membrane components on paracrine signaling by renal tubular cells. Kidney Int 49: 48‐48, 1996.
 362. Leyssac PP, Karlsen FM, Skott O. Role of proximal tubular reabsorption for the intrarenal control of GFR. Kidney Int Suppl 32: S132‐S135, 1991.
 363. Li J, Qu X, Bertram JF. Endothelial‐myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin‐induced diabetic mice. Am J Pathol 175: 1380‐1380, 2009.
 364. Li JH, Huang XR, Zhu HJ, Oldfield M, Cooper M, Truong LD, Johnson RJ, Lan HY. Advanced glycation end products activate Smad signaling via TGF‐beta‐dependent and independent mechanisms: Implications for diabetic renal and vascular disease. FASEB J 18: 176‐176, 2004.
 365. Li JJ, Kwak SJ, Jung DS, Kim JJ, Yoo TH, Ryu DR, Han SH, Choi HY, Lee JE, Moon SJ, Kim DK, Han DS, Kang SW. Podocyte biology in diabetic nephropathy. Kidney Int Suppl 106: S36‐S42, 2007.
 366. Li JM, Shah AM. ROS generation by nonphagocytic NADPH oxidase: Potential relevance in diabetic nephropathy. J Am Soc Nephrol 14: S221‐S226, 2003.
 367. Li Y, Tan X, Dai C, Stolz DB, Wang D, Liu Y. Inhibition of integrin‐linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 20: 1907‐1907, 2009.
 368. Li Y, Yang J, Dai C, Wu C, Liu Y. Role for integrin‐linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest 112: 503‐503, 2003.
 369. Lieberthal W, Levine JS. The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol 20: 2493‐2493, 2009.
 370. Lin CL, Wang FS, Hsu YC, Chen CN, Tseng MJ, Saleem MA, Chang PJ, Wang JY. Modulation of notch‐1 signaling alleviates vascular endothelial growth factor‐mediated diabetic nephropathy. Diabetes 59: 1915‐1915, 2010.
 371. Lin CL, Wang FS, Kuo YR, Huang YT, Huang HC, Sun YC Kuo YH. Ras modulation of superoxide activates ERK‐dependent fibronectin expression in diabetes‐induced renal injuries. Kidney Int 69: 1593‐1593, 2006.
 372. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen‐producing cells in obstructive fibrosis of the kidney. Am J Pathol 173: 1617‐1617, 2008.
 373. Lindenmeyer MT, Kretzler M, Boucherot A, Berra S, Yasuda Y, Henger A, Eichinger F, Gaiser S, Schmid H, Rastaldi MP, Schrier RW, Schlondorff D, Cohen CD. Interstitial vascular rarefaction and reduced VEGF‐A expression in human diabetic nephropathy. J Am Soc Nephrol 18: 1765‐1765, 2007.
 374. Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA, Kretzler M, Cohen CD, Schlondorff D. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol 19: 2225‐2225, 2008.
 375. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15: 1‐1, 2004.
 376. Liu Y. New insights into epithelial‐mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21: 212‐212, 2010.
 377. Lorenz JN, Schnermann J, Brosius FC, Briggs JP, Furspan PB. Intracellular ATP can regulate afferent arteriolar tone via ATP‐sensitive K+ channels in the rabbit. J Clin Invest 90: 733‐733, 1992.
 378. Luik PT, Hoogenberg K, Van Der Kleij FG, Beusekamp BJ, Kerstens MN, De Jong PE, Dullaart RP, Navis GJ. Short‐term moderate sodium restriction induces relative hyperfiltration in normotensive normoalbuminuric Type I diabetes mellitus. Diabetologia 45: 535‐535, 2002.
 379. Ma RCW, Tam CHT, Wang Y, Luk AO, Hu C, Yang X, Lam V, Chan AWH, Ho JSK, Chow CC, Tong PCY, Jia W, Ng MCY, So WY, Chan JCN. Genetic variants of the protein kinase C‐{beta} 1 gene and development of end‐stage renal disease in patients with type 2 diabetes. JAMA 304: 881‐881, 2010.
 380. Madala Halagappa VK, Tiwari S, Riazi S, Hu X, Ecelbarger CM. Chronic candesartan alters expression and activity of NKCC2, NCC, and ENaC in the obese Zucker rat. Am J Physiol Renal Physiol 294: F1222‐F1231, 2008.
 381. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta‐analysis. Diabetologia 52: 691‐691, 2009.
 382. Magen D, Sprecher E, Zelikovic I, Skorecki K. A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal‐recessive renal glucosuria and aminoaciduria. Kidney Int 67: 34‐34, 2005.
 383. Magri CJ, Fava S. The role of tubular injury in diabetic nephropathy. Eur J Intern Med 20: 551‐551, 2009.
 384. Makino H, Miyamoto Y, Sawai K, Mori K, Mukoyama M, Nakao K, Yoshimasa Y, Suga S. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 55: 2747‐2747, 2006.
 385. Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, Kurokawa K, Fujita T, Nangaku M. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 15: 1277‐1277, 2004.
 386. Marcus RG, England R, Nguyen K, Charron MJ, Briggs JP, Brosius FC III. Altered renal expression of the insulin‐responsive glucose transporter GLUT4 in experimental diabetes mellitus. Am J Physiol 267: F816‐F824, 1994.
 387. Marcussen N. Atubular glomeruli and the structural basis for chronic renal failure. Lab Invest 66: 265‐265, 1992.
 388. Maric C, Sullivan S. Estrogens and the diabetic kidney. Gend Med 5(Suppl A): S103‐S113, 2008.
 389. Marshall CB, Shankland SJ. Cell cycle and glomerular disease: A minireview. Nephron Exp Nephrol 102: e39‐e48, 2006.
 390. Marshall JD, Mu JL, Cheah YC, Nesbitt MN, Frankel WN, Paigen B. The AXB and BXA set of recombinant inbred mouse strains. Mamm Genome 3: 669‐669, 1992.
 391. Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR. p38 MAP kinase mediates mechanically induced COX‐2 and PG EP4 receptor expression in podocytes: Implications for the actin cytoskeleton. Am J Physiol Renal Physiol 286: F693‐F701, 2004.
 392. Mattar AL, Fujihara CK, Ribeiro MO, de NG, Zatz R. Renal effects of acute and chronic nitric oxide inhibition in experimental diabetes. Nephron 74: 136‐136, 1996.
 393. Mauer M, Drummond K. The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes 51: 1572‐1572, 2002.
 394. Mauer SM, Brown DM, Steffes MW, Azar S. Studies of renal autoregulation in pancreatectomized and streptozotocin diabetic rats. Kidney Int 37: 909‐909, 1990.
 395. Mauer SM, Steffes MW, Azar S, Brown DM. Effects of sorbinil on glomerular structure and function in long‐term‐diabetic rats. Diabetes 38: 839‐839, 1989.
 396. Mauer SM, Steffes MW, Azar S, Sandberg SK, Brown DM. The effects of Goldblatt hypertension on development of the glomerular lesions of diabetes mellitus in the rat. Diabetes 27: 738‐738, 1978.
 397. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural‐functional relationships in diabetic nephropathy. J Clin Invest 74: 1143‐1143, 1984.
 398. Mbanya JC, Thomas TH, Taylor R, Alberti KG, Wilkinson R. Increased proximal tubular sodium reabsorption in hypertensive patients with type 2 diabetes. Diabet Med 6: 614‐614, 1989.
 399. McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain “calcium‐independent” eNOS activation by phosphorylation. J Biol Chem 275: 6123‐6123, 2000.
 400. Meehan WP, Buchanan TA, Hsueh W. Chronic insulin administration elevates blood pressure in rats. Hypertension 23: 1012‐1012, 1994.
 401. Meier M, Menne J, Park JK, Holtz M, Gueler F, Kirsch T, Schiffer M, Mengel M, Lindschau C, Leitges M, Haller H. Deletion of protein kinase C‐epsilon signaling pathway induces glomerulosclerosis and tubulointerstitial fibrosis in vivo. J Am Soc Nephrol 18: 1190‐1190, 2007.
 402. Meier M, Park JK, Overheu D, Kirsch T, Lindschau C, Gueler F, Leitges M, Menne J, Haller H. Deletion of protein kinase C‐beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin‐induced diabetic mouse model. Diabetes 56: 346‐346, 2007.
 403. Meininger CJ, Marinos RS, Hatakeyama K, Martinez‐Zaguilan R, Rojas JD, Kelly KA, Wu G. Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J 349: 353‐353, 2000.
 404. Menne J, Meier M, Park JK, Boehne M, Kirsch T, Lindschau C, Ociepka R, Leitges M, Rinta‐Valkama J, Holthofer H, Haller H. Nephrin loss in experimental diabetic nephropathy is prevented by deletion of protein kinase C alpha signaling in‐vivo. Kidney Int 70: 1456‐1456, 2006.
 405. Menne J, Park JK, Boehne M, Elger M, Lindschau C, Kirsch T, Meier M, Gueler F, Fiebeler A, Bahlmann FH, Leitges M, Haller H. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C‐alpha‐deficient diabetic mice. Diabetes 53: 2101‐2101, 2004.
 406. Michaelis OE, Patrick DH, Hansen CT, Canary JJ, Werner RM, Carswell N. Insulin‐independent diabetes mellitus (type II). Spontaneous hypertensive/NIH‐corpulent rat. Am J Pathol 123: 398‐398, 1986.
