Comprehensive Physiology Wiley Online Library

Integration of Biological Clocks and Rhythms

Full Article on Wiley Online Library



Abstract

Animals, plants, and microorganisms exhibit numerous biological rhythms that are generated by numerous biological clocks. This article summarizes experimental data pertinent to the often‐ignored issue of integration of multiple rhythms. Five contexts of integration are discussed: (i) integration of circadian rhythms of multiple processes within an individual organism, (ii) integration of biological rhythms operating in different time scales (such as tidal, daily, and seasonal), (iii) integration of rhythms across multiple species, (iv) integration of rhythms of different members of a species, and (v) integration of rhythmicity and physiological homeostasis. Understanding of these multiple rhythmic interactions is an important first step in the eventual thorough understanding of how organisms arrange their vital functions temporally within and without their bodies. © 2012 American Physiological Society. Compr Physiol 2:1213‐1239, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Ten‐day segments of simultaneous records of rectal temperature, plasma urea concentration, and plasma cholesterol concentration of a female goat (Capra hircus). The horizontal bars at the top indicate the timing of the light‐dark cycle. Notice that the rhythms of rectal temperature and urea concentration have similar phases (peaking in the middle of the night) but the rhythm of cholesterol concentration has the opposite phase (peaking in the middle of the day). Data from reference 395.

Figure 2. Figure 2.

Acrophases of the rhythms of 21 variables in the horse (Equus caballus). Circles indicate the means for five horses over 2 days. Horizontal lines indicate the 95% confidence intervals of the means. The rhythms of 13 variables peak during the light phase of the light‐dark cycle. Data from reference 399.

Figure 3. Figure 3.

Five‐day segments of the records of body temperature and locomotor activity (recorded by telemetry with 6‐min resolution) of a tree shrew (Tupaia belangeri). The horizontal black and white bars indicate the duration of the dark and light phases of the prevailing light‐dark cycle. Notice that both body temperature and activity level are high during the day and low at night. Data from reference 433.

Figure 4. Figure 4.

Daily variation in three psychological functions (as well as body temperature) of human subjects studied under a constant routine protocol (in continuous bed rest, receiving equally spaced meals, and not allowed to sleep) for 60 consecutive hours. The data points are the means (± SE) of five subjects. Notice that the rhythm of body temperature is very robust but that the rhythms of the psychological functions (especially short‐term memory) are rather sloppy. Data from reference 245.

Figure 5. Figure 5.

Double‐plotted actograms of the rhythms of feeding activity and egg laying of quails (Coturnix coturnix) maintained under a light‐dark cycle (A) or in constant darkness (B). The white ovals indicate the time of oviposition. Notice that entrainment of both rhythms is apparent under the light‐dark cycle (A) but that the feeding rhythm free runs with a period shorter than 24 h whereas the egg‐laying rhythm free runs with a period longer than 24 h in constant darkness (B). Data from reference 221.

Figure 6. Figure 6.

Distributions of the times of entry into and arousal from hibernation of eight European hamsters (Cricetus cricetus) maintained in the laboratory under simulated winter conditions (8°C, 8L:16D). The data are plotted separately for shallow and deep torpor bouts. Notice that, for entry into shallow or deep torpor, the distributions are more or less clustered around the late evening and early morning. Data from reference 565.

Figure 7. Figure 7.

Seven‐day segments (with 2‐h resolution) of the records of body core temperature of representative individuals of four mammalian species. The white and dark horizontal bars at the top of each graph indicate the duration of the light and dark phases of the prevailing light‐dark cycles. Interspecies differences in waveform and acrophase are evident in the temperature records. Data from reference 449.

Figure 8. Figure 8.

Frequency distributions of free‐running periods and durations of the active phase of 51 nocturnal and diurnal species as reported in the literature. Organisms included are vertebrate and invertebrate animals, as well as non‐animals. Data from references 1, 2, 8,17, 25, 26, 34,36,40,55,56,63,65,67,70,75,94,96,99,109,125,128,131,133,143,145,156,160,177,179,181,193,196,201,205,213,216,221,224, 226, 227, 231,253,257,259,262,267,275,284,290,299,301,303,304,307,310,322, 327, 328, 347,373,374,375,378,389,390,406,409, 411, 412, 435, 436, 443,446,447,450,453,467,468,474,477,482, 493, 494, 496,501, 517, 518, 525, 526, 529,540,545,548,550,552,554,562,569,573,586,587, and 593.

Figure 9. Figure 9.

Intra‐ and interindividual variabilities of four parameters of the body‐temperature rhythm of laboratory rats, 13‐lined ground squirrels, Beagle dogs, and British Thoroughbred horses. All computations of variability (standard deviation of the mean) are based on measurements conducted on 7 individuals for 7 consecutive days with 2‐h resolution. The bars show the mean variability (± SE) for each condition. All animals were maintained under 24‐h light‐dark cycles. For each parameter, means sharing the same letter (a or b) are not significantly different from each other. Data from reference 449.

Figure 10. Figure 10.

Daily variation in alertness of morning types, intermediate types, and evening types. Subjective self‐evaluation of alertness was conducted by 1800 university students from six countries. Mean values for each of the three types are shown. Notice that, for intermediate types, alertness reaches a daily maximum at noon and stays elevated until 2000 h. For morning types and evening types, alertness rises a few hours earlier or later. Data from reference 512.

Figure 11. Figure 11.

Mean number of wheel revolutions of tau‐mutant and wild‐type golden hamsters (Mesocricetus auratus) maintained in constant darkness. The bars correspond to the means (± SE) of 32 mutants (period = 20.4 h) and 32 wild types (period = 24.1 h). The two groups are significantly different when activity is expressed per circadian cycle but statistically indistinguishable when activity is expressed per 24 h. Data from reference 446.



Figure 1.

Ten‐day segments of simultaneous records of rectal temperature, plasma urea concentration, and plasma cholesterol concentration of a female goat (Capra hircus). The horizontal bars at the top indicate the timing of the light‐dark cycle. Notice that the rhythms of rectal temperature and urea concentration have similar phases (peaking in the middle of the night) but the rhythm of cholesterol concentration has the opposite phase (peaking in the middle of the day). Data from reference 395.



Figure 2.

Acrophases of the rhythms of 21 variables in the horse (Equus caballus). Circles indicate the means for five horses over 2 days. Horizontal lines indicate the 95% confidence intervals of the means. The rhythms of 13 variables peak during the light phase of the light‐dark cycle. Data from reference 399.



Figure 3.

Five‐day segments of the records of body temperature and locomotor activity (recorded by telemetry with 6‐min resolution) of a tree shrew (Tupaia belangeri). The horizontal black and white bars indicate the duration of the dark and light phases of the prevailing light‐dark cycle. Notice that both body temperature and activity level are high during the day and low at night. Data from reference 433.



Figure 4.

Daily variation in three psychological functions (as well as body temperature) of human subjects studied under a constant routine protocol (in continuous bed rest, receiving equally spaced meals, and not allowed to sleep) for 60 consecutive hours. The data points are the means (± SE) of five subjects. Notice that the rhythm of body temperature is very robust but that the rhythms of the psychological functions (especially short‐term memory) are rather sloppy. Data from reference 245.



Figure 5.

Double‐plotted actograms of the rhythms of feeding activity and egg laying of quails (Coturnix coturnix) maintained under a light‐dark cycle (A) or in constant darkness (B). The white ovals indicate the time of oviposition. Notice that entrainment of both rhythms is apparent under the light‐dark cycle (A) but that the feeding rhythm free runs with a period shorter than 24 h whereas the egg‐laying rhythm free runs with a period longer than 24 h in constant darkness (B). Data from reference 221.



Figure 6.

Distributions of the times of entry into and arousal from hibernation of eight European hamsters (Cricetus cricetus) maintained in the laboratory under simulated winter conditions (8°C, 8L:16D). The data are plotted separately for shallow and deep torpor bouts. Notice that, for entry into shallow or deep torpor, the distributions are more or less clustered around the late evening and early morning. Data from reference 565.



Figure 7.

Seven‐day segments (with 2‐h resolution) of the records of body core temperature of representative individuals of four mammalian species. The white and dark horizontal bars at the top of each graph indicate the duration of the light and dark phases of the prevailing light‐dark cycles. Interspecies differences in waveform and acrophase are evident in the temperature records. Data from reference 449.



Figure 8.

Frequency distributions of free‐running periods and durations of the active phase of 51 nocturnal and diurnal species as reported in the literature. Organisms included are vertebrate and invertebrate animals, as well as non‐animals. Data from references 1, 2, 8,17, 25, 26, 34,36,40,55,56,63,65,67,70,75,94,96,99,109,125,128,131,133,143,145,156,160,177,179,181,193,196,201,205,213,216,221,224, 226, 227, 231,253,257,259,262,267,275,284,290,299,301,303,304,307,310,322, 327, 328, 347,373,374,375,378,389,390,406,409, 411, 412, 435, 436, 443,446,447,450,453,467,468,474,477,482, 493, 494, 496,501, 517, 518, 525, 526, 529,540,545,548,550,552,554,562,569,573,586,587, and 593.



Figure 9.

Intra‐ and interindividual variabilities of four parameters of the body‐temperature rhythm of laboratory rats, 13‐lined ground squirrels, Beagle dogs, and British Thoroughbred horses. All computations of variability (standard deviation of the mean) are based on measurements conducted on 7 individuals for 7 consecutive days with 2‐h resolution. The bars show the mean variability (± SE) for each condition. All animals were maintained under 24‐h light‐dark cycles. For each parameter, means sharing the same letter (a or b) are not significantly different from each other. Data from reference 449.



Figure 10.

Daily variation in alertness of morning types, intermediate types, and evening types. Subjective self‐evaluation of alertness was conducted by 1800 university students from six countries. Mean values for each of the three types are shown. Notice that, for intermediate types, alertness reaches a daily maximum at noon and stays elevated until 2000 h. For morning types and evening types, alertness rises a few hours earlier or later. Data from reference 512.



Figure 11.

Mean number of wheel revolutions of tau‐mutant and wild‐type golden hamsters (Mesocricetus auratus) maintained in constant darkness. The bars correspond to the means (± SE) of 32 mutants (period = 20.4 h) and 32 wild types (period = 24.1 h). The two groups are significantly different when activity is expressed per circadian cycle but statistically indistinguishable when activity is expressed per 24 h. Data from reference 446.

