Comprehensive Physiology Wiley Online Library

Molecular Physiology of the Medullary Collecting Duct

Full Article on Wiley Online Library



Abstract

The mammalian kidney is responsible for a multitude of homeostatic functions, which are mediated by both structural and functional diversity along the renal tubule. In this article, we focus on the major functions of the terminal portion of the renal tubule, the medullary collecting duct system. The role of the medullary collecting ducts in determining the composition of the final urine through controlled water, sodium, chloride, potassium and urea reabsorption, ammonia transport, and acid‐base homeostasis is discussed. The molecular identity of the major channels and transporters that contribute to medullary collecting duct function are described in detail, including; aquaporins, urea transporters, the epithelial sodium channel (ENaC), the Na,K‐ATPase, H‐ATPase, Rh glycoproteins, and sodium bicarbonate transporters. Knowledge gained from studies in knockout mice is also discussed. © 2011 American Physiological Society. Compr Physiol 1:1031‐1056, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Schematic representation of the mammalian renal tubule, with both long‐looped and short‐loop nephrons depicted. Major regions of the kidney are shown on the left. The regions are; proximal tubule (blue), thin limbs of Henle's loop (single thin line), thick ascending limb of Henle's loop (red), distal convoluted tubule (green), and the collecting duct (yellow).

Figure 2. Figure 2.

Urine flow in the terminal inner medullary collecting ducts (IMCD) and renal pelvis. Urine exits the IMCD through the ducts of Bellini at the tip of the renal papilla. Some urine can reflux backwards into the pelvic space.

Figure 3. Figure 3.

(A) Five primary clusters making up a single secondary collecting duct (CD) cluster that consists of 31 CDs at the IM base. Image shows section 400 μm below inner medulla base. CD cluster boundaries (white) were determined by an Euclidean distance map (EDM). Magenta, descending thin limb (DTL)/aquaporin‐1 (AQP1); blue, CD/AQP‐2; green, ascending thin limb (ATL)/kidney‐specific Cl channel (ClC‐K1). Scale bar, 100 μm. (B) Inner medullary section showing 23 primary CD clusters with boundaries determined by EDM (white outlines). EDM boundaries around each CD are shown in gray. Image is an overlay of two images from two sections ∼400 μm below the IM base. Red, DTL/AQP1; blue, CD/AQP‐2; green, DVR/UT‐B. Scale bar, 500 μm. Figure adapted from 201 with permission

Figure 4. Figure 4.

Urea permeabilities of mammalian renal tubule segments. The width of each segment is proportional to the urea permeability of that segment, Values are from isolated perfused tubule studies 44,233,235.

Figure 5. Figure 5.

(A) Transmission electron micrograph (TEM) of a principal cell from the initial portion of the rat IMCD. Few organelles are detected in the cytoplasm, and apical microprojections are sparse (×11,750). Adapted from 170 with permission. (B) TEM of an OMCD intercalated cell. Extensive apical microprojections are apparent (×10,000). Adapted from 171 with permission. (C) Scanning electron micrograph of papillary collecting duct from rabbit demonstrates the junction between two collecting ducts (×600). Adapted from 141 with permission. (D) TEM of cells from the terminal IMCD. Cells are tall, with few organelles and sparse apical microprojections (×7000). Adapted from 170 with permission

Figure 6. Figure 6.

Water permeability of the mammalian renal tubule. Left; configuration of a long‐looped nephron showing the various tubule segments. Right; osmotic water permeability (pf, um/s) of the different regions under either control (basal) or after AVP stimulation. Data from 197.

Figure 7. Figure 7.

Immunofluorescence microscopy of AQP‐2 in cortical (A), outer medullary (B), and inner medullary (C and D) collecting duct and of AQP3 (E) and AQP‐4 (F) in inner medullary collecting duct (IMCD). AQP‐2 is very abundant in the apical plasma membrane domains as well as in subapical domains (arrows in A, B, and D), whereas intercalated cells are unlabeled (arrowheads in A and B). In the IMCD, AQP‐2 is also present in the basolateral part of the cell. AQP3 is abundant in both basal and lateral plasma membranes, whereas AQP‐4 is predominantly expressed in the basal plasma membrane and less prominently in the lateral plasma membranes. Magnification: ×1100 (A, B, D‐F) and ×550 (C). From 196, as reprinted in 194. Used with permission

Figure 8. Figure 8.

Percentage reabsorption of filtered NaCl along the nephron. Tubule depicted as in Figure 1. NaCl reabsorption in the medullary collecting duct is influenced by various factors that either stimulate (+) or inhibit (−) Na+ reabsorption. AVP, arginine vasopressin; MC, mineralocorticoids; BK, bradykinin; PGE2, prostaglandin E2; ET, endothelin.

Figure 9. Figure 9.

Urea handling in mammals. The majority of mammals consume diets that are high in protein. Under most circumstances, this dietary protein intake greatly exceeds that which is necessary for the support of anabolic processes. Excess protein is catabolized by the liver, which results in the formation of large amounts of urea by the ornithine‐urea cycle. Urea is freely filterable by the kidney and the excretion of this urea constitutes a large osmotic load to the kidney. Most solutes excreted in such large amounts would obligate large amounts of water excretion by causing an osmotic diuresis. However, along the nephron, the specialized urea transporters UT‐A1, UT‐A2, UT‐A3, and UT‐B are involved in complex urea reabsorption and recycling pathways that allow large amounts of urea to be excreted without obligating water excretion. Figure is adapted from 75, with permission

Figure 10. Figure 10.

Schematic of the collecting duct system showing principal sites of water absorption and urea absorption. Water is absorbed in early part of the collecting duct system driven by an osmotic gradient. Since the urea permeability of cortical collecting ducts, outer medullary collecting ducts and initial IMCDs are very low, the water absorption concentrates urea in the lumen of these segments. When the tubule fluid reaches the terminal IMCD, which is highly permeable to urea, urea rapidly exits from the lumen.

Figure 11. Figure 11.

(A) Corticomedullary NH4+ gradients in canine renal medulla. NH4+ concentrations were measured in tissue water from slices from cortex and medulla of untreated dogs. Data plotted from 218. (B) Countercurrent multiplier for NH4+ in renal medulla. Active absorption of NH4+ from thick ascending limb of loop of Henle provides a single effect for countercurrent multiplication. Modified from 100 with permission

Figure 12. Figure 12.

Spatial distribution of different aquaporins, urea transporters, ion transporters/channels and enzymes, each with a specialized role in regulating the homeostatic functions of the kidney.

Figure 13. Figure 13.

Spatial distribution of different aquaporins, urea transporters, ion transporters/channels and enzymes, each with a specialized role in regulating the homeostatic functions of the kidney.

Figure 14. Figure 14.

The AQP‐4 M23 isoform forms square arrays in Xenopus laevis oocytes. (A‐C) At the plasma membrane, highly ordered structures characteristic of square arrays are observed for the AQP‐4 M23 isoform. Figure adapted from 79 with permission

Figure 15. Figure 15.

Water conservation and urinary concentrating ability of UT‐A1/3 knockout mice. For all graphs, data are means ± SEM; wild‐type mice are indicated by solid lines, and knockout mice are represented by dashed lines. Graphs show either the urine output under basal conditions (free access to drinking water) for 3 consecutive days, followed by a 24‐h water restriction on a 4% (A), 20% (B), or 40% (C) protein diet. The conclusion from these data is that the role of IMCD urea transporters in water conservation is to prevent a urea‐induced osmotic diuresis. Adapted from data in references 73,75.



Figure 1.

Schematic representation of the mammalian renal tubule, with both long‐looped and short‐loop nephrons depicted. Major regions of the kidney are shown on the left. The regions are; proximal tubule (blue), thin limbs of Henle's loop (single thin line), thick ascending limb of Henle's loop (red), distal convoluted tubule (green), and the collecting duct (yellow).



Figure 2.

Urine flow in the terminal inner medullary collecting ducts (IMCD) and renal pelvis. Urine exits the IMCD through the ducts of Bellini at the tip of the renal papilla. Some urine can reflux backwards into the pelvic space.



Figure 3.

(A) Five primary clusters making up a single secondary collecting duct (CD) cluster that consists of 31 CDs at the IM base. Image shows section 400 μm below inner medulla base. CD cluster boundaries (white) were determined by an Euclidean distance map (EDM). Magenta, descending thin limb (DTL)/aquaporin‐1 (AQP1); blue, CD/AQP‐2; green, ascending thin limb (ATL)/kidney‐specific Cl channel (ClC‐K1). Scale bar, 100 μm. (B) Inner medullary section showing 23 primary CD clusters with boundaries determined by EDM (white outlines). EDM boundaries around each CD are shown in gray. Image is an overlay of two images from two sections ∼400 μm below the IM base. Red, DTL/AQP1; blue, CD/AQP‐2; green, DVR/UT‐B. Scale bar, 500 μm. Figure adapted from 201 with permission



Figure 4.

Urea permeabilities of mammalian renal tubule segments. The width of each segment is proportional to the urea permeability of that segment, Values are from isolated perfused tubule studies 44,233,235.



Figure 5.