 407. Miller JA. Renal responses to sodium restriction in patients with early diabetes mellitus. J Am Soc Nephrol 8: 749‐749, 1997.
 408. Miller J, Bogdonoff M. Antidiuresis associated with administration of insulin. J Appl Physiol 6: 509‐509, 1954.
 409. Miracle CM, Rieg T, Mansoury H, Vallon V, Thomson SC. Ornithine decarboxylase inhibitor eliminates hyperresponsiveness of the early diabetic proximal tubule to dietary salt. Am J Physiol Renal Physiol 295: F995‐F1002, 2008.
 410. Miyata T, de Strihou CY. Diabetic nephropathy: A disorder of oxygen metabolism? Nat Rev Nephrol 6: 83‐83, 2010.
 411. Miyata T, van Ypersele de SC, Ueda Y, Ichimori K, Inagi R, Onogi H, Ishikawa N, Nangaku M, Kurokawa K. Angiotensin II receptor antagonists and angiotensin‐converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: Biochemical mechanisms. J Am Soc Nephrol 13: 2478‐2478, 2002.
 412. Modlinger PS, Wilcox CS, Aslam S. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin Nephrol 24: 354‐354, 2004.
 413. Mogensen CE. Early glomerular hyperfiltration in insulin‐dependent diabetics and late nephropathy. Scand J Clin Lab Invest 46: 201‐201, 1986.
 414. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22: 706‐706, 1973.
 415. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin‐dependent patients. N Engl J Med 311: 89‐89, 1984.
 416. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32(Suppl 2): 64‐64, 1983.
 417. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, Natarajan M, Abboud‐Werner SL. Diabetic eNOS knockout mice develop distinct macro‐ and microvascular complications. Lab Invest 88: 515‐515, 2008.
 418. Monkawa T, Hiromura K, Wolf G, Shankland SJ. The hypertrophic effect of transforming growth factor‐beta is reduced in the absence of cyclin‐dependent kinase‐inhibitors p21 and p27. J Am Soc Nephrol 13: 1172‐1172, 2002.
 419. Morrisey K, Steadman R, Williams JD, Phillips AO. Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent. Kidney Int 55: 160‐160, 1999.
 420. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol 13: 3005‐3005, 2002.
 421. Myers BD, Nelson RG, Williams GW, Bennett PH, Hardy SA, Berg RL, Loon N, Knowler WC, Mitch WE. Glomerular function in Pima Indians with noninsulin‐dependent diabetes mellitus of recent onset. J Clin Invest 88: 524‐524, 1991.
 422. Nair S, Wilding JP. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab 95: 34‐34, 2010.
 423. Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, Campbell‐Thompson M, Yuzawa Y, Atkinson MA, Johnson RJ, Croker B. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol 18: 539‐539, 2007.
 424. Nakagawa T, Sato W, Sautin YY, Glushakova O, Croker B, Atkinson MA, Tisher CC, Johnson RJ. Uncoupling of vascular endothelial growth factor with nitric oxide as a mechanism for diabetic vasculopathy. J Am Soc Nephrol 17: 736‐736, 2006.
 425. Nakamura T, Ushiyama C, Suzuki S, Hara M, Shimada N, Ebihara I, Koide H. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant 15: 1379‐1379, 2000.
 426. Nangaku M. Mechanisms of tubulointerstitial injury in the kidney: Final common pathways to end‐stage renal failure. Intern Med 43: 9‐9, 2004.
 427. Nangaku M. Chronic hypoxia and tubulointerstitial injury: A final common pathway to end‐stage renal failure. J Am Soc Nephrol 17: 17‐17, 2006.
 428. Nangaku M, Miyata T, Sada T, Mizuno M, Inagi R, Ueda Y, Ishikawa N, Yuzawa H, Koike H, van Ypersele de SC, Kurokawa K. Anti‐hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model. J Am Soc Nephrol 14: 1212‐1212, 2003.
 429. Nasu T, Maeshima Y, Kinomura M, Hirokoshi‐Kawahara K, Tanabe K, Sugiyama H, Sonoda H, Sato Y, Makino H. Vasohibin‐1, a negative feedback regulator of angiogenesis, ameliorates renal alterations in a mouse model of diabetic nephropathy. Diabetes 58: 2365‐2365, 2009.
 430. Nath KA, Croatt AJ, Hostetter TH. Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol 258: F1354‐F1362, 1990.
 431. Negrete H, Studer RK, Craven PA, DeRubertis FR. Role for transforming growth factor beta in thromboxane‐induced increases in mesangial cell fibronectin synthesis. Diabetes 44: 335‐335, 1995.
 432. Nejsum LN, Kwon TH, Marples D, Flyvbjerg A, Knepper MA, Frokiaer J, Nielsen S. Compensatory increase in AQP2, p‐AQP2, and AQP3 expression in rats with diabetes mellitus. Am J Physiol Renal Physiol 280: F715‐F726, 2001.
 433. Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE, Hirschman GH, Myers BD. Development and progression of renal disease in Pima Indians with non‐insulin‐dependent diabetes mellitus. Diabetic Renal Disease Study Group. N Engl J Med 335: 1636‐1636, 1996.
 434. Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic‐Paterson DJ, Atkins RC, Lan HY. Tubular epithelial‐myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54: 864‐864, 1998.
 435. Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer JD. Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor‐1 antigen. Kidney Int 50: 1897‐1897, 1996.
 436. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109: 1417‐1417, 2002.
 437. Nguyen TQ, Tarnow L, Andersen S, Hovind P, Parving HH, Goldschmeding R, van Nieuwenhoven FA. Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care 29: 83‐83, 2006.
 438. Nguyen TQ, Tarnow L, Jorsal A, Oliver N, Roestenberg P, Ito Y, Parving HH, Rossing P, van Nieuwenhoven FA, Goldschmeding R. Plasma connective tissue growth factor is an independent predictor of end‐stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care 31: 1177‐1177, 2008.
 439. Niehof M, Borlak J. HNF4 alpha and the Ca‐channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 57: 1069‐1069, 2008.
 440. Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JA, Ince C, Holleman F, Diamant M, Heine RJ, Hoekstra JB, Kastelein JJ, Stroes ES, Vink H. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55: 1127‐1127, 2006.
 441. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55: 480‐480, 2006.
 442. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB, Susztak K. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 14: 290‐290, 2008.
 443. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787‐787, 2000.
 444. Nishikimi T, Akimoto K, Wang X, Mori Y, Tadokoro K, Ishikawa Y, Shimokawa H, Ono H, Matsuoka H. Fasudil, a Rho‐kinase inhibitor, attenuates glomerulosclerosis in Dahl salt‐sensitive rats. J Hypertens 22: 1787‐1787, 2004.
 445. Nishikimi T, Koshikawa S, Ishikawa Y, Akimoto K, Inaba C, Ishimura K, Ono H, Matsuoka H. Inhibition of Rho‐kinase attenuates nephrosclerosis and improves survival in salt‐loaded spontaneously hypertensive stroke‐prone rats. J Hypertens 25: 1053‐1053, 2007.
 446. Noh H, King GL. The role of protein kinase C activation in diabetic nephropathy. Kidney Int Suppl 106: S49‐S53, 2007.
 447. Norman JT, Orphanides C, Garcia P, Fine LG. Hypoxia‐induced changes in extracellular matrix metabolism in renal cells. Exp Nephrol 7: 463‐463, 1999.
 448. O'Bryan GT, Hostetter TH. The renal hemodynamic basis of diabetic nephropathy. Semin Nephrol 17: 93‐93, 1997.
 449. O'Donnell MP, Kasiske BL, Daniels FX, Keane WF. Effects of nephron loss on glomerular hemodynamics and morphology in diabetic rats. Diabetes 35: 1011‐1011, 1986.
 450. O'Hagan M, Howey J, Greene SA. Increased proximal tubular reabsorption of sodium in childhood diabetes mellitus. Diabet Med 8: 44‐44, 1991.
 451. O'Hare JA, Ferriss JB, Brady D, Twomey B, O'Sullivan DJ. Exchangeable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension 7: II43‐II48, 1985.
 452. Ohishi K, Carmines PK. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus. J Am Soc Nephrol 5: 1559‐1559, 1995.
 453. Ohishi K, Okwueze MI, Vari RC, Carmines PK. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus. Am J Physiol 267: F99‐105, 1994.
 454. Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta‐1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95: 1363‐1363, 1995.
 455. Ohtomo S, Nangaku M, Izuhara Y, Takizawa S, Strihou CY, Miyata T. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol Dial Transplant 23: 1166‐1166, 2008.
 456. Okamura DM, Himmelfarb J. Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatr Nephrol 24: 2309‐2309, 2009.
 457. Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T, Kanai Y, Endou H. T‐1095, an inhibitor of renal Na+‐glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48: 1794‐1794, 1999.
 458. Oldfield MD, Bach LA, Forbes JM, Nikolic‐Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME. Advanced glycation end products cause epithelial‐myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108: 1853‐1853, 2001.
 459. Onozato ML, Tojo A, Goto A, Fujita T, Wilcox CS. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: Effects of ACEI and ARB. Kidney Int 61: 186‐186, 2002.
 460. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277‐277, 1997.
 461. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315‐315, 1994.
 462. Orphanides C, Fine LG, Norman JT. Hypoxia stimulates proximal tubular cell matrix production via a TGF‐beta1‐independent mechanism. Kidney Int 52: 637‐637, 1997.
