1. |
Accardi A,
Miller C.
Secondary active transport mediated by a prokaryotic homologue of ClC Cl− channels.
Nature
427:
803‐807,
2004.
|
2. |
Acharya R,
Carnevale V,
Fiorin G,
Levine BG,
Polishchuk AL,
Balannik V,
Samish I,
Lamb RA,
Pinto LH,
DeGrado WF,
Klein ML.
Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus.
Proc Natl Acad Sci U S A
107:
15075‐15080,
2010.
|
3. |
Agmon N.
The Grotthuss mechanism.
Chem Phys Lett
244:
456‐462,
1995.
|
4. |
Agre P,
King LS,
Yasui M,
Guggino WB,
Ottersen OP,
Fujiyoshi Y,
Engel A,
Nielsen S.
Aquaporin water channels–from atomic structure to clinical medicine.
J Physiol
542:
3‐16,
2002.
|
5. |
Ahmed Z,
Connor JA.
Intracellular pH changes induced by calcium influx during electrical activity in molluscan neurons.
J Gen Physiol
75:
403‐426,
1980.
|
6. |
Akeson M,
Deamer DW.
Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases?
Biophys J
60:
101‐109,
1991.
|
7. |
Alabi AA,
Bahamonde MI,
Jung HJ,
Kim JI,
Swartz KJ.
Portability of paddle motif function and pharmacology in voltage sensors.
Nature
450:
370‐375,
2007.
|
8. |
Babcock DF,
Pfeiffer DR.
Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage‐dependent and pH‐sensitive mechanisms.
J Biol Chem
262:
15041‐15047,
1987.
|
9. |
Babcock DF,
Rufo GA, Jr,
Lardy HA.
Potassium‐dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm.
Proc Natl Acad Sci U S A
80:
1327‐1331,
1983.
|
10. |
Babior BM,
Kipnes RS,
Curnutte JT.
Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent.
J Clin Invest
52:
741‐744,
1973.
|
11. |
Bachvaroff TR,
Place AR.
From stop to start: Tandem gene arrangement, copy number and trans‐splicing sites in the dinoflagellate Amphidinium carterae.
PLoS One
3:
e2929,
2008.
|
12. |
Baldridge CW,
Gerard RW.
The extra respiration of phagocytosis.
Am J Physiol
103:
235‐236,
1932.
|
13. |
Ballantine D,
Abbott BC.
Toxic marine flagellates; their occurrence and physiological effects on animals.
J Gen Microbiol
16:
274‐281,
1957.
|
14. |
Bánfi B,
Maturana A,
Jaconi S,
Arnaudeau S,
Laforge T,
Sinha B,
Ligeti E,
Demaurex N,
Krause KH.
A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH‐1.
Science
287:
138‐142,
2000.
|
15. |
Bánfi B,
Molnár G,
Maturana A,
Steger K,
Hegedûs B,
Demaurex N,
Krause KH.
A Ca2+‐activated NADPH oxidase in testis, spleen, and lymph nodes.
J Biol Chem
276:
37594‐37601,
2001.
|
16. |
Bánfi B,
Schrenzel J,
Nüsse O,
Lew DP,
Ligeti E,
Krause KH,
Demaurex N.
A novel H+ conductance in eosinophils: Unique characteristics and absence in chronic granulomatous disease.
J Exp Med
190:
183‐194,
1999.
|
17. |
Bankers‐Fulbright JL,
Gleich GJ,
Kephart GM,
Kita H,
O'Grady SM.
Regulation of eosinophil membrane depolarization during NADPH oxidase activation.
J Cell Sci
116:
3221‐3226,
2003.
|
18. |
Bankers‐Fulbright JL,
Kita H,
Gleich GJ,
O'Grady SM.
Regulation of human eosinophil NADPH oxidase activity: a central role for PKCδ.
J Cell Physiol
189:
306‐315,
2001. |
19. |
Barish ME,
Baud C.
A voltage‐gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma.
J Physiol
352:
243‐263,
1984.
|
20. |
Baud C,
Barish ME.
Changes in membrane hydrogen and sodium conductances during progesterone‐induced maturation of Ambystoma oocytes.
Dev Biol
105:
423‐434,
1984.
|
21. |
Beaufort L,
Probert I,
de Garidel‐Thoron T,
Bendif EM,
Ruiz‐Pino D,
Metzl N,
Goyet C,
Buchet N,
Coupel P,
Grelaud M,
Rost B,
Rickaby RE,
de Vargas C.
Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.
Nature
476:
80‐83,
2011.
|
22. |
Bergholtz T,
Daubjerg N,
Moestrup Ø,
Fernández‐Tejedor M.
On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear‐encoded LSU rDNA, and pigment composition.
J Phycol
42:
170‐193,
2005.
|
23. |
Bernal JD,
Fowler RH.
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions.
J Chem Phys
1:
515‐548,
1933.
|
24. |
Bernheim L,
Krause RM,
Baroffio A,
Hamann M,
Kaelin A,
Bader CR.
A voltage‐dependent proton current in cultured human skeletal muscle myotubes.
J Physiol
470:
313‐333,
1993.
|
25. |
Bode VC,
Hastings JW.
The purification and properties of the bioluminescent system in Gonyaulax polyedra.
Arch Biochem Biophys
103:
488‐499,
1963.
|
26. |
Borregaard N,
Schwartz JH,
Tauber AI.
Proton secretion by stimulated neutrophils. Significance of hexose monophosphate shunt activity as source of electrons and protons for the respiratory burst.
J Clin Invest
74:
455‐459,
1984.
|
27. |
Brändén G,
Gennis RB,
Brzezinski P.
Transmembrane proton translocation by cytochrome c oxidase.
Biochim Biophys Acta
1757:
1052‐1063,
2006.
|
28. |
Burykin A,
Warshel A.
What really prevents proton transport through aquaporin? Charge self‐energy versus proton wire proposals.
Biophys J
85:
3696‐3706,
2003.
|
29. |
Byerly L,
Meech R,
Moody W, Jr
Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis.
J Physiol
351:
199‐216,
1984.
|
30. |
Byerly L,
Suen Y.
Characterization of proton currents in neurones of the snail, Lymnaea stagnalis.
J Physiol
413:
75‐89,
1989.
|
31. |
Cameron AR,
Nelson J,
Forman HJ.
Depolarization and increased conductance precede superoxide release by concanavalin A‐stimulated rat alveolar macrophages.
Proc Natl Acad Sci U S A
80:
3726‐3728,
1983.
|
32. |
Capasso M,
Bhamrah MK,
Henley T,
Boyd RS,
Langlais C,
Cain K,
Dinsdale D,
Pulford K,
Khan M,
Musset B,
Cherny VV,
Morgan D,
Gascoyne RD,
Vigorito E,
DeCoursey TE,
MacLennan IC,
Dyer MJ.
HVCN1 modulates BCR signal strength via regulation of BCR‐dependent generation of reactive oxygen species.
Nat Immunol
11:
265‐272,
2010.
|
33. |
Chakrabarti N,
Tajkhorshid E,
Roux B,
Pomès R.
Molecular basis of proton blockage in aquaporins.
Structure
12:
65‐74,
2004.
|
34. |
Chang JJ.
Electrophysiological studies of a non‐luminescent form of the dinoflagellate Noctiluca miliaris.
J Cell Comp Physiol
56:
33‐42,
1960.
|
35. |
Cheng YM,
Kelly T,
Church J.
Potential contribution of a voltage‐activated proton conductance to acid extrusion from rat hippocampal neurons.
Neuroscience
151:
1084‐1098,
2008.
|
36. |
Cherny VV,
DeCoursey TE.
pH‐dependent inhibition of voltage‐gated H+ currents in rat alveolar epithelial cells by Zn2+ and other divalent cations.