(A) Transmission electron micrograph (TEM) of a principal cell from the initial portion of the rat IMCD. Few organelles are detected in the cytoplasm, and apical microprojections are sparse (×11,750). Adapted from 170 with permission. (B) TEM of an OMCD intercalated cell. Extensive apical microprojections are apparent (×10,000). Adapted from 171 with permission. (C) Scanning electron micrograph of papillary collecting duct from rabbit demonstrates the junction between two collecting ducts (×600). Adapted from 141 with permission. (D) TEM of cells from the terminal IMCD. Cells are tall, with few organelles and sparse apical microprojections (×7000). Adapted from 170 with permission



Figure 6.

Water permeability of the mammalian renal tubule. Left; configuration of a long‐looped nephron showing the various tubule segments. Right; osmotic water permeability (pf, um/s) of the different regions under either control (basal) or after AVP stimulation. Data from 197.



Figure 7.

Immunofluorescence microscopy of AQP‐2 in cortical (A), outer medullary (B), and inner medullary (C and D) collecting duct and of AQP3 (E) and AQP‐4 (F) in inner medullary collecting duct (IMCD). AQP‐2 is very abundant in the apical plasma membrane domains as well as in subapical domains (arrows in A, B, and D), whereas intercalated cells are unlabeled (arrowheads in A and B). In the IMCD, AQP‐2 is also present in the basolateral part of the cell. AQP3 is abundant in both basal and lateral plasma membranes, whereas AQP‐4 is predominantly expressed in the basal plasma membrane and less prominently in the lateral plasma membranes. Magnification: ×1100 (A, B, D‐F) and ×550 (C). From 196, as reprinted in 194. Used with permission



Figure 8.

Percentage reabsorption of filtered NaCl along the nephron. Tubule depicted as in Figure 1. NaCl reabsorption in the medullary collecting duct is influenced by various factors that either stimulate (+) or inhibit (−) Na+ reabsorption. AVP, arginine vasopressin; MC, mineralocorticoids; BK, bradykinin; PGE2, prostaglandin E2; ET, endothelin.



Figure 9.

Urea handling in mammals. The majority of mammals consume diets that are high in protein. Under most circumstances, this dietary protein intake greatly exceeds that which is necessary for the support of anabolic processes. Excess protein is catabolized by the liver, which results in the formation of large amounts of urea by the ornithine‐urea cycle. Urea is freely filterable by the kidney and the excretion of this urea constitutes a large osmotic load to the kidney. Most solutes excreted in such large amounts would obligate large amounts of water excretion by causing an osmotic diuresis. However, along the nephron, the specialized urea transporters UT‐A1, UT‐A2, UT‐A3, and UT‐B are involved in complex urea reabsorption and recycling pathways that allow large amounts of urea to be excreted without obligating water excretion. Figure is adapted from 75, with permission



Figure 10.

Schematic of the collecting duct system showing principal sites of water absorption and urea absorption. Water is absorbed in early part of the collecting duct system driven by an osmotic gradient. Since the urea permeability of cortical collecting ducts, outer medullary collecting ducts and initial IMCDs are very low, the water absorption concentrates urea in the lumen of these segments. When the tubule fluid reaches the terminal IMCD, which is highly permeable to urea, urea rapidly exits from the lumen.



Figure 11.

(A) Corticomedullary NH4+ gradients in canine renal medulla. NH4+ concentrations were measured in tissue water from slices from cortex and medulla of untreated dogs. Data plotted from 218. (B) Countercurrent multiplier for NH4+ in renal medulla. Active absorption of NH4+ from thick ascending limb of loop of Henle provides a single effect for countercurrent multiplication. Modified from 100 with permission



Figure 12.

Spatial distribution of different aquaporins, urea transporters, ion transporters/channels and enzymes, each with a specialized role in regulating the homeostatic functions of the kidney.



Figure 13.

Spatial distribution of different aquaporins, urea transporters, ion transporters/channels and enzymes, each with a specialized role in regulating the homeostatic functions of the kidney.



Figure 14.

The AQP‐4 M23 isoform forms square arrays in Xenopus laevis oocytes. (A‐C) At the plasma membrane, highly ordered structures characteristic of square arrays are observed for the AQP‐4 M23 isoform. Figure adapted from 79 with permission



Figure 15.

Water conservation and urinary concentrating ability of UT‐A1/3 knockout mice. For all graphs, data are means ± SEM; wild‐type mice are indicated by solid lines, and knockout mice are represented by dashed lines. Graphs show either the urine output under basal conditions (free access to drinking water) for 3 consecutive days, followed by a 24‐h water restriction on a 4% (A), 20% (B), or 40% (C) protein diet. The conclusion from these data is that the role of IMCD urea transporters in water conservation is to prevent a urea‐induced osmotic diuresis. Adapted from data in references 73,75.