 463. Ortola FV, Ballermann BJ, Anderson S, Mendez RE, Brenner BM. Elevated plasma atrial natriuretic peptide levels in diabetic rats. Potential mediator of hyperfiltration. J Clin Invest 80: 670‐670, 1987.
 464. Osorio H, Bautista R, Rios A, Franco M, Santamaria J, Escalante B. Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats. Diabetes Res Clin Pract 86: e46‐e49, 2009.
 465. Osterby R. Glomerular structural changes in type 1 (insulin‐dependent) diabetes mellitus: Causes, consequences, and prevention. Diabetologia 35: 803‐803, 1992.
 466. Osterby R, Asplund J, Bangstad HJ, Nyberg G, Rudberg S, Viberti GC, Walker JD. Neovascularization at the vascular pole region in diabetic glomerulopathy. Nephrol Dial Transplant 14: 348‐348, 1999.
 467. Osterby R, Parving HH, Hommel E, Jorgensen HE, Lokkegaard H. Glomerular structure and function in diabetic nephropathy. Early to advanced stages. Diabetes 39: 1057‐1057, 1990.
 468. Ott C, Iwanciw D, Graness A, Giehl K, Goppelt‐Struebe M. Modulation of the expression of connective tissue growth factor by alterations of the cytoskeleton. J Biol Chem 278: 44305‐44305, 2003.
 469. Pagtalunan ME, Miller PL, Jumping‐Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L, Meyer TW. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 99: 342‐342, 1997.
 470. Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO. Reactive oxygen species cause diabetes‐induced decrease in renal oxygen tension. Diabetologia 46: 1153‐1153, 2003.
 471. Palm F, Connors SG, Mendonca M, Welch WJ, Wilcox CS. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats. Hypertension 51: 345‐345, 2008.
 472. Palm F, Fasching A, Hansell P, Kallskog O. Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney. Am J Physiol Renal Physiol 298: F416‐F420, 2010.
 473. Palm F, Friederich M, Carlsson PO, Hansell P, Teerlink T, Liss P. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: Implications for renomedullary oxygen availability. Am J Physiol Renal Physiol 294: F30‐F37, 2008.
 474. Palm F, Teerlink T, Hansell P. Nitric oxide and kidney oxygenation. Curr Opin Nephrol Hypertens 18: 68‐68, 2009.
 475. Palmisano JJ, Lebovitz HE. Renal function in black Americans with type II diabetes. J Diabet Complications 3: 40‐40, 1989.
 476. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2): S170‐S180, 2008.
 477. Park CW, Kim HW, Ko SH, Chung HW, Lim SW, Yang CW, Chang YS, Sugawara A, Guan Y, Breyer MD. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator‐activated receptor alpha. Diabetes 55: 885‐885, 2006.
 478. Park CW, Zhang Y, Zhang X, Wu J, Chen L, Cha DR, Su D, Hwang MT, Fan X, Davis L, Striker G, Zheng F, Breyer M, Guan Y. PPARalpha agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int 69: 1511‐1511, 2006.
 479. Parving HH, Christiansen JS, Noer I, Tronier B, Mogensen CE. The effect of glucagon infusion on kidney function in short‐term insulin‐dependent juvenile diabetics. Diabetologia 19: 350‐350, 1980.
 480. Parving HH, Lehnert H, Brochner‐Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345: 870‐870, 2001.
 481. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 83: 253‐253, 2003.
 482. Pedersen SB, Flyvbjerg A, Gronbaek H, Richelsen B. Increased ornithine decarboxylase activity in kidneys undergoing hypertrophy in experimental diabetes. Mol Cell Endocrinol 86: 67‐67, 1992.
 483. Pedersen SB, Flyvbjerg A, Richelsen B. Inhibition of renal ornithine decarboxylase activity prevents kidney hypertrophy in experimental diabetes. Am J Physiol 264: C453‐C456, 1993.
 484. Pelikanova T, Smrckova I, Krizova J, Stribrna J, Lanska V. Effects of insulin and lipid emulsion on renal haemodynamics and renal sodium handling in IDDM patients. Diabetologia 39: 1074‐1074, 1996.
 485. Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC. RhoA/Rho‐kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 57: 1683‐1683, 2008.
 486. Peng F, Zhang B, Ingram AJ, Gao B, Zhang Y, Krepinsky JC. Mechanical stretch‐induced RhoA activation is mediated by the RhoGEF Vav2 in mesangial cells. Cell Signal 22: 34‐34, 2010.
 487. Perico N, Benigni A, Gabanelli M, Piccinelli A, Rog M, De RC, Remuzzi G. Atrial natriuretic peptide and prostacyclin synergistically mediate hyperfiltration and hyperperfusion of diabetic rats. Diabetes 41: 533‐533, 1992.
 488. Petermann AT, Pippin J, Durvasula R, Pichler R, Hiromura K, Monkawa T, Couser WG, Shankland SJ. Mechanical stretch induces podocyte hypertrophy in vitro. Kidney Int 67: 157‐157, 2005.
 489. Petermann AT, Pippin J, Krofft R, Blonski M, Griffin S, Durvasula R, Shankland SJ. Viable podocytes detach in experimental diabetic nephropathy: Potential mechanism underlying glomerulosclerosis. Nephron Exp Nephrol 98: e114‐e123, 2004.
 490. Pfaff IL, Vallon V. Protein kinase C beta isoenzymes in diabetic kidneys and their relation to nephroprotective actions of the ACE inhibitor lisinopril. Kidney Blood Press Res 25: 329‐329, 2002.
 491. Pfaff IL, Wagner HJ, Vallon V. Immunolocalization of protein kinase C isoenzymes alpha, beta1 and betaII in rat kidney. J Am Soc Nephrol 10: 1861‐1861, 1999.
 492. Phillips AO, Baboolal K, Riley S, Grone H, Janssen U, Steadman R, Williams J, Floege J. Association of prolonged hyperglycemia with glomerular hypertrophy and renal basement membrane thickening in the Goto Kakizaki model of non‐insulin‐dependent diabetes mellitus. Am J Kidney Dis 37: 400‐400, 2001.
 493. Phillips AO, Morrisey K, Steadman R, Williams JD. Decreased degradation of collagen and fibronectin following exposure of proximal cells to glucose. Exp Nephrol 7: 449‐449, 1999.
 494. Phillips AO, Steadman R. Diabetic nephropathy: The central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol 17: 247‐247, 2002.
 495. Phillips AO, Steadman R, Morrisey K, Martin J, Eynstone L, Williams JD. Exposure of human renal proximal tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation. Kidney Int 52: 973‐973, 1997.
 496. Phillips AO, Steadman R, Topley N, Williams JD. Elevated D‐glucose concentrations modulate TGF‐beta 1 synthesis by human cultured renal proximal tubular cells. The permissive role of platelet‐derived growth factor. Am J Pathol 147: 362‐362, 1995.
 497. Phillips AO, Topley N, Steadman R, Morrisey K, Williams JD. Induction of TGF‐beta 1 synthesis in D‐glucose primed human proximal tubular cells by IL‐1 beta and TNF alpha. Kidney Int 50: 1546‐1546, 1996.
 498. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, Hess JF. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13: 18‐18, 1996.
 499. Picard N, Baum O, Vogetseder A, Kaissling B, Le HM. Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol 130: 141‐141, 2008.
 500. Pieper GM. Review of alterations in endothelial nitric oxide production in diabetes: Protective role of arginine on endothelial dysfunction. Hypertension 31: 1047‐1047, 1998.
 501. Pieper GM. Enhanced, unaltered and impaired nitric oxide‐mediated endothelium‐dependent relaxation in experimental diabetes mellitus: Importance of disease duration. Diabetologia 42: 204‐204, 1999.
 502. Pollock CA, Lawrence JR, Field MJ. Tubular sodium handling and tubuloglomerular feedback in experimental diabetes mellitus. Am J Physiol 260: F946‐F952, 1991.
 503. Posch K, Simecek S, Wascher TC, Jurgens G, Baumgartner‐Parzer S, Kostner GM, Graier WF. Glycated low‐density lipoprotein attenuates shear stress‐induced nitric oxide synthesis by inhibition of shear stress‐activated L‐arginine uptake in endothelial cells. Diabetes 48: 1331‐1331, 1999.
 504. Prabhakar SS. Tetrahydrobiopterin reverses the inhibition of nitric oxide by high glucose in cultured murine mesangial cells. Am J Physiol Renal Physiol 281: F179‐F188, 2001.
 505. Price DA, De'Oliveira JM, Fisher ND, Williams GH, Hollenberg NK. The state and responsiveness of the renin‐angiotensin‐aldosterone system in patients with type II diabetes mellitus. Am J Hypertens 12: 348‐348, 1999.
 506. Price DA, Porter LE, Gordon M, Fisher ND, De'Oliveira JM, Laffel LM, Passan DR, Williams GH, Hollenberg NK. The paradox of the low‐renin state in diabetic nephropathy. J Am Soc Nephrol 10: 2382‐2382, 1999.
 507. Price GJ, Berka JL, Werther GA, Bach LA. Cell‐specific regulation of mRNAs for IGF‐I and IGF‐binding proteins‐4 and ‐5 in streptozotocin‐diabetic rat kidney. J Mol Endocrinol 18: 5‐5, 1997.
 508. Qi W, Chen X, Zhang Y, Holian J, Mreich E, Gilbert RE, Kelly DJ, Pollock CA. High glucose induces macrophage inflammatory protein‐3 alpha in renal proximal tubule cells via a transforming growth factor‐beta 1 dependent mechanism. Nephrol Dial Transplant 22: 3147‐3147, 2007.