 1. Abe H, Honma S, Honma K, Suzuki T, Ebihara S. Functional diversities of two activity components of circadian rhythm in genetical splitting mice (CS strain). J Comp Physiol A 184: 243‐251, 1999.
 2. Abe H, Honma S, Namihira M, Masubichi S, Ikeda M, Ebihara S, Honma K. Clock gene expressions in the suprachiasmatic nucleus and other areas of the brain during rhythm splitting in CS mice. Mol Brain Res 87: 92‐99, 2001.
 3. Abrams R, Hammel HT. Hypothalamic temperature in unanesthetized albino rats during feeding and sleeping. Am J Physiol 206: 641‐646, 1964.
 4. Abrams R, Hammel HT. Cyclic variations in hypothalamic temperature in unanesthetized rats. Am J Physiol 208: 698‐702, 1965.
 5. Achermann P. The two‐process model of sleep regulation revisited. Aviat Space Environ Med 75(3): A37‐A43, 2004.
 6. Adan A, Natale V. Gender differences in morningness‐eveningness preference. Chrobiol Int 19: 709‐720, 2002.
 7. Akita M, Ishii K, Kuwahara M, Tsubone H. The daily pattern of heart rate, body temperature, and locomotor activity in guinea pigs. Exp Anim 50: 409‐415, 2001.
 8. Akiyama T. Tidal adaptation of a circadian clock controlling a crustacean swimming behavior. Zool Sci 14: 901‐906, 1997.
 9. Akiyama T. Entrainment of the circatidal swimming activity rhythm in the cumacean Dimorphostylis asiatica (Crustacea) to 12.5‐hour hydrostatic pressure cycles. Zool Sci 21: 29‐38, 2004.
 10. Alleva JJ, Waleski MV, Alleva FR. A biological clock controlling the estrous cycle of the hamster. Endocrinology 88: 1368‐1379, 1971.
 11. Amoros C, Sagot JC, Libert JP, Candas V. Sweat gland response to local heating during sleep in man. J Physiol Paris 81: 209‐215, 1986.
 12. Anchordoquy HC, Lynch GR. Timing of testicular recrudescence in Siberian hamsters is unaffected by pinealectomy or long‐day photoperiod after 9 weeks in short days. J Biol Rhythms 15: 406‐416, 2000.
 13. Araki CT, Nakamura RM, Kam LWG. Diurnal temperature sensitivity of dairy cattle in a naturally cycling environment. J Therm Biol 12: 23‐26, 1987.
 14. Arble DM, Ramsey KM, Bass J, Turek FW. Circadian disruption and metabolic disease: Findings from animal models. Best Pract Res Clin Endocrinol Metabol 24: 785‐800, 2010.
 15. Aschoff J, Fatranská M, Giedke H, Doerr P, Stamm D, Wisser H. Human circadian rhythms in continuous darkness: Entrainment by social cues. Science 171: 213‐215, 1971.
 16. Aschoff J, Gerecke U, Wever R. Desynchronization of human circadian rhythms. Jap J Physiol 17: 450‐457, 1967a.
 17. Aschoff J, Gerecke U, Wever R. Phasenbeziehungen zwischen den circadianen perioden der aktivität und der kerntemperatur beim menschen. Pflügers Arch 295: 173‐183, 1967b.
 18. Aschoff J, von Goetz C, Wildbruber C, Wever R. Meal timing in humans during isolation without time cues. J Biol Rhythms 1: 151‐162, 1986.
 19. Aschoff J, von Goetz C. Masking of circadian activity rhythms in male golden hamsters by the presence of females. Behav Ecol Sociobiol 22: 409‐412, 1988.
 20. Aschoff J, von Saint Paul U. Brain temperature as related to gross motor activity in the unanesthetized chicken. Physiol Behav 10: 529‐533, 1973.
 21. Aschoff J. Tierische Periodik unter dem Einfluß von Zeitgebern. Z Tierpsychol 15: 1‐30, 1958.
 22. Aschoff J. Survival value of diurnal rhythms. Symp Zool Soc Lond 13: 79‐98, 1964.
 23. Aschoff J. Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol 49: 225‐249, 1979.
 24. Aschoff J. On the relationship between motor activity and the sleep‐wake cycle in humans during temporal isolation. J Biol Rhythms 8: 33‐46, 1993.
 25. Aschoff J. Naps as integral parts of the wake time within the human sleep‐wake cycle. J Biol Rhythms 9: 145‐155, 1994a.
 26. Aschoff J. The timing of defecation within sleep‐wake cycle of humans during temporal isolation. J Biol Rhythms 9: 43‐50, 1994b.
 27. Aujard F, Vasseur F. Effect of ambient temperature on the body temperature rhythm of male gray mouse lemurs (Microcebus murinus). Int J Primatol 22: 43‐56, 2001.
 28. Ayo JO, Oladele SB, Ngam S, Fayomi A, Afolayan SB. Diurnal fluctuations in rectal temperature of the Red Sokoto goat during the harmattan season. Res Vet Sci 66: 7‐9, 1998.
 29. Baehr EK, Revelle W, Eastman CI. Individual differences in the phase and amplitude of the human circadian temperature rhythm with an emphasis on morningness‐eveningness. J Sleep Res 9: 117‐127, 2000.
 30. Bakko EB, Porter WP, Wunder BA. Body temperature patterns in black‐tailed prairie dogs in the field. Can J Zool 66: 1783‐1789, 1988.
 31. Barassin S, Saboureau M, Kalsbeek A, Bothorel B, Vivien‐Roels B, Malan A, Buijs, RM, Guardiola‐Lemaitre B, Pévet P. Interindividual differences in the pattern of melatonin secretion of the Wistar rat. J Pineal Res 27: 193‐201, 1999.
 32. Barrett J, Lack L, Morris M. The sleep‐evoked decrease of body temperature. Sleep 16: 93‐99, 1993.
 33. Bartell PA, Gwinner E. A separate circadian oscillator controls nocturnal migratory restlessness in the songbird Sylvia borin. J Biol Rhythms 20: 538‐549, 2005.
 34. Bartell PA, Miranda‐Anaya M, Menaker M. Period and phase control in a multioscillatory circadian system (Iguana iguana). J Biol Rhythms 19: 47‐57, 2004.
 35. Basco PS, Rashotte ME, Stephan FK. Photoperiod duration and energy balance in the pigeon. Physiol Behav 60: 151‐159, 1996.
 36. Begall S, Daan S, Burda H, Overkamp GJF. Activity patterns in a subterranean social rodent, Spalacopus cyanus (Octodontidae). J Mammal 83: 153‐158, 2002.
 37. Beitinger TL, Magnuson JJ. Influence of social rank and size on thermoselection behavior of bluegill (Lepomis macrochirus). J Fish Res Board Can 32: 2133‐2136, 1975.
 38. Benedict FG. Studies in body temperature. I. Influence of the inversion of the daily routine; the temperature of night‐workers. Am J Physiol 11: 145‐169, 1904.
 39. Benedito‐Silva AA, Menna‐Barreto L, Alam MF, Rotenberg L, Moreira LFS, Menezes AAL, Pereira da Silva H, Marques N. Latitude and social habits as determinats of the distribution of morning and evening types in Brazil. Biol Rhythm Res 29: 591‐597, 1998.
 40. Benloucif S, Dubocovich ML. Melatonin and light induce phase shifts of circadian activity rhythms in the C3H/HeN mouse. J Biol Rhythms 11: 113‐125, 1996.
 41. Benstaali C, Bogdan A, Touitou Y. Effect of a short photoperiod on circadian rhythms of body temperature and motor activity in old rats. Pflügers Arch 444: 73‐79, 2002.
 42. Berezkin MV, Kudinova VF, Batygov AN, Ponomareva LE, Zhukova GN. Effect of lighting conditions on circadian rhythm of rectal temperature in mice. Bull Exp Biol Med 106: 1337‐1340, 1989.
 43. Berger A, Scheibe KM, Michaelis S, Streich WJ. Evaluation of living conditions of free‐ranging animals by automated chronobiological analysis of behavior. Behav Res Methods Instr Comput 35: 458‐466, 2003.
 44. Berger RJ, Phillips NH. Constant light suppresses sleep and circadian rhythms in pigeons without consequent sleep rebound in darkness. Am J Physiol Regul Integr Comp Physiol 267: R945‐R952, 1994.
 45. Berkey DL, Meeuwsen KW, Barney CC. Measurements of core temperature in spontaneously hypertensive rats by radiotelemetry. Am J Physiol Regul Integr Comp Physiol 258: R743‐R749, 1990.
 46. Bernard C. De la Physiologie Générale. Paris: Librairie Hachette, 1872.
 47. Bertolucci C, Foà A, Van't Hof TJ. Seasonal variations in circadian rhythms of plasma melatonin in ruin lizards. Horm Behav 41: 414‐419, 2002.
 48. Blanchong JA, McElhinny TL, Mahoney MM, Smale L. Nocturnal and diurnal rhythms in the unstriped Nile rate, Arvicanthis niloticus. J Biol Rhythms 14: 364‐377, 1999.
 49. Bligh J, Harthoorn AM. Continuous radiotelemetric records of the deep body temperature of some unrestrained African mammals under near‐natural conditions. J Physiol Lond 176: 145‐162, 1965.
 50. Bligh J, Ingram DL, Keynes RD, Robinson SG. The deep body temperature of an unrestrained Welsh mountain sheep recorded by a radiotelemetric technique during a 12‐month period. J Physiol Lond 176: 136‐144, 1965.
 51. Bloch G, Robinson GE. Reversal of honeybee behavioural rhythms. Nature 410: 1048, 2001.
 52. Bobr LW, Sheldon BL. Analysis of ovulation‐oviposition patterns in the domestic fowl by telemetry measurement of deep body temperature. Aust J Biol Sci 30: 243‐257, 1977.
 53. Bolles RC, Duncan PM. Daily course of activity and subcutaneous body temperature in hungry and thirsty rats. Physiol Behav 4: 87‐89, 1969.
 54. Bolles RC, Duncan PM, Grossen NE, Matter CF. Relationship between activity level and body temperature in the rat. Psychol Rep 23: 991‐994, 1968.
 55. Borbély AA, Neuhaus HU. Circadian rhythm of sleep and motor activity in the rat during skeleton photoperiod, continuous darkness and continuous light. J Comp Physiol 128: 37‐46, 1978.
 56. Boulos Z, Macchi M, Houpt TA, Terman M. Photic entrainment in hamsters: Effects of simulated twilights and nest box availability. J Biol Rhythms 11: 216‐233, 1996.
 57. Bovet J, Oertli EF. Free‐running circadian activity rhythms in free‐living beaver (Castor canadensis). J Comp Physiol 92: 1‐10, 1974.
 58. Briese E. Rats prefer ambient temperatures out of phase with their body temperature circadian rhythm. Brain Res 345: 389‐393, 1985.
 59. Brown CM, Refinetti R. Daily rhythms of metabolic heat production, body temperature, and locomotor activity in golden hamsters. J Therm Biol 21: 227‐230, 1996.
 60. Brown RP. Thermal biology of the gecko Tarentola boettgeri: Comparisons among populations from different elevations within Gran Canaria. Herpetologica 52: 396‐405, 1996.
 61. Bruguerolle B, Roucoules X. Time‐dependent changes in body temperature rhythm induced in rats by brewer's yeast injection. Chrobiol Int 11: 180‐186, 1994.
 62. Bückle‐Ramírez LF, Díaz‐Herrera F, Correa‐Sandoval F, Barón‐Sevilla B, Hernández‐Rodríguez M. Diel thermoregulation of the crawfish Procambarus clarkii (Crustacea: Cambaridae). J Therm Biol 19: 419‐422, 1994.
 63. Büttner D. Social influences on the circadian rhythm of locomotor activity and food intake of guinea pigs. J Interdiscipl Cycle Res 23: 100‐112, 1992.
 64. Cagnacci A, Arangino S, Tuveri F, Paoletti AM, Volpe A. Regulation of the 24‐h body temperature rhythm of women in luteal phase: Role of gonadal steroids and prostaglandins. Chrobiol Int 19: 721‐730, 2002.
 65. Caldelas I, Poirel VJ, Sicard B, Pévet P, Challet E. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal, Arvicanthis ansorgei. Neuroscience 116: 583‐591, 2003.
 66. Callard D, Davenne D, Lagarde D, Meney I, Gentil C, Van Hoecke J. Nycthemeral variations in core temperature and heart rate: Continuous cycling exercise versus continuous rest. Int J Sports Med 22: 553‐557, 2001.
 67. Campbell SS, Dawson D, Zulley J. When the human circadian system is caught napping: Evidence for endogenous rhythms close to 24 hours. Sleep 16: 638‐640, 1993.
 68. Campbell SS, Murphy PJ, Boothroyd CE. Long‐term time estimation is influenced by circadian phase. Physiol Behav 72: 589‐593, 2001.
 69. Canal‐Corretger MM, Cambras T, Díez‐Noguera A. Effect of light during lactation on the phasic and tonic responses of the rat pacemaker. Chrobiol Int 20: 21‐35, 2003.
 70. Canal‐Corretger MM, Vilaplana J, Cambras T, Díez‐Noguera A. Functioning of the rat circadian system is modified by light applied in critical postnatal days. Am J Physiol Regul Integr Comp Physiol 280: R1023‐R1030, 2001.
 71. Canguilhem B, Malan A, Masson‐Pévet M, Nobelis P, Kirsch R, Pévet P, Le Minor J. Search for rhythmicity during hibernation in the European hamster. J Comp Physiol B 163: 690‐698, 1994.
 72. Carmichael MS, Nelson RJ, Zucker I. Hamster activity and estrous cycles: Control by a single versus multiple circadian oscillator(s). Proc Nat Acad Sci USA 78: 7830‐7834, 1981.
 73. Carrier J, Monk TH. Estimating the endogenous circadian temperature rhythm without keeping people awake. J Biol Rhythms 12: 266‐277, 1997.
 74. Chabot CC, Skinner SJ, Watson WH. Rhythms of locomotion expressed by Limulus polyphemus, the American horseshoe crab: I. Synchronization by artificial tides. Biol Bull 215: 34‐45, 2008.
 75. Chandrashekaran MK, Marimuthu G, Geetha L. Correlations between sleep and wake in internally synchronized and desynchronized circadian rhythms in humans under prolonged isolation. J Biol Rhythms 12: 26‐33, 1997.
 76. Chaudhry AP, Halberg F, Keenan CE, Harner RN, Bittner JJ. Daily rhythms in rectal temperature and in epithelial mitoses of hamster pinna and pouch. J Appl Physiol 12: 221‐224, 1958.
 77. Chevillard‐Hugot MC, Müller EF, Kulzer E. Oxygen consumption, body temperature and heart rate in the coati (Nasua nasua). Comp Biochem Physiol A 65: 305‐309, 1980.
 78. Chiu CC, Hsieh ACL. A comparative study of four means of expressing the metabolic rate of rats. J Physiol Lond 150: 694‐706, 1960.