References
 1. Aalkjaer C, Cragoe EJ Jr. Intracellular pH regulation in resting and contracting segments of rat mesenteric resistance vessels. J Physiol 402: 391–410, 1988.
 2. Alper SL. Molecular physiology and genetics of Na+‐independent SLC4 anion exchangers. J Exp Biol 212: 1672–1683, 2009.
 3. Arystarkhova E, Donnet C, Asinovski NK, Sweadner KJ. Differential regulation of renal Na,K‐ATPase by splice variants of the gamma subunit. J Biol Chem 277: 10162–10172, 2002.
 4. Atherton JC, Hai MA, Thomas S. Effects of water diuresis and osmotic (mannitol) diuresis on urinary solute excretion by the conscious rat. J Physiol 197: 395–410, 1968.
 5. Bagnis C, Marshansky V, Breton S, Brown D. Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol Renal Physiol 280: F437–F448, 2001.
 6. Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Cherif‐Zahar B, Planelles G. NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein. J Biol Chem 279: 15975–15983, 2004.
 7. Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B. Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102: 1634–1640, 1998.
 8. Barreto‐Chaves ML, Mello‐Aires M. Effect of luminal angiotensin II and ANP on early and late cortical distal tubule HCO3− reabsorption. Am J Physiol 271: F977–F984, 1996.
 9. Bastani B. Colocalization of H‐ATPase and H,K‐ATPase immunoreactivity in the rat kidney. J Am Soc Nephrol 5: 1476–1482, 1995.
 10. Bastani B, Haragsim L. Immunocytochemistry of renal H‐ATPase. Miner Electrolyte Metab 22: 382–395, 1996.
 11. Beguin P, Crambert G, Guennoun S, Garty H, Horisberger JD, Geering K. CHIF, a member of the FXYD protein family, is a regulator of Na,K‐ATPase distinct from the gamma‐subunit. EMBO J 20: 3993–4002, 2001.
 12. Beguin P, Wang X, Firsov D, Puoti A, Claeys D, Horisberger JD, Geering K. The gamma subunit is a specific component of the Na,K‐ATPase and modulates its transport function. EMBO J 16: 4250–4260, 1997.
 13. Bell SM, Schreiner CM, Schultheis PJ, Miller ML, Evans RL, Vorhees CV, Shull GE, Scott WJ. Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. Am J Physiol 276: C788–C795, 1999.
 14. Berliner RW, Levinsky NG, Davidson DG, Eden M. Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24: 730–744, 1958.
 15. Betancourt MR, Thirumalai D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J Mol Biol 287: 627–644, 1999.
 16. Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 19: 1845–1854, 2008.
 17. Bhalla V, Oyster NM, Fitch AC, Wijngaarden MA, Neumann D, Schlattner U, Pearce D, Hallows KR. AMP‐activated kinase inhibits the epithelial Na+ channel through functional regulation of the ubiquitin ligase Nedd4‐2. J Biol Chem 281: 26159–26169, 2006.
 18. Bishop JM, Verlander JW, Lee HW, Nelson RD, Weiner AJ, Handlogten ME, Weiner ID. Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol 299: F1065–F1077, 2010.
 19. Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer C, Wagner CA, Devuyst O, Marini AM. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456: 339–343, 2008.
 20. Blount MA, Klein JD, Martin CF, Tchapyjnikov D, Sands JM. Forskolin stimulates phosphorylation and membrane accumulation of UT‐A3. Am J Physiol Renal Physiol 293: F1308–F1313, 2007.
 21. Blount MA, Mistry AC, Frohlich O, Price SR, Chen G, Sands JM, Klein JD. Phosphorylation of UT‐A1 urea transporter at serines 486 and 499 is important for vasopressin‐regulated activity and membrane accumulation. Am J Physiol Renal Physiol 295: F295–F299, 2008.
 22. Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S, BeltrandelRio H, Huang W, Zhao S, Geske R, Montgomery C, Van Sligtenhorst I, Friddle C, Platt K, Sparks MJ, Pushkin A, Abuladze N, Ishiyama A, Dukkipati R, Liu W, Kurtz I. Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34: 313–319, 2003.
 23. Boulkroun S, Ruffieux‐Daidie D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O. Vasopressin‐inducible ubiquitin‐specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. Am J Physiol Renal Physiol 295: F889–F900, 2008.
 24. Bouzinova EV, Praetorius J, Virkki LV, Nielsen S, Boron WF, Aalkjaer C. Na+‐dependent HCO3− uptake into the rat choroid plexus epithelium is partially DIDS sensitive. Am J Physiol Cell Physiol 289: C1448–C1456, 2005.
 25. Breyer MD, Jacobson HR. Regulation of rabbit medullary collecting duct cell pH by basolateral Na+/H+ and Cl−/base exchange. J Clin Invest 84: 996–1004, 1989.
 26. Brown D. The ins and outs of aquaporin‐2 trafficking. Am J Physiol Renal Physiol 284: F893–F901, 2003.
 27. Brown D, Hirsch S, Gluck S. An H+‐ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331: 622–624, 1988.
 28. Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V‐ATPase in kidney epithelial cells: Dual role in acid‐base homeostasis and vesicle trafficking. J Exp Biol 212: 1762–1772, 2009.
 29. Brown D, Weyer P, Orci L. Vasopressin stimulates endocytosis in kidney collecting duct principal cells. Eur J Cell Biol 46: 336–341, 1988.
 30. Bugaj V, Pochynyuk O, Stockand JD. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption. Am J Physiol Renal Physiol 297: F1411–F1418, 2009.
 31. Butterworth MB, Edinger RS, Frizzell RA, Johnson JP. Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296: F10–24, 2009.
 32. Butterworth MB, Edinger RS, Johnson JP, Frizzell RA. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol 125: 81–101, 2005.
 33. Butterworth MB, Edinger RS, Ovaa H, Burg D, Johnson JP, Frizzell RA. The deubiquitinating enzyme UCH‐L3 regulates the apical membrane recycling of the epithelial sodium channel. J Biol Chem 282: 37885–37893, 2007.
 34. Canessa CM, and co‐workers. Amiloride‐sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463–467, 1994.
 35. Cereijido M, Shoshani L, Contreras RG. The polarized distribution of Na+, K+‐ATPase and active transport across epithelia. J Membr Biol 184: 299–304, 2001.
 36. Chambrey R, Goossens D, Bourgeois S, Picard N, Bloch‐Faure M, Leviel F, Geoffroy V, Cambillau M, Colin Y, Paillard M, Houillier P, Cartron JP, Eladari D. Genetic ablation of Rhbg in the mouse does not impair renal ammonium excretion. Am J Physiol Renal Physiol 289: F1281–F1290, 2005.
 37. Chambrey R, Warnock DG, Podevin RA, Bruneval P, Mandet C, Belair MF, Bariety J, Paillard M. Immunolocalization of the Na+/H+ exchanger isoform NHE2 in rat kidney. Am J Physiol 275: F379–F386, 1998.
 38. Chen G, Frohlich O, Yang Y, Klein JD, Sands JM. Loss of N‐linked glycosylation reduces urea transporter UT‐A1 response to vasopressin. J Biol Chem 281: 27436–27442, 2006.
 39. Chen G, Huang H, Frohlich O, Yang Y, Klein JD, Price SR, Sands JM. MDM2 E3 ubiquitin ligase mediates UT‐A1 urea transporter ubiquitination and degradation. Am J Physiol Renal Physiol 295: F1528–F1534, 2008.
 40. Cheval L, Morla L, Elalouf JM, Doucet A. Kidney collecting duct acid‐base “regulon”. Physiol Genomics 27: 271–281, 2006.
 41. Choi I, Aalkjaer C, Boulpaep EL, Boron WF. An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405: 571–575, 2000.
 42. Chou CL, Christensen BM, Frische S, Vorum H, Desai RA, Hoffert JD, de Lanerolle P, Nielsen S, Knepper MA. Non‐muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem 279: 49026–49035, 2004.
 43. Chou CL, DiGiovanni SR, Luther A, Lolait SJ, Knepper MA. Oxytocin as an antidiuretic hormone. II. Role of V2 vasopressin receptor. Am J Physiol 269: F78–F85, 1995.
 44. Chou CL, Knepper MA. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol 257: F359–F365, 1989.
 45. Chou CL, Ma T, Yang B, Knepper MA, Verkman AS. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin‐4 knockout mice. Am J Physiol 274: C549–C554, 1998.
 46. Chou CL, Sands JM, Nonoguchi H, Knepper MA. Concentration dependence of urea and thiourea transport in rat inner medullary collecting duct. Am J Physiol 258: F486–F494, 1990a.
 47. Chou CL, Sands JM, Nonoguchi H, Knepper MA. Urea gradient‐associated fluid absorption with sigma urea = 1 in rat terminal collecting duct. Am J Physiol 258: F1173–F1180, 1990b.
 48. Chou CL, Yip KP, Michea L, Kador K, Ferraris JD, Wade JB, Knepper MA. Regulation of aquaporin‐2 trafficking by vasopressin in the renal collecting duct. of ryanodine‐sensitive Ca2+ stores and calmodulin Roles. J Biol Chem 275: 36839–36846., 2000.
 49. Christensen BM, Kim YH, Kwon TH, Nielsen S. Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am J Physiol Renal Physiol 291: F39–F48, 2006.
 50. Christensen BM, Marples D, Kim YH, Wang W, Frokiaer J, Nielsen S. Changes in cellular composition of kidney collecting duct cells in rats with lithium‐induced NDI. Am J Physiol Cell Physiol 286: C952–C964, 2004.
 51. Christensen BM, Perrier R, Wang Q, Zuber AM, Maillard M, Mordasini D, Malsure S, Ronzaud C, Stehle JC, Rossier BC, Hummler E. Sodium and potassium balance depends on alphaENaC expression in connecting tubule. J Am Soc Nephrol 21: 1942–1951.