 509. Raats CJ, Van Den Born J, Berden JH. Glomerular heparan sulfate alterations: Mechanisms and relevance for proteinuria. Kidney Int 57: 385‐385, 2000.
 510. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non‐insulin‐dependent diabetes. Diabetes 54: 3427‐3427, 2005.
 511. Rasch R. Tubular lesions in streptozotocin‐diabetic rats. Diabetologia 27: 32‐32, 1984.
 512. Rasch R, Dorup J. Quantitative morphology of the rat kidney during diabetes mellitus and insulin treatment. Diabetologia 40: 802‐802, 1997.
 513. Rasch R, Norgaard JO. Renal enlargement: Comparative autoradiographic studies of 3H‐thymidine uptake in diabetic and uninephrectomized rats. Diabetologia 25: 280‐280, 1983.
 514. Rastaldi MP, Ferrario F, Giardino L, Dell'Antonio G, Grillo C, Grillo P, Strutz F, Muller GA, Colasanti G, D'Amico G. Epithelial‐mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 62: 137‐137, 2002.
 515. Rebsomen L, Khammar A, Raccah D, Tsimaratos M. C‐Peptide effects on renal physiology and diabetes. Exp Diabetes Res 2008: 281‐281, 2008.
 516. Reddy MA, Li SL, Sahar S, Kim YS, Xu ZG, Lanting L, Natarajan R. Key role of Src kinase in S100B‐induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J Biol Chem 281: 13685‐13685, 2006.
 517. Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S, Mancia G. Mechanisms of hypertension in the cardiometabolic syndrome. J Hypertens 27: 441‐441, 2009.
 518. Regele HM, Fillipovic E, Langer B, Poczewki H, Kraxberger I, Bittner RE, Kerjaschki D. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J Am Soc Nephrol 11: 403‐403, 2000.
 519. Ren JL, Pan JS, Lu YP, Sun P, Han J. Inflammatory signaling and cellular senescence. Cell Signal 21: 378‐378, 2009.
 520. Ries M, Basseau F, Tyndal B, Jones R, Deminiere C, Catargi B, Combe C, Moonen CW, Grenier N. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level‐dependent. J Magn Reson Imaging 17: 104‐104, 2003.
 521. Rincon‐Choles H, Vasylyeva TL, Pergola PE, Bhandari B, Bhandari K, Zhang JH, Wang W, Gorin Y, Barnes JL, Abboud HE. ZO‐1 expression and phosphorylation in diabetic nephropathy. Diabetes 55: 894‐894, 2006.
 522. Riser BL, Cortes P. Connective tissue growth factor and its regulation: A new element in diabetic glomerulosclerosis. Ren Fail 23: 459‐459, 2001.
 523. Riser BL, Cortes P, Denichilo M, Deshmukh PV, Chahal PS, Mohammed AK, Yee J, Kahkonen D. Urinary CCN2 (CTGF) as a possible predictor of diabetic nephropathy: Preliminary report. Kidney Int 64: 451‐451, 2003.
 524. Riser BL, Cortes P, Yee J. Modelling the effects of vascular stress in mesangial cells. Curr Opin Nephrol Hypertens 9: 43‐43, 2000.
 525. Riser BL, Cortes P, Zhao X, Bernstein J, Dumler F, Narins RG. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest 90: 1932‐1932, 1992.
 526. Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, Narins RG. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 11: 25‐25, 2000.
 527. Ritz E. Metabolic syndrome and kidney disease. Blood Purif 26: 59‐59, 2008.
 528. Rizkalla B, Forbes JM, Cao Z, Boner G, Cooper ME. Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: Role of the renin‐angiotensin system. J Hypertens 23: 153‐153, 2005.
 529. Robben JH, Fenton RA, Vargas SL, Schweer H, Peti‐Peterdi J, Deen PM, Milligan G. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int 76: 1258‐1258, 2009.
 530. Roestenberg P, van Nieuwenhoven FA, Joles JA, Trischberger C, Martens PP, Oliver N, Aten J, Hoppener JW, Goldschmeding R. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN‐2) in diabetic nephropathy in mice. Am J Physiol Renal Physiol 290: F1344‐F1354, 2006.
 531. Romero M, Ortega A, Izquierdo A, Lopez‐Luna P, Bosch RJ. Parathyroid hormone‐related protein induces hypertrophy in podocytes via TGF‐beta(1) and p27(Kip1): Implications for diabetic nephropathy. Nephrol Dial Transplant 25: 2447‐2447, 2010.
 532. Rosenberger C, Khamaisi M, Abassi Z, Shilo V, Weksler‐Zangen S, Goldfarb M, Shina A, Zibertrest F, Eckardt KU, Rosen S, Heyman SN. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 73: 34‐34, 2008.
 533. Ruan X, Zheng F, Guan Y. PPARs and the kidney in metabolic syndrome. Am J Physiol Renal Physiol 294: F1032‐F1047, 2008.
 534. Rudberg S, Persson B, Dahlquist G. Increased glomerular filtration rate as a predictor of diabetic nephropathy—an 8‐year prospective study. Kidney Int 41: 822‐822, 1992.
 535. Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 20: 489‐489, 2009.
 536. Ruster C, Bondeva T, Franke S, Forster M, Wolf G. Advanced glycation end‐products induce cell cycle arrest and hypertrophy in podocytes. Nephrol Dial Transplant 23: 2179‐2179, 2008.
 537. Ruster C, Bondeva T, Franke S, Tanaka N, Yamamoto H, Wolf G. Angiotensin II upregulates RAGE expression on podocytes: Role of AT2 receptors. Am J Nephrol 29: 538‐538, 2009.
 538. Ruster C, Wolf G. The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci 13: 944‐944, 2008.
 539. Saad S, Stevens VA, Wassef L, Poronnik P, Kelly DJ, Gilbert RE, Pollock CA. High glucose transactivates the EGF receptor and up‐regulates serum glucocorticoid kinase in the proximal tubule. Kidney Int 68: 985‐985, 2005.
 540. Sabbatini M, Sansone G, Uccello F, Giliberti A, Conte G, Andreucci VE. Early glycosylation products induce glomerular hyperfiltration in normal rats. Kidney Int 42: 875‐875, 1992.
 541. Sackmann H, Tran‐Van T, Tack I, Hanaire‐Broutin H, Tauber JP, Ader JL. Renal functional reserve in IDDM patients. Diabetologia 41: 86‐86, 1998.
 542. Sagami I, Daff S, Shimizu T. Intra‐subunit and inter‐subunit electron transfer in neuronal nitric‐oxide synthase: Effect of calmodulin on heterodimer catalysis. J Biol Chem 276: 30036‐30036, 2001.
 543. Sakharova OV, Taal MW, Brenner BM. Pathogenesis of diabetic nephropathy: Focus on transforming growth factor‐beta and connective tissue growth factor. Curr Opin Nephrol Hypertens 10: 727‐727, 2001.
 544. Santer R, Calado J. Familial renal glucosuria and SGLT2: From a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5: 133‐133, 2010.
 545. Sarafidis PA, Bakris GL. The antinatriuretic effect of insulin: An unappreciated mechanism for hypertension associated with insulin resistance? Am J Nephrol 27: 44‐44, 2007.
 546. Sassy‐Prigent C, Heudes D, Mandet C, Belair MF, Michel O, Perdereau B, Bariety J, Bruneval P. Early glomerular macrophage recruitment in streptozotocin‐induced diabetic rats. Diabetes 49: 466‐466, 2000.
 547. Satchell SC, Tooke JE. What is the mechanism of microalbuminuria in diabetes: A role for the glomerular endothelium? Diabetologia 51: 714‐714, 2008.
 548. Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N, Sasaki T, Tsujioka K, Makino H, Kashihara N. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol 288: F1144‐F1152, 2005.
 549. Satriano J, Mansoury H, Deng A, Sharma K, Vallon V, Blantz RC, Thomson SC. Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am J Physiol Cell Physiol 299: C374‐C380, 2010.
 550. Satriano J, Vallon V. Primary kidney growth and its consequences at the onset of diabetes mellitus. Amino Acids 31: 1‐1, 2006.
 551. Scandling JD, Myers BD. Glomerular size‐selectivity and microalbuminuria in early diabetic glomerular disease. Kidney Int 41: 840‐840, 1992.
 552. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: The role of endothelial dysfunction. Clin Sci (Lond) 109: 143‐143, 2005.
 553. Schambelan M, Blake S, Sraer J, Bens M, Nivez MP, Wahbe F. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin‐induced diabetes mellitus. J Clin Invest 75: 404‐404, 1985.
 554. Schelling JR, Abboud HE, Nicholas SB, Pahl MV, Sedor JR, Adler SG, Arar NH, Bowden DW, Elston RC, Freedman BI, Goddard KA, Guo X, Hanson RL, Ipp E, Iyengar SK, Jun G, Kao WH, Kasinath BS, Kimmel PL, Klag MJ, Knowler WC, Nelson RG, Parekh RS, Quade SR, Rich SS, Saad MF, Scavini M, Smith MW, Taylor K, Winkler CA, Zager PG, Shah VO. Genome‐wide scan for estimated glomerular filtration rate in multi‐ethnic diabetic populations: The Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 57: 235‐235, 2008.
 555. Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten DP, Mundel P, Bottinger EP. Apoptosis in podocytes induced by TGF‐beta and Smad7. J Clin Invest 108: 807‐807, 2001.