 79. Christian KA, Tracy CR, Porter WP. Inter‐ and intra‐individual variation in body temperatures of the Galapagos land iguana (Conolophus pallidus). J Therm Biol 10: 47‐50, 1985.
 80. Cisse F, Martineaud R, Martineaud JP. Circadian cycles of central temperature in hot climate in man. Arch Int Physiol Biochim Biophys 99: 155‐159, 1991.
 81. Cochran WW. Orientation and other migratory behaviours of a Swainson's thrush followed for 1500 km. Anim Behav 35: 927‐928, 1987.
 82. Cohen R, Kronfeld‐Schor N. Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol Behav 87: 563‐574, 2006.
 83. Cohen R, Smale L, Kronfeld‐Schor N. Masking and temporal niche switches in spiny mice. J Biol Rhythms 25: 47‐52, 2010.
 84. Conn CA, Borer KT, Kluger MJ. Body temperature rhythm and response to pyrogen in exercising and sedentary hamsters. Med Sci Sports Exerc 22: 636‐642, 1990.
 85. Conn CA, Franklin B, Freter R, Kluger MJ. Role of gram‐negative and gram‐positive gastrointestinal flora in temperature regulation of mice. Am J Physiol Regul Integr Comp Physiol 261: R1358‐R1363, 1991.
 86. Connolly MS, Lynch CB. Classical genetic analysis of circadian body temperature rhythms in mice. Behav Genet 13: 491‐500, 1983.
 87. Conrad MC, Miller AT. Age changes in body size, body composition and basal metabolism. Am J Physiol 186: 207‐210, 1956.
 88. Cooper CE, Withers PC. Patterns of body temperature variation and torpor in the numbat, Myrmecobius fasciatus (Marsupialia: Myrmecobiidae). J Therm Biol 29: 277‐284, 2004.
 89. Cowgell J, Underwood H. Behavioral thermoregulation in lizards: A circadian rhythm. J Exp Zool 210: 189‐194, 1979.
 90. Crawshaw LI. Temperature selection and activity in the crayfish, Orconectes immunis. J Comp Physiol 95: 315‐322, 1971.
 91. Crowley M, Bovet J. Social synchronization of circadian rhythms in deer mice (Peromyscus maniculatus). Behav Ecol Sociobiol 7: 99‐105, 1980.
 92. Cuesta M, Clesse D, Pévet P, Challet E. From daily behavior to hormonal and neurotransmitter rhythms: Comparison between diurnal and nocturnal rat species. Horm Behav 55: 338‐347, 2009.
 93. Cummings SM, Morgan E. Time‐keeping system of the eel pout, Zoarces viviparus. Chrobiol Int 18: 27‐46, 2001.
 94. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk DJ, Kronauer RE. Stability, precision, and near‐24‐hour period of the human circadian pacemaker. Science 284: 2177‐2181, 1999.
 95. Czeisler CA, Kronauer RE, Allan JS, Duffy JF, Jewett ME, Brown EN, Ronda JM. Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science 244: 1328‐1333, 1989.
 96. Czeisler CA, Weitzman ED, Moore‐Ede MC, Zimmerman JC, Knauer RS. Human sleep: Its duration and organization depend on its circadian phase. Science 210: 1264‐1267, 1980.
 97. Daan S, Aschoff J. The entrainment of circadian rhythm. In: Takahashi JS, Turek FW, Moore RY, editors. Circadian Clocks (Handbook of Behavioral Neurobiology Volume 12). New York: Kluwer/Plenum, 2001, p. 7‐43.
 98. Daan S, Beersma DGM, Borbély AA. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am J Physiol Regul Integr Comp Physiol 246: R161‐R178, 1984.
 99. Daan S, Pittendrigh CS. A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106: 253‐266, 1976a.
 100. Daan S, Pittendrigh CS. A functional analysis of circadian pacemakers in nocturnal rodents. III. Heavy water and constant light: Homeostasis of frequency? J Comp Physiol 106: 267‐290, 1976b.
 101. Dardente H, Menet JS, Challet E, Tournier BB, Pévet P, Masson‐Pévet M. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Mol Brain Res 124: 143‐151, 2004.
 102. Davis FC, Gorski RA. Development of hamster circadian rhythms. I. Within‐litter synchrony of mother and pup activity rhythms at weaning. Biol Reprod 33: 353‐362, 1985.
 103. Davis FC, Stice S, Menaker M. Activity and reproductive state in the hamster: Independent control by social stimuli and a circadian pacemaker. Physiol Behav 40: 583‐590, 1987.
 104. Davy J. On the temperature of man. Philosl Trans R Soc Lond 135: 319‐333, 1845.
 105. De Castro JM. Diurnal rhythms of behavioral effects on core temperature. Physiol Behav 21: 883‐886, 1978.
 106. De Castro JM. Circadian rhythms of the spontaneous meal pattern, macronutrient intake, and mood of humans. Physiol Behav 40: 437‐446, 1987.
 107. De Gennaro L, Ferrara M, Curcio G, Bertini M. Visual search performance across 40 h of continuous wakefulness: Measures of speed and accuracy and relation with oculomotor performance. Physiol Behav 74: 197‐204, 2001.
 108. de la Iglesia HO, Rodríguez EM, Dezi RE. Burrow plugging in the crab Uca uruguayensis and its synchronization with photoperiod and tides. Physiol Behav 55: 913‐919, 1994.
 109. DeCoursey P. Phase control of activity in a rodent. Cold Spring Harb Symp Quant Biol 25: 49‐55, 1960.
 110. DeCoursey PJ, Krulas JR, Mele G, Holley DC. Circadian performance of suprachiasmatic nuclei (SCN)‐lesioned antelope ground squirrels in a desert enclosure. Physiol Behav 62: 1099‐1108, 1997.
 111. DeCoursey PJ, Pius S, Sandlin C, Wethey D, Schull J. Relationship of circadian temperature and activity rhythms in two rodent species. Physiol Behav 65: 457‐463, 1998.
 112. Deprés‐Brummer P, Lévi F, Metzger G, Touitou Y. Light‐induced suppression of the rat circadian system. Am J Physiol Regul Integr Comp Physiol 268: R1111‐R1116, 1995.
 113. Devlin PF, Kay SA. Circadian photoperception. Ann Rev Physiol 63: 677‐694, 2001.
 114. Dewasmes G, Bothorel B, Candas V, Libert JP. A short‐term poikilothermic period occurs just after paradoxical sleep onset in humans: Characterization changes in sweating effector activity. J Sleep Res 6: 252‐258, 1997.
 115. Di Milia L, Smith PA, Folkard S. Refining the psychometric properties of the circadian type inventory. Pers Indiv Dif 36: 1953‐1964, 2004.
 116. Díaz‐Iglesias E, Díaz‐Herrera F, Re‐Araujo AD, Báez‐Hidalgo M, López‐Zenteno M, Valdés‐Sánchez G, López‐Murillo AK. Temperatura preferida y consumo de oxígeno circadiano de la langosta roja, Panulirus interruptus (Randall, 1842). Ciencias Marinas 30: 169‐178, 2004.
 117. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Ann Rev Physiol 72: 517‐549, 2010.
 118. Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, de Cecco AR, Hughes RJ, Elliott AR, Prisk GK, West JB, Czeisler CA. Sleep, performance, circadian rhythms, and light‐dark cycles during two space shuttle flights. Am J Physiol Regul Integr Comp Physiol 281: R1647‐R1664, 2001.
 119. Duffield GE, Ebling FJP. Maternal entrainment of the developing circadian system in the Siberian hamster (Phodopus sungorus). J Biol Rhythms 13: 315‐329, 1998.
 120. Duffy JF, Rimmer DW, Czeisler CA. Association of intrinsic circadian period with morningness‐eveningness, usual wake time, and circadian phase. Behav Neurosci 115: 895‐899, 2001.
 121. Dunn JD, Castro AJ, McNulty JA. Effect of suprachiasmatic ablation on the daily temperature rhythm. Neurosci Lett 6: 345‐348, 1977.
 122. Dvomyk V, Vinogradova O, Nevo E. Origin and evolution of circadian clock genes in prokaryotes. Proc Nat Acad Sci USA 100: 2495‐2500, 2003.
 123. Dyck AP, MacArthur RA. Seasonal patterns of body temperature in free‐ranging beaver (Castor canadensis). Can J Zool 70: 1668‐1672, 1992.
 124. Earnest DJ, Turek FW. Splitting of the circadian rhythm of activity in hamsters: Effects of exposure to constant darkness and subsequent re‐exposure to constant light. J Comp Physiol 145: 405‐411, 1982.
 125. Ebihara S, Gwinner E. Different circadian pacemakers control feeding and locomotor activity rhythms in European starlings. J Comp Physiol A 171: 63‐67, 1992.
 126. Edgar DM, Dement WC. Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Physiol Regul Integr Comp Physiol 261: R928‐R933, 1991.
 127. Edgar DM, Kilduff TS, Martin CE, Dement WC. Influence of running wheel activity on free‐running sleep/wake and drinking circadian rhythms in mice. Physiol Behav 50: 373‐378, 1991.
 128. Edgar DM, Martin CE, Dement WC. Activity feedback to the mammalian circadian pacemaker: Influence on observed measures of rhythm period length. J Biol Rhythms 6: 185‐199, 1991.
 129. Elliott AL, Mills JN, Minors DS, Waterhouse JM. The effect of real and simulated time‐zone shifts upon the circadian rhythms of body temperature, plasma 11‐hydroxycorticosteroids, and renal excretion in human subjects. J Physiol Lond 221: 227‐257, 1972.
 130. Elvert R, Kronfeld N, Dayan T, Haim A, Zisapel N, Heldmaier G. Telemetric field studies of body temperature and activity rhythms of Acomys russatus and A. cahirinus in the Judean Desert of Israel. Oecologia 119: 484‐492, 1999.
 131. Endo T, Honma S, Hashimoto S, Honma K. After‐effect of entrainment on the period of human circadian system. Jpn J Physiol 49: 425‐430, 1999.
 132. Erkert HG, Nagel B, Stephani I. Light and social effects on the free‐running circadian activity rhythm in common marmosets (Callithrix jacchus, Primates): Social masking, pseudo‐splitting, and relative coordination. Behav Ecol Sociobiol 18: 443‐452, 1986.
 133. Eskin A. Some properties of the system controlling the circadian activity rhythm of sparrows. In: Menaker M, editor. Biochronometry. Washington, DC: National Academy of Sciences, 1971, p. 55‐80.
 134. Even PC, Rolland V, Roseau S, Bouthegourd JC, Tomé D. Prediction of basal metabolism from organ size in the rat: Relationship to strain, feeding, age, and obesity. Am J Physiol Regul Integr Comp Physiol 280: R1887‐R1896, 2001.
 135. Fenn MGP, Macdonald DW. Use of middens by red foxes: Risk reverses rhythms of rats. J Mammal 76: 130‐136, 1995.
 136. Fidler AE, Gwinner E. Comparative analysis of avian BMAL1 and CLOCK protein sequences: A search for features associated with owl nocturnal behavior. Comp Biochem Physiol B 136: 861‐874, 2003.
 137. Filipski E, King VM, Etienne MC, Li XM, Claustrat B, Granda TG, Milano G, Hastings MH, Lévi F. Persistent twenty‐four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am J Physiol Regul Integr Comp Physiol 287: R844‐R851, 2004.
 138. Fioretti MC, Riccardi C, Menconi E, Martini L. Control of the circadian rhythm of body temperature in the rat. Life Sci 14: 2111‐2119, 1974.
 139. Fischette CT, Edinger HM, Siegel A. Temporary desynchronization among circadian rhythms with lateral fornix ablation. Brain Res 229: 85‐101, 1981.
 140. Fitzgerald KM, Zucker I. Circadian organization of the estrous cycle of the golden hamster. Proc Nat Acad Sci USA 73: 2923‐2927, 1976.
 141. Folk GE. Twenty‐four hour rhythms of mammals in a cold environment. Am Nat 91: 153‐166, 1957.
 142. Fowler PA, Racey PA. Daily and seasonal cycles of body temperature and aspects of heterothermy in the hedgehog Erinaceus europaeus. J Comp Physiol B 160: 299‐307, 1990.
 143. Francis AJP, Coleman GJ. The effect of ambient temperature cycles upon circadian running and drinking activity in male and female laboratory rats. Physiol Behav 43: 471‐477, 1988.
 144. Fuller A, Kamerman PR, Maloney SK, Mitchell G, Mitchell D. Variability in brain and arterial blood temperatures in free‐ranging ostriches in their natural habitat. J Exp Biol 206: 1171‐1181, 2003.
 145. Fuller CA, Edgar DM. Effects of light intensity on the circadian temperature and feeding rhythms in the squirrel monkey. Physiol Behav 36: 687‐691, 1986.
 146. Fuller CA, Sulzman FM, Moore‐Ede MC. Thermoregulation is impaired in an environment without circadian time cues. Science 199: 794‐796, 1978.
 147. Fuller CA, Sulzman FM, Moore‐Ede MC. Role of heat loss and heat production in generation of the circadian temperature rhythm of the squirrel monkey. Physiol Behav 34: 543‐546, 1985.
 148. Fuller CA. Circadian brain and body temperature rhythms in the squirrel monkey. Am J Physiol Regul Integr Comp Physiol 246: R242‐R246, 1984.
 149. Gander PH, Connell LJ, Graeber RC. Masking of the circadian rhythm of heart rate and core temperature by the rest‐activity cycle in man. J Biol Rhythms 1: 119‐135, 1986.
 150. Gates AI. Diurnal variations in memory and association. Uni Calif Publ Psychol 1: 323‐344, 1916.
 151. Gattermann R, Weinandy R. Lack of social entrainment of circadian activity rhythms in the solitary golden hamster and in the highly social Mongolian gerbil. Biol Rhythm Res 28(S): 85‐93, 1997.
 152. Gebczynski AK, Taylor JRE. Daily variation of body temperature, locomotor activity and maximum nonshivering thermogenesis in two species of small rodents. J Therm Biol 29: 123‐131, 2004.
 153. Gemmell RT, Turner SJ, Krause WJ. The circadian rhythm of body temperature of four marsupials. J Therm Biol 22: 301‐307, 1997.
 154. Génin F, Perret M. Daily hypothermia in captive grey mouse lemurs (Microcebus murinus): Effects of photoperiod and food restriction. Comp Biochem Physiol B 136: 71‐81, 2003.