J Gen Physiol
114:
819‐838,
1999.
|
37. |
Cherny VV,
Henderson LM,
Xu W,
Thomas LL,
DeCoursey TE.
Activation of NADPH oxidase‐related proton and electron currents in human eosinophils by arachidonic acid.
J Physiol
535:
783‐794,
2001.
|
38. |
Cherny VV,
Markin VS,
DeCoursey TE.
The voltage‐activated hydrogen ion conductance in rat alveolar epithelial cells is determined by the pH gradient.
J Gen Physiol
105:
861‐896,
1995.
|
39. |
Cherny VV,
Murphy R,
Sokolov V,
Levis RA,
DeCoursey TE.
Properties of single voltage‐gated proton channels in human eosinophils estimated by noise analysis and by direct measurement.
J Gen Physiol
121:
615‐628,
2003.
|
40. |
Cherny VV,
Thomas LL,
DeCoursey TE.
Voltage‐gated proton currents in human basophils.
Biol Membrany
18:
458‐465,
2001.
|
41. |
Chernyshev A,
Cukierman S.
Thermodynamic view of activation energies of proton transfer in various gramicidin A channels.
Biophys J
82:
182‐192,
2002.
|
42. |
Chernyshev A,
Pomès R,
Cukierman S.
Kinetic isotope effects of proton transfer in aqueous and methanol containing solutions, and in gramicidin A channels.
Biophys Chem
103:
179‐190,
2003.
|
43. |
Chizhmakov IV,
Geraghty FM,
Ogden DC,
Hayhurst A,
Antoniou M,
Hay AJ.
Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells.
J Physiol
494:
329‐336,
1996.
|
44. |
Cho DY,
Hajighasemi M,
Hwang PH,
Illek B,
Fischer H.
Proton secretion in freshly excised sinonasal mucosa from asthma and sinusitis patients.
Am J Rhinol Allergy
23:
e10‐e13,
2009.
|
45. |
Cohen HJ,
Newburger PE,
Chovaniec ME,
Whitin JC,
Simons ER.
Opsonized zymosan‐stimulated granulocytes‐activation and activity of the superoxide‐generating system and membrane potential changes.
Blood
58:
975‐982,
1981.
|
46. |
Cole KS,
Moore JW.
Potassium ion current in the squid giant axon: Dynamic characteristic.
Biophys J
1:
1‐14,
1960.
|
47. |
Conway BE,
Bockris JOM,
Linton H.
Proton conductance and the existence of the H3O. ion.
J Chem Phys
24:
834‐850,
1956.
|
48. |
Cukierman S.
Flying protons in linked gramicidin A channels.
Israel J Chem
39:
419‐426,
1999.
|
49. |
Danneel H.
Notiz über Ionengeschwindigkeiten.
Z Elktrochem Angew P
11:
249‐252,
1905.
|
50. |
de Boer M,
Roos D.
Metabolic comparison between basophils and other leukocytes from human blood.
J Immunol
136:
3447‐3454,
1986.
|
51. |
de Groot BL,
Frigato T,
Helms V,
Grubmüller H.
The mechanism of proton exclusion in the aquaporin‐1 water channel.
J Mol Biol
333:
279‐293,
2003.
|
52. |
de Grotthuss CJ.
Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity.
Biochim Biophys Acta
1757:
871‐875,
2006.
|
53. |
de Grotthuss CJT.
Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l’électricité galvanique.
Annales de Chimie
LVIII:
54‐74,
1806.
|
54. |
DeCoursey TE.
Hydrogen ion currents in rat alveolar epithelial cells.
Biophys J
60:
1243‐1253,
1991.
|
55. |
DeCoursey TE.
Hypothesis: Do voltage‐gated H+ channels in alveolar epithelial cells contribute to CO2 elimination by the lung?
Am J Physiol Cell Physiol
278:
C1‐C10,
2000.
|
56. |
DeCoursey TE.
Voltage‐gated proton channels and other proton transfer pathways.
Physiol Rev
83:
475‐579,
2003.
|
57. |
DeCoursey TE.
Voltage‐gated proton channels: What's next?
J Physiol
586:
5305‐5324,
2008.
|
58. |
DeCoursey TE.
Voltage‐gated proton channels find their dream job managing the respiratory burst in phagocytes.
Physiology (Bethesda)
25:
27‐40,
2010.
|
59. |
DeCoursey TE,
Chandy KG,
Gupta S,
Cahalan MD.
Voltage‐gated K+ channels in human T lymphocytes: A role in mitogenesis?
Nature
307:
465‐468,
1984.
|
60. |
DeCoursey TE,
Cherny VV.
Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils.
Biophys J
65:
1590‐1598,
1993.
|
61. |
DeCoursey TE,
Cherny VV.
Na+‐H+ antiport detected through hydrogen ion currents in rat alveolar epithelial cells and human neutrophils.
J Gen Physiol
103:
755‐785,
1994.
|
62. |
DeCoursey TE,
Cherny VV.
Voltage‐activated hydrogen ion currents.
J Membr Biol
141:
203‐223,
1994.
|
63. |
DeCoursey TE,
Cherny VV.
Voltage‐activated proton currents in membrane patches of rat alveolar epithelial cells.
J Physiol
489:
299‐307,
1995.
|
64. |
DeCoursey TE,
Cherny VV.
Effects of buffer concentration on voltage‐gated H+ currents: Does diffusion limit the conductance?
Biophys J
71:
182‐193,
1996.
|
65. |
DeCoursey TE,
Cherny VV.
Voltage‐activated proton currents in human THP‐1 monocytes.
J Membr Biol
152:
131‐140,
1996.
|
66. |
DeCoursey TE,
Cherny VV.
Deuterium isotope effects on permeation and gating of proton channels in rat alveolar epithelium.
J Gen Physiol
109:
415‐434,
1997.
|
67. |
DeCoursey TE,
Cherny VV.
Temperature dependence of voltage‐gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes.
J Gen Physiol
112:
503‐522,
1998.
|
68. |
DeCoursey TE,
Cherny VV,
DeCoursey AG,
Xu W,
Thomas LL.
Interactions between NADPH oxidase‐related proton and electron currents in human eosinophils.
J Physiol
535:
767‐781,
2001.
|
69. |
DeCoursey TE,
Cherny VV,
Morgan D,
Katz BZ,
Dinauer MC.
The gp91phox component of NADPH oxidase is not the voltage‐gated proton channel in phagocytes, but it helps.
J Biol Chem
276:
36063‐36066,
2001.
|
70. |
DeCoursey TE,
Cherny VV,
Zhou W,
Thomas LL.
Simultaneous activation of NADPH oxidase‐related proton and electron currents in human neutrophils.
Proc Natl Acad Sci U S A
97:
6885‐6889,
2000.
|
71. |
DeCoursey TE,
Jacobs ER,
Silver MR.
Potassium currents in rat type II alveolar epithelial cells.
J Physiol
395:
487‐505,
1988.
|
72. |
DeCoursey TE,
Ligeti E.
Regulation and termination of NADPH oxidase activity.
Cell Mol Life Sci
62:
2173‐2193,
2005.
|
73. |
DeCoursey TE,
Morgan D,
Cherny VV.
The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels.
Nature
422:
531‐534,
2003.
|
74. |
Deeds JR,
Terlizzi DE,
Adolf JE,
Stoecker DK,
Place AR.
Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum)(Dinophyceae)‐a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility.
Harmful Algae
1:
169‐189,
2002.
|
75. |
Demaurex N,
Downey GP,
Waddell TK,
Grinstein S.
Intracellular pH regulation during spreading of human neutrophils.
J Cell Biol
133:
1391‐1402,
1996.
|
76. |
Demaurex N,
Grinstein S,
Jaconi M,
Schlegel W,
Lew DP,
Krause KH.
Proton currents in human granulocytes: Regulation by membrane potential and intracellular pH.