 52. Clapp WL, Madsen KM, Verlander JW, Tisher CC. Morphologic heterogeneity along the rat inner medullary collecting duct. Lab Invest 60: 219–230, 1989.
 53. Codina J, Pressley TA, DuBose TD, Jr. The colonic H+,K+‐ATPase functions as a Na+‐dependent K+(NH4+)‐ATPase in apical membranes from rat distal colon. J Biol Chem 274: 19693–19698, 1999.
 54. Coleman RA, Wu DC, Liu J, Wade JB. Expression of aquaporins in the renal connecting tubule. Am J Physiol Renal Physiol 279: F874–F883, 2000.
 55. Cougnon M, Bouyer P, Jaisser F, Edelman A, Planelles G. Ammonium transport by the colonic H(+)‐K(+)‐ATPase expressed in Xenopus oocytes. Am J Physiol 277: C280–C287, 1999.
 56. Damkier HH, Brown PD, Praetorius J. Epithelial pathways in choroid plexus electrolyte transport. Physiology (Bethesda) 25: 239–249, 2010.
 57. Damkier HH, Nielsen S, Praetorius J. Molecular expression of SLC4‐derived Na+‐dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp Physiol 293: R2136–R2146, 2007.
 58. Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O. Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20: 7052–7059, 2001.
 59. Deschenes G, Gonin S, Zolty E, Cheval L, Rousselot M, Martin PY, Verbavatz JM, Feraille E, Doucet A. Increased synthesis and AVP unresponsiveness of Na,K‐ATPase in collecting duct from nephrotic rats. J Am Soc Nephrol 12: 2241–2252, 2001.
 60. Dherbecourt O, Cheval L, Bloch‐Faure M, Meneton P, Doucet A. Molecular identification of Sch28080‐sensitive K‐ATPase activities in the mouse kidney. Pflugers Arch 451: 769–775, 2006.
 61. Ecelbarger CA, Chou CL, Lolait SJ, Knepper MA, DiGiovanni SR. Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct. Am J Physiol 270: F623–F633, 1996.
 62. Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper MA. Aquaporin‐3 water channel localization and regulation in rat kidney. Am J Physiol 269: F663–F672, 1995.
 63. Echevarria M, Windhager EE, Tate SS, Frindt G. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A 91: 10997–11001, 1994.
 64. Edinger RS, Lebowitz J, Li H, Alzamora R, Wang H, Johnson JP, Hallows KR. Functional regulation of the epithelial Na+ channel by IkappaB kinase‐beta occurs via phosphorylation of the ubiquitin ligase Nedd4‐2. J Biol Chem 284: 150–157, 2009.
 65. Eladari D, Cheval L, Quentin F, Bertrand O, Mouro I, Cherif‐Zahar B, Cartron JP, Paillard M, Doucet A, Chambrey R. Expression of RhCG, a new putative NH(3)/NH(4)(+) transporter, along the rat nephron. J Am Soc Nephrol 13: 1999–2008, 2002.
 66. Ergonul Z, Frindt G, Palmer LG. Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol 291: F683–693, 2006.
 67. Estilo G, Liu W, Pastor‐Soler N, Mitchell P, Carattino MD, Kleyman TR, Satlin LM. Effect of aldosterone on BK channel expression in mammalian cortical collecting duct. Am J Physiol Renal Physiol 295: F780–F788, 2008.
 68. Fakitsas P, Adam G, Daidie D, van Bemmelen MX, Fouladkou F, Patrignani A, Wagner U, Warth R, Camargo SM, Staub O, Verrey F. Early aldosterone‐induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol 18: 1084–1092, 2007.
 69. Fejes‐Toth G, Frindt G, Naray‐Fejes‐Toth A, Palmer LG. Epithelial Na +channel activation and processing in mice lacking SGK1. Am J Physiol Renal Physiol 294: F1298–F1305, 2008.
 70. Fenton RA. Essential role of vasopressin‐regulated urea transport processes in the mammalian kidney. Pflugers Arch 458: 169–177, 2008a.
 71. Fenton RA. Urea transporters and renal function: Lessons from knockout mice. Curr Opin Nephrol Hypertens 17: 513–518, 2008b.
 72. Fenton RA, Brond L, Nielsen S, Praetorius J. Cellular and subcellular distribution of the type‐2 vasopressin receptor in the kidney. Am J Physiol Renal Physiol 293: F748–F760, 2007.
 73. Fenton RA, Chou CL, Stewart GS, Smith CP, Knepper MA. Urinary concentrating defect in mice with selective deletion of phloretin‐sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci U S A 101: 7469–7474, 2004.
 74. Fenton RA, Cottingham CA, Stewart GS, Howorth A, Hewitt JA, Smith CP. Structure and characterization of the mouse UT‐A gene (Slc14a2). Am J Physiol Renal Physiol 282: F630–F638, 2002.
 75. Fenton RA, Flynn A, Shodeinde A, Smith CP, Schnermann J, Knepper MA. Renal phenotype of UT‐A urea transporter knockout mice. J Am Soc Nephrol 16: 1583–1592, 2005.
 76. Fenton RA, Knepper MA. Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev 87: 1083–1112, 2007.
 77. Fenton RA, Moeller HB. Recent discoveries in vasopressin‐regulated aquaporin‐2 trafficking. Prog Brain Res 170: 571–579, 2008.
 78. Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA. Acute regulation of aquaporin‐2 phosphorylation at Ser‐264 by vasopressin. Proc Natl Acad Sci U S A 105: 3134–3139, 2008.
 79. Fenton RA, Moeller HB, Zelenina M, Snaebjornsson MT, Holen T, MacAulay N. Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 67: 829–840, 2010.
 80. Fenton RA, Stewart GS, Carpenter B, Howorth A, Potter EA, Cooper GJ, Smith CP. Characterization of mouse urea transporters UT‐A1 and UT‐A2. Am J Physiol Renal Physiol 283: F817–F825, 2002.
 81. Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP. The B1‐subunit of the H(+) ATPase is required for maximal urinary acidification. Proc Natl Acad Sci U S A 102: 13616–13621, 2005.
 82. Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17: 344–352, 1998.
 83. Flores SY, Loffing‐Cueni D, Kamynina E, Daidie D, Gerbex C, Chabanel S, Dudler J, Loffing J, Staub O. Aldosterone‐induced serum and glucocorticoid‐induced kinase 1 expression is accompanied by Nedd4‐2 phosphorylation and increased Na +transport in cortical collecting duct cells. J Am Soc Nephrol 16: 2279–2287, 2005.
 84. Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID. Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol Renal Physiol 282: F1120–F1128, 2002.
 85. Frindt G, Ergonul Z, Palmer LG. Na channel expression and activity in the medullary collecting duct of rat kidney. Am J Physiol Renal Physiol 292: F1190–F1196, 2007.
 86. Frindt G, Ergonul Z, Palmer LG. Surface expression of epithelial Na channel protein in rat kidney. J Gen Physiol 131: 617–627, 2008.
 87. Frindt G, Silver RB, Windhager EE, Palmer LG. Feedback regulation of Na channels in rat CCT. III. Response to cAMP. Am J Physiol 268: F480–489, 1995.
 88. Frokiaer J, Marples D, Knepper MA, Nielsen S. Pathophysiology of aquaporin‐2 in water balance disorders. Am J Med Sci 316: 291–299, 1998.
 89. Fujiwara TM, Bichet DG. Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol 16: 2836–2846, 2005.
 90. Furman CS, Gorelick‐Feldman DA, Davidson KG, Yasumura T, Neely JD, Agre P, Rash JE. Aquaporin‐4 square array assembly: Opposing actions of M1 and M23 isoforms. Proc Natl Acad Sci U S A 100: 13609–13614, 2003.
 91. Gamba G. Vasopressin regulates the renal Na+‐Cl− cotransporter. Am J Physiol Renal Physiol 298: F500–F501, 2010.
 92. Gamba G, Knepper MA. Urine concentration and dilution. In: Brenner BM, editor. Brenner and Rector's; The Kidney (7 ed). Philadelphia: Saunders, 2004, p. 599–636.
 93. Gamble JL, McKhann CF, Butler AM, Tuthill E. An economy of water in renal function referable to urea. Am J Physiol 109: 139–154, 1934.
 94. Gamble JL, Putnam MC, McKhann CF. The optimal water requirement in renal function. Am J Physiol 88: 571–580, 1929.
 95. Garty H, Lindzen M, Scanzano R, Aizman R, Fuzesi M, Goldshleger R, Farman N, Blostein R, Karlish SJ. A functional interaction between CHIF and Na‐K‐ATPase: Implication for regulation by FXYD proteins. Am J Physiol Renal Physiol 283: F607–F615, 2002.
 96. Giebisch G, Krapf R, Wagner C. Renal and extrarenal regulation of potassium. Kidney Int 72: 397–410, 2007.
 97. Godinich MJ, Jennings ML. Renal chloride‐bicarbonate exchangers. Curr Opin Nephrol Hypertens 4: 398–401, 1995.
 98. Goldschimdt I, Grahammer F, Warth R, Schulz‐Baldes A, Garty H, Greger R, Bleich M. Kidney and colon electrolyte transport in CHIF knockout mice. Cell Physiol Biochem 14: 113–120, 2004.
 99. Gonin S, Deschenes G, Roger F, Bens M, Martin PY, Carpentier JL, Vandewalle A, Doucet A, Feraille E. Cyclic AMP increases cell surface expression of functional Na,K‐ATPase units in mammalian cortical collecting duct principal cells. Mol Biol Cell 12: 255–264, 2001.
 100. Good DW, Knepper MA. Ammonia transport in the mammalian kidney. Am J Physiol 248: F459–F471, 1985.
 101. Good DW, Watts BA III, George T, Meyer JW, Shull GE. Transepithelial HCO3− absorption is defective in renal thick ascending limbs from Na+/H+ exchanger NHE1 null mutant mice. Am J Physiol Renal Physiol 287: F1244–1249, 2004.
 102. Grantham JJ, Burg MB. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol 211: 255–259, 1966.
 103. Groger N, Frohlich H, Maier H, Olbrich A, Kostin S, Braun T, Boettger T. SLC4A11 prevents osmotic imbalance leading to corneal endothelial dystrophy, deafness, and polyuria. J Biol Chem 285: 14467–14474, 2010.