 556. Schleicher ED, Weigert C. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int Suppl 77: S13‐S18, 2000.
 557. Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL, Ogawa S, Kuwabara K, Matsumoto M, Stern D. RAGE: A novel cellular receptor for advanced glycation end products. Diabetes 45(Suppl 3): S77‐S80, 1996.
 558. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84: 489‐489, 1999.
 559. Schnackenberg CG, Wilcox CS. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes. Kidney Int 59: 1859‐1859, 2001.
 560. Schneider M, Van GK, Fraisl P, Kiss J, Aragones J, Mazzone M, Mairbaurl H, De BK, Jeoung NH, Mollenhauer M, Georgiadou M, Bishop T, Roncal C, Sutherland A, Jordan B, Gallez B, Weitz J, Harris RA, Maxwell P, Baes M, Ratcliffe P, Carmeliet P. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 138: 1143‐1143, 2010.
 561. Schnermann J, Briggs J. Concentration‐dependent sodium chloride transport as the signal in feedback control of glomerular filtration rate. Kidney Int Suppl 12: S82‐S89, 1982.
 562. Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 338: 617‐617, 2005.
 563. Scholey JW, Meyer TW. Control of glomerular hypertension by insulin administration in diabetic rats. J Clin Invest 83: 1384‐1384, 1989.
 564. Scholl‐Burgi S, Santer R, Ehrich JH. Long‐term outcome of renal glucosuria type 0: The original patient and his natural history. Nephrol Dial Transplant 19: 2394‐2394, 2004.
 565. Scholz H, Kurtz A. Role of protein kinase C in renal vasoconstriction caused by angiotensin II. Am J Physiol 259: C421‐C426, 1990.
 566. Schoonmaker GC, Fallet RW, Carmines PK. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus. Am J Physiol Renal Physiol 278: F302‐F309, 2000.
 567. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin‐interacting protein. J Biol Chem 279: 30369‐30369, 2004.
 568. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320: 1161‐1161, 1989.
 569. Segev Y, Landau D, Rasch R, Flyvbjerg A, Phillip M. Growth hormone receptor antagonism prevents early renal changes in nonobese diabetic mice. J Am Soc Nephrol 10: 2374‐2374, 1999.
 570. Senthil D, Choudhury GG, McLaurin C, Kasinath BS. Vascular endothelial growth factor induces protein synthesis in renal epithelial cells: A potential role in diabetic nephropathy. Kidney Int 64: 468‐468, 2003.
 571. Seyer‐Hansen K. Renal hypertrophy in experimental diabetes: Some functional aspects. J Diabet Complications 1: 7‐7, 1987.
 572. Seyer‐Hansen K, Hansen J, Gundersen HJ. Renal hypertrophy in experimental diabetes. A morphometric study. Diabetologia 18: 501‐501, 1980.
 573. Shah SV, Baliga R, Rajapurkar M, Fonseca VA. Oxidants in chronic kidney disease. J Am Soc Nephrol 18: 16‐16, 2007.
 574. Shankland SJ, Wolf G. Cell cycle regulatory proteins in renal disease: Role in hypertrophy, proliferation, and apoptosis. Am J Physiol Renal Physiol 278: F515‐F529, 2000.
 575. Shantz LM. Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem J 377: 257‐257, 2004.
 576. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF‐beta by anti‐TGF‐beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ‐induced diabetic mice. Diabetes 45: 522‐522, 1996.
 577. Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 284: F1138‐F1144, 2003.
 578. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118: 1645‐1645, 2008.
 579. Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor‐beta as a key mediator. Diabetes 44: 1139‐1139, 1995.
 580. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M. Overexpression of glyoxalase‐I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia‐induced increases in macromolecular endocytosis. J Clin Invest 101: 1142‐1142, 1998.
 581. Silbiger S, Crowley S, Shan Z, Brownlee M, Satriano J, Schlondorff D. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 43: 853‐853, 1993.
 582. Singh DK, Winocour P, Farrington K. Mechanisms of disease: The hypoxic tubular hypothesis of diabetic nephropathy. Nat Clin Pract Nephrol 4: 216‐216, 2008.
 583. Singh P, Deng A, Weir MR, Blantz RC. The balance of angiotensin II and nitric oxide in kidney diseases. Curr Opin Nephrol Hypertens 17: 51‐51, 2008.
 584. Sitte N, Merker K, von ZT, Grune T. Protein oxidation and degradation during proliferative senescence of human MRC‐5 fibroblasts. Free Radic Biol Med 28: 701‐701, 2000.
 585. Skott P, Hother‐Nielsen O, Bruun NE, Giese J, Nielsen MD, Beck‐Nielsen H, Parving HH. Effects of insulin on kidney function and sodium excretion in healthy subjects. Diabetologia 32: 694‐694, 1989.
 586. Skott P, Vaag A, Bruun NE, Hother‐Nielsen O, Gall MA, Beck‐Nielsen H, Parving HH. Effect of insulin on renal sodium handling in hyperinsulinaemic type 2 (non‐insulin‐dependent) diabetic patients with peripheral insulin resistance. Diabetologia 34: 275‐275, 1991.
 587. Skrha J, Perusicova J, Pont'uch P, Oksa A. Glycosaminoglycan sulodexide decreases albuminuria in diabetic patients. Diabetes Res Clin Pract 38: 25‐25, 1997.
 588. Sochor M, McLean P. Changes in ornithine decarboxylase in kidney in experimental diabetes. Correlation with severity of diabetes and effects of unilateral nephrectomy. Enzyme 25: 289‐289, 1980.
 589. Sommer M, Wolf G. Rosiglitazone increases PPARgamma in renal tubular epithelial cells and protects against damage by hydrogen peroxide. Am J Nephrol 27: 425‐425, 2007.
 590. Song J, Hu X, Riazi S, Tiwari S, Wade JB, Ecelbarger CA. Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. Am J Physiol Renal Physiol 290: F1055‐F1064, 2006.
 591. Song J, Knepper MA, Verbalis JG, Ecelbarger CA. Increased renal ENaC subunit and sodium transporter abundances in streptozotocin‐induced type 1 diabetes. Am J Physiol Renal Physiol 285: F1125‐F1137, 2003.
 592. Soulis T, Thallas V, Youssef S, Gilbert RE, McWilliam BG, Murray‐McIntosh RP, Cooper ME. Advanced glycation end products and their receptors co‐localise in rat organs susceptible to diabetic microvascular injury. Diabetologia 40: 619‐619, 1997.
 593. Soulis‐Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin‐induced diabetic rat. Diabetes 40: 1328‐1328, 1991.
 594. Sourris KC, Morley AL, Koitka A, Samuel P, Coughlan MT, Penfold SA, Thomas MC, Bierhaus A, Nawroth PP, Yamamoto H, Allen TJ, Walther T, Hussain T, Cooper ME, Forbes JM. Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor. Diabetologia 53: 2442‐2442, 2010.
 595. Stackhouse S, Miller PL, Park SK, Meyer TW. Reversal of glomerular hyperfiltration and renal hypertrophy by blood glucose normalization in diabetic rats. Diabetes 39: 989‐989, 1990.
 596. Stanton BA, Kaissling B. Regulation of renal ion transport and cell growth by sodium. Am J Physiol 257: F1‐F10, 1989.
 597. Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M. The early natural history of nephropathy in Type 1 Diabetes: III. Predictors of 5‐year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54: 2164‐2164, 2005.
 598. Stenvinkel P, Bolinder J, Alvestrand A. Effects of insulin on renal haemodynamics and the proximal and distal tubular sodium handling in healthy subjects. Diabetologia 35: 1042‐1042, 1992.
 599. Stenvinkel P, Ottosson‐Seeberger A, Alvestrand A, Bolinder J. Effect of insulin on renal sodium handling and renal haemodynamics in insulin‐dependent (type 1) diabetes mellitus patients. Acta Diabetol 32: 230‐230, 1995.
 600. Strutz F, Muller GA. Renal fibrosis and the origin of the renal fibroblast. Nephrol Dial Transplant 21: 3368‐3368, 2006.
 601. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130: 393‐393, 1995.
 602. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG. Role of basic fibroblast growth factor‐2 in epithelial‐mesenchymal transformation. Kidney Int 61: 1714‐1714, 2002.
 603. Sugimoto H, Shikata K, Matsuda M, Kushiro M, Hayashi Y, Hiragushi K, Wada J, Makino H. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy. Diabetologia 41: 1426‐1426, 1998.
 604. Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol 17: 3093‐3093, 2006.
 605. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose‐induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55: 225‐225, 2006.
 606. Tabatabai NM, Sharma M, Blumenthal SS, Petering DH. Enhanced expressions of sodium‐glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract 83: e27‐e30, 2009.
 607. Taft JL, Nolan CJ, Yeung SP, Hewitson TD, Martin FI. Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 43: 1046‐1046, 1994.
 608. Takahashi H, Ichihara A, Kaneshiro Y, Inomata K, Sakoda M, Takemitsu T, Nishiyama A, Itoh H. Regression of nephropathy developed in diabetes by (Pro)renin receptor blockade. J Am Soc Nephrol 18: 2054‐2054, 2007.
 609. Takeda K, Aguila HL, Parikh NS, Li X, Lamothe K, Duan LJ, Takeda H, Lee FS, Fong GH. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111: 3229‐3229, 2008.