J Physiol
466:
329‐344,
1993.
|
77. |
Demaurex N,
Petheõ GL.
Electron and proton transport by NADPH oxidases.
Philos Trans R Soc Lond B Biol Sci
360:
2315‐2325,
2005.
|
78. |
DeSa R,
Hastings JW.
The characterization of scintillons. Bioluminescent particles from the marine dinoflagellate, Gonyaulax polyedra.
J Gen Physiol
51:
105‐122,
1968.
|
79. |
Dinauer MC,
Nauseef WM,
Newburger PEI.
Inherited disorders of oxidative phagocyte killing. In:
Scriver CR,
Beaudet AL,
Sly WS,
Valle D, editors.
The Metabolic and Molecular Bases of Inherited Disease. 8th ed. http://www.ommbid.com/, New York, McGraw‐Hill, 2001, Chap.189.
New York:
McGraw‐Hill Inc,
Updated October, 2009.
|
80. |
Eckert R.
Excitation and luminescence in Noctiluca miliaris. In:
Johnson FH,
Haneda Y, editors
Bioluminescence in Progress,
Princeton, NJ:
Princeton University Press,
1966,
p. 269‐300.
|
81. |
Eckert R. II.
Asynchronous flash initiation by a propagated triggering potential.
Science
147:
1142‐1145,
1965.
|
82. |
Eckert R,
Reynolds GT.
The subcellular origin of bioluminescence in Noctiluca miliaris.
J Gen Physiol
50:
1429‐1458,
1967.
|
83. |
Eckert R,
Sibaoka T.
The flash‐triggering action potential of the luminescent dinoflagellate Noctiluca.
J Gen Physiol
52:
258‐282,
1968.
|
84. |
Effros RM,
Mason G,
Silverman P.
Asymmetric distribution of carbonic anhydrase in the alveolar‐capillary barrier.
J Appl Physiol
51:
190‐193,
1981.
|
85. |
Effros RM,
Olson L,
Lin W,
Audi S,
Hogan G,
Shaker R,
Hoagland K,
Foss B.
Resistance of the pulmonary epithelium to movement of buffer ions.
Am J Physiol Lung Cell Mol Physiol
285:
L476‐L483,
2003.
|
86. |
Eigen M,
De Maeyer L.
Self‐dissociation and protonic charge transport in water and ice.
Proc R Soc Lond A
247:
505‐533,
1958.
|
87. |
El Chemaly A,
Guinamard R,
Demion M,
Fares N,
Jebara V,
Faivre JF,
Bois P.
A voltage‐activated proton current in human cardiac fibroblasts.
Biochem Biophys Res Commun
340:
512‐516,
2006.
|
88. |
El Chemaly A,
Okochi Y,
Sasaki M,
Arnaudeau S,
Okamura Y,
Demaurex N.
VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification.
J Exp Med
207:
129‐139,
2010.
|
89. |
Elinder F,
Århem P.
Metal ion effects on ion channel gating.
Q Rev Biophys
36:
373‐427,
2004.
|
90. |
Femling JK,
Cherny VV,
Morgan D,
Rada B,
Davis AP,
Czirják G,
Enyedi P,
England SK,
Moreland JG,
Ligeti E,
Nauseef WM,
DeCoursey TE.
The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels.
J Gen Physiol
127:
659‐672,
2006.
|
91. |
Fischer H.
Function of proton channels in lung epithelia.
WIREs Membr Transp Signal
2011. doi: 10.1002/wmts.17 (In press)
|
92. |
Fischer H,
Gonzales LK,
Kolla V,
Schwarzer C,
Miot F,
Illek B,
Ballard PL.
Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells.
Am J Physiol Lung Cell Mol Physiol
292:
L1506‐L1514,
2007.
|
93. |
Fischer H,
Widdicombe JH.
Mechanisms of acid and base secretion by the airway epithelium.
J Membr Biol
211:
139‐150,
2006.
|
94. |
Fischer H,
Widdicombe JH,
Illek B.
Acid secretion and proton conductance in human airway epithelium.
Am J Physiol Cell Physiol
282:
C736‐743,
2002.
|
95. |
Fogel M
Hastings JW.
A substrate‐binding protein in the Gonyaulax bioluminescence reaction.
Arch Biochem Biophys
142:
310‐321,
1971.
|
96. |
Fogel M,
Hastings JW.
Bioluminescence: Mechanism and mode of control of scintillon activity.
Proc Natl Acad Sci U S A
69:
690‐693,
1972.
|
97. |
Forteza R,
Salathe M,
Miot F,
Forteza R,
Conner GE.
Regulated hydrogen peroxide production by Duox in human airway epithelial cells.
Am J Respir Cell Mol Biol
32:
462‐469,
2005.
|
98. |
Frankenhaeuser B,
Hodgkin AL.
The action of calcium on the electrical properties of squid axons.
J Physiol
137:
218‐244,
1957.
|
99. |
Fujiwara Y,
Kurokawa T,
Takeshita K,
Kobayashi M,
Nakagawa A,
Okamura Y.
Stability of the cytoplasmic dimer assembly regulates the thermosensitive gating of the voltage‐gated H+ channel.
Biophys J
100:
348a,
2011.
|
100. |
Geiszt M,
Kapus A,
Nemet K,
Farkas L,
Ligeti E.
Regulation of capacitative Ca2+ influx in human neutrophil granulocytes. Alterations in chronic granulomatous disease.
J Biol Chem
272:
26471‐26478,
1997.
|
101. |
Gilly WF,
Armstrong CM.
Divalent cations and the activation kinetics of potassium channels in squid giant axons.
J Gen Physiol
79:
965‐996,
1982.
|
102. |
Goldman DE.
Potential, impedance, and rectification in membranes.
J Gen Physiol
27:
37‐60,
1943.
|
103. |
Gonzalez C,
Koch HP,
Drum BM,
Larsson HP.
Strong cooperativity between subunits in voltage‐gated proton channels.
Nat Struct Mol Biol
17:
51‐56,
2010.
|
104. |
Gonzalez C,
Rebolledo S,
Wang X,
Perez M,
Larsson HP.
Contribution of S4 charges to gating mechanism in Hv channels.
Biophys J
100:
173a,
2011.
|
105. |
Gordienko DV,
Tare M,
Parveen S,
Fenech CJ,
Robinson C,
Bolton TB.
Voltage‐activated proton current in eosinophils from human blood.
J Physiol
496:
299‐316,
1996.
|
106. |
Hamill OP,
Marty A,
Neher E,
Sakmann B,
Sigworth FJ.
Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches.
Pflügers Arch
391:
85‐100,
1981.
|
107. |
Hampton MB,
Kettle AJ,
Winterbourn CC.
Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing.
Blood
92:
3007‐3017,
1998.
|
108. |
Hanke W,
Miller C.
Single chloride channels from Torpedo electroplax. Activation by protons.
J Gen Physiol
82:
25‐45,
1983.
|
109. |
Hastings JW.
Bacterial and dinoflagellate luminescent systems. In:
Herring P, editor.
Bioluminescence in Action,
London:
Academic Press,
1978,
p. 129‐170.
|
110. |
Hastings JW.
Bioluminescence. In:
Sperelakis N, editor.
Cell Physiology Sourcebook: A Molecular Approach (
3rd ed),
San Diego:
Academic Press,
2001,
p. 1115‐1131.
|
111. |
Hastings JW,
Vergin M,
DeSa R.
Scintillons: The biochemistry of dinoflagellate bioluminescence. In:
Johnson FH,
Haneda Y, editors.
Bioluminescence in Progress,
Princeton NJ:
Princeton University Press,
1966,
p. 301‐329.
|
112. |
Henderson LM,
Banting G,
Chappell JB.
The arachidonate‐activable, NADPH oxidase‐associated H+ channel. Evidence that gp91‐phox functions as an essential part of the channel.