 104. Grupp C, Pavenstadt‐Grupp I, Grunewald RW, Bevan C, Stokes JB III, Kinne RK. A Na‐K‐Cl cotransporter in isolated rat papillary collecting duct cells. Kidney Int 36: 201–209, 1989.
 105. Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+‐K+‐ATPases: Physiology, regulation, and structure. Am J Physiol Renal Physiol 298: F12–F21, 2010.
 106. Guntupalli J, Onuigbo M, Wall S, Alpern RJ, DuBose TD Jr. Adaptation to low‐K+ media increases H(+)‐K(+)‐ATPase but not H(+)‐ATPase‐mediated pHi recovery in OMCD1 cells. Am J Physiol 273: C558–C571, 1997.
 107. Gyorke ZS, Sulyok E, Guignard JP. Ammonium chloride metabolic acidosis and the activity of renin‐angiotensin‐aldosterone system in children. Eur J Pediatr 150: 547–549, 1991.
 108. Hager H, Kwon TH, Vinnikova AK, Masilamani S, Brooks HL, Frokiaer J, Knepper MA, Nielsen S. Immunocytochemical and immunoelectron microscopic localization of alpha‐, beta‐, and gamma‐ENaC in rat kidney. Am J Physiol Renal Physiol 280: F1093–F1106, 2001.
 109. Hallows KR, Wang H, Edinger RS, Butterworth MB, Oyster NM, Li H, Buck J, Levin LR, Johnson JP, Pastor‐Soler NM. Regulation of epithelial Na+ transport by soluble adenylyl cyclase in kidney collecting duct cells. J Biol Chem 284: 5774–5783, 2009.
 110. Han KH, Croker BP, Clapp WL, Werner D, Sahni M, Kim J, Kim HY, Handlogten ME, Weiner ID. Expression of the ammonia transporter, rh C glycoprotein, in normal and neoplastic human kidney. J Am Soc Nephrol 17: 2670–2679, 2006.
 111. Han Z, Wax MB, Patil RV. Regulation of aquaporin‐4 water channels by phorbol ester‐dependent protein phosphorylation. J Biol Chem 273: 6001–6004, 1998.
 112. Hays SR. Mineralocorticoid modulation of apical and basolateral membrane H+/OH−/HCO3− transport processes in the rabbit inner stripe of outer medullary collecting duct. J Clin Invest 90: 180–187, 1992.
 113. Hierholzer K. Secretion of potassium and acidification in collecting ducts of mammalian kidney. Am J Physiol 201: 318–324, 1961.
 114. Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA. Vasopressin‐stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin‐2. J Biol Chem 283: 24617–24627, 2008.
 115. Holmes CL, Landry DW, Granton JT. Science review: Vasopressin and the cardiovascular system part 1‐receptor physiology. Crit Care 7: 427–434, 2003.
 116. Huber S, Asan E, Jons T, Kerscher C, Puschel B, Drenckhahn D. Expression of rat kidney anion exchanger 1 in type A intercalated cells in metabolic acidosis and alkalosis. Am J Physiol 277: F841–F849, 1999.
 117. Hummler E. Implication of ENaC in salt‐sensitive hypertension. J Steroid Biochem Mol Biol 69: 385–390, 1999.
 118. Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC. Early death due to defective neonatal lung liquid clearance in alpha‐ENaC‐deficient mice. Nat Genet 12: 325–328, 1996.
 119. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, et al. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells [see comments]. Proc Natl Acad Sci U S A 91: 6269–6273, 1994.
 120. Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo F. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol 272: F235–F241, 1997.
 121. Jakobsen JK, Odgaard E, Wang W, Elkjaer ML, Nielsen S, Aalkjaer C, Leipziger J. Functional up‐regulation of basolateral Na+‐dependent HCO3− transporter NBCn1 in medullary thick ascending limb of K+‐depleted rats. Pflugers Arch 448: 571–578, 2004.
 122. Jamison RL, Bennett CM, Berliner RW. Countercurrent multiplication by the thin loops of Henle. Am J Physiol 212: 357–366, 1967.
 123. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid‐sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449: 316–323, 2007.
 124. Kabra R, Knight KK, Zhou R, Snyder PM. Nedd4‐2 induces endocytosis and degradation of proteolytically cleaved epithelial Na+ channels. J Biol Chem 283: 6033–6039, 2008.
 125. Kadohira I, Abe Y, Nuriya M, Sano K, Tsuji S, Arimitsu T, Yoshimura Y, Yasui M. Phosphorylation in the C‐terminal domain of aquaporin‐4 is required for Golgi transition in primary cultured astrocytes. Biochem Biophys Res Commun 377: 463–468, 2008.
 126. Kaissling B, Kriz W. Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol 56: 1–123, 1979.
 127. Kaissling B, Kriz W. Axial heterogeneity of the ‘distal tubule’. Contrib Nephrol 33: 29–47, 1982.
 128. Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, Van Der Sluijs P, Klumperman J, Deen PM. Short‐chain ubiquitination mediates the regulated endocytosis of the aquaporin‐2 water channel. Proc Natl Acad Sci U S A 103: 18344–18349, 2006.
 129. Karakashian A, Timmer RT, Klein JD, Gunn RB, Sands JM, Bagnasco SM. Cloning and characterization of two new isoforms of the rat kidney urea transporter: UT‐A3 and UT‐A4. J Am Soc Nephrol 10: 230–237, 1999.
 130. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez‐Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP. Mutations in the gene encoding B1 subunit of H+‐ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21: 84–90, 1999.
 131. Kellenberger S, Hoffmann‐Pochon N, Gautschi I, Schneeberger E, Schild L. On the molecular basis of ion permeation in the epithelial Na+ channel. J Gen Physiol 114: 13–30, 1999.
 132. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med 348: 101–108, 2003.
 133. Kim GH, Martin SW, Fernandez‐Llama P, Masilamani S, Packer RK, Knepper MA. Long‐term regulation of renal Na‐dependent cotransporters and ENaC: Response to altered acid‐base intake. Am J Physiol Renal Physiol 279: F459–F467, 2000.
 134. Kim J, Cha JH, Tisher CC, Madsen KM. Role of apoptotic and nonapoptotic cell death in removal of intercalated cells from developing rat kidney. Am J Physiol 270: F575–F592, 1996.
 135. Kim YH, Kwon TH, Frische S, Kim J, Tisher CC, Madsen KM, Nielsen S. Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol Renal Physiol 283: F744–F754, 2002.
 136. Klein JD, Frohlich O, Blount MA, Martin CF, Smith TD, Sands JM. Vasopressin increases plasma membrane accumulation of urea transporter UT‐A1 in rat inner medullary collecting ducts. J Am Soc Nephrol 17: 2680–2686, 2006.
 137. Kleyman TR, Carattino MD, Hughey RP. ENaC at the cutting edge: Regulation of epithelial sodium channels by proteases. J Biol Chem 284: 20447–20451, 2009.
 138. Knepper MA. Molecular physiology of urinary concentrating mechanism: Regulation of aquaporin water channels by vasopressin. Am J Physiol 272: F3–12, 1997.
 139. Knepper MA, Burg M. Organization of nephron function. Am J Physiol 244: F579–F589, 1983.
 140. Knepper MA, Danielson RA, Saidel GM, Post RS. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int 12: 313–323, 1977.
 141. Knepper MA, Hoffert JD, Packer R, Fenton RA. Urine concentration and dilution. In: Brenner B, editor. The Kidney. Philadelphia: Saunders, 2008.
 142. Knepper MA, Nielsen S. Kinetic model of water and urea permeability regulation by vasopressin in collecting duct. Am J Physiol 265: F214–F224, 1993.
 143. Knepper MA, Packer R, Good DW. Ammonium transport in the kidney. Physiol Rev 69: 179–249, 1989.
 144. Kobayashi K, Uchida S, Mizutani S, Sasaki S, Marumo F. Intrarenal and cellular localization of CLC‐K2 protein in the mouse kidney. J Am Soc Nephrol 12: 1327–1334, 2001.
 145. Kokko JP, Rector FC. Countercurrent multiplication system without active transport in inner medulla. Kidney International 2: 214–223, 1972.
 146. Kollert‐Jons A, Wagner S, Hubner S, Appelhans H, Drenckhahn D. Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol 265: F813–F821, 1993.
 147. Kopito RR, Lodish HF. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–238, 1985.
 148. Kudo LH, van Baak AA, Rocha AS. Effect of vasopressin on sodium transport across inner medullary collecting duct. Am J Physiol 258: F1438–F1447, 1990.
 149. Kwon TH, Fulton C, Wang W, Kurtz I, Frokiaer J, Aalkjaer C, Nielsen S. Chronic metabolic acidosis upregulates rat kidney Na‐HCO cotransporters NBCn1 and NBC3 but not NBC1. Am J Physiol Renal Physiol 282: F341–F351, 2002.
 150. Kwon TH, Laursen UH, Marples D, Maunsbach AB, Knepper MA, Frokiaer J, Nielsen S. Altered expression of renal AQPs and Na(+) transporters in rats with lithium‐induced NDI. Am J Physiol Renal Physiol 279: F552–F564, 2000.
 151. Lassiter WE, Gottschalk CW, Mylle M. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol 200: 1139–1147, 1961.
 152. Lee HW, Verlander JW, Bishop JM, Igarashi P, Handlogten ME, Weiner ID. Collecting duct‐specific Rh C glycoprotein deletion alters basal and acidosis‐stimulated renal ammonia excretion. Am J Physiol Renal Physiol 296: F1364–1375, 2009.
 153. Lee IH, Dinudom A, Sanchez‐Perez A, Kumar S, Cook DI. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4‐2. J Biol Chem 282: 29866–29873, 2007.