 610. Takeda K, Cowan A, Fong GH. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116: 774‐774, 2007.
 611. Tamsma JT, Van Der Woude FJ, Lemkes HH. Effect of sulphated glycosaminoglycans on albuminuria in patients with overt diabetic (type 1) nephropathy. Nephrol Dial Transplant 11: 182‐182, 1996.
 612. Tang S, Leung JC, Abe K, Chan KW, Chan LY, Chan TM, Lai KN. Albumin stimulates interleukin‐8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest 111: 515‐515, 2003.
 613. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D'Agati VD. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 11: 1656‐1656, 2000.
 614. Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis 12: 177‐177, 2005.
 615. Thomas MC, Forbes JM, Cooper ME. Advanced glycation end products and diabetic nephropathy. Am J Ther 12: 562‐562, 2005.
 616. Thomson S, Bao D, Deng A, Vallon V. Adenosine formed by 5′‐nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106: 289‐289, 2000.
 617. Thomson SC, Blantz RC. Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis. J Am Soc Nephrol 19: 2272‐2272, 2008.
 618. Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V. Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107: 217‐217, 2001.
 619. Thomson SC, Deng A, Komine N, Hammes JS, Blantz RC, Gabbai FB. Early diabetes as a model for testing the regulation of juxtaglomerular NOS I. Am J Physiol Renal Physiol 287: F732‐F738, 2004.
 620. Thomson SC, Deng A, Wead L, Richter K, Blantz RC, Vallon V. An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. J Clin Invest 116: 1110‐1110, 2006.
 621. Tikellis C, Bialkowski K, Pete J, Sheehy K, Su Q, Johnston C, Cooper ME, Thomas MC. ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes. Diabetes 57: 1018‐1018, 2008.
 622. Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J, Cooper ME. Characterization of renal angiotensin‐converting enzyme 2 in diabetic nephropathy. Hypertension 41: 392‐392, 2003.
 623. Tiwari S, Halagappa VK, Riazi S, Hu X, Ecelbarger CA. Reduced expression of insulin receptors in the kidneys of insulin‐resistant rats. J Am Soc Nephrol 18: 2661‐2661, 2007.
 624. Tiwari S, Nordquist L, Halagappa VK, Ecelbarger CA. Trafficking of ENaC subunits in response to acute insulin in mouse kidney. Am J Physiol Renal Physiol 293: F178‐F185, 2007.
 625. Tiwari S, Riazi S, Ecelbarger CA. Insulin's impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am J Physiol Renal Physiol 293: F974‐F984, 2007.
 626. Tiwari S, Sharma N, Gill PS, Igarashi P, Kahn CR, Wade JB, Ecelbarger CM. Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proc Natl Acad Sci U S A 105: 6469‐6469, 2008.
 627. Tolins JP, Shultz PJ, Raij L, Brown DM, Mauer SM. Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: Role of NO. Am J Physiol 265: F886‐F895, 1993.
 628. Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, Meer E, Peti‐Peterdi J. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest 118: 2526‐2526, 2008.
 629. Tomiyama H, Kushiro T, Abeta H, Kurumatani H, Taguchi H, Kuga N, Saito F, Kobayashi F, Otsuka Y, Kanmatsuse K. Blood pressure response to hyperinsulinemia in salt‐sensitive and salt‐resistant rats. Hypertension 20: 596‐596, 1992.
 630. Townley DJ, Avery BJ, Rosen B, Skarnes WC. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res 7: 293‐293, 1997.
 631. Trevisan R, Bruttomesso D, Vedovato M, Brocco S, Pianta A, Mazzon C, Girardi C, Jori E, Semplicini A, Tiengo A, Del PS. Enhanced responsiveness of blood pressure to sodium intake and to angiotensin II is associated with insulin resistance in IDDM patients with microalbuminuria. Diabetes 47: 1347‐1347, 1998.
 632. Troncoso Brindeiro CM, Fallet RW, Lane PH, Carmines PK. Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney. Am J Physiol Renal Physiol 295: F171‐F178, 2008.
 633. Trujillo A, Eggena P, Barrett J, Tuck M. Renin regulation in type II diabetes mellitus: Influence of dietary sodium. Hypertension 13: 200‐200, 1989.
 634. Tsiani E, Lekas P, Fantus IG, Dlugosz J, Whiteside C. High glucose‐enhanced activation of mesangial cell p38 MAPK by ET‐1, ANG II, and platelet‐derived growth factor. Am J Physiol Endocrinol Metab 282: E161‐E169, 2002.
 635. Tuck ML, Sambhi MP, Levin L. Hyporeninemic hypoaldosteronism in diabetes mellitus. Studies of the autonomic nervous system's control of renin release. Diabetes 28: 237‐237, 1979.
 636. Tucker BJ, Anderson CM, Thies RS, Collins RC, Blantz RC. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats. Kidney Int 42: 1160‐1160, 1992.
 637. Tucker BJ, Mendonca MM, Blantz RC. Contrasting effects of acute insulin infusion on renal function in awake nondiabetic and diabetic rats. J Am Soc Nephrol 3: 1686‐1686, 1993.
 638. Tucker BJ, Rasch R, Blantz RC. Glomerular filtration and tubular reabsorption of albumin in preproteinuric and proteinuric diabetic rats. J Clin Invest 92: 686‐686, 1993.
 639. Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 28: 2686‐2686, 2005.
 640. Tuttle KR, Bruton JL. Effect of insulin therapy on renal hemodynamic response to amino acids and renal hypertrophy in non‐insulin‐dependent diabetes. Kidney Int 42: 167‐167, 1992.
 641. Tuttle KR, Bruton JL, Perusek MC, Lancaster JL, Kopp DT, DeFronzo RA. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin‐dependent diabetes mellitus. N Engl J Med 324: 1626‐1626, 1991.
 642. Tuttle KR, McGill JB, Haney DJ, Lin TE, Anderson PW. Kidney outcomes in long‐term studies of ruboxistaurin for diabetic eye disease. Clin J Am Soc Nephrol 2: 631‐631, 2007.
 643. Ueta K, Ishihara T, Matsumoto Y, Oku A, Nawano M, Fujita T, Saito A, Arakawa K. Long‐term treatment with the Na+‐glucose cotransporter inhibitor T‐1095 causes sustained improvement in hyperglycemia and prevents diabetic neuropathy in Goto‐Kakizaki Rats. Life Sci 76: 2655‐2655, 2005.
 644. Uriu K, Kaizu K, Hashimoto O, Komine N, Etoh S. Acute and chronic effects of thromboxane A2 inhibition on the renal hemodynamics in streptozotocin‐induced diabetic rats. Kidney Int 45: 794‐794, 1994.
 645. US Renal Data System. USRDS 2008 Annual Data Report: Atlas of Chronic Kidney Disease and End‐Stage Renal Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2008.
 646. Vallon V, Albinus M, Blach D. Effect of KATP channel blocker U37883A on renal function in experimental diabetes mellitus in rats. J Pharmacol Exp Ther 286: 1215‐1215, 1998.
 647. Vallon V, Blantz R, Thomson S. The salt paradox and its possible implications in managing hypertensive diabetic patients. Curr Hypertens Rep 7: 141‐141, 2005.
 648. Vallon V, Blantz RC, Thomson S. Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am J Physiol 269: F876‐F883, 1995.
 649. Vallon V, Blantz RC, Thomson S. Glomerular hyperfiltration and the salt paradox in early type 1 diabetes mellitus: A tubulo‐centric view. J Am Soc Nephrol 14: 530‐530, 2003.
 650. Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R. Role of KCNE1‐dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12: 2003‐2003, 2001.
 651. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F. KCNQ1‐dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci U S A 102: 17864‐17864, 2005.
 652. Vallon V, Huang DY, Deng A, Richter K, Blantz RC, Thomson S. Salt‐sensitivity of proximal reabsorption alters macula densa salt and explains the paradoxical effect of dietary salt on glomerular filtration rate in diabetes mellitus. J Am Soc Nephrol 13: 1865‐1865, 2002.
 653. Vallon V, Kirschenmann D, Wead LM, Lortie MJ, Satriano J, Blantz RC, Thomson SC. Effect of chronic salt loading on kidney function in early and established diabetes mellitus in rats. J Lab Clin Med 130: 76‐76, 1997.
 654. Vallon V, Muhlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev 86: 901‐901, 2006.
 655. Vallon V, Osswald H. Dipyridamole prevents diabetes‐induced alterations of kidney function in rats. Naunyn Schmiedebergs Arch Pharmacol 349: 217‐217, 1994.
 656. Vallon V, Osswald H, Blantz RC, Thomson S. Potential role of luminal potassium in tubuloglomerular feedback. J Am Soc Nephrol 8: 1831‐1831, 1997.
 657. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22: 104‐104, 2011.
 658. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: Potential role of tubular reabsorption. J Am Soc Nephrol 10: 2569‐2569, 1999.
 659. Vallon V, Schroth J, Lang F, Kuhl D, Uchida S. Expression and phosphorylation of the Na+‐Cl‐ cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 297: F704‐F712, 2009.
 660. Vallon V, Schroth J, Satriano J, Blantz RC, Thomson SC, Rieg T. Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus. Nephron Physiol 111: 30‐30, 2009.
 661. Vallon V, Schwark JR, Richter K, Hropot M. Role of Na(+)/H(+) exchanger NHE3 in nephron function: Micropuncture studies with S3226, an inhibitor of NHE3. Am J Physiol Renal Physiol 278: F375‐F379, 2000.