J Biol Chem
270:
5909‐5916,
1995.
|
113. |
Henderson LM,
Chappell JB.
The NADPH‐oxidase‐associated H+ channel is opened by arachidonate.
Biochem J
283:
171‐175,
1992.
|
114. |
Henderson LM,
Chappell JB,
Jones OTG.
The superoxide‐generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel.
Biochem J
246:
325‐329,
1987.
|
115. |
Henderson LM,
Chappell JB,
Jones OTG.
Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H + conducting channel.
Biochem J
251:
563‐567,
1988.
|
116. |
Henderson LM,
Chappell JB,
Jones OTG.
Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge.
Biochem J
255:
285‐290,
1988.
|
117. |
Henderson LM,
Meech RW.
Evidence that the product of the human X‐linked CGD gene, gp91‐phox, is a voltage‐gated H+ pathway.
J Gen Physiol
114:
771‐786,
1999.
|
118. |
Henderson LM,
Thomas S,
Banting G,
Chappell JB.
The arachidonate‐activatable, NADPH oxidase‐associated H+ channel is contained within the multi‐membrane‐spanning N‐terminal region of gp91‐phox.
Biochem J
325:
701‐705,
1997.
|
119. |
Hille B.
Ion Channels of Excitable Membranes.
Sunderland, MA:
Sinauer Associates, Inc,
2001.
|
120. |
Hisada M.
Membrane resting and action potentials from a protozoan, Noctiluca scintillans.
J Cell Comp Physiol
50:
57‐71,
1957.
|
121. |
Hodgkin AL,
Huxley AF.
The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.
J Physiol
116:
497‐506,
1952.
|
122. |
Hodgkin AL,
Huxley AF.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol
117:
500‐544,
1952.
|
123. |
Hodgkin AL,
Katz B.
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol
108:
37‐77,
1949.
|
124. |
Hu F,
Luo W,
Hong M.
Mechanisms of proton conduction and gating in influenza M2 proton channels from solid‐state NMR.
Science
330:
505‐508,
2010.
|
125. |
Humez S,
Collin T,
Matifat F,
Guilbault P,
Fournier F.
InsP3‐dependent Ca2+ oscillations linked to activation of voltage‐dependent H+ conductance in Rana esculenta oocytes.
Cell Signal
8:
375‐379,
1996.
|
126. |
Humez S,
Fournier F,
Guilbault P.
A voltage‐dependent and pH‐sensitive proton current in Rana esculenta oocytes.
J Membr Biol
147:
207‐215,
1995.
|
127. |
Ilan B,
Tajkhorshid E,
Schulten K,
Voth GA.
The mechanism of proton exclusion in aquaporin channels.
Proteins
55:
223‐228,
2004.
|
128. |
Iovannisci D,
Illek B,
Fischer H.
Function of the HVCN1 proton channel in airway epithelia and a naturally occurring mutation, M91T.
J Gen Physiol
136:
35‐46,
2010.
|
129. |
Iyer GYN,
Islam MF,
Quastel JH.
Biochemical aspects of phagocytosis.
Nature
192:
535‐541,
1961.
|
130. |
Jankowski A,
Grinstein S.
A noninvasive fluorimetric procedure for measurement of membrane potential. Quantification of the NADPH oxidase‐induced depolarization in activated neutrophils.
J Biol Chem
274:
26098‐26104,
1999.
|
131. |
Jiang Y,
Lee A,
Chen J,
Ruta V,
Cadene M,
Chait BT,
MacKinnon R.
X‐ray structure of a voltage‐dependent K+ channel.
Nature
423:
33‐41,
2003.
|
132. |
Jones GS,
VanDyke K,
Castranova V.
Transmembrane potential changes associated with superoxide release from human granulocytes.
J Cell Physiol
106:
75‐83,
1981.
|
133. |
Joseph D,
Tirmizi O,
Zhang XL,
Crandall ED,
Lubman RL.
Polarity of alveolar epithelial cell acid‐base permeability.
Am J Physiol Lung Cell Mol Physiol
282:
L675‐683,
2002.
|
134. |
Kapus A,
Romanek R,
Qu AY,
Rotstein OD,
Grinstein S.
A pH‐sensitive and voltage‐dependent proton conductance in the plasma membrane of macrophages.
J Gen Physiol
102:
729‐760,
1993.
|
135. |
Kapus A,
Suszták K,
Ligeti E.
Regulation of the electrogenic H+ channel in the plasma membrane of neutrophils: possible role of phospholipase A2, internal and external protons.
Biochem J
292:
445‐450,
1993.
|
136. |
Kass I,
Arkin IT.
How pH opens a H+ channel: The gating mechanism of influenza A M2.
Structure
13:
1789‐1798,
2005.
|
137. |
Khurana E,
Dal Peraro M,
DeVane R,
Vemparala S,
DeGrado WF,
Klein ML.
Molecular dynamics calculations suggest a conduction mechanism for the M2 proton channel from influenza A virus.
Proc Natl Acad Sci U S A
106:
1069‐1074,
2009.
|
138. |
Klebanoff SJ.
Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes.
Science
169:
1095‐1097,
1970.
|
139. |
Koch HP,
Kurokawa T,
Okochi Y,
Sasaki M,
Okamura Y,
Larsson HP.
Multimeric nature of voltage‐gated proton channels.
Proc Natl Acad Sci U S A
105:
9111‐9116,
2008.
|
140. |
Korchak HM,
Weissmann G.
Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation.
Proc Natl Acad Sci U S A
75:
3818‐3822,
1978.
|
141. |
Krieger N,
Hastings JW.
Bioluminescence: pH activity profiles of related luciferase fractions.
Science
161:
586‐589,
1968.
|
142. |
Kukol A,
Adams PD,
Rice LM,
Brunger AT,
Arkin TI.
Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel.
J Mol Biol
286:
951‐962,
1999.
|
143. |
Kumánovics A,
Levin G,
Blount P.
Family ties of gated pores: Evolution of the sensor module.
Faseb J
16:
1623‐1629,
2002.
|
144. |
Kuno M,
Ando H,
Morihata H,
Sakai H,
Mori H,
Sawada M,
Oiki S.
Temperature dependence of proton permeation through a voltage‐gated proton channel.
J Gen Physiol
134:
191‐205,
2009.
|
145. |
Kuno M,
Kawawaki J,
Nakamura F.
A highly temperature‐sensitive proton current in mouse bone marrow‐derived mast cells.
J Gen Physiol
109:
731‐740,
1997.
|
146. |
Laggner H,
Phillipp K,
Goldenberg H.
Free zinc inhibits transport of vitamin C in differentiated HL‐60 cells during respiratory burst.
Free Radic Biol Med
40:
436‐443,
2006.
|
147. |
Larsson HP,
Baker OS,
Dhillon DS,
Isacoff EY.
Transmembrane movement of the shaker K+ channel S4.
Neuron
16:
387‐397,
1996.
|
148. |
Lear JD.
Proton conduction through the M2 protein of the influenza A virus; a quantitative, mechanistic analysis of experimental data.
FEBS Lett
552:
17‐22,
2003.
|
149. |
Lee SC,
Steinhardt RA.
pH changes associated with meiotic maturation in oocytes of Xenopus laevis.
Dev Biol
85:
358‐369,
1981.
|
150. |
Lee SY,
Letts JA,
Mackinnon R.
Dimeric subunit stoichiometry of the human voltage‐dependent proton channel Hv1.
Proc Natl Acad Sci U S A
105:
7692‐7695,
2008.
|
151. |
Lee SY,
Letts JA,
MacKinnon R.
Functional reconstitution of purified human Hv1 H+ channels.
J Mol Biol
387:
1055‐1060,
2009.
|
152. |
Leiding T,
Wang J,
Martinsson J,
DeGrado WF,
Årsköld SP.