 155. Georgiev J. Influence of environmental conditions and handling on the temperature rhythm of the rat. Biotelem Patient Monit 5: 229‐234, 1978.
 156. Gerkema MP, Groos GA, Daan S. Differential elimination of circadian and ultradian rhythmicity by hypothalamic lesions in the common vole, Microtus arvalis. J Biol Rhythms 5: 81‐95, 1990.
 157. Ghata J, Reinberg A, Lagoguey M, Touitou Y. Human circadian rhythms documented in May‐June from three groups of young healthy males living respectively in Paris, Colombo and Sydney. Chronobiologia 4: 181‐190, 1977.
 158. Giannotti F, Cortesi F, Sebastiani T, Ottaviano S. Circadian preference, sleep and daytime behaviour in adolescence. J Sleep Res 11: 191‐199, 2002.
 159. Gidal BE, Radulovic LL, Kruger S, Rutecki P, Pitterle M, Bockbrader HN. Inter‐ and intra‐subject variability in gabapentin absorpotion and absolute bioavailability. Epilepsy Res 40: 123‐127, 2000.
 160. Glass JD, Tardif SD, Clements R, Mrosovsky N. Photic and nonphotic circadian phase resetting in a diurnal primate, the common marmoset. Am J Physiol Regul Integr Comp Physiol 280: R191‐R197, 2001.
 161. Glotzbach SF, Heller HC. Central nervous regulation of body temperature during sleep. Science 194: 537‐539, 1976.
 162. Glotzbach SF, Heller HC. Changes in the thermal characteristics of hypothalamic neurons during sleep and wakefulness. Brain Res 309: 17‐26, 1984.
 163. Goel N, Lee TM. Social cues accelerate reentrainment of circadian rhythms in diurnal female Octodon degus (Rodentia: Octodontidae). Chrobiol Int 12: 311‐323, 1995.
 164. Goel N, Lee TM. Social cues modulate free‐running circadian activity rhythms in the diurnal rodent, Octodon degus. Am J Physiol Regul Integr Comp Physiol 273: R797‐R804, 1997.
 165. Goldman BD, Goldman SL, Riccio AP, Terkel J. Circadian patterns of locomotor activity and body temperature in blind mole‐rats, Spalax ehrenbergi. J Biol Rhythms 12: 348‐361, 1997.
 166. Golombek DA, Ortega G, Cardinali DP. Wheel running raises body temperature and changes the daily cycle in golden hamsters. Physiol Behav 53: 1049‐1054, 1993.
 167. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev 90: 1063‐1102, 2010.
 168. Gordon CJ. 24‐Hour control of body temperature in rats. I. Integration of behavioral and autonomic effectors. Am J Physiol Regul Integr Comp Physiol 267: R71‐R77, 1994.
 169. Gordon CJ, Yang Y. Contribution of spontaneous motor activity to the 24 hour control of body temperature in male and female rats. J Therm Biol 22: 59‐68, 1997.
 170. Gordon CJ, Rezvani AH. Genetic selection of rats with high and low body temperatures. J Therm Biol 26: 223‐229, 2001.
 171. Governale MM, Lee TM. Olfactory cues accelerate reentrainment following phase shifts and entrain free‐running rhythms in female Octodon degus (Rodentia). J Biol Rhythms 16: 489‐501, 2001.
 172. Gradisar M, Lack L. Relationships between the circadian rhythms of finger temperature, core temperature, sleep latency, and subjective sleepiness. J Biol Rhythms 19: 157‐163, 2004.
 173. Graf R. Diurnal changes of thermoregulatory functions in pigeons. I. Effector mechanisms. Pflügers Arch 386: 173‐179, 1980.
 174. Grahn DA, Miller JD, Houng VS, Heller HC. Persistence of circadian rhythmicity in hibernating ground squirrels. Am J Physiol Regul Integr Comp Physiol 266: R1251‐R1258, 1994.
 175. Graw P, Kräuchi K, Knoblauch V, Wirz‐Justice A, Cajochen C. Circadian and wake‐dependent modulation of fastest and slowest reaction times during psychomotor vigilance task. Physiol Behav 80: 695‐701, 2004.
 176. Greco AM, Gambardella P, Sticchi R, D'Aponte D, di Renzo G, de Franciscis P. Effects of individual housing on circadian rhythms of adult rats. Physiol Behav 45: 363‐366, 1989.
 177. Green J, Pollak CP, Smith GP. Meal size and intermeal interval in human subjects in time isolation. Physiol Behav 41: 141‐147, 1987.
 178. Gür MK, Refinetti R, Gür H. Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions. J Comp Physiol B 179: 155‐164, 2009.
 179. Guyomarc'h C, Lumineau S, Richard JP. Circadian rhythm of activity in Japanese quail in constant darkness: Variability of clarity and possibility of selection. Chrobiol Int 15: 219‐230, 1998.
 180. Gwinner E. Entrainment of a circadian rhythm in birds by species‐specific song cycles. Experientia 22: 765‐766, 1966.
 181. Hack LM, Lockley SW, Arendt J, Skene DJ. The effects of low‐dose 0.5‐mg melatonin on the free‐running circadian rhythms of blind subjects. J Biol Rhythms 18: 420‐429, 2003.
 182. Hahn GL, Chen YR, Nienaber JA, Eigenberg RA, Parkhurst AM. Characterizing animal stress through fractal analysis of thermoregulatory responses. J Therm Biol 17: 115‐120, 1992.
 183. Hahn GL, Eigenberg RA, Nienaber JA, Littledike ET. Measuring physiological responses of animals to environmental stressors using a microcomputer‐based portable datalogger. J Anim Sci 68: 2658‐2665, 1990.
 184. Haim A, Downs CT, Raman J. Effects of adrenergic blockade on the daily rhythms of body temperature and oxygen consumption of the black‐tailed tree rat (Thallomys nigricauda) maintained under different photoperiods. J Therm Biol 26: 171‐177, 2001.
 185. Haim A, Ellison GTH, Skinner JD. Thermoregulatory circadian rhythms in the pouched mouse (Saccostomus campestris). Comp Biochem Physiol A 91: 123‐127, 1988.
 186. Haim A, McDevitt RM, Speakman JR. Thermoregulatory responses to manipulations of photoperiod in wood mice Apodemus sylvaticus from high latitudes. J Therm Biol 20: 437‐443, 1995.
 187. Haim A, Yedidia I, Haim D, Zisapel N. Photoperiodicity in daily rhythms of body temperature, food and energy intake of the golden spiny mouse (Acomys russatus). Isr J Zool 40: 145‐150, 1994.
 188. Haim A, Zisapel N. Oxygen consumption and body temperature rhythms in the golden spiny mouse: Responses to changes in day length. Physiol Behav 58: 775‐778, 1995.
 189. Haim A. Food and energy intake, non‐shivering thermogenesis and daily rhythm of body temperature in the bushy‐tailed gerbil Sekeetamys calurus: The role of photoperiod manipulations. J Therm Biol 21: 37‐42, 1996.
 190. Halberg E, Halberg F, Timm RM, Regal PJ, Cugigni P, de Remigis P. Socially‐related and spontaneous circadian thermo‐acrophase shifts in Rhabdomys pumilio: Complications for chronopharmacologists. In: Takahashi R, Halberg F, Walker CA, editors. Toward Chronopharmacology. Oxford, UK: Pergamon, 1982, p. 357‐368.
 191. Halberg F, Zander HA, Houglum MW, Mühlemann HR. Daily variations in tissue mitoses, blood eosinophils and rectal temperatures of rats. Am J Physiol 177: 361‐366, 1954.
 192. Halle S. Diel pattern of locomotor activity in populations of root voles, Microtus oeconomus. J Biol Rhythms 10: 211‐224, 1995.
 193. Hamasaka Y, Watari Y, Arai T, Numata H, Shiga S. Retinal and extraretinal pathways for entrainment of the circadian activity rhythm in the blow fly, Protophormia terraenovae. J Insect Physiol 47: 867‐875, 2001.
 194. Harlow HJ, Phillips JA, Ralph CL. Circadian rhythms and the effects of exogenous melatonin in the nine‐banded armadillo, Dasypus novemcinctus: A mammal lacking a distinct pineal gland. Physiol Behav 29: 307‐313, 1982.
 195. Häster L, Erkert HG. Alteration of circadian period length does not influence the ovarian cycle length in common marmosets, Callithrix j. jacchus (Primates). Chrobiol Int 10: 165‐175, 1993.
 196. Hau M, Gwinner E. Circadian entrainment by feeding cycles in house sparrows, Passer domesticus. J Comp Physiol A 170: 403‐409, 1992.
 197. Hawking F, Lobban MC, Gammage K, Worms MJ. Circadian rhythms (activity, temperature, urine and microfilariae) in dog, cat, hen, duck, Thamnomys and Gerbillus. J Interdiscipl Cycle Res 2: 455‐473, 1971.
 198. Hayes SR. Daily activity and body temperature of the southern woodchuck, Marmota monax monax, in northwestern Arkansas. J Mammal 57: 291‐299, 1976.
 199. Heller HC, Graf R, Rautenberg W. Circadian and arousal state influences on thermoregulation in the pigeon. Am J Physiol Regul Integr Comp Physiol 245: R321‐R328, 1983.
 200. Hendricks JC. Absence of shivering in the cat during paradoxical sleep without atonia. Exp Neurol 75: 700‐710, 1982.
 201. Herrero MJ, Madrid JA, Sánchez‐Vázquez FJ. Entrainment to light of circadian activity rhythms in tench (Tinca tinca). Chrobiol Int 20: 1001‐1017, 2003.
 202. Heusner A. Variation nycthémérale de la température centrale chez le rat adapté à la neutralité thermique. C R Soc Biol Strasbourg 153: 1258‐1261, 1959.
 203. Heusner A, Harmelin ML. Relation entre le poids et la consommation d'oxygène. I. Etude chez le rat. C R Soc Biol Strasbourg 157: 376‐380, 1963.
 204. Hildwein G, Kayser C. Relation entre la température colonique et la consommation d'oxygène d'un insectivore, le Tenrec, au cours du nycthémère. C R Soc Biol Strasbourg 164: 429‐432, 1970.
 205. Hoban TM, Levine AH, Shane RB, Sulzman FM. Circadian rhythms of drinking and body temperature of the owl monkey (Aotus trivirgatus). Physiol Behav 34: 513‐518, 1985.
 206. Hofmann GE, Todgham AE. Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Ann Rev Physiol 72: 127‐145, 2010.
 207. Hohtola E, Hissa R, Pyörnilä A, Rintamäki H, Saarela S. Nocturnal hypothermia in fasting Japanese quail: The effect of ambient temperature. Physiol Behav 49: 563‐567, 1991.
 208. Honegger HW. Locomotor activity in Uca crenulata, and the response to two Zeitgebers, light‐dark and tides. In: DeCoursey PJ, editor. Biological Rhythms in the Marine Environment. Columbia, SC: University of South Carolina Press, 1976, p. 93‐102.
 209. Honma K, Hiroshige T. Internal synchronization among several circadian rhythms in rats under constant light. Am J Physiol Regul Integr Comp Physiol 235: R243‐R249, 1978a.
 210. Honma K, Hiroshige T. Simultaneous determination of circadian rhythms of locomotor activity and body temperature in the rat. Jap J Physiol 28: 159‐169, 1978b.
 211. Honma K, Honma S, Kohsaka M, Fukuda N. Seasonal variation in the human circadian rhythm: Dissociation between sleep and temperature rhythm. Am J Physiol Regul Integr Comp Physiol 262: R885‐R891, 1992.
 212. Honma K, Honma S, Nakamura K, Sasaki M, Endo T, Takahashi T. Differential effects of bright light and social cues on reentrainment of human circadian rhythms. Am J Physiol Regul Integr Comp Physiol 268: R528‐R535, 1995.
 213. Honma K, Honma S, Wada T. Entrainment of human circadian rhythms by artificial bright light cycles. Experientia 43: 572‐574, 1987.
 214. Honma K, von Goetz C, Aschoff J. Effects of restricted daily feeding on freerunning circadian rhythms in rats. Physiol Behav 30: 905‐913, 1983.
 215. Honma S, Honma K. Light‐induced uncoupling of multioscillatory circadian system in a diurnal rodent, Asian chipmunk. Am J Physiol Regul Integr Comp Physiol 276: R1390‐R1396, 1999.
 216. Honnebier MBOM, Jenkins SL, Nathanielsz PW. Circadian timekeeping during pregnancy: Endogenous phase relationships between maternal plasma hormones and the maternal body temperature rhythm in pregnant rhesus monkeys. Endocrinology 131: 2051‐2058, 1992.
 217. Honrado GI, Mrosovsky N. Arousal by sexual stimuli accelerates the re‐entrainment of hamsters to phase advanced light‐dark cycles. Behav Ecol Sociobiol 25: 57‐63, 1989.
 218. Horne JA, Östberg O. A self‐assessment questionnaire to determine morningness‐eveningness in human circadian rhythms. Int J Chronobiol 4: 97‐110, 1976.
 219. Horne JA, Östberg O. Individual differences in human circadian rhythms. Biol Psychol 5: 179‐190, 1977.
 220. Horowitz TS, Cade BE, Wolfe JM, Czeisler CA. Searching night and day: A dissociation of effects of circadian phase and time awake on visual selective attention and vigilance. Psychol Sci 14: 549‐557, 2003.
 221. Houdelier C, Guyomarc'h C, Lumineau S, Richard JP. Circadian rhythms of oviposition and feeding activity in Japanese quail: Effects of cyclic administration of melatonin. Chrobiol Int 19: 1107‐1119, 2002.
 222. van Houwelingen CA, Beersma DGM. Seasonal changes in 24‐h patterns of suicide rates: A study on train suicides in The Netherlands. J Affect Disord 66: 215‐223, 2001.
 223. Hull JT, Wright KP, Czeisler CA. The influence of subjective alertness and motivation on human performance independent of circadian and homeostatic regulation. J Biol Rhythms 18: 329‐338, 2003.
 224. Hurd MW, Debruyne J, Straume M, Cahill GM. Circadian rhythms of locomotor activity in zebrafish. Physiol Behav 65: 465‐472, 1998.
 225. Hut RA, Barnes BM, Daan S. Body temperature patterns before, during, and after semi‐natural hibernation in the European ground squirrel. J Comp Physiol B 172: 47‐58, 2002.