 662. Vallon V, Sharma K. Sodium‐glucose transport: Role in diabetes mellitus and potential clinical implications. Curr Opin Nephrol Hypertens 19: 425‐425, 2010.
 663. Vallon V, Thomson S. Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback. Am J Physiol 269: F892‐F899, 1995.
 664. Vallon V, Traynor T, Barajas L, Huang YG, Briggs JP, Schnermann J. Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice. J Am Soc Nephrol 12: 1599‐1599, 2001.
 665. Vallon V, Wead LM, Blantz RC. Renal hemodynamics and plasma and kidney angiotensin II in established diabetes mellitus in rats: Effect of sodium and salt restriction. J Am Soc Nephrol 5: 1761‐1761, 1995.
 666. Vallon V, Wyatt AW, Klingel K, Huang DY, Hussain A, Berchtold S, Friedrich B, Grahammer F, Belaiba RS, Gorlach A, Wulff P, Daut J, Dalton ND, Ross J Jr, Flogel U, Schrader J, Osswald H, Kandolf R, Kuhl D, Lang F. SGK1‐dependent cardiac CTGF formation and fibrosis following DOCA treatment. J Mol Med 84: 396‐396, 2006.
 667. Van Den Born J, Pisa B, Bakker MA, Celie JW, Straatman C, Thomas S, Viberti GC, Kjellen L, Berden JH. No change in glomerular heparan sulfate structure in early human and experimental diabetic nephropathy. J Biol Chem 281: 29606‐29606, 2006.
 668. Van Den Heuvel LP, Assink K, Willemsen M, Monnens L. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 111: 544‐544, 2002.
 669. Vargas SL, Toma I, Kang JJ, Meer EJ, Peti‐Peterdi J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol 20: 1002‐1002, 2009.
 670. Vasquez‐Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr. Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc Natl Acad Sci U S A 95: 9220‐9220, 1998.
 671. Vasylyeva TL, Ferry RJ Jr. Novel roles of the IGF‐IGFBP axis in etiopathophysiology of diabetic nephropathy. Diabetes Res Clin Pract 76: 177‐177, 2007.
 672. Veelken R, Hilgers KF, Hartner A, Haas A, Bohmer KP, Sterzel RB. Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy. J Am Soc Nephrol 11: 71‐71, 2000.
 673. Velasquez MT, Kimmel PL, Michaelis OE. Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850‐2850, 1990.
 674. Verbeke P, Perichon M, Friguet B, Bakala H. Inhibition of nitric oxide synthase activity by early and advanced glycation end products in cultured rabbit proximal tubular epithelial cells. Biochim Biophys Acta 1502: 481‐481, 2000.
 675. Vervoort G, Veldman B, Berden JH, Smits P, Wetzels JF. Glomerular hyperfiltration in type 1 diabetes mellitus results from primary changes in proximal tubular sodium handling without changes in volume expansion. Eur J Clin Invest 35: 330‐330, 2005.
 676. Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F, Villaggio B, Gianiorio F, Tosetti F, Weiss U, Traverso P, Mji M, Deferrari G, Garibotto G. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol 295: F1563‐F1573, 2008.
 677. Vestri S, Okamoto MM, De Freitas HS, Aparecida Dos SR, Nunes MT, Morimatsu M, Heimann JC, Machado UF. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membr Biol 182: 105‐105, 2001.
 678. Viberti GC, Benigni A, Bognetti E, Remuzzi G, Wiseman MJ. Glomerular hyperfiltration and urinary prostaglandins in type 1 diabetes mellitus. Diabet Med 6: 219‐219, 1989.
 679. Vidotti DB, Arnoni CP, Maquigussa E, Boim MA. Effect of long‐term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol 28: 107‐107, 2008.
 680. Vitalone MJ, O'Connell PJ, Jimenez‐Vera E, Yuksel A, Wavamunno M, Fung CL, Chapman JR, Nankivell BJ. Epithelial‐to‐mesenchymal transition in early transplant tubulointerstitial damage. J Am Soc Nephrol 19: 1571‐1571, 2008.
 681. Vora JP, Dolben J, Williams JD, Peters JR, Owens DR. Impact of initial treatment on renal function in newly‐diagnosed type 2 (non‐insulin‐dependent) diabetes mellitus. Diabetologia 36: 734‐734, 1993.
 682. Vora JP, Oyama TT, Thompson MM, Anderson S. Interactions of the kallikrein‐kinin and renin‐angiotensin systems in experimental diabetes. Diabetes 46: 107‐107, 1997.
 683. Vukovich TC, Schernthaner G. Decreased protein C levels in patients with insulin‐dependent type I diabetes mellitus. Diabetes 35: 617‐617, 1986.
 684. Wada T, Pippin JW, Terada Y, Shankland SJ. The cyclin‐dependent kinase inhibitor p21 is required for TGF‐beta1‐induced podocyte apoptosis. Kidney Int 68: 1618‐1618, 2005.
 685. Wahab NA, Yevdokimova N, Weston BS, Roberts T, Li XJ, Brinkman H, Mason RM. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J 359: 77‐77, 2001.
 686. Wahren J, Ekberg K, Johansson J, Henriksson M, Pramanik A, Johansson BL, Rigler R, Jornvall H. Role of C‐peptide in human physiology. Am J Physiol Endocrinol Metab 278: E759‐E768, 2000.
 687. Wang A, Ziyadeh FN, Lee EY, Pyagay PE, Sung SH, Sheardown SA, Laping NJ, Chen S. Interference with TGF‐beta signaling by Smad3‐knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol 293: F1657‐F1665, 2007.
 688. Wang B, Herman‐Edelstein M, Koh P, Burns W, Jandeleit‐Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME, Kantharidis P. E‐cadherin expression is regulated by miR‐192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor‐beta. Diabetes 59: 1794‐1794, 2010.
 689. Wang S, Denichilo M, Brubaker C, Hirschberg R. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 60: 96‐96, 2001.
 690. Wang SN, Hirschberg R. Tubular epithelial cell activation and interstitial fibrosis. The role of glomerular ultrafiltration of growth factors in the nephrotic syndrome and diabetic nephropathy. Nephrol Dial Transplant 14: 2072‐2072, 1999.
 691. Wang SN, Hirschberg R. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis. Am J Physiol Renal Physiol 278: F554‐F560, 2000.
 692. Wang SN, Lapage J, Hirschberg R. Glomerular ultrafiltration of IGF‐I may contribute to increased renal sodium retention in diabetic nephropathy. J Lab Clin Med 134: 154‐154, 1999.
 693. Wang XX, Jiang T, Levi M. Nuclear hormone receptors in diabetic nephropathy. Nat Rev Nephrol 6: 342‐342, 2010.
 694. Wang XX, Jiang T, Shen Y, Adorini L, Pruzanski M, Gonzalez FJ, Scherzer P, Lewis L, Miyazaki‐Anzai S, Levi M. The farnesoid X receptor modulates renal lipid metabolism and diet‐induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol 297: F1587‐F1596, 2009.
 695. Wang Y, Rangan GK, Tay YC, Wang Y, Harris DC. Induction of monocyte chemoattractant protein‐1 by albumin is mediated by nuclear factor kappaB in proximal tubule cells. J Am Soc Nephrol 10: 1204‐1204, 1999.
 696. Weigert C, Brodbeck K, Klopfer K, Haring HU, Schleicher ED. Angiotensin II induces human TGF‐beta 1 promoter activation: Similarity to hyperglycaemia. Diabetologia 45: 890‐890, 2002.
 697. Weigert C, Brodbeck K, Lehmann R, Haring HU, Schleicher ED. Overexpression of glutamine:fructose‐6‐phosphate‐amidotransferase induces transforming growth factor‐beta1 synthesis in NIH‐3T3 fibroblasts. FEBS Lett 488: 95‐95, 2001.
 698. Weinstein AM. Osmotic diuresis in a mathematical model of the rat proximal tubule. Am J Physiol 250: F874‐F884, 1986.
 699. Wen L, Huang JK, Blackshear PJ. Rat ornithine decarboxylase gene. Nucleotide sequence, potential regulatory elements, and comparison to the mouse gene. J Biol Chem 264: 9016‐9016, 1989.
 700. Wendt TM, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y, Bucciarelli LG, Rong LL, Moser B, Markowitz GS, Stein G, Bierhaus A, Liliensiek B, Arnold B, Nawroth PP, Stern DM, D'Agati VD, Schmidt AM. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 162: 1123‐1123, 2003.
 701. Wijnhoven TJ, Lensen JF, Wismans RG, Lamrani M, Monnens LA, Wevers RA, Rops AL, van der Valg, Berden JH, Van Den Heuvel LP, van Kuppevelt TH. In vivo degradation of heparan sulfates in the glomerular basement membrane does not result in proteinuria. J Am Soc Nephrol 18: 823‐823, 2007.
 702. Wijnhoven TJ, Lensen JF, Wismans RG, Lefeber DJ, Rops AL, van der Valg J, Berden JH, Van Den Heuvel LP, van Kuppevelt TH. Removal of heparan sulfate from the glomerular basement membrane blocks protein passage. J Am Soc Nephrol 18: 3119‐3119, 2007.
 703. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A 89: 11993‐11993, 1992.
 704. Wilkes BM. Reduced glomerular angiotensin II receptor density in diabetes mellitus in the rat: Time course and mechanism. Endocrinology 120: 1291‐1291, 1987.