Proton and cation transport activity of the M2 proton channel from influenza A virus.
Proc Natl Acad Sci U S A
107:
15409‐15414,
2010.
|
153. |
Levis RA,
Rae JL.
The use of quartz patch pipettes for low noise single channel recording.
Biophys J
65:
1666‐1677,
1993.
|
154. |
Levitt DG,
Elias SR,
Hautman JM.
Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.
Biochim Biophys Acta
512:
436‐451,
1978.
|
155. |
Levy R,
Lowenthal A,
Dana R.
Cytosolic phospholipase A2 is required for the activation of the NADPH oxidase associated H+ channel in phagocyte‐like cells.
Adv Exp Med Biol
479:
125‐135,
2000.
|
156. |
Li SJ,
Zhao Q,
Zhou Q,
Unno H,
Zhai Y,
Sun F.
The role and structure of the carboxyl‐terminal domain of the human voltage‐gated proton channel Hv1.
J Biol Chem
285:
12047‐12054,
2010.
|
157. |
Lin MC,
Hsieh JY,
Mock AF,
Papazian DM.
R1 in the Shaker S4 occupies the gating charge transfer center in the resting state.
J Gen Physiol
138:
155‐163.
|
158. |
Lin TI,
Schroeder C.
Definitive assignment of proton selectivity and attoampere unitary current to the M2 ion channel protein of influenza a virus.
J Virol
75:
3647‐3656,
2001.
|
159. |
Lisal J,
Maduke M.
The ClC‐0 chloride channel is a ‘broken’ Cl−/H+ antiporter.
Nat Struct Mol Biol
15:
805‐810,
2008.
|
160. |
Lishko PV,
Botchkina IL,
Fedorenko A,
Kirichok Y.
Acid extrusion from human spermatozoa is mediated by flagellar voltage‐gated proton channel.
Cell
140:
327‐337,
2010.
|
161. |
Long SB,
Tao X,
Campbell EB,
MacKinnon R.
Atomic structure of a voltage‐dependent K+ channel in a lipid membrane‐like environment.
Nature
450:
376‐382,
2007.
|
162. |
Lowenthal A,
Levy R.
Essential requirement of cytosolic phospholipase A2 for activation of the H+ channel in phagocyte‐like cells.
J Biol Chem
274:
21603‐21608,
1999.
|
163. |
Ludewig U,
Pusch M,
Jentsch TJ.
Two physically distinct pores in the dimeric ClC‐0 chloride channel.
Nature
383:
340‐343,
1996.
|
164. |
MacGlashan D, Jr.
Botana LM.
Biphasic Ca2+ responses in human basophils. Evidence that the initial transient elevation associated with the mobilization of intracellular calcium is an insufficient signal for degranulation.
J Immunol
150:
980‐991,
1993.
|
165. |
Magneson GR,
Puvathingal JM,
Ray WJ, Jr.
The concentrations of free Mg2+ and free Zn2+ in equine blood plasma.
J Biol Chem
262:
11140‐11148,
1987.
|
166. |
Mahaut‐Smith MP.
The effect of zinc on calcium and hydrogen ion currents in intact snail neurones.
J Exp Biol
145:
455‐464,
1989.
|
167. |
Mahaut‐Smith MP.
Separation of hydrogen ion currents in intact molluscan neurones.
J Exp Biol
145:
439‐454,
1989.
|
168. |
Mankelow TJ,
Pessach E,
Levy R,
Henderson LM.
The requirement of cytosolic phospholipase A2 for the PMA activation of proton efflux through the N‐terminal 230‐amino‐acid fragment of gp91phox.
Biochem J
374:
315‐319,
2003.
|
169. |
Maturana A,
Arnaudeau S,
Ryser S,
Banfi B,
Hossle JP,
Schlegel W,
Krause KH,
Demaurex N.
Heme histidine ligands within gp91phox modulate proton conduction by the phagocyte NADPH oxidase.
J Biol Chem
276:
30277‐30284,
2001.
|
170. |
Meech RW,
Thomas RC.
Voltage‐dependent intracellular pH in Helix aspersa neurones.
J Physiol
390:
433‐452,
1987.
|
171. |
Middleton RE,
Pheasant DJ,
Miller C.
Homodimeric architecture of a ClC‐type chloride ion channel.
Nature
383:
337‐340,
1996.
|
172. |
Miller C.
ClC chloride channels viewed through a transporter lens.
Nature
440:
484‐489,
2006.
|
173. |
Miller C.
Lonely voltage sensor seeks protons for permeation.
Science
312:
534‐535,
2006.
|
174. |
Miller C,
White MM.
A voltage‐dependent chloride conductance channel from Torpedo electroplax membrane.
Ann N Y Acad Sci
341:
534‐551,
1980.
|
175. |
Miloshevsky GV,
Jordan PC.
Water and ion permeation in bAQP1 and GlpF channels: A kinetic Monte Carlo study.
Biophys J
87:
3690‐3702,
2004.
|
176. |
Minor DL, Jr.
A sensitive channel family replete with sense and motion.
Nat Struct Mol Biol
13:
388‐390,
2006.
|
177. |
Mitchell P.
Coupling of phosphorylation to electron and hydrogen transfer by a chemi‐osmotic type of mechanism.
Nature
191:
144‐148,
1961.
|
178. |
Morgan D,
Capasso M,
Musset B,
Cherny VV,
Ríos E,
Dyer MJS,
DeCoursey TE.
Voltage‐gated proton channels maintain pH in human neutrophils during phagocytosis.
Proc Natl Acad Sci U S A
106:
18022‐18027,
2009.
|
179. |
Morgan D,
Cherny VV,
Finnegan A,
Bollinger J,
Gelb MH,
DeCoursey TE.
Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2α activity.
J Physiol
579:
327‐344,
2007.
|
180. |
Morgan D,
Cherny VV,
Murphy R,
Katz BZ,
DeCoursey TE.
The pH dependence of NADPH oxidase in human eosinophils.
J Physiol
569:
419‐431,
2005.
|
181. |
Morgan D,
Cherny VV,
Price MO,
Dinauer MC,
DeCoursey TE.
Absence of proton channels in COS‐7 cells expressing functional NADPH oxidase components.
J Gen Physiol
119:
571‐580,
2002.
|
182. |
Morgan D,
DeCoursey TE.
Simultaneous measurement of phagosome and plasma membrane potentials in human neutrophils by di‐8‐Anepps and SEER.
Biophys J
96:
55a,
2010.
|
183. |
Mori H,
Sakai H,
Morihata H,
Kawawaki J,
Amano H,
Yamano T,
Kuno M.
Regulatory mechanisms and physiological relevance of a voltage‐gated H+ channel in murine osteoclasts: Phorbol myristate acetate induces cell acidosis and the channel activation.
J Bone Miner Res
18:
2069‐2076,
2003.
|
184. |
Mori H,
Sakai H,
Morihata H,
Yamano T,
Kuno M.
A voltage‐gated H+ channel is a powerful mechanism for pH homeostasis in murine osteoclasts.
Kobe J Med Sci
48:
87‐96,
2002.
|
185. |
Morihata H,
Kawawaki J,
Okina M,
Sakai H,
Notomi T,
Sawada M,
Kuno M.
Early and late activation of the voltage‐gated proton channel during lactic acidosis through pH‐dependent and ‐independent mechanisms.
Pflügers Arch
455:
829‐838,
2008.
|
186. |
Morihata H,
Kawawaki J,
Sakai H,
Sawada M,
Tsutada T,
Kuno M.
Temporal fluctuations of voltage‐gated proton currents in rat spinal microglia via pH‐dependent and ‐independent mechanisms.
Neurosci Res
38:
265‐271,
2000.
|
187. |
Morihata H,
Nakamura F,
Tsutada T,
Kuno M.