 154. Lee WS, Hebert SC. ROMK inwardly rectifying ATP‐sensitive K+ channel. I. Expression in rat distal nephron segments. Am J Physiol 268: F1124–F1131, 1995.
 155. Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hatim H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D. The Na+‐dependent chloride‐bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120: 1627–1635, 2010.
 156. Levin EJ, Quick M, Zhou M. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462: 757–761, 2009.
 157. Levine DZ, Iacovitti M, Buckman S, Burns KD. Role of angiotensin II in dietary modulation of rat late distal tubule bicarbonate flux in vivo. J Clin Invest 97: 120–125, 1996.
 158. Liu Z, Chen Y, Mo R, Hui C, Cheng JF, Mohandas N, Huang CH. Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J Biol Chem 275: 25641–25651, 2000.
 159. Liu Z, Peng J, Mo R, Hui C, Huang CH. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 276: 1424–1433, 2001.
 160. Lloyd DJ, Hall FW, Tarantino LM, Gekakis N. Diabetes Insipidus in Mice with a Mutation in Aquaporin‐2. PLoS Genet 1: e20, 2005.
 161. Loffing‐Cueni D, Flores SY, Sauter D, Daidie D, Siegrist N, Meneton P, Staub O, Loffing J. Dietary sodium intake regulates the ubiquitin‐protein ligase nedd4‐2 in the renal collecting system. J Am Soc Nephrol 17: 1264–1274, 2006.
 162. Loffing J, Pietri L, Aregger F, Bloch‐Faure M, Ziegler U, Meneton P, Rossier BC, Kaissling B. Differential subcellular localization of ENaC subunits in mouse kidney in response to high‐ and low‐Na diets. Am J Physiol Renal Physiol 279: F252–F258, 2000.
 163. Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: Possible role of SGK. Am J Physiol Renal Physiol 280: F675–F682, 2001.
 164. Lucien N, Sidoux‐Walter F, Olives B, Moulds J, Le Pennec PY, Cartron JP, Bailly P. Characterization of the gene encoding the human Kidd blood group/urea transporter protein. Evidence for splice site mutations in Jknull individuals. J Biol Chem 273: 12973–12980, 1998.
 165. Ludewig U. Electroneutral ammonium transport by basolateral rhesus B glycoprotein. J Physiol 559: 751–759, 2004.
 166. Lynch IJ, Rudin A, Xia SL, Stow LR, Shull GE, Weiner ID, Cain BD, Wingo CS. Impaired acid secretion in cortical collecting duct intercalated cells from H‐K‐ATPase‐deficient mice: Role of HKalpha isoforms. Am J Physiol Renal Physiol 294: F621–F627, 2008.
 167. Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Nephrogenic diabetes insipidus in mice lacking aquaporin‐3 water channels. Proc Natl Acad Sci U S A 97: 4386–4391, 2000.
 168. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Generation and phenotype of a transgenic knockout mouse lacking the mercurial‐insensitive water channel aquaporin‐4. J Clin Invest 100: 957–962, 1997.
 169. Madrid R, Le Maout S, Barrault MB, Janvier K, Benichou S, Merot J. Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin‐adaptor complexes. EMBO J 20: 7008–7021, 2001.
 170. Madsen KM, Clapp WL, Verlander JW. Structure and function of the inner medullary collecting duct. Kidney Int 34: 441–454, 1988.
 171. Madsen KM, Tisher CC. Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am J Physiol 245: F670–F679, 1983.
 172. Madsen KM, Tisher CC. Structural‐functional relationships along the distal nephron. Am J Physiol 250: F1–F15, 1986.
 173. Madsen KM, Verlander JW, Kim J, Tisher CC. Morphological adaptation of the collecting duct to acid‐base disturbances. Kidney Int Suppl 33: S57–S63, 1991.
 174. Madsen KM, Verlander JW, Tisher CC. Relationship between structure and function in distal tubule and collecting duct. J Electron Microsc Tech 9: 187–208, 1988.
 175. Mak DO, Dang B, Weiner ID, Foskett JK, Westhoff CM. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol Renal Physiol 290: F297–F305, 2006.
 176. Makhanova N, Lee G, Takahashi N, Sequeira Lopez ML, Gomez RA, Kim HS, Smithies O. Kidney function in mice lacking aldosterone. Am J Physiol Renal Physiol 290: F61–F69, 2006.
 177. Marples D, Frokiaer J, Dorup J, Knepper MA, Nielsen S. Hypokalemia‐induced downregulation of aquaporin‐2 water channel expression in rat kidney medulla and cortex. J Clin Invest 97: 1960–1968, 1996.
 178. Marunaka Y. Hormonal and osmotic regulation of NaCl transport in renal distal nephron epithelium. Jpn J Physiol 47: 499–511, 1997.
 179. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone‐mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104: R19–R23, 1999.
 180. McDill BW, Li SZ, Kovach PA, Ding L, Chen F. Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin‐2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci U S A 103: 6952–6957, 2006.
 181. McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB Jr, Stokes JB, Welsh MJ, Williamson RA. Disruption of the beta subunit of the epithelial Na+ channel in mice: Hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 96: 1727–1731, 1999.
 182. Meneton P, Schultheis PJ, Greeb J, Nieman ML, Liu LH, Clarke LL, Duffy JJ, Doetschman T, Lorenz JN, Shull GE. Increased sensitivity to K+ deprivation in colonic H,K‐ATPase‐deficient mice. J Clin Invest 101: 536–542, 1998.
 183. Mistry AC, Chen G, Kato A, Nag K, Sands JM, Hirose S. A novel type of urea transporter, UT‐C, is highly expressed in proximal tubule of seawater eel kidney. Am J Physiol Renal Physiol 288: F455–F465, 2005.
 184. Moe SE, Sorbo JG, Sogaard R, Zeuthen T, Petter Ottersen O, Holen T. New isoforms of rat aquaporin‐4. Genomics 91: 367–377, 2008.
 185. Moeller HB, MacAulay N, Knepper MA, Fenton RA. Role of multiple phosphorylation sites in the COOH‐terminal tail of aquaporin‐2 for water transport: Evidence against channel gating. Am J Physiol Renal Physiol 296: F649–F657, 2009.
 186. Moeller HB, Praetorius J, Rutzler MR, Fenton RA. Phosphorylation of aquaporin‐2 regulates its endocytosis and protein‐protein interactions. Proc Natl Acad Sci U S A 107: 424–429, 2010.
 187. Morgan T, Berliner RW. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am J Physiol 215: 108–115, 1968.
 188. Morgan T, Sakai F, Berliner RW. In vitro permeability of medullary collecting ducts to water and urea. Am J Physiol 214: 574–581, 1968.
 189. Murillo‐Carretero MI, Ilundain AA, Echevarria M. Regulation of aquaporin mRNA expression in rat kidney by water intake. J Am Soc Nephrol 10: 696–703, 1999.
 190. Nakayama Y, Naruse M, Karakashian A, Peng T, Sands JM, Bagnasco SM. Cloning of the rat Slc14a2 gene and genomic organization of the UT‐A urea transporter. Biochim Biophys Acta 1518: 19–26, 2001.
 191. Nakhoul NL, Dejong H, Abdulnour‐Nakhoul SM, Boulpaep EL, Hering‐Smith K, Hamm LL. Characteristics of renal Rhbg as an NH4(+) transporter. Am J Physiol Renal Physiol 288: F170–F181, 2005.
 192. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin‐CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92: 1013–1017, 1995.
 193. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW. Cellular and subcellular immunolocalization of vasopressin‐regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90: 11663–11667, 1993.
 194. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: From molecules to medicine. Physiol Rev 82: 205–244., 2002.
 195. Nielsen S, Knepper MA. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Physiol 265: F204–F213, 1993.
 196. Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol 10: 647–663, 1999.
 197. Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P. CHIP28 water channels are localized in constitutively water‐permeable segments of the nephron. J Cell Biol 120: 371–383, 1993.
 198. Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, Knepper MA. Cellular and subcellular localization of the vasopressin‐ regulated urea transporter in rat kidney. Proc Natl Acad Sci U S A 93: 5495–5500, 1996.
 199. Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447: 549–565, 2004.
 200. Packer RK, Desai SS, Hornbuckle K, Knepper MA. Role of countercurrent multiplication in renal ammonium handling: Regulation of medullary ammonium accumulation. J Am Soc Nephrol 2: 77–83, 1991.
 201. Pannabecker TL, Henderson CS, Dantzler WH. Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla. Am J Physiol Renal Physiol 294: F1306–F1314, 2008.
 202. Park M, Li Q, Shcheynikov N, Zeng W, Muallem S. NaBC1 is a ubiquitous electrogenic Na+ ‐coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16: 331–341, 2004.
 203. Paunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Compensatory membrane expression of the V‐ATPase B2 subunit isoform in renal medullary intercalated cells of B1‐deficient mice. Am J Physiol Renal Physiol 293: F1915–F1926, 2007.
 204. Pearce D, Kleyman TR. Salt, sodium channels, and SGK1. J Clin Invest 117: 592–595, 2007.
 205. Pech V, Zheng W, Pham TD, Verlander JW, Wall SM. Angiotensin II activates H+‐ATPase in type A intercalated cells. J Am Soc Nephrol 19: 84–91, 2008.