 705. Wilkes BM, Kaplan R, Mento PF, Aynedjian HS, Macica CM, Schlondorff D, Bank N. Reduced glomerular thromboxane receptor sites and vasoconstrictor responses in diabetic rats. Kidney Int 41: 992‐992, 1992.
 706. Wiseman MJ, Saunders AJ, Keen H, Viberti G. Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin‐dependent diabetes. N Engl J Med 312: 617‐617, 1985.
 707. Wolf G. Cell cycle regulation in diabetic nephropathy. Kidney Int Suppl 77: S59‐S66, 2000.
 708. Wolf G, Mueller E, Stahl RA, Ziyadeh FN. Angiotensin II‐induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor‐beta. J Clin Invest 92: 1366‐1366, 1993.
 709. Wolf G, Schanze A, Stahl RA, Shankland SJ, Amann K. p27(Kip1) Knockout mice are protected from diabetic nephropathy: Evidence for p27(Kip1) haplotype insufficiency. Kidney Int 68: 1583‐1583, 2005.
 710. Wolf G, Schroeder R, Thaiss F, Ziyadeh FN, Helmchen U, Stahl RA. Glomerular expression of p27Kip1 in diabetic db/db mouse: Role of hyperglycemia. Kidney Int 53: 869‐869, 1998.
 711. Wolf G, Schroeder R, Zahner G, Stahl RA, Shankland SJ. High glucose‐induced hypertrophy of mesangial cells requires p27(Kip1), an inhibitor of cyclin‐dependent kinases. Am J Pathol 158: 1091‐1091, 2001.
 712. Wolf G, Schroeder R, Ziyadeh FN, Thaiss F, Zahner G, Stahl RA. High glucose stimulates expression of p27Kip1 in cultured mouse mesangial cells: Relationship to hypertrophy. Am J Physiol 273: F348‐F356, 1997.
 713. Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56: 393‐393, 1999.
 714. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins. Br J Nutr 89: 3‐3, 2003.
 715. Woods LL, Mizelle HL, Hall JE. Control of renal hemodynamics in hyperglycemia: Possible role of tubuloglomerular feedback. Am J Physiol 252: F65‐F73, 1987.
 716. Woolf AS, Gnudi L, Long DA. Roles of angiopoietins in kidney development and disease. J Am Soc Nephrol 20: 239‐239, 2009.
 717. Wright EM. Renal Na(+)‐glucose cotransporters. Am J Physiol Renal Physiol 280: F10‐F18, 2001.
 718. Wright EM, Martin MG, Turk E. Familial glucose‐galactose malabsorption and hereditary renal glycosuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. Metabolic Basis of Inherited Disease. New York: McGraw‐Hill, 2001, p. 4891‐4891.
 719. Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch 447: 510‐510, 2004.
 720. Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ, Gilbert RE, Gao B, Krepinsky JC. PKC‐beta1 mediates glucose‐induced Akt activation and TGF‐beta1 upregulation in mesangial cells. J Am Soc Nephrol 20: 554‐554, 2009.
 721. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric‐oxide synthase. A Ca2+/calmodulin‐dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273: 25804‐25804, 1998.
 722. Xu C, Bailly‐Maitre B, Reed JC. Endoplasmic reticulum stress: Cell life and death decisions. J Clin Invest 115: 2656‐2656, 2005.
 723. Xu ZG, Ryu DR, Yoo TH, Jung DS, Kim JJ, Kim HJ, Choi HY, Kim JS, Adler SG, Natarajan R, Han DS, Kang SW. P‐Cadherin is decreased in diabetic glomeruli and in glucose‐stimulated podocytes in vivo and in vitro studies. Nephrol Dial Transplant 20: 524‐524, 2005.
 724. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A 90: 1814‐1814, 1993.
 725. Yamamoto Y, Maeshima Y, Kitayama H, Kitamura S, Takazawa Y, Sugiyama H, Yamasaki Y, Makino H. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53: 1831‐1831, 2004.
 726. Yang J, Shultz RW, Mars WM, Wegner RE, Li Y, Dai C, Nejak K, Liu Y. Disruption of tissue‐type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110: 1525‐1525, 2002.
 727. Yang ZZ, Zhang AY, Yi FX, Li PL, Zou AP. Redox regulation of HIF‐1alpha levels and HO‐1 expression in renal medullary interstitial cells. Am J Physiol Renal Physiol 284: F1207‐F1215, 2003.
 728. Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Rabbani N, Thornalley PJ, Sarthy VP, Hammes HP, Brownlee M. High glucose increases angiopoietin‐2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282: 31038‐31038, 2007.
 729. Yip JW, Jones SL, Wiseman MJ, Hill C, Viberti G. Glomerular hyperfiltration in the prediction of nephropathy in IDDM: A 10‐year follow‐up study. Diabetes 45: 1729‐1729, 1996.
 730. Yoon G, Kim HJ, Yoon YS, Cho H, Lim IK, Lee JH. Iron chelation‐induced senescence‐like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF‐beta1)‐mediated p27Kip1 expression. Biochem J 366: 613‐613, 2002.
 731. Yoshioka T, Ichikawa I, Fogo A. Reactive oxygen metabolites cause massive, reversible proteinuria and glomerular sieving defect without apparent ultrastructural abnormality. J Am Soc Nephrol 2: 902‐902, 1991.
 732. You G, Lee WS, Barros EJ, Kanai Y, Huo TL, Khawaja S, Wells RG, Nigam SK, Hediger MA. Molecular characteristics of Na(+)‐coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem 270: 29365‐29365, 1995.
 733. Young BA, Johnson RJ, Alpers CE, Eng E, Gordon K, Floege J, Couser WG, Seidel K. Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int 47: 935‐935, 1995.
 734. Young BA, Maynard C, Boyko EJ. Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care 26: 2392‐2392, 2003.
 735. Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77: 1925‐1925, 1986.
 736. Zatz R, Meyer TW, Rennke HG, Brenner BM. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci U S A 82: 5963‐5963, 1985.
 737. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial‐to‐mesenchymal transition. J Am Soc Nephrol 19: 2282‐2282, 2008.
 738. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R. BMP‐7 counteracts TGF‐beta1‐induced epithelial‐to‐mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964‐964, 2003.
 739. Zerbini G, Bonfanti R, Meschi F, Bognetti E, Paesano PL, Gianolli L, Querques M, Maestroni A, Calori G, Del MA, Fazio F, Luzi L, Chiumello G. Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes 55: 2620‐2620, 2006.
 740. Zhang PL, Mackenzie HS, Troy JL, Brenner BM. Effects of an atrial natriuretic peptide receptor antagonist on glomerular hyperfiltration in diabetic rats. J Am Soc Nephrol 4: 1564‐1564, 1994.
 741. Zhang SX, Wang JJ, Lu K, Mott R, Longeras R, Ma JX. Therapeutic potential of angiostatin in diabetic nephropathy. J Am Soc Nephrol 17: 475‐475, 2006.
 742. Zhang Y, Deb DK, Kong J, Ning G, Wang Y, Li G, Chen Y, Zhang Z, Strugnell S, Sabbagh Y, Arbeeny C, Li YC. Long‐term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: Strong synergism with AT1 receptor antagonist. Am J Physiol Renal Physiol 297: F791‐F801, 2009.
 743. Zhang Y, Peng F, Gao B, Ingram AJ, Krepinsky JC. Mechanical strain‐induced RhoA activation requires NADPH oxidase‐mediated ROS generation in caveolae. Antioxid Redox Signal 13: 959‐959, 2010.
 744. Zhang Z, Sun L, Wang Y, Ning G, Minto AW, Kong J, Quigg RJ, Li YC. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int 73: 163‐163, 2008.
 745. Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: Blockade of compensatory renin increase. Proc Natl Acad Sci U S A 105: 15896‐15896, 2008.
 746. Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, Breyer MD, Harris RC. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 17: 2664‐2664, 2006.
 747. Zheng S, Noonan WT, Metreveli NS, Coventry S, Kralik PM, Carlson EC, Epstein PN. Development of late‐stage diabetic nephropathy in OVE26 diabetic mice. Diabetes 53: 3248‐3248, 2004.
 748. Ziyadeh FN, Han DC. Involvement of transforming growth factor‐beta and its receptors in the pathogenesis of diabetic nephrology. Kidney Int Suppl 60: S7‐11, 1997.
 749. Ziyadeh FN, Hoffman BB, Han DC, Iglesias‐De La Cruz MC, Hong SW, Isono M, Chen S, McGowan TA, Sharma K. Long‐term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor‐beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 97: 8015‐8015, 2000.
 750. Ziyadeh FN, Simmons DA, Snipes ER, Goldfarb S. Effect of myo‐inositol on cell proliferation and collagen transcription and secretion in proximal tubule cells cultured in elevated glucose. J Am Soc Nephrol 1: 1220‐1220, 1991.
 751. Ziyadeh FN, Snipes ER, Watanabe M, Alvarez RJ, Goldfarb S, Haverty TP. High glucose induces cell hypertrophy and stimulates collagen gene transcription in proximal tubule. Am J Physiol 259: F704‐F714, 1990.
 752. Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4: 39‐39, 2008.
 753. Zou AP, Li N, Cowley AW Jr. Production and actions of superoxide in the renal medulla. Hypertension 37: 547‐547, 2001.

Related Articles:

Glucose Transport in the Renal Proximal Tubule
Glucose Utilization

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Volker Vallon, Radko Komers. Pathophysiology of the Diabetic Kidney. Compr Physiol 2011, 1: 1175-1232. doi: 10.1002/cphy.c100049