 226. Iigo M, Tabata M. Circadian rhythms of locomotor activity in the goldfish Carassius auratus. Physiol Behav 60: 775‐781, 1996.
 227. Ikeda M, Inoué S. Simultaneous recording of circadian rhythms of brain and intraperitoneal temperatures and locomotor and drinking activities in the rat. Biol Rhythm Res 29: 142‐150, 1998.
 228. Ikeda M, Sagara M, Inoué S. Continuous exposure to dim illumination uncouples temporal patterns of sleep, body temperature, locomotion and drinking behavior in the rat. Neurosci Lett 279: 185‐189, 2000.
 229. Ingram DL, Legge KF. Variations in deep body temperature in the young unrestrained pig over the 24 hour period. J Physiol Lond 210: 989‐998, 1970.
 230. Ingram DL, Mount LE. The effects of food intake and fasting on 24‐hourly variations in body temperature in the young pig. Pflügers Arch 339: 299‐304, 1973.
 231. Innicenti A, Minutini L, Foà A. The pineal and circadian rhythms of temperature selection and locomotion in lizards. Physiol Behav 53: 911‐915, 1993.
 232. Irizarry RA, Tankersley C, Frank R, Flanders S. Assessing homeostasis through circadian patterns. Biometrics 57: 1228‐1237, 2001.
 233. Ishii K, Uchino M, Kuwahara M, Tsubone H, Ebukuro S. Diurnal fluctuations of heart rate, body temperature and locomotor activity in the house musk shrew (Suncus murinus). Exp Anim 51: 57‐62, 2002.
 234. Isobe Y, Takaba S, Ohara K. Diurnal variation of thermal resistance in rats. Can J Physiol Pharmacol 58: 1174‐1179, 1980.
 235. IUPS Thermal Commission. Glossary of terms for thermal physiology. Jap J Physiol 51: 245‐280, 2001.
 236. Jarling C, Scarperi M,, Bleichert A. Circadian rhythm in the temperature preference of the turtle, Chrysemys scripta elegans, in a thermal gradient. J Therm Biol 14: 173‐178, 1989.
 237. Jechura TJ, Walsh JM, Lee TM. Testosterone suppresses circadian responsiveness to social cues in the diurnal rodent Octodon degus. J Biol Rhythms 18: 43‐50, 2003.
 238. Jessen C, Dmi'el R, Choshniak I, Ezra D, Kuhnen G. Effects of dehydration and rehydration on body temperatures in the black Bedouin goat. Pflügers Arch 436: 659‐666, 1998.
 239. Jessen C, Kuhnen G. Seasonal variations of body temperature in goats living in an outdoor environment. J Therm Biol 21: 197‐204, 1996.
 240. Jilge B. The rhythm of food and water ingestion, faeces excretion and locomotor activity in the guinea pig. Z Versuchstierkunde 27: 215‐225, 1985.
 241. Jilge B. Restricted feeding: A nonphotic zeitgeber in the rabbit. Physiol Behav 51: 157‐166, 1991.
 242. Jilge B, Kuhnt B, Landerer W, Rest S. Circadian temperature rhythms in rabbit pups and in their does. Lab Anim 35: 364‐373, 2001.
 243. Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppä T, Lichtermann D, Neumeister A, Nilsson LG, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T. Circadian clock‐related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28: 734‐739, 2003.
 244. Johnson CH, Elliott JA, Foster R. Entrainment of circadian programs. Chrobiol Int 20: 741‐774, 2003.
 245. Johnson MP, Duffy JF, Dijk DJ, Ronda JM, Dyal CM, Czeisler CA. Short‐term memory, alertness and performance: A reappraisal of their relationship to body temperature. J Sleep Res 1: 24‐29, 1992.
 246. Johnson RF, Randall W. Freerunning and entrained circadian rhythms in body temperature in the domestic cat. J Interdiscipl Cycle Res 16: 49‐61, 1985.
 247. Johnston PG, Zucker I. Lability and diversity of circadian rhythms of cotton rats, Sigmodon hispidus. Am J Physiol Regul Integr Comp Physiol 244: R338‐R346, 1983.
 248. Jones ME, Grigg GC, Beard LA. Body temperatures and activity patterns of Tasmanian devils (Sarcophilus harrisii) and eastern quolls (Dasyurus viverrinus) through a subalpine winter. Physiol Zool 70: 53‐60, 1997.
 249. Kadono H, Besch EL. Influence of laying cycle on body temperature rhythm in the domestic hen. In: Tanabe Y, editor. Biological Rhythms in Birds: Neural and Endocrine Aspects. Berlin: Springer, 1980, p. 91‐99.
 250. Kadono H, Besch EL, Usami E. Body temperature, oviposition, and food intake in the hen during continuous light. J Appl Physiol 51: 1145‐1149, 1981.
 251. Kalsbeek A, Fliers E, Romijn JA, la Fleur SE, Wortel J, Bakker O, Endert E, Buijs RM. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142: 2677‐2685, 2001.
 252. Kas MJH, Edgar DM. Crepuscular rhythms of EEG sleep‐wake in a hystricomorph rodent, Octodon degus. J Biol Rhythms 13: 9‐17, 1998.
 253. Kas MJH, Edgar DM. A nonphotic stimulus inverts the diurnal‐nocturnal phase preference in Octodon degus. J Neurosci 19: 328‐333, 1999.
 254. Kavaliers M, Ralph CL. Pineal involvement in the control of behavioral thermoregulation of the white sucker, Catostomus commersoni. J Exp Zool 212: 301‐303, 1980.
 255. Kavanau JL. The study of social interaction between small animals. Anim Behav 11: 263‐273, 1963.
 256. Keeney AJ, Hogg S, Marsden CA. Alterations in core body temperature, locomotor activity, and corticosterone following acute and repeated social defeat of male NMRI mice. Physiol Behav 74: 177‐184, 2001.
 257. Kennaway DJ, Van Dorp CF. Free‐running rhythms of melatonin, cortisol, electrolytes, and sleep in humans in Antarctica. Am J Physiol Regul Integr Comp Physiol 260: R1137‐R1144, 1991.
 258. Kennedy GA, Coleman GJ, Armstrong SM. Restricted feeding entrains circadian wheel‐running activity rhythms of the kowari. Am J Physiol Regul Integr Comp Physiol 261: R819‐R827, 1991.
 259. Kennedy GA, Hudson R, Armstrong SM. Circadian wheel running activity rhythms in two strains of domestic rabbit. Physiol Behav 55: 385‐389, 1994.
 260. Kerkhof GA, Van Dongen HPA, Bobbert AC. Absence of endogenous circadian rhythmicity in blood pressure? Am J Hypertens 11: 373‐377, 1998.
 261. Kim S, Dueker GL, Hasher L, Goldstein D. Children's time of day preference: Age, gender and ethnic differences. Pers Indiv Dif 33: 1083‐1090, 2002.
 262. King VM, Bentley GE, Follett BK. A direct comparison of photoperiodic time measurement and the circadian system in European starlings and Japanese quail. J Biol Rhythms 12: 431‐442, 1997.
 263. Kittrell EMW, Satinoff E. Diurnal rhythms of body temperature, drinking and activity over reproductive cycles. Physiol Behav 42: 477‐484, 1988.
 264. Kleinknecht S. Lack of social entrainment of free‐running circadian activity rhythms in the Australian sugar glider (Petaurus breviceps: Marsupialia). Behav Ecol Sociobiol 16: 189‐193, 1985.
 265. Kleitman N, Ramsaroop A. Periodicity in body temperature and heart rate. Endocrinology 43: 1‐20, 1948.
 266. Kluger MJ, Conn CA, Franklin B, Freter R, Abrams GD. Effect of gastrointestinal flora on body temperature of rats and mice. Am J Physiol Regul Integr Comp Physiol 258: R552‐R557, 1990.
 267. Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK. Presence of circadian rhythms in the locomotor activity of a cave‐dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae: Spirostreptida). Chrobiol Int 17: 757‐765, 2000.
 268. Körtner G, Geiser F. Body temperature rhythms and activity in reproductive Antechinus (Marsupialia). Physiol Behav 58: 31‐36, 1995.
 269. Körtner G, Song X, Geiser F. Rhythmicity of torpor in a marsupial hibernator, the mountain pygmy‐possum (Burramys parvus), under natural and laboratory conditions. J Comp Physiol B 168: 631‐638, 1998.
 270. Koscec A, Radosevic‐Vidacek B, Kostovic M. Morningness‐eveningness across two student generations: Would two decades make a difference? Pers Indiv Dif 31: 627‐638, 2001.
 271. Koteja P, Swallow JG, Carter PA, Garland T. Different effects of intensity and duration of locomotor activity on circadian period. J Biol Rhythms 18: 491‐501, 2003.
 272. Kowalczyk R, Jedrzejewska B, Zalewski A. Annual and circadian activity patterns of badgers (Meles meles) in Bialowieza Primeval Forest (eastern Poland) compared with other Palaearctic populations. J Biogeogr 30: 463‐472, 2003.
 273. Kraemer S, Danker‐Hopfe H, Dorn H, Schmidt A, Ehlert I, Herrmann WM. Time‐of‐day variations of indicators of attention: Performance, physiologic parameters, and self‐assessment of sleepiness. Biol Psychiatry 48: 1069‐1080, 2000.
 274. Kramer K, Voss HP, Grimbergen J, Bast A. Circadian rhythms of heart rate, body temperature, and locomotor activity in freely moving mice measured with radio telemetry. Lab Anim (NY) 27(8): 23‐26, 1998.
 275. Kramm KR, Kramm DA. Photoperiodic control of circadian activity rhythms in diurnal rodents. Int J Biometeorol 24: 65‐76, 1980.
 276. Kräuchi K, Wirz‐Justice A. Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol Regul Integr Comp Physiol 267: R819‐R829, 1994.
 277. Kriebel J. Changes in internal phase relationships during isolation. In: Scheving LE, Halberg F, Pauly JE, editors. Chronobiology. Tokyo: Igaku Shoin, 1974, p. 451‐459.
 278. Krieger DT. Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95: 1195‐1201, 1974.
 279. Kronfeld‐Schor N, Dayan T. Partitioning of time as an ecological resource. Annu Rev Ecol Evol Syst 34: 153‐181, 2003.
 280. Kronfeld‐Schor N, Dayan T, Elvert R, Haim A, Zisapel N, Heldmaier G. On the use of the time axis for ecological separation: Diel rhythms as an evolutionary constraint. Am Nat 158: 451‐457, 2001.
 281. Kuriyama K, Uchiyama M, Suziki H, Tagaya H, Ozaki A, Aritake S, Kamei Y, Nishikawa T, Takahashi K. Circadian fluctuation of time perception in healthy human subjects. Neurosci Res 46: 23‐31, 2003.
 282. Kuwabara N, Seki K, Aoki K. Circadian, sleep and brain temperature rhythms in cats under sustained daily light‐dark cycles and constant darkness. Physiol Behav 38: 283‐289, 1986.
 283. Laberge L, Carrier J, Lespérance P, Lambert C, Vitaro F, Tremblay RE, Montplaisir J. Sleep and circadian phase characteristics of adolescent and young adult males in a naturalistic summertime condition. Chrobiol Int 17: 489‐501, 2000.
 284. Labyak SE, Lee TM. Estrus‐ and steroid‐induced changes in circadian rhythms in a diurnal rodent, Octodon degus. Physiol Behav 58: 573‐585, 1995.
 285. Lancia RA, Dodge WE, Larson JS. Winter activity patterns of two radio‐marked beaver colonies. J Mammal 63: 598‐606, 1982.
 286. Langford C, Glendon AI. Effects of neuroticism, extraversion, circadian type and age on reported driver stress. Work Stress 16: 316‐334, 2002.
 287. Larkin JE, Franken P, Heller HC. Loss of circadian organization of sleep and wakefulness during hibernation. Am J Physiol Regul Integr Comp Physiol 282: R1086‐R1095, 2002.
 288. Lee KA. Circadian temperature rhythms in relation to menstrual cycle phase. J Biol Rhythms 3: 255‐263, 1988.
 289. Lee TM, Holmes WG, Zucker I. Temperature dependence of circadian rhythms in golden‐mantled ground squirrels. J Biol Rhythms 5: 25‐34, 1990.
 290. Lee TM, Labyak SE. Free‐running rhythms and light‐ and dark‐pulse phase response curves for diurnal Octodon degus (Rodentia). Am J Physiol Regul Integr Comp Physiol 273: R278‐R286, 1997.
 291. Lee TM, Zucker I. Seasonal variations in circadian rhythms persist in gonadectomized golden‐mantled ground squirrels. J Biol Rhythms 10: 188‐195, 1995.
 292. Lee YH, Tokura H. Circadian rhythm of human rectal and skin temperatures under the influences of three different kinds of clothing. J Interdiscipl Cycle Res 24: 33‐42, 1993.
 293. Lefcourt AM, Huntington JB, Akers RM, Wood DL, Bitman J. Circadian and ultradian rhythms of body temperature and peripheral concentrations of insulin and nitrogen in lactating dairy cows. Domest Anim Endocrinol 16: 41‐55, 1999.
 294. Leon LR, Walker LD, DuBose DA, Stephenson LA. Biotelemetry transmitter implantation in rodents: Impact on growth and circadian rhythms. Am J Physiol Regul Integr Comp Physiol 286: R967‐R974, 2004.
 295. Leproult R, Van Reeth O, Byrne MM, Sturis J, Van Cauter E. Sleepiness, performance, and neuroendocrine function during sleep deprivation: Effects of exposure to bright light or exercise. J Biol Rhythms 12: 245‐258, 1997.
 296. Levine JD, Funes P, Dowse HB, Hall JC. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298: 2010‐2012, 2002.
 297. Li H, Satinoff E. Changes in circadian rhythms of body temperature and sleep in old rats. Am J Physiol Regul Integr Comp Physiol 269: R208‐R214, 1995.
 298. Lincoln G, Messager S, Andersson H, Hazlerigg D. Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: Evidence for an internal coincidence timer. Proc Nat Acad Sci U S A 99: 13890‐13895, 2002.
 299. Lindberg RG, Hayden P. Thermoperiodic entrainment of arousal from torpor in the little pocket mouse, Perognathus longimembris. Chronobiologia 1: 356‐361, 1974.
 300. Lobban MC. The entrainment of circadian rhythms in man. Cold Spring Harb Symp Quant Biol 25: 325‐332, 1960.
 301. Lockley SW, Skene DJ, Butler LJ, Arendt J. Sleep and activity rhythms are related to circadian phase in the blind. Sleep 22: 616‐623, 1999.