 206. Pedersen SF. The Na+/H+ exchanger NHE1 in stress‐induced signal transduction: Implications for cell proliferation and cell death. Pflugers Arch 452: 249–259, 2006.
 207. Picard N, Eladari D, El Moghrabi S, Planes C, Bourgeois S, Houillier P, Wang Q, Burnier M, Deschenes G, Knepper MA, Meneton P, Chambrey R. Defective ENaC processing and function in tissue kallikrein‐deficient mice. J Biol Chem 283: 4602–4611, 2008.
 208. Pihakaski‐Maunsbach K, Vorum H, Honore B, Tokonabe S, Frokiaer J, Garty H, Karlish SJ, Maunsbach AB. Locations, abundances, and possible functions of FXYD ion transport regulators in rat renal medulla. Am J Physiol Renal Physiol 291: F1033–F1044, 2006.
 209. Praetorius J, Kim YH, Bouzinova EV, Frische S, Rojek A, Aalkjaer C, Nielsen S. NBCn1 is a basolateral Na+‐HCO3− cotransporter in rat kidney inner medullary collecting ducts. Am J Physiol Renal Physiol 286: F903–F912, 2004.
 210. Pushkin A, Abuladze N, Lee I, Newman D, Hwang J, Kurtz I. Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem 274: 16569–16575, 1999.
 211. Pushkin A, Abuladze N, Newman D, Lee I, Xu G, Kurtz I. Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. Biochim Biophys Acta 1493: 215–218, 2000.
 212. Quentin F, Eladari D, Cheval L, Lopez C, Goossens D, Colin Y, Cartron JP, Paillard M, Chambrey R. RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol 14: 545–554, 2003.
 213. Reif MC, Troutman SL, Schafer JA. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int 26: 725–732, 1984.
 214. Reif MC, Troutman SL, Schafer JA. Sodium transport by rat cortical collecting tubule. Effects of vasopressin and desoxycorticosterone. J Clin Invest 77: 1291–1298, 1986.
 215. Reilly RF, Ellison DH. Mammalian distal tubule: Physiology, pathophysiology, and molecular anatomy. Physiol Rev 80: 277–313, 2000.
 216. Renkema KY, Velic A, Dijkman HB, Verkaart S, Van Der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG. The calcium‐sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 20: 1705–1713, 2009.
 217. Ribeiro ML, Alloisio N, Almeida H, Gomes C, Texier P, Lemos C, Mimoso G, Morle L, Bey‐Cabet F, Rudigoz RC, Delaunay J, Tamagnini G. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood 96: 1602–1604, 2000.
 218. Robinson RR, Owen EE. Intrarenal distribution of ammonia during diuresis and antidiuresis. Am J Physiol 208: 1129–1134, 1965.
 219. Rocha AS, Kudo LH. Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct. Kidney Int 22: 485–491, 1982.
 220. Rocha AS, Kudo LH. Atrial peptide and cGMP effects on NaCl transport in inner medullary collecting duct. Am J Physiol 259: F258–F268, 1990a.
 221. Rocha AS, Kudo LH. Factors governing sodium and chloride transport across the inner medullary collecting duct. Kidney Int 38: 654–667, 1990b.
 222. Rojek A, Fuchtbauer EM, Kwon TH, Frokiaer J, Nielsen S. Severe urinary concentrating defect in renal collecting duct‐selective AQP2 conditional‐knockout mice. Proc Natl Acad Sci U S A 103: 6037–6042, 2006.
 223. Rossier BC, Stutts MJ. Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71: 361–379, 2009.
 224. Roth DE, Venta PJ, Tashian RE, Sly WS. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A 89: 1804–1808, 1992.
 225. Rothenberger F, Velic A, Stehberger PA, Kovacikova J, Wagner CA. Angiotensin II stimulates vacuolar H+ ‐ATPase activity in renal acid‐secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 18: 2085–2093, 2007.
 226. Rotin D, Schild L. ENaC and its regulatory proteins as drug targets for blood pressure control. Curr Drug Targets 9: 709–716, 2008.
 227. Rozansky DJ. The role of aldosterone in renal sodium transport. Semin Nephrol 26: 173–181, 2006.
 228. Rubera I, Loffing J, Palmer LG, Frindt G, Fowler‐Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC. Collecting duct‐specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112: 554–565, 2003.
 229. Ruffieux‐Daidie D, Poirot O, Boulkroun S, Verrey F, Kellenberger S, Staub O. Deubiquitylation regulates activation and proteolytic cleavage of ENaC. J Am Soc Nephrol 19: 2170–2180, 2008.
 230. Sabolic I, Brown D, Gluck SL, Alper SL. Regulation of AE1 anion exchanger and H(+)‐ATPase in rat cortex by acute metabolic acidosis and alkalosis. Kidney Int 51: 125–137, 1997.
 231. Sands JM. Mammalian urea transporters. Annu Rev Physiol 9: 9, 2003.
 232. Sands JM, Bichet DG. Nephrogenic diabetes insipidus. Ann Intern Med 144: 186–194, 2006.
 233. Sands JM, Knepper MA. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest 79: 138–147, 1987.
 234. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW. Apical extracellular calcium/polyvalent cation‐sensing receptor regulates vasopressin‐elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99: 1399–1405, 1997.
 235. Sands JM, Nonoguchi H, Knepper MA. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253: F823–F832, 1987.
 236. Sardet C, Franchi A, Pouyssegur J. Molecular cloning, primary structure, and expression of the human growth factor‐activatable Na+/H+ antiporter. Cell 56: 271–280, 1989.
 237. Sassani P, Pushkin A, Gross E, Gomer A, Abuladze N, Dukkipati R, Carpenito G, Kurtz I. Functional characterization of NBC4: A new electrogenic sodium‐bicarbonate cotransporter. Am J Physiol Cell Physiol 282: C408–C416, 2002.
 238. Saxena SK, Kaur S. Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 351: 582–587, 2006.
 239. Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS. Defective proximal tubular fluid reabsorption in transgenic aquaporin‐1 null mice. Proc Natl Acad Sci U S A 95: 9660–9664, 1998.
 240. Schrier RW, Cadnapaphornchai MA. Renal aquaporin water channels: From molecules to human disease. Prog Biophys Mol Biol 81: 117–131, 2003.
 241. Schuster VL, Stokes JB. Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol 253: F203–212, 1987.
 242. Schwartz GJ, Al‐Awqati Q. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75: 1638–1644, 1985.
 243. Sebastian A, McSherry E, Morris RC Jr. Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest 58: 454–469, 1976.
 244. Sebastian A, Sutton JM, Hulter HN, Schambelan M, Poler SM. Effect of mineralocorticoid replacement therapy on renal acid‐base homeostasis in adrenalectomized patients. Kidney Int 18: 762–773, 1980.
 245. Seshadri RM, Klein JD, Kozlowski S, Sands JM, Kim YH, Han KH, Handlogten ME, Verlander JW, Weiner ID. Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 290: F397–F408, 2006.
 246. Seshadri RM, Klein JD, Smith T, Sands JM, Handlogten ME, Verlander JW, Weiner ID. Changes in subcellular distribution of the ammonia transporter, Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 290: F1443–F1452, 2006.
 247. Shannon JA. Glomerular filtration and urea excretion in relation to urine flow in the dog. Am J Physiol 117: 206–225, 1936.
 248. Shannon JA. Urea excretion in the normal dog during forced diuresis. Am J Physiol 122: 782–787, 1938.
 249. Shi PP, Cao XR, Qu J, Volk KA, Kirby P, Williamson RA, Stokes JB, Yang B. Nephrogenic diabetes insipidus in mice caused by deleting COOH‐terminal tail of aquaporin‐2. Am J Physiol Renal Physiol 292: F1334–F1344, 2007.
 250. Shi PP, Cao XR, Sweezer EM, Kinney TS, Williams NR, Husted RF, Nair R, Weiss RM, Williamson RA, Sigmund CD, Snyder PM, Staub O, Stokes JB, Yang B. Salt‐sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4‐2. Am J Physiol Renal Physiol 295: F462–F470, 2008.
 251. Shimkets RA, Lifton RP, Canessa CM. The activity of the epithelial sodium channel is regulated by clathrin‐mediated endocytosis. J Biol Chem 272: 25537–25541, 1997.
 252. Silva P, Ross BD, Charney AN, Besarab A, Epstein FH. Potassium transport by the isolated perfused kidney. J Clin Invest 56: 862–869, 1975.
 253. Snyder PM. Minireview: Regulation of epithelial Na+ channel trafficking. Endocrinology 146: 5079–5085, 2005.
 254. Soleimani M, Singh G, Bizal GL, Gullans SR, McAteer JA. Na+/H+ exchanger isoforms NHE‐2 and NHE‐1 in inner medullary collecting duct cells. Expression, functional localization, and differential regulation. J Biol Chem 269: 27973–27978, 1994.
 255. Song HK, Kim WY, Lee HW, Park EY, Han KH, Nielsen S, Madsen KM, Kim J. Origin and fate of pendrin‐positive intercalated cells in developing mouse kidney. J Am Soc Nephrol 18: 2672–2682, 2007.
 256. Stanton BA. Characterization of apical and basolateral membrane conductances of rat inner medullary collecting duct. Am J Physiol 256: F862–F868, 1989.
 257. Star RA, Nonoguchi H, Balaban R, Knepper MA. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81: 1879–1888, 1988.
 258. Stehberger PA, Shmukler BE, Stuart‐Tilley AK, Peters LL, Alper SL, Wagner CA. Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl−/HCO3− exchanger (slc4a1). J Am Soc Nephrol 18: 1408–1418, 2007.
 259. Stephenson JL. Concentration of urine in a central core model of the renal counterflow system. Kidney Int 2: 85–94, 1972.