Potentiation of a voltage‐gated proton current in acidosis‐induced swelling of rat microglia.
J Neurosci
20:
7220‐7227,
2000.
|
188. |
Moskwa P,
Lorentzen D,
Excoffon KJ,
Zabner J,
McCray PB, Jr,
Nauseef WM,
Dupuy C,
Bánfi B.
A novel host defense system of airways is defective in cystic fibrosis.
Am J Respir Crit Care Med
175:
174‐183,
2007.
|
189. |
Mould JA,
Li HC,
Dudlak CS,
Lear JD,
Pekosz A,
Lamb RA,
Pinto LH.
Mechanism for proton conduction of the M2 ion channel of influenza A virus.
J Biol Chem
275:
8592‐8599,
2000.
|
190. |
Murata K,
Mitsuoka K,
Hirai T,
Walz T,
Agre P,
Heymann JB,
Engel A,
Fujiyoshi Y.
Structural determinants of water permeation through aquaporin‐1.
Nature
407:
599‐605,
2000.
|
191. |
Murata Y,
Iwasaki H,
Sasaki M,
Inaba K,
Okamura Y.
Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor.
Nature
435:
1239‐1243,
2005.
|
192. |
Murphy R,
Cherny VV,
Morgan D,
DeCoursey TE.
Voltage‐gated proton channels help regulate pHi in rat alveolar epithelium.
Am J Physiol Lung Cell Mol Physiol
288:
L398‐L408,
2005.
|
193. |
Murphy R,
DeCoursey TE.
Charge compensation during the phagocyte respiratory burst.
Biochim Biophys Acta
1757:
996‐1011,
2006.
|
194. |
Musset B,
Capasso M,
Cherny VV,
Morgan D,
Bhamrah M,
Dyer MJS,
DeCoursey TE.
Identification of Thr29 as a critical phosphorylation site that activates the human proton channel Hvcn1 in leukocytes.
J Biol Chem
285:
5117‐5121,
2010.
|
195. |
Musset B,
Cherny VV,
DeCoursey TE.
Strong glucose dependence of electron current in human monocytes.
Am J Physiol: Cell Physiol (In press).
|
196. |
Musset B,
Cherny VV,
Morgan D,
DeCoursey TE.
The intimate and mysterious relationship between proton channels and NADPH oxidase.
FEBS Lett
583:
7‐12,
2009.
|
197. |
Musset B,
Cherny VV,
Morgan D,
Okamura Y,
Ramsey IS,
Clapham DE,
DeCoursey TE.
Detailed comparison of expressed and native voltage‐gated proton channel currents.
J Physiol
586:
2477‐2486,
2008.
|
198. |
Musset B,
Morgan D,
Cherny VV,
MacGlashan DW, Jr,
Thomas LL,
Ríos E,
DeCoursey TE.
A pH‐stabilizing role of voltage‐gated proton channels in IgE‐mediated activation of human basophils.
Proc Natl Acad Sci U S A
105:
11020‐11025,
2008.
|
199. |
Musset B,
Smith SM,
Rajan S,
Cherny VV,
Morgan D,
DeCoursey TE.
Oligomerization of the voltage gated proton channel.
Channels (Austin)
4:
260‐265,
2010.
|
200. |
Musset B,
Smith SM,
Rajan S,
Cherny VV,
Sujai S,
Morgan D,
DeCoursey TE.
Zinc inhibition of monomeric and dimeric proton channels suggests cooperative gating.
J Physiol
588:
1435‐1449,
2010.
|
201. |
Musset B,
Smith SME,
Rajan S,
Morgan D,
Cherny VV,
DeCoursey TE.
Aspartate112 is the selectivity filter of the human voltage gated proton channel.
Nature doi: 10.1038/nature10557,
2011.
|
202. |
Myers VB,
Haydon DA.
Ion transfer across lipid membranes in the presence of gramicidin A: The ion selectivity.
Biochim Biophys Acta
274:
313‐322,
1972.
|
203. |
Nagle JF
Morowitz HJ.
Molecular mechanisms for proton transport in membranes.
Proc Natl Acad Sci U S A
75:
298‐302,
1978.
|
204. |
Nanda A,
Grinstein S,
Curnutte JT.
Abnormal activation of H+ conductance in NADPH oxidase‐defective neutrophils.
Proc Natl Acad Sci U S A
90:
760‐764,
1993.
|
205. |
Nanda A,
Romanek R,
Curnutte JT,
Grinstein S.
Assessment of the contribution of the cytochrome b moiety of the NADPH oxidase to the transmembrane H+ conductance of leukocytes.
J Biol Chem
269:
27280‐27285,
1994.
|
206. |
Nawata T,
Sibaoka T.
Ionic composition and pH of the vacuolar sap in marine dinoflagellate Noctiluca.
Plant Cell Physiol
17:
265‐272,
1976.
|
207. |
Nawata T
Sibaoka T.
Coupling between action potential and bioluminescence in Noctiluca: Effects of inorganic ions and pH in vacuolar sap.
J Comp Physiol
134:
137‐149,
1979.
|
208. |
Nelson RD,
Kuan G,
Saier MH, Jr,
Montal M.
Modular assembly of voltage‐gated channel proteins: A sequence analysis and phylogenetic study.
J Mol Microbiol Biotechnol
1:
281‐287,
1999.
|
209. |
Ng AW,
Bidani A,
Heming TA.
Innate host defense of the lung: effects of lung‐lining fluid pH.
Lung
182:
297‐317,
2004.
|
210. |
Nicolas MT,
Sweeney BM,
Hastings JW.
The ultrastructural localization of luciferase in three bioluminescent dinoflagellates, two species of Pyrocystis, and Noctiluca, using anti‐luciferase and immunogold labelling.
J Cell Sci
87:
189‐196,
1987.
|
211. |
Nielson DW,
Goerke J,
Clements JA.
Alveolar subphase pH in the lungs of anesthetized rabbits.
Proc Natl Acad Sci U S A
78:
7119‐7123,
1981.
|
212. |
Nordström T,
Rotstein OD,
Romanek R,
Asotra S,
Heersche JN,
Manolson MF,
Brisseau GF,
Grinstein S.
Regulation of cytoplasmic pH in osteoclasts. Contribution of proton pumps and a proton‐selective conductance.
J Biol Chem
270:
2203‐2212,
1995.
|
213. |
Oami K.
Correlation between membrane potential responses and tentacle movement in the dinoflagellate Noctiluca miliaris.
Zoolog Sci
21:
131‐138,
2004.
|
214. |
Okochi Y,
Sasaki M,
Iwasaki H,
Okamura Y.
Voltage‐gated proton channel is expressed on phagosomes.
Biochem Biophys Res Commun
382:
274‐279,
2009.
|
215. |
Pantazis A,
Keegan P,
Postma M,
Schwiening CJ.
The effect of neuronal morphology and membrane‐permeant weak acid and base on the dissipation of depolarization‐induced pH gradients in snail neurons.
Pflügers Arch
452:
175‐187,
2006.
|
216. |
Peterson E,
Ryser T,
Funk S,
Inouye D,
Sharma M,
Qin H,
Cross TA,
Busath DD.
Functional reconstitution of influenza A M2(22‐62).
Biochim Biophys Acta
1808:
516‐521,
2011.
|
217. |
Petheő GL,
Demaurex N.
Voltage‐ and NADPH‐dependence of electron currents generated by the phagocytic NADPH oxidase.
Biochem J
388:
485‐491,
2005.
|
218. |
Petheő GL,
Orient A,
Baráth M,
Kovács I,
Réthi B,
Lányi A,
Rajki A,
Rajnavölgyi E,
Geiszt M.
Molecular and functional characterization of HV1 proton channel in human granulocytes.