 302. Lovegrove BG, Heldmaier G. The amplitude of circadian body temperature rhythms in three rodents (Aethomys namaquensis, Thallomys paedulcus and Cryptomys damarensis) along the arboreal‐subterranean gradient. Aust J Zool 42: 65‐78, 1994.
 303. Lovegrove BG, Papenfus ME. Circadian activity rhythms in the solitary Cape molerat (Georychus capensis: Bathyergidae) with some evidence of splitting. Physiol Behav 58: 679‐685, 1995.
 304. Lowe CH, Hinds DS, Lardner PJ, Justice KE. Natural free‐running period in vertebrate animal populations. Science 156: 531‐534, 1967.
 305. Lowe TE, Cook CJ, Ingram JR, Harris PJ. Impact of climate on thermal rhythm in pastoral sheep. Physiol Behav 74: 659‐664, 2001.
 306. Lucas RJ, Stirland JA, Darrow JM, Menaker M, Loudon ASI. Free running circadian rhythms of melatonin, luteinizing hormone, and cortisol in Syrian hamsters bearing the circadian tau mutation. Endocrinology 140: 758‐764, 1999.
 307. Lumineau S, Guyomarc'h C. Effect of light intensity on circadian activity in developing Japanese quail. Biol Rhythm Res 34: 101‐113, 2003.
 308. Macari M. Efeito do cruzamento de suínos sobre o comportamento termoregulador. Ciência e Cultura 35: 1145‐1150, 1983.
 309. Madrid JA, Sánchez‐Vázquez FJ, Lax P, Matas P, Cuenca EM, Zamora S. Feeding behavior and entrainment limits in the circadian system of the rat. Am J Physiol Regul Integr Comp Physiol 275: R372‐R383, 1998.
 310. Mahoney M, Bult A, Smale L. Phase response curve and light‐induced Fos expression in suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J Biol Rhythms 16: 149‐162, 2001.
 311. Marimuthu G, Rajan S, Chandrashekaran MK. Social entrainment of the circadian rhythm in the flight activity of the microchiropteran bat Hipposideros speoris. Behav Ecol Sociobiol 8: 147‐150, 1981.
 312. Marotte H, Timbal J. Circadian rhythm of temperature in man: Comparative study with two experiment protocols. Chronobiologia 8: 87‐100, 1981.
 313. Martin SK, Eastman CI. Sleep logs of young adults with self‐selected sleep times predict the dim light melatonin onset. Chrobiol Int 19: 695‐707, 2002.
 314. May CP, Hasher L, Stoltzfus ER. Optimal time of day and the magnitude of age differences in memory. Psychol Sci 4: 326‐330, 1993.
 315. May CP, Hasher L. Synchrony effects in inhibitory control over thought and action. J Exp Psychol Human Percept Perform 24: 363‐379, 1998.
 316. McCarron HCK, Buffenstein R, Fanning FD, Dawson TJ. Free‐ranging heart rate, body temperature and energy metabolism in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus) in the arid regions of South East Australia. J Comp Physiol B 171: 401‐411, 2001.
 317. McElhinny TL, Smale L, Holekamp KE. Patterns of body temperature, activity, and reproductive behavior in a tropical murid rodent, Arvicanthis niloticus. Physiol Behav 62: 91‐96, 1997.
 318. Mecacci L, Righi S, Rocchetti G. Cognitive failures and circadian typology. Pers Indiv Dif 37: 107‐113, 2004.
 319. Medeiros ALD, Mendes DBF, Lima PF, Araujo JF. The relationships between sleep‐wake cycle and academic performance in medical students. Biol Rhythm Res 32: 263‐270, 2001.
 320. Meerlo P, Daan S. Aggressive and sexual social stimuli do not phase shift the circadian temperature rhythm in rats. Chrobiol Int 15: 231‐240, 1998.
 321. Meerlo P, De Boer SF, Koolhaas JM, Daan S, van den Hoofdakker RH. Changes in daily rhythms of body temperature and activity after a single social defeat in rats. Physiol Behav 59: 735‐739, 1996.
 322. Meerlo P, van den Hoofdakker RH, Koolhaas JM, Daan S. Stress‐induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes. J Biol Rhythms 12: 80‐92, 1997.
 323. Meijer JH, Daan S, Overkamp GJF, Hermann PM. The two‐oscillator circadian system of tree shrews (Tupaia belangeri) and its response to light and dark pulses. J Biol Rhythms 5: 1‐16, 1990.
 324. Meinrath M, D'Amato MR. Interrelationships among heart rate, activity, and body temperature in the rat. Physiol Behav 22: 491‐498, 1979.
 325. Mellette HC, Hutt BK, Askovitz SI, Horvath SM. Diurnal variations in body temperature. J Appl Physiol 3: 665‐675, 1951.
 326. Menaker M. The free running period of the bat clock: Seasonal variations at low body temperature. J Cell Comp Physiol 57: 81‐86, 1961.
 327. Menaker M. Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. Proc Nat Acad Sci U S A 59: 414‐421, 1968.
 328. Mendoza JY, Aguilar‐Roblero R, Díaz‐Muñoz M, Escobar C. Daily epinephrine but not norepinephrine administration produces anticipatory drinking behavior in rats. Biol Rhythm Res 34: 73‐90, 2003.
 329. Merrill SB, Mech LD. The usefulness of GPS telemetry to study wolf circadian and social activity. Wildlife Soc Bull 31: 947‐960, 2003.
 330. Meyer‐Bernstein EL, Jetton AE, Matsumoto S, Markuns JF, Lehman MN, Bittman EL. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140: 207‐218, 1999.
 331. Michels H, Herremans M,, Decuypere E. Light‐dark variations of oxygen consumption and subcutaneous temperature in young Gallus domesticus: Influence of ambient temperature and depilation. J Therm Biol 10: 13‐20, 1985.
 332. Miles GH. Telemetering techniques for periodicity studies. Ann N Y Acad Sci 98: 858‐865, 1962.
 333. Miles LEM, Raynal DM, Wilson MA. Blind man living in normal society has circadian rhythms of 24.9 hours. Science 198: 421‐423, 1977.
 334. Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. Circadian Clock mutation disrupts estrous ciclicity and maintenance of pregnancy. Curr Biol 14: 1367‐1373, 2004.
 335. Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, Ikeda S, Yasui A, van der Horst GT, Soga T, Ueda HR. Measurement of internal body time by blood metabolomics. Proc Nat Acad Sci U S A 106: 9890‐9895, 2009.
 336. Miranda‐Anaya M, Bartell PA, Yamazaki S, Menaker M. Circadian rhythm of ERG in Iguana iguana: Role of the pineal. J Biol Rhythms 15: 163‐171, 2000.
 337. Mistlberger RE, Lukman H, Nadeau BG. Circadian rhythms in the Zucker obese rat: Assessment and intervention. Appetite 30: 255‐267, 1998.
 338. Miyazaki H, Yoshida M, Samura K, Matsumoto H, Ikemoto F, Tagawa M. Ranges of diurnal variation and the pattern of body temperature, blood pressure and heart rate in laboratory Beagle dogs. Exp Anim 51: 95‐98, 2002.
 339. Mohr E, Krzywanek H. Variations of core‐temperature rhythms in unrestrained sheep. Physiol Behav 48: 467‐473, 1990.
 340. Mohr EG, Krzywanek H. Endogenous oscillator and regulatory mechanisms of body temperature in sheep. Physiol Behav 57: 339‐347, 1995.
 341. Møller U, Bojsen J. The circadian temperature rhythm in Syrian hamsters as a function of the number of animals per cage. J Interdiscipl Cycle Res 5: 61‐69, 1974.
 342. Monecke S, Wollnik F. Seasonal variations in circadian rhythms coincide with a phase of sensitivity to short photoperiods in the European hamster. J Comp Physiol B 175: 167‐183, 2005.
 343. Monk TH, Buysse DJ, Reynolds CF, Kupfer DJ, Houck PR. Subjective alertness rhythms in elderly people. J Biol Rhythms 11: 268‐276, 1996.
 344. Moore D, Rankin MA. Circadian locomotor rhythms in individual honeybees. Physiol Entomol 10: 191‐197, 1985.
 345. Moore‐Ede MC, Kass DA, Herd JA. Transient circadian internal desynchronization after light‐dark phase shift in monkeys. Am J Physiol Regul Integr Comp Physiol 232: R31‐R37, 1977.
 346. Morin LP, Pace L. The intergeniculate leaflet, but not the visual midbrain, mediates hamster circadian rhythm response to constant light. J Biol Rhythms 17: 217‐226, 2002.
 347. Moritz RFA, Sakofski F. The role of the queen in circadian rhythms of honeybees (Apis mellifera L.). Behav Ecol Sociobiol 29: 361‐365, 1991.
 348. Morley RM, Conn CA, Kluger MJ, Vander AJ. Temperature regulation in biotelemetered spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 258: R1064‐R1069, 1990.
 349. Moussay S, Dosseville F, Gauthier A, Larue J, Sesboüe B, Davenne D. Circadian rhythms during cycling exercise and finger‐tapping task. Chrobiol Int 19: 1137‐1149, 2002.
 350. Mrosovsky N. Phase response curves for social entrainment. J Comp Physiol A 162: 35‐46, 1988.
 351. Mrosovsky N. Rheostasis: The Physiology of Change. New York: Oxford University Press, 1990.
 352. Mrosovsky N. Masking: History, definitions, and measurement. Chrobiol Int 16: 415‐429, 1999.
 353. Mrosovsky N. Aschoff's rule in retinally degenerate mice. J Comp Physiol A 189: 75‐78, 2003a.
 354. Mrosovsky N. Beyond the suprachiasmatic nucleus. Chrobiol Int 20: 1‐8, 2003b.
 355. Mrosovsky N, Boshes M, Hallonquist JD, Lang K. Circannual cycle of circadian cycles in a golden‐mantled ground squirrel. Naturwissenschaften 63: 298‐299, 1976.
 356. Muchlinski AE, Baldwin BC, Padick DA, Lee BY, Salguero HS, Gramajo R. California ground squirrel body temperature regulation patterns measured in the laboratory and in the natural environment. Comp Biochem Physiol A 120: 365‐372, 1998.
 357. Murphy HM, Wideman CH, Nadzam GR. A laboratory animal model of human shift work. Integr Physiol Behav Sci 38: 316‐328, 2003.
 358. Murray G, Allen NB, Trinder J. Mood and the circadian system: Investigation of a circadian component in positive affect. Chrobiol Int 19: 1151‐1169, 2002.
 359. Muzet A, Libert JP, Candas V. Ambient temperature and human sleep. Experientia 40: 425‐429, 1984.
 360. Nagashima K, Nakai S, Matsue K, Konishi M, Tanaka M, Kanosue K. Effects of fasting on thermoregulatory processes and the daily oscillations in rats. Am J Physiol Regul Integr Comp Physiol 284: R1486‐R1493, 2003.
 361. Nakazawa Y, Nonaka K, Nishida N, Hayashida N, Miyahara Y, Kotorii T, Matsuoka K. Comparison of body temperature rhythms between healthy elderly and healthy young adults. Jap J Psychiatry Neurol 45: 37‐43, 1991.
 362. Natale V, Alzani A, Cicogna P. Cognitive efficiency and circadian typologies: A diurnal study. Pers Indiv Dif 35: 1089‐1105, 2003.
 363. Natale V, Lorenzetti R. Influences of morningness‐eveningness and time of day on narrative comprehension. Pers Indiv Dif 23: 685‐690, 1997.
 364. Neill JD. Sexual differences in the hypothalamic regulation of prolactin secretion. Endocrinology 90: 1154‐1159, 1972.
 365. Neill WH, Magnuson JJ, Chipman GG. Behavioral thermoregulation by fishes: A new experimental approach. Science 176: 1443‐1445, 1972.
 366. Nomoto S, Ohta M, Kanai S, Yoshida Y, Takiguchi S, Funakoshi A, Miyasaka K. Absence of the cholecystokinin‐A receptor deteriorates homeostasis of body temperature in response to changes in ambient temperature. Am J Physiol Regul Integr Comp Physiol 287: R556‐R561, 2004.
 367. Novak CM, Harris JA, Smale L, Nunez AA. Suprachiasmatic nucleus projections to the paraventricular thalamic nucleus in nocturnal rats (Rattus norvegicus) and diurnal Nile grass rats (Arvicanthis niloticus). Brain Res 874: 147‐157, 2000.
 368. Nunez AA, Bult A, McElhinny TL, Smale L. Daily rhythms of Fos expression in hypothalamic targets of the suprachiasmatic nucleus in diurnal and nocturnal rodents. J Biol Rhythms 14: 300‐306, 1999.
 369. Obál F Jr, Rubicsek G, Alföldi P, Sáry G, Obál F. Changes in the brain and core temperatures in relation to the various arousal states in rats in the light and dark periods of the day. Pflügers Arch 404: 73‐79, 1985.
 370. Ogle W. On the diurnal variations in the temperature of the human body in health. St. George's Hosp Rep 1: 221‐245, 1866.
 371. Oklejewicz M, Daan S, Strijkstra AM. Temporal organisation of hibernation in wild‐type and tau mutant Syrian hamsters. J Comp Physiol B 171: 431‐439, 2001.
 372. Oklejewicz M, Hut RA, Daan S, Loudon ASI, Stirland AJ. Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamster. J Biol Rhythms 12: 413‐422, 1997.
 373. Oosthuizen MK, Cooper HM, Bennett NC. Circadian rhythms of locomotor activity in solitary and social species of African mole‐rats (Family: Bathyergidae). J Biol Rhythms 18: 481‐490, 2003.
 374. Ortega‐Escobar J. Circadian rhythms of locomotor activity in Lycosa tarentula (Araneae, Lycosidae) and the pathways of ocular entrainment. Biol Rhythm Res 33: 561‐576, 2002.
 375. Oshima I, Ebihara S. The measurement and analysis of circadian locomotor activity and body temperature rhythms by a computer‐based system. Physiol Behav 43: 115‐119, 1988.
 376. Oshima I, Yamada H, Goto M, Sato K, Ebihara S. Pineal and retinal melatonin is involved in the control of circadian locomotor activity and body temperature rhythms in the pigeon. J Comp Physiol A 166: 217‐226, 1989.
 377. Osiel S, Golombek DA, Ralph MR. Conservation of locomotor behavior in the golden hamster: Effects of light cycle and a circadian period mutation. Physiol Behav 65: 123‐131, 1998.
 378. Page TL, Mans C, Griffeth G. History dependence of circadian pacemaker period in the cockroach. J Insect Physiol 47: 1085‐1093, 2001.