 260. Stewart GS, Fenton RA, Wang W, Kwon TH, White SJ, Collins VM, Cooper G, Nielsen S, Smith CP. The basolateral expression of mUT‐A3 in the mouse kidney. Am J Physiol Renal Physiol 286: F979–F987, 2004.
 261. Stewart GS, O'Brien JH, Smith CP. Ubiquitination regulates the plasma membrane expression of renal UT‐A urea transporters. Am J Physiol Cell Physiol 295: C121–C129, 2008.
 262. Stockand JD. Vasopressin regulation of renal sodium excretion. Kidney Int 78: 849–856, 2010.
 263. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al‐Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li Volti G, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez Soriano J, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39: 796–803, 2002.
 264. Strange K, Willingham MC, Handler JS, Harris HW Jr. Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J Membr Biol 103: 17–28, 1988.
 265. Sun AM, Liu Y, Centracchio J, Dworkin LD. Expression of Na+/H+ exchanger isoforms in inner segment of inner medullary collecting duct. J Membr Biol 164: 293–300, 1998.
 266. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20: 299–310, 2009.
 267. Teng‐umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol 7: 260–274, 1996.
 268. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S. Distribution of aquaporin‐4 water channel expression within rat kidney. Am J Physiol 269: F775–F785, 1995.
 269. Terris J, Ecelbarger CA, Nielsen S, Knepper MA. Long‐term regulation of four renal aquaporins in rats. Am J Physiol 271: F414–F422, 1996.
 270. Terris JM, Knepper MA, Wade JB. UT‐A3: Localization and characterization of an additional urea transporter isoform in the IMCD. Am J Physiol Renal Physiol 280: F325–F332, 2001.
 271. Tessitore N, Ortalda V, Fabris A, D'Angelo A, Rugiu C, Oldrizzi L, Lupo A, Valvo E, Gammaro L, Loschiavo C, et al. Renal acidification defects in patients with recurrent calcium nephrolithiasis. Nephron 41: 325–332, 1985.
 272. Therien AG, Goldshleger R, Karlish SJ, Blostein R. Tissue‐specific distribution and modulatory role of the gamma subunit of the Na,K‐ATPase. J Biol Chem 272: 32628–32634, 1997.
 273. Ullrich KJ, Papavassiliou F. Sodium reabsorption in the papillary collecting duct of rats. Effect of adrenalectomy, low Na+ diet, acetazolamide, HCO‐3‐free solutions and of amiloride. Pflugers Arch 379: 49–52, 1979.
 274. Valenti G, Procino G, Tamma G, Carmosino M, Svelto M. Minireview: Aquaporin 2 trafficking. Endocrinology 146: 5063–5070, 2005.
 275. Verlander JW, Madsen KM, Galla JH, Luke RG, Tisher CC. Response of intercalated cells to chloride depletion metabolic alkalosis. Am J Physiol 262: F309–F319, 1992.
 276. Verlander JW, Madsen KM, Low PS, Allen DP, Tisher CC. Immunocytochemical localization of band 3 protein in the rat collecting duct. Am J Physiol 255: F115–F125, 1988.
 277. Verlander JW, Miller RT, Frank AE, Royaux IE, Kim YH, Weiner ID. Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am J Physiol Renal Physiol 284: F323–F337, 2003.
 278. Vinciguerra M, Mordasini D, Vandewalle A, Feraille E. Hormonal and nonhormonal mechanisms of regulation of the NA,K‐pump in collecting duct principal cells. Semin Nephrol 25: 312–321, 2005.
 279. Virkki LV, Wilson DA, Vaughan‐Jones RD, Boron WF. Functional characterization of human NBC4 as an electrogenic Na+‐HCO cotransporter (NBCe2). Am J Physiol Cell Physiol 282: C1278–C1289, 2002.
 280. Vithana EN, Morgan P, Sundaresan P, Ebenezer ND, Tan DT, Mohamed MD, Anand S, Khine KO, Venkataraman D, Yong VH, Salto‐Tellez M, Venkatraman A, Guo K, Hemadevi B, Srinivasan M, Prajna V, Khine M, Casey JR, Inglehearn CF, Aung T. Mutations in sodium‐borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nat Genet 38: 755–757, 2006.
 281. Vorum H, Kwon TH, Fulton C, Simonsen B, Choi I, Boron W, Maunsbach AB, Nielsen S, Aalkjaer C. Immunolocalization of electroneutral Na‐HCO(3)(−) cotransporter in rat kidney. Am J Physiol Renal Physiol 279: F901–F909, 2000.
 282. Wald H, Goldstein O, Asher C, Yagil Y, Garty H. Aldosterone induction and epithelial distribution of CHIF. Am J Physiol 271: F322–F329, 1996.
 283. Wall SM, Davis BS, Hassell KA, Mehta P, Park SJ. In rat tIMCD, NH4+ uptake by Na+‐K+‐ATPase is critical to net acid secretion during chronic hypokalemia. Am J Physiol 277: F866–F874, 1999.
 284. Wall SM, Fischer MP. Contribution of the Na(+)‐K(+)‐2Cl(−) cotransporter (NKCC1) to transepithelial transport of H(+), NH(4)(+), K(+), and Na(+) in rat outer medullary collecting duct. J Am Soc Nephrol 13: 827–835, 2002.
 285. Wall SM, Han JS, Chou CL, Knepper MA. Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262: F989–F998, 1992.
 286. Wall SM, Knepper MA, Hassell KA, Fischer MP, Shodeinde A, Shin W, Pham TD, Meyer JW, Lorenz JN, Beierwaltes WH, Dietz JR, Shull GE, Kim YH. Hypotension in NKCC1 null mice: Role of the kidneys. Am J Physiol Renal Physiol 290: F409–F416, 2006.
 287. Walsh S, Borgese F, Gabillat N, Unwin R, Guizouarn H. Cation transport activity of anion exchanger 1 mutations found in inherited distal renal tubular acidosis. Am J Physiol Renal Physiol 295: F343–F350, 2008.
 288. Wang W, Praetorius J, Li C, Praetorius HA, Kwon TH, Frokiaer J, Nielsen S. Vacuolar H+‐ATPase expression is increased in acid‐secreting intercalated cells in kidneys of rats with hypercalcaemia‐induced alkalosis. Acta Physiol (Oxf) 189: 359–368, 2007.
 289. Wang WH, Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458: 157–168, 2009.
 290. Wang Y, Klein JD, Blount MA, Martin CF, Kent KJ, Pech V, Wall SM, Sands JM. Epac regulates UT‐A1 to increase urea transport in inner medullary collecting ducts. J Am Soc Nephrol 20: 2018–2024, 2009.
 291. Weiner ID, Verlander JW. Renal and hepatic expression of the ammonium transporter proteins, Rh B Glycoprotein and Rh C Glycoprotein. Acta Physiol Scand 179: 331–338, 2003.
 292. Wiemuth D, Ke Y, Rohlfs M, McDonald FJ. Epithelial sodium channel (ENaC) is multi‐ubiquitinated at the cell surface. Biochem J 405: 147–155, 2007.
 293. Wilson DR, Honrath U, Sonnenberg H. Thiazide diuretic effect on medullary collecting duct function in the rat. Kidney Int 23: 711–716, 1983.
 294. Winter C, Schulz N, Giebisch G, Geibel JP, Wagner CA. Nongenomic stimulation of vacuolar H+‐ATPases in intercalated renal tubule cells by aldosterone. Proc Natl Acad Sci U S A 101: 2636–2641, 2004.
 295. Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D. Impaired renal Na(+) retention in the sgk1‐knockout mouse. J Clin Invest 110: 1263–1268, 2002.
 296. Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Neonatal mortality in an aquaporin‐2 knock‐in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276: 2775–2779, 2001.
 297. Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1‐5 and MIP determined quantitatively by expression of epitope‐tagged constructs in Xenopus oocytes. J Biol Chem 272: 16140–16146, 1997.
 298. Yang B, Zhao D, Qian L, Verkman AS. Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin‐2 gene deletion. Am J Physiol Renal Physiol 291: F465–F472, 2006.
 299. Yip KP. Coupling of vasopressin‐induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct. J Physiol 538: 891–899, 2002.
 300. Yip KP. Epac mediated Ca2+ mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 291: F882–F890, 2006.
 301. Yip KP, Kurtz I. NH3 permeability of principal cells and intercalated cells measured by confocal fluorescence imaging. Am J Physiol 269: F545–F550, 1995.
 302. Yu MJ, Pisitkun T, Wang G, Shen RF, Knepper MA. LC‐MS/MS analysis of apical and basolateral plasma membranes of rat renal collecting duct cells. Mol Cell Proteomics 5: 2131–2145, 2006.
 303. Zhang C, Sands JM, Klein JD. Vasopressin rapidly increases phosphorylation of UT‐A1 urea transporter in rat IMCDs through PKA. Am J Physiol Renal Physiol 282: F85–F90, 2002.
 304. Zhou R, Patel SV, Snyder PM. Nedd4‐2 catalyzes ubiquitination and degradation of cell surface ENaC. J Biol Chem 282: 20207–20212, 2007.
 305. Zidi‐Yahiaoui N, Mouro‐Chanteloup I, D'Ambrosio AM, Lopez C, Gane P, Le van Kim C, Cartron JP, Colin Y, Ripoche P. Human Rhesus B and Rhesus C glycoproteins: Properties of facilitated ammonium transport in recombinant kidney cells. Biochem J 391: 33–40, 2005.
 306. Zwang NA, Hoffert JD, Pisitkun T, Moeller HB, Fenton RA, Knepper MA. Identification of phosphorylation‐dependent binding partners of aquaporin‐2 using protein mass spectrometry. J Proteome Res 8: 1540–1554, 2009.

Related Articles:

Principles of Electrolyte Transport Across Plasma Membranes of Renal Tubular Cells
Regulation of Transport in the Connecting Tubule and Cortical Collecting Duct

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert A. Fenton, Jeppe Praetorius. Molecular Physiology of the Medullary Collecting Duct. Compr Physiol 2011, 1: 1031-1056. doi: 10.1002/cphy.c100064