PLoS One
5:
e14081,
2010.
|
219. |
Pinto LH,
Dieckmann GR,
Gandhi CS,
Papworth CG,
Braman J,
Shaughnessy MA,
Lear JD,
Lamb RA,
DeGrado WF.
A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity.
Proc Natl Acad Sci U S A
94:
11301‐11306,
1997.
|
220. |
Qiu ZH,
Leslie CC.
Protein kinase C‐dependent and ‐independent pathways of mitogen‐activated protein kinase activation in macrophages by stimuli that activate phospholipase A2.
J Biol Chem
269:
19480‐19487,
1994.
|
221. |
de Quatrefages A.
Observations sur les noctiluques.
Annales des Sciences Naturelles, Series 3, Zoologie
14:
226‐235,
1850.
|
222. |
Rada B,
Lekstrom K,
Damian S,
Dupuy C,
Leto TL.
The Pseudomonas toxin pyocyanin inhibits the dual oxidase‐based antimicrobial system as it imposes oxidative stress on airway epithelial cells.
J Immunol
181:
4883‐4893,
2008.
|
223. |
Rada BK,
Geiszt M,
Káldi K,
Tímár C,
Ligeti E.
Dual role of phagocytic NADPH oxidase in bacterial killing.
Blood
104:
2947‐2953,
2004.
|
224. |
Ramsey IS,
Mokrab Y,
Carvacho I,
Sands ZA,
Sansom MSP,
Clapham DE.
An aqueous H+ permeation pathway in the voltage‐gated proton channel Hv1.
Nat Struct Mol Biol
17:
869‐875,
2010.
|
225. |
Ramsey IS,
Moran MM,
Chong JA,
Clapham DE.
A voltage‐gated proton‐selective channel lacking the pore domain.
Nature
440:
1213‐1216,
2006.
|
226. |
Ramsey IS,
Ruchti E,
Kaczmarek JS,
Clapham DE.
Hv1 proton channels are required for high‐level NADPH oxidase‐dependent superoxide production during the phagocyte respiratory burst.
Proc Natl Acad Sci U S A
106:
7642‐7647,
2009.
|
227. |
Reeves EP,
Lu H,
Jacobs HL,
Messina CG,
Bolsover S,
Gabella G,
Potma EO,
Warley A,
Roes J,
Segal AW.
Killing activity of neutrophils is mediated through activation of proteases by K+ flux.
Nature
416:
291‐297,
2002.
|
228. |
Reth M,
Dick TP.
Voltage control for B cell activation.
Nat Immunol
11:
191‐192,
2010.
|
229. |
Roos A,
Boron WF.
Intracellular pH.
Physiol Rev
61:
296‐434,
1981.
|
230. |
Saaranen M,
Suistomaa U,
Kantola M,
Saarikoski S,
Vanha‐Perttula T.
Lead, magnesium, selenium and zinc in human seminal fluid: comparison with semen parameters and fertility.
Hum Reprod
2:
475‐479,
1987.
|
231. |
Sakata S,
Kurokawa T,
Norholm MH,
Takagi M,
Okochi Y,
von Heijne G,
Okamura Y.
Functionality of the voltage‐gated proton channel truncated in S4.
Proc Natl Acad Sci U S A
107:
2313‐2318,
2010.
|
232. |
Sánchez JC,
Powell T,
Staines HM,
Wilkins RJ.
Electrophysiological demonstration of voltage‐ activated H+ channels in bovine articular chondrocytes.
Cell Physiol Biochem
18:
85‐90,
2006.
|
233. |
Sánchez JC,
Wilkins RJ.
Effects of hypotonic shock on intracellular pH in bovine articular chondrocytes.
Comp Biochem Physiol A Mol Integr Physiol
135:
575‐583,
2003.
|
234. |
Sansom MSP,
Kerr ID,
Smith GR,
Son HS.
The influenza A virus M2 channel: A molecular modeling and simulation study.
Virology
233:
163‐173,
1997.
|
235. |
Sasaki M,
Takagi M,
Okamura Y.
A voltage sensor‐domain protein is a voltage‐gated proton channel.
Science
312:
589‐592,
2006.
|
236. |
Sbarra AJ,
Karnovsky ML.
The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes.
J Biol Chem
234:
1355‐1362,
1959.
|
237. |
Schilling T,
Gratopp A,
DeCoursey TE,
Eder C.
Voltage‐activated proton currents in human lymphocytes.
J Physiol
545:
93‐105,
2002.
|
238. |
Schmitter RE,
Njus D,
Sulzman FM,
Gooch VD,
Hastings JW.
Dinoflagellate bioluminescence: a comparative study of in vitro components.
J Cell Physiol
87:
123‐134,
1976.
|
239. |
Schowen RL.
Solvent Isotope Effects on Enzymic Reactions. In:
Cleland WW,
O'Leary MH,
Northrop DB, editors.
Isotope Effects on Enzyme‐Catalyzed Reactions,
Baltimore:
University Park Press,
1977,
p. 64‐99.
|
240. |
Schrenzel J,
Lew DP,
Krause KH.
Proton currents in human eosinophils.
Am J Physiol
271:
C1861‐C1871,
1996.
|
241. |
Schwarzer C,
Machen TE,
Illek B,
Fischer H.
NADPH oxidase‐dependent acid production in airway epithelial cells.
J Biol Chem
279:
36454‐36461,
2004.
|
242. |
Schweighofer KJ,
Pohorille A.
Computer simulation of ion channel gating: The M2 channel of influenza A virus in a lipid bilayer.
Biophys J
78:
150‐163,
2000.
|
243. |
Schwiening CJ,
Willoughby D.
Depolarization‐induced pH microdomains and their relationship to calcium transients in isolated snail neurones.
J Physiol
538:
371‐382,
2002.
|
244. |
Seeds MC,
Parce JW,
Szejda P,
Bass DA.
Independent stimulation of membrane potential changes and the oxidative metabolic burst in polymorphonuclear leukocytes.
Blood
65:
233‐240,
1985.
|
245. |
Sesti F,
Goldstein SA.
Single‐channel characteristics of wild‐type IKs channels and channels formed with two minK mutants that cause long QT syndrome.
J Gen Physiol
112:
651‐663,
1998.
|
246. |
Sharma M,
Yi M,
Dong H,
Qin H,
Peterson E,
Busath D,
Zhou H,
Cross T.
Insight into the mechanism of the influenza A proton channel from structure in a lipid bilayer.
Science
330:
509‐512,
2010.
|
247. |
Sheldon C,
Church J.
Intracellular pH response to anoxia in acutely dissociated adult rat hippocampal CA1 neurons.
J. Neurophysiol
87:
2209‐2224,
2002.
|
248. |
Sheng J,
Malkiel E,
Katz J,
Adolf JE,
Place AR.
A dinoflagellate exploits toxins to immobilize prey prior to ingestion.
Proc Natl Acad Sci U S A
107:
2082‐2087,
2010.
|
249. |
Shuck K,
Lamb RA,
Pinto LH.
Analysis of the pore structure of the influenza A virus M2 ion channel by the substituted‐cysteine accessibility method.
J Virol
74:
7755‐7761,
2000.
|
250. |
Sklar LA,
Jesaitis AJ,
Painter RG,
Cochrane CG.
The kinetics of neutrophil activation. The response to chemotactic peptides depends upon whether ligand‐receptor interaction is rate‐limiting.
J Biol Chem
256:
9909‐9914,
1981.
|
251. |
Smith SME,
Morgan D,
Musset B,
Cherny VV,
Place AR,
Hastings JW,
DeCoursey TE.
A novel voltage gated proton channel in a dinoflagellate.
Biophys J 100: 284a.
2011
|
252. |
Smith SME,
Morgan D,
Musset B,
Cherny VV,
Place AR,
Hastings JW,
DeCoursey TE.
Voltage‐gated proton channel in a dinoflagellate.