 379. Pahnke K, Zahn R, Elderfield H, Schulz M. 340,000‐year centennial‐scale marine record of Southern Hemisphere climatic oscillation. Science 301: 948‐952, 2003.
 380. Pälike H, Norris RD, Herrie JO, Wilson PA, Coxall HK, Lear CH, Shackleton NJ, Tripati AK, Wade BS. The heartbeat of the Oligocene climate system. Science 314: 1894‐1898, 2006.
 381. Palm IF, van der Beek EM, Swarts HJM, van der Vliet J, Wiegant VM, Buijs RM, Kalsbeek A. Control of the estradiol‐induced prolactin surge by the suprachiasmatic nucleus. Endocrinology 142: 2296‐2302, 2001.
 382. Palmer JD. Daily and tidal components in the persistent rhythmic activity of the crab, Sesarma. Nature 215: 64‐66, 1967.
 383. Park YM, Matsumoto K, Seo YJ, Shinkoda H. Scores on morningness‐eveningness and sleep habits of Korean students, Japanese students, and Japanese workers. Percept Motor Skills 85: 143‐154, 1997.
 384. Parmeggiani PL, Rabini C. Modificazioni delle fasi del sonno nel gatto per esposizione di breve durata a differenti temperature ambientali. Boll Soc Ital Biol Sper 43: 1079‐1083, 1967.
 385. Parraguez VH, Sales F, Valenzuela GJ, Vergara M, Catalán L, Serón‐Ferré M. Diurnal changes in light intensity inside the pregnant uterus in sheep. Anim Reprod Sci 52: 123‐130, 1998.
 386. Parraguez VH, Valenzuela GJ, Vergara M, Ducsay CA, Yellon SM, Serón‐Ferré M. Effect of constant light on fetal and maternal prolactin rhythms in sheep. Endocrinology 137: 2355‐2361, 1996.
 387. Paul MJ, Schwartz WJ. On the chronobiology of cohabitation. Cold Spring Harb Symp Quant Biol 72: 615‐621, 2007.
 388. Peloso E, Wachulec M, Satinoff E. Stress‐induced hyperthermia depends on both time of day and light condition. J Biol Rhythms 17: 164‐170, 2002.
 389. Perret M, Aujard F. Daily hypothermia and torpor in a tropical primate: Synchronization by 24‐h light‐dark cycle. Am J Physiol Regul Integr Comp Physiol 281: R1925‐R1933, 2001.
 390. Perret M, Aujard F, Séguy M, Schilling A. Olfactory bulbectomy modifies photic entrainment and circadian rhythms of body temperature and locomotor activity in a nocturnal primate. J Biol Rhythms 18: 392‐401, 2003.
 391. Peters DG, Rose RW. The oestrous cycle and basal body temperature in the common wombat (Vombatus ursinus). J Reprod Fertil 57: 453‐460, 1979.
 392. Piccione G, Bertolucci C, Foà A, Caola G. Influence of fasting and exercise on the daily rhythm of serum leptin in the horse. Chrobiol Int 21: 405‐417, 2004.
 393. Piccione G, Caola G, Refinetti R. Circadian modulation of starvation‐induced hypothermia in sheep and goats. Chrobiol Int 19: 531‐541, 2002.
 394. Piccione G, Caola G, Refinetti R. The circadian rhythm of body temperature of the horse. Biol Rhythm Res 33: 113‐119, 2002.
 395. Piccione G, Caola G, Refinetti R. Circadian rhythms of body temperature and liver function in fed and food‐deprived goats. Comp Biochem Physiol A 134: 563‐572, 2003.
 396. Piccione G, Caola G, Refinetti R. Daily and estrous rhythmicity of body temperature in domestic cattle. BMC Physiol 3: 7, 2003.
 397. Piccione G, Caola G, Refinetti R. Feeble weekly rhythmicity in hematological, cardiovascular, and thermal parameters in the horse. Chrobiol Int 21: 571‐589, 2004.
 398. Piccione G, Caola G, Refinetti R. Daily rhythms of blood pressure, heart rate, and body temperature in fed and fasted male dogs. J Vet Med A 52: 377‐381, 2005a.
 399. Piccione G, Caola G, Refinetti R. Temporal relationships of 21 physiological variables in horse and sheep. Comp Biochem Physiol A 142: 389‐396, 2005b.
 400. Piccione G, Fazio F, Caola G, Refinetti R. Daily rhythmicity of glycemia in four species of domestic animals under various feeding regimes. J Physiol Sci 58: 271‐275, 2008.
 401. Pickard GE, Kahn R, Silver R. Splitting of the circadian rhythm of body temperature in the golden hamster. Physiol Behav 32: 763‐766, 1984.
 402. Pita R, Mira A, Beja P. Circadian activity rhythms in relation to season, sex and interspecific interactions in two Mediterranean voles. Anim Behav 81: 1023‐1030, 2011.
 403. Pohl H. Does aging affect the period of the circadian pacemaker in vertebrates? Naturwissenschaften 80: 478‐481, 1993.
 404. Pohl H. Light pulses entrain the circadian activity rhythm of a diurnal rodent (Ammospermophilus leucurus). Comp Biochem Physiol B 76: 723‐729, 1983.
 405. Pohl H. The circadian system of the Turkish hamster, Mesocricetus brandti: Responses to light. Comp Biochem Physiol A 81: 613‐618, 1985.
 406. Pollak CP, Wagner DR. Core body temperature in narcoleptic and normal subjects living in temporal isolation. Pharmacol Biochem Behav 47: 65‐71, 1994.
 407. Possidente B, McEldowney S, Pabon A. Aging lengthens circadian period for wheel‐running activity in C57BL mice. Physiol Behav 57: 575‐579, 1995.
 408. Puchalski W, Lynch GR. Circadian characteristics of Djungarian hamsters: Effects of photoperiodic pretreament and artificial selection. Am J Physiol Regul Integr Comp Physiol 261: R670‐R676, 1991.
 409. Rajaratnam SMW, Redman JR. Entrainment of activity rhythms to temperature cycles in diurnal palm squirrels. Physiol Behav 63: 271‐277, 1998.
 410. Rajaratnam SMW, Redman JR. Social contact synchronizes free‐running activity rhythms of diurnal palm squirrels. Physiol Behav 66: 21‐26, 1999.
 411. Ralph MR, Menaker M. A mutation of the circadian system in golden hamsters. Science 241: 1225‐1227, 1988.
 412. Randall W, Cunningham JT, Randall S, Liittschwager J,, Johnson RF. A two‐peak circadian system in body temperature and activity in the domestic cat, Felis catus. J Therm Biol 12: 27‐37, 1987.
 413. Rashotte ME, Henderson D. Coping with rising food costs in a closed economy: Feeding behavior and nocturnal hypothermia in pigeons. J Exp Anal Behav 50: 441‐456, 1988.
 414. Rashotte ME, Pastukhov IF, Poliakov EL, Henderson RP. Vigilance states and body temperature during the circadian cycle in fed and fasted pigeons (Columbia livia). Am J Physiol Regul Integr Comp Physiol 275: R1690‐R1702, 1998.
 415. Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, Benca RM. Migratory sleeplessness in the white‐crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol 2: 924‐936, 2004.
 416. Rauth‐Widmann B, Fuchs E, Erkert HG. Infradian alteration of circadian rhythms in owl monkeys (Aotus lemurinus griseimembra): An effect of estrous? Physiol Behav 59: 11‐18, 1996.
 417. Rawson RO, Stolwijk JAJ, Graichen H, Abrams R. Continuous radio telemetry of hypothalamic temperatures from unrestrained animals. J Appl Physiol 20: 321‐325, 1965.
 418. Ray B, Mallick HN, Kumar VM. Changes in thermal preference, sleep‐wakefulness, body temperature and locomotor activity of rats during continuous recording for 24 hours. Behav Brain Res 154: 519‐526, 2004.
 419. Recabarren SE, Vergara M, Llanos AJ, Serón‐Ferré M. Circadian variation of rectal temperature in newborn sheep. J Dev Physiol 9: 399‐408, 1987.
 420. Reebs SG. Acoustical entrainment of circadian activity rhythms in house sparrows: Constant light is not necessary. Ethology 80: 172‐181, 1989.
 421. Refinetti R. Computation of the effective body mass for metabolic studies of lean and obese rats. Metabolism 38: 763‐766, 1989a.
 422. Refinetti R. Magnitude estimation of warmth: Intra‐ and intersubject variability. Percept Psychophys 46: 81‐84, 1989b.
 423. Refinetti R. Experimentally induced disruption of the diurnal rhythm of body temperature of the rat. Biotemas 3(2): 47‐58, 1990.
 424. Refinetti R. Contribution of locomotor activity to the generation of the daily rhythm of body temperature in golden hamsters. Physiol Behav 56: 829‐831, 1994.
 425. Refinetti R. Body temperature and behaviour of golden hamsters (Mesocricetus auratus) and ground squirrels (Spermophilus tridecemlineatus) in a thermal gradient. J Comp Physiol A 177: 701‐705, 1995a.
 426. Refinetti R. Rhythms of temperature selection and body temperature are out of phase in the golden hamster. Behav Neurosci 109: 523‐527, 1995b.
 427. Refinetti R. Comparison of the body temperature rhythms of diurnal and nocturnal rodents. J Exp Zool 275: 67‐70, 1996a.
 428. Refinetti R. Rhythms of body temperature and temperature selection are out of phase in a diurnal rodent, Octodon degus. Physiol Behav 60: 959‐961, 1996b.
 429. Refinetti R. The body temperature rhythm of the thirteen‐lined ground squirrel, Spermophilus tridecemlineatus. Physiol Zool 69: 270‐275, 1996c.
 430. Refinetti R. Homeostasis and circadian rhythmicity in the control of body temperature. Ann N Y Acad Sci 813: 63‐70, 1997.
 431. Refinetti R. Homeostatic and circadian control of body temperature in the fat‐tailed gerbil. Comp Biochem Physiol A 119: 295‐300, 1998a.
 432. Refinetti R. Body temperature and behavior of tree shrews and flying squirrels in a thermal gradient. Physiol Behav 63: 517‐520, 1998b.
 433. Refinetti R. Relationship between the daily rhythms of locomotor activity and body temperature in eight mammalian species. Am J Physiol Regul Integr Comp Physiol 277: R1493‐R1500, 1999.
 434. Refinetti R. Circadian rhythm of locomotor activity in the pill bug, Armadillidium vulgare (Isopoda). Crustaceana 73: 575‐583, 2000.
 435. Refinetti R. Dark adaptation in the circadian system of the mouse. Physiol Behav 74: 101‐107, 2001.
 436. Refinetti R. Compression and expansion of circadian rhythm in mice under long and short photoperiods. Integr Physiol Behav Sci 37: 114‐127, 2002.
 437. Refinetti R. Parameters of photic resetting of the circadian system of a diurnal rodent, the Nile grass rat. Acta Sci Vet 32: 1‐6, 2004.
 438. Refinetti R. Variability of diurnality in laboratory rodents. J Comp Physiol A 192: 701‐714, 2006.
 439. Refinetti R. Absence of circadian and photoperiodic conservation of energy expenditure in three rodent species. J Comp Physiol B 177: 309‐318, 2007.
 440. Refinetti R. The circadian rhythm of body temperature. Front Biosci 15: 564‐594, 2010.
 441. Refinetti R, Horvath SM. Thermopreferendum of the rat: Inter‐ and intra‐subject variability. Behav Neur Biol 52: 87‐94, 1989.
 442. Refinetti R, Ma H, Satinoff E. Body temperature rhythms, cold tolerance, and fever in young and old rats of both genders. Exp Gerontol 25: 533‐543, 1990.
 443. Refinetti R, Menaker M. Body temperature rhythm of the tree shrew, Tupaia belangeri. J Exp Zool 263: 453‐457, 1992a.
 444. Refinetti R, Menaker M. Evidence for separate control of estrous and circadian periodicity in the golden hamster. Behav Neur Biol 58: 27‐36, 1992b.
 445. Refinetti R, Menaker M. The circadian rhythm of body temperature of normal and tau‐mutant golden hamsters. J Therm Biol 17: 129‐133, 1992c.
 446. Refinetti R, Menaker M. Is energy expenditure in the hamster primarily under homeostatic or circadian control? J Physiol Lond 501: 449‐453, 1997.
 447. Refinetti R, Nelson DE, Menaker M. Social stimuli fail to act as entraining agents of circadian rhythms in the golden hamster. J Comp Physiol A 170: 181‐187, 1992.
 448. Refinetti R, Piccione G. Daily rhythmicity of body temperature in the dog. J Vet Med Sci 65: 935‐937, 2003.
 449. Refinetti R, Piccione G. Intra‐ and inter‐individual variability in the circadian rhythm of body temperature of rats, squirrels, dogs, and horses. J Therm Biol 30: 139‐146, 2005.
 450. Refinetti R, Susalka SJ. Circadian rhythm of temperature selection in a nocturnal lizard. Physiol Behav 62: 331‐336, 1997.
 451. Regal PJ. Voluntary hypothermia in reptiles. Science 155: 1551‐1553, 1967.
 452. Regal PJ, Connolly MS. Social influences on biological rhythms. Behaviour 72: 171‐199, 1980.
 453. Reinberg A, Halberg F, Ghata J, Siffre M. Spectre thermique (rythmes de la température rectale) d'une femme adulte avant, pendant et après son isolement souterrain de trois mois. C R Acad Sci 262: 782‐785, 1966.
 454. Rensing L, Meyer‐Grahle U, Ruoff P. Biological timing and the clock metaphor: Oscillatory and hourglass mechanisms. Chrobiol Int 18: 329‐369, 2001.
 455. Reynolds WW, Casterlin ME, Matthey JK, Millington ST, Ostrowski AC. Diel patterns of preferred temperature and locomotor activity in the goldfish Carassius auratus. Comp Biochem Physiol A 59: 225‐227, 1978.
 456. Rezende EL, Cortés A, Bacigalupe LD, Nespolo RF, Bozinovic F. Ambient temperature limits above‐ground activity of the subterranean rodent Spalacopus cyanus. J Arid Environm 55: 63‐74, 2003.
 457. Riccio AP, Goldman BD. Circadian rhythms of body temperature and metabolic rate in naked mole‐rats. Physiol Behav 71: 15‐22, 2000.
 458. Richter CP. Dependence of successful mating in rats on functioning of the 24‐hour clocks of the male and female. Comm Behav Biol 5: 1‐5, 1970.