Proc Natl Acad Sci U S A 108: 18162‐18168, 2011.
|
253. |
Smondyrev AM,
Voth GA.
Molecular dynamics simulation of proton transport near the surface of a phospholipid membrane.
Biophys J
82:
1460‐1468,
2002.
|
254. |
Starace DM,
Stefani E,
Bezanilla F.
Voltage‐dependent proton transport by the voltage sensor of the Shaker K+ channel.
Neuron
19:
1319‐1327,
1997.
|
255. |
Suszták K,
Mócsai A,
Ligeti E,
Kapus A.
Electrogenic H+ pathway contributes to stimulus‐induced changes of internal pH and membrane potential in intact neutrophils: Role of cytoplasmic phospholipase A2.
Biochem J
325:
501‐510,
1997.
|
256. |
Swenson ER,
Deem S,
Kerr ME,
Bidani A.
Inhibition of aquaporin‐mediated CO2 diffusion and voltage‐gated H+ channels by zinc does not alter rabbit lung CO2 and NO excretion.
Clin Sci (Lond)
103:
567‐575,
2002.
|
257. |
Tajkhorshid E,
Nollert P,
Jensen MO,
Miercke LJ,
O'Connell J,
Stroud RM,
Schulten K.
Control of the selectivity of the aquaporin water channel family by global orientational tuning.
Science
296:
525‐530,
2002.
|
258. |
Takanaka K,
O'Brien PJ.
Proton release associated with respiratory burst of polymorphonuclear leukocytes.
J Biochem
103:
656‐660,
1988.
|
259. |
Tao X,
Lee A,
Limapichat W,
Dougherty DA,
MacKinnon R.
A gating charge transfer center in voltage sensors.
Science
328:
67‐73,
2010.
|
260. |
Taylor AR,
Chrachri A,
Wheeler G,
Goddard H,
Brownlee C.
A voltage‐gated H+ channel underlying pH homeostasis in calcifying coccolithophores.
PLoS Biol
9:
e1001085,
2011.
|
261. |
Thomas RC,
Meech RW.
Hydrogen ion currents and intracellular pH in depolarized voltage‐clamped snail neurones.
Nature
299:
826‐828,
1982.
|
262. |
Tombola F,
Ulbrich MH,
Isacoff EY.
The voltage‐gated proton channel Hv1 has two pores, each controlled by one voltage sensor.
Neuron
58:
546‐556,
2008.
|
263. |
Tombola F,
Ulbrich MH,
Kohout SC,
Isacoff EY.
The opening of the two pores of the Hv1 voltage‐gated proton channel is tuned by cooperativity.
Nat Struct Mol Biol
17:
44‐50,
2010.
|
264. |
Turekian KK.
Oceans:
Prentice‐Hall, Englewood Cliffs, N.J.
1968.
|
265. |
Urbach V,
Helix N,
Renaudon B,
Harvey BJ.
Cellular mechanisms for apical ATP effects on intracellular pH in human bronchial epithelium.
J Physiol
543:
13‐21,
2002.
|
266. |
van Zwieten R,
Wever R,
Hamers MN,
Weening RS,
Roos D.
Extracellular proton release by stimulated neutrophils.
J Clin Invest
68:
310‐313,
1981.
|
267. |
Wang Y,
Li SJ,
Pan J,
Che Y,
Yin J,
Zhao Q.
Specific expression of the human voltage‐gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis.
Biochem Biophys Res Commun
412:
353‐359,
2011.
|
268. |
Warner JA,
MacGlashan DW, Jr.
Signal transduction events in human basophils. A comparative study of the role of protein kinase C in basophils activated by anti‐IgE antibody and formyl‐methionyl‐leucyl‐phenylalanine.
J Immunol
145:
1897‐1905,
1990.
|
269. |
Whitin JC,
Chapman CE,
Simons ER,
Chovaniec ME,
Cohen HJ.
Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate. Evidence for defective activation in chronic granulomatous disease.
J Biol Chem
255:
1874‐1878,
1980.
|
270. |
Wikström M,
Verkhovsky MI,
Hummer G.
Water‐gated mechanism of proton translocation by cytochrome c oxidase.
Biochim Biophys Acta
1604:
61‐65,
2003.
|
271. |
Wood ML,
Schow EV,
Freites JA,
White SH,
Tombola F,
Tobias DJ.
Water wires in atomistic models of the Hv1 proton channel.
Biochim Biophys Acta,
2011 doi:10.1016/j.bbamem.2011.07.045 [Epub ahead of print].
|
272. |
Woodward OM,
Willows AO.
Dopamine modulation of Ca2+ dependent Cl− current regulates ciliary beat frequency controlling locomotion in Tritonia diomedea.
J Exp Biol
209:
2749‐2764,
2006.
|
273. |
Wraight CA.
Chance and design–proton transfer in water, channels and bioenergetic proteins.
Biochim Biophys Acta
1757:
886‐912,
2006.
|
274. |
Wu B,
Steinbronn C,
Alsterfjord M,
Zeuthen T,
Beitz E.
Concerted action of two cation filters in the aquaporin water channel.
Embo J
28:
2188‐2194,
2009.
|
275. |
Yamaguchi S,
Miura C,
Kikuchi K,
Celino FT,
Agusa T,
Tanabe S,
Miura T.
Zinc is an essential trace element for spermatogenesis.
Proc Natl Acad Sci U S A
106:
10859‐10864,
2009.
|
276. |
Yang N,
George AL, Jr,
Horn R.
Molecular basis of charge movement in voltage‐gated sodium channels.
Neuron
16:
113‐122,
1996.
|
277. |
Yusaf SP,
Wray D,
Sivaprasadarao A.
Measurement of the movement of the S4 segment during the activation of a voltage‐gated potassium channel.
Pflügers Arch
433:
91‐97,
1996.
|
Further Reading |
1. |
Bezanilla F.
The voltage sensor in voltage‐dependent ion channels.
Physiol Rev
80:
555‐592,
2000.
|
2. |
Börjesson, SI,
Elinder F.
Structure, function, and modification of the voltage sensor in voltage‐gated ion channels.
Cell Biochem Biophys
52:
149‐174,
2008.
|
3. |
Swartz KJ.
Sensing voltage across lipid membranes.
Nature
456:
891‐897,
2008.
|
4. |
Tombola F,
Pathak MM,
Isacoff EY.
How does voltage open an ion channel?
Annu Rev Cell Dev Biol
22:
23‐52,
2006.
|
5. |
Capasso M,
DeCoursey TE,
Dyer MJS.
pH regulation and beyond: Unanticipated functions for the voltage‐gated proton channel, HVCN1.
Trends Cell Biol.
21:
20‐28,
2011.
|
6. |
DeCoursey TE.
Voltage‐gated proton channels and other proton transfer pathways.
Physiol Rev
83:
475‐579,
2003.
|
7. | Demaurex N,
El Chemaly A.
Physiological roles of voltage‐gated proton channels in leukocytes.
J Physiol
588:
4659‐4665,
2010.
|
8. | Kirichok, Y,
Lishko PV.
Rediscovering sperm ion channels with the patch‐clamp technique.
Mol Hum Reprod
17:
478‐499,
2011.
|
9. |
Fischer, H.
Function of proton channels in lung epithelia.
WIRES Membr Transp Signal (in press),
2011. doi: 10.1002/wmts.17 |
10. |
Hille B.
2001.
Ion Channels of Excitable Membranes. (3rd ed). Sunderland, MA: Sinauer Associates, Inc.
p. 814. |
11. | Okamura Y,
Murata Y,
Iwasaki H.
Voltage‐sensing phosphatase: Actions and potentials.
J Physiol
587:
513‐520,
2009.
|
12. | Okamura Y.
Biodiversity of voltage sensor domain proteins.
Pflügers Arch
454:
361‐371,
2007.
|