 459. Rieger D, Wülbeck C, Rouyer F, Helfrich‐Förster C. Period gene expression in four neurons is sufficient for rhythmic activity of Drosophila melanogaster under dim light conditions. J Biol Rhythms 24: 271‐282, 2009.
 460. Rismiller PD, Heldmaier G. Seasonal changes in daily metabolic patterns of Lacerta viridis. J Comp Physiol B 161: 482‐488, 1991.
 461. Robilliard DL, Archer SN, Arendt J, Lockley SW, Hack LM, English J, Leger D, Smits MG, Williams A, Skene DJ, von Schantz M. The 3111 Clock gene polymorphism is not associated with sleep and circadian rhythmicity in phenotypically characterized human subjects. J Sleep Res 11: 305‐312, 2002.
 462. Robinson EL, Fuller CA. Endogenous thermoregulatory rhythms of squirrel monkeys in thermoneutrality and cold. Am J Physiol Regul Integr Comp Physiol 276: R1397‐R1407, 1999.
 463. Roemer HC, Griefahn B, Kuenemund C, Blaszkewicz M, Gerngroß H. The reliability of melatonin synthesis as an indicator of the individual circadian phase position. Mil Med 168: 674‐678, 2003.
 464. Roenneberg T, Wirz‐Justice A, Merrow M. Life between clocks: Daily temporal patterns of human chronotypes. J Biol Rhythms 18: 80‐90, 2003.
 465. Rosbash M. The implications of multiple circadian clock origins. PLoS Biol 7: e1000062, 2009.
 466. Rose RW, Swain R, Bryant SL. Body temperature: Rhythm and regulation in the Tasmanian bettong (Bettongia gaimardi) (Marsupialia: Potoroidae). Comp Biochem Physiol A 97: 573‐576, 1990.
 467. Rosenberg RS, Zee PC, Turek FW. Phase response curves to light in young and old hamsters. Am J Physiol Regul Integr Comp Physiol 261: R491‐R495, 1991.
 468. Rosenwasser AM. Circadian drinking rhythms in SHR and WKY rats: Effects of increasing light intensity. Physiol Behav 53: 1035‐1041, 1993.
 469. Roussel B, Chouvet G, Debilly G. Rythmes circadiens des températures internes et ambiance thermique chez le rat. Pflügers Arch 365: 183‐189, 1976.
 470. Rubal A, Choshniak I, Haim A. Daily rhythms of metabolic rate and body temperature of two murids from extremely different habitats. Chrobiol Int 9: 341‐349, 1992.
 471. Ruby NF, Dark J, Burns DE, Heller HC, Zucker I. The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J Neurosci 22: 357‐364, 2002.
 472. Saarela S, Hissa R. Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J Comp Physiol B 163: 546‐555, 1993.
 473. Sacher GA, Duffy PH. Age changes in rhythms of energy metabolism, activity, and body temperature in Mus and Peromyscus. In: Samis HV, Capobianco S, editors. Aging and Biological Rhythms. New York: Plenum, 1978, p. 105‐124.
 474. Sack RL, Brandes RW, Kendall AR, Lewy AJ. Entrainment of free‐running circadian rhythms by melatonin in blind people. New Engl J Med 343: 1070‐1077, 2000.
 475. Sagot JC, Amoros C, Candas V, Libert JP. Sweating responses and body temperatures during nocturnal sleep in humans. Am J Physiol Regul Integr Comp Physiol 252: R462‐R470, 1987.
 476. Sakurada S, Shido O, Sugimoto N, Hiratsuka Y, Yoda T, Kanosue K. Autonomic and behavioural thermoregulation in starved rats. J Physiol Lond 526: 417‐424, 2000.
 477. Sánchez‐Vázquez FJ, Madrid JA, Zamora S, Tabata M. Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding‐entrainable circadian oscillator. J Comp Physiol A 181: 121‐132, 1997.
 478. Scales WE, Kluger MJ. Effect of antipyretic drugs on circadian rhythm in body temperature of rats. Am J Physiol Regul Integr Comp Physiol 253: R306‐R313, 1987.
 479. Scales WE, Vander AJ, Brown MB, Kluger MJ. Human circadian rhythms in temperature, trace metals, and blood variables. J Appl Physiol 65: 1840‐1846, 1988.
 480. Scheer FAJL, van Doornen LJP, Buijs RM. Light and diurnal cycle affect human heart rate: Possible role for the circadian pacemaker. J Biol Rhythms 14: 202‐212, 1999.
 481. Scheibe KM, Berher A, Langbein J, Streich WJ, Eichhorn K. Comparative analysis of ultradian and circadian behavioural rhythms for diagnosis of biorhythmic state of animals. Biol Rhythm Res 30: 216‐233, 1999.
 482. Schilling A, Richard JP, Servière J. Duration of activity and period of circadian activity‐rest rhythm in a photoperiod‐dependent primate, Microcebus murinus. C R Acad Scie 322: 759‐770, 1999.
 483. Schmidek WR, Zachariassen KE, Hammel HT. Total calorimetric measurements in the rat: Influences of the sleep‐wakefulness cycle and of environmental temperature. Brain Res 288: 261‐271, 1983.
 484. Schurmann H, Christiansen JS. Behavioral thermoregulation and swimming activity of two arctic teleosts (subfamily Gadinae): The Polar cod (Boreogadus saida) and the navaga (Eleginus navaga). J Therm Biol 19: 207‐212, 1994.
 485. Schwartz MD, Nunez AA, Smale L. Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127: 13‐23, 2004.
 486. Seegal RF, Goldman BD. Effects of photoperiod on cyclicity and serum gonadotropins in the Syrian hamster. Biol Reprod 12: 223‐231, 1975.
 487. Sei H, Oishi K, Morita Y, Ishida N. Mouse model for morningness/eveningness. Neuroreport 12: 1461‐1464, 2001.
 488. Seifert EL, Mortola JP. The circadian pattern of breathing in conscious adult rats. Respir Physiol 129: 297‐305, 2002.
 489. Selmaoui B, Touitou Y. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: A study of three different 24‐h cycles over six weeks. Life Sci 73: 3339‐3349, 2003.
 490. Severinsen T, Øritsland NA. Endotoxin induced prolonged fever in rats. J Therm Biol 16: 167‐171, 1991.
 491. Shanahan TL, Czeisler CA. Light exposure induces equivalent phase shifts of the endogenous circadian rhythms of circulating plasma melatonin and core body temperature in men. J Clin Endocrinol Metabol 73: 227‐235, 1991.
 492. Shapiro CM, Moore AT, Mitchell D, Yodaiken ML. How well does man thermoregulate during sleep? Experientia 30: 1279‐1281, 1974.
 493. Sharma VK. Light‐induced phase response curves of the circadian activity rhythm in individual field mice, Mus booduga. Chrobiol Int 13: 401‐409, 1996.
 494. Sharma VK, Chandrashekaran MK, Singaravel M, Subbaraj R. Relationship between light intensity and phase resetting in a mammalian circadian system. J Exp Zool 283: 181‐185, 1999.
 495. Sharp GWG. Reversal of diurnal temperature rhythms in man. Nature 190: 146‐148, 1961.
 496. Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK. Developmental plasticity of the locomotor activity rhythm of Drosophila melanogaster. J Insect Physiol 48: 25‐32, 2002.
 497. Shido O, Sakurada S, Kohda W, Nagasaka T. Day‐night changes of body temperature and feeding in heat‐acclimated rats. Physiol Behav 55: 935‐939, 1994.
 498. Shido O, Sakurada S, Nagasaka T. Effect of heat acclimation on diurnal changes in body temperature and locomotor activity in rats. J Physiol Lond 433: 59‐71, 1991.
 499. Shido O, Sugano Y,, Nagasaka T. Circadian change of heat loss in response to change in core temperature in rats. J Therm Biol 11: 199‐202, 1986.
 500. Shimizu I, Kawai Y, Taniguchi M, Aoki S. Circadian rhythm and cDNA cloning of the clock gene period in the honeybee Apis cerana japonica. Zool Sci 18: 779‐789, 2001.
 501. Shimomura K, Nelson DE, Ihara NL, Menaker M. Photoperiodic time measurement in tau mutant hamsters. J Biol Rhythms 12: 423‐430, 1997.
 502. Shine R, Lambeck R. Seasonal shifts in the thermoregulatory behaviour of Australian blacksnakes, Pseudechis porphyriacus (Serpentes: Elapidae). J Therm Biol 15: 301‐305, 1990.
 503. Shinkoda H, Matsumoto K, Park YM, Nagashima H. Sleep‐wake habits of schoolchildren according to grade. Psychiatry Clin Neurosci 54: 287‐289, 2000.
 504. Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR. Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287: R47‐R57, 2004.
 505. Shkolnik A. Diurnal activity in a small desert rodent. Int J Biometeorol 15: 115‐120, 1971.
 506. Sievert LM, Hutchison VH. Light versus heat: Thermoregulatory behavior in a nocturnal lizard (Gekko gecko). Herpetologica 44: 266‐273, 1988.
 507. Sievert LM, Hutchison VH. Influences of season, time of day, light and sex on the thermoregulatory behaviour of Crotaphytus collaris. J Therm Biol 14: 159‐165, 1989.
 508. Sievert LM, Paulissen MA. Temperature selection and thermoregulatory precision of bisexual and parthenogenetic Cnemidophorus lizards from southern Texas. J Therm Biol 21: 15‐20, 1996.
 509. Simpson S, Galbraith JJ. Observations on the normal temperature of the monkey and its diurnal variation, and on the effect of changes in the daily routine on this variation. Trans R Soc Edinburgh 45: 65‐104, 1906.
 510. Skinner DC. Effect of intraperitoneal melatonin injections on thermoregulation in the Transvaal girdled lizard, Cordylus vittifer. J Therm Biol 16: 179‐184, 1991.
 511. Smale L, Lee T, Nunez AA. Mammalian diurnality: Some facts and gaps. J Biol Rhythms 18: 356‐366, 2003.
 512. Smith CS, Folkard S, Schmieder RA, Parra LF, Spelten E, Almiral H, Sen RN, Sahu S, Perez LM, Tisak J. Investigation of morning‐evening orientation in six countries using the preference scale. Pers Indiv Dif 32: 949‐968, 2002.
 513. Souetre E, Salvati E, Wehr TA, Sack DA, Krebs B, Darcourt G. Twenty‐four‐hour profiles of body temperature and plasma TSH in bipolar patients during depression and during remission and in normal control subjects. Am J Psychiatry 145: 1133‐1137, 1988.
 514. Spencer F, Shirer HW, Yochim JM. Core temperature in the female rat: Effect of pinealectomy or altered lighting. Am J Physiol 231: 355‐360, 1976.
 515. Spengler CM, Czeisler CA, Shea SA. An endogenous circadian rhythm of respiratory control in humans. J Physiol Lond 526: 683‐694, 2000.
 516. Spoelstra K, Oklejewicz M, Daan S. Restoration of self‐sustained circadian rhythmicity by the mutant Clock allele in mice in constant illumination. J Biol Rhythms 17: 520‐525, 2002.
 517. Sridaran R, McCormack CE. Parallel effects of light signals on the circadian rhythms of running activity and ovulation in rats. J Endocrinol 85: 111‐120, 1980.
 518. Steel GD, Callaway M, Suedfeld P, Palinkas L. Human sleep‐wake cycles in the high Arctic: Effects of unusual photoperiodicity in a natural setting. Biol Rhythm Res 26: 582‐592, 1995.
 519. Steinlechner S, Stieglitz A, Ruf T. Djungarian hamsters: A species with a labile circadian pacemaker? Arrhythmicity under a light‐dark cycle induced by short light pulses. J Biol Rhythms 17: 248‐258, 2002.
 520. Stephenson LA, Wenger CB, O'Donovan BH, Nadel ER. Circadian rhythm in sweating and cutaneous blood flow. Am J Physiol Regul Integr Comp Physiol 246: R321‐R324, 1984.
 521. Stephenson R, Liao KS, Hamrahi H, Horner RL. Circadian rhythms and sleep have additive effects on respiration in the rat. J Physiol Lond 536: 225‐235, 2001.
 522. Stetson MH, Gibson JT. The estrous cycle in golden hamsters: A circadian pacemaker times preovulatory gonadotropin release. J Exp Zool 201: 289‐294, 1977.
 523. Stetson MH, Watson‐Whitmyre M. Nucleus suprachiasmaticus: The biological clock in the hamster? Science 191: 197‐199, 1976.
 524. Stetson MH, Watson‐Whitmyre M, DiPinto MN, Smith SG. Daily luteinizing hormone release in ovariectomized hamsters: Effect of barbiturate blockade. Biol Reprod 24: 139‐144, 1981.
 525. Stokes MA, Kent S, Armstrong SM. The effect of multiple pulses of light on the circadian phase response of the rat. J Biol Rhythms 14: 172‐184, 1999.
 526. Stupfel M, Gourlet V, Perramon A, Mérat P, Putet G, Court L. Comparison of ultradian and circadian oscillations of carbon dioxide production by various endotherms. Am J Physiol Regul Integr Comp Physiol 268: R253‐R265, 1995.
 527. Sulzman FM, Fuller CA, Moore‐Ede MC. Environmental synchronizers of squirrel monkey circadian rhythms. J Appl Physiol 43: 795‐800, 1977a.
 528. Sulzman FM, Fuller CA, Moore‐Ede MC. Feeding time synchronizes primate circadian rhythms. Physiol Behav 18: 775‐779, 1977b.
 529. Summer TL, Ferraro JS, McCormack CE. Phase‐response and Aschoff illuminance curves for locomotor activity rhythm of the rat. Am J Physiol Regul Integr Comp Physiol 246: R299‐R304, 1984.
 530. Swann J, Turek FW. Cycle of lordosis behavior in female hamsters whose circadian activity rhythm has split into two components. Am J Physiol Regul Integr Comp Physiol 243: R112‐R118, 1982.
 531. Swann JM, Turek FW. Multiple circadian oscillators regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science 228: 898‐900, 1985.
 532. Symanski E, Bergamaschi E, Mutti A. Inter‐ and intra‐individual sources of variability in levels of urinary styrene metabolites. Int Arch Occup Environm Health 74: 336‐344, 2001.
 533. Taillard J, Philip P, Chastang JF, Bioulac B. Validation of Horne and Ostberg morningness‐eveningness questionnaire in a middle‐aged population of French workers. J Biol Rhythms 19: 76‐86, 2004.
 534. Taillard J, Sanchez P, Lemoine P, Mouret J. Heart rate circadian rhythm as a biological marker of desynchronization in major depression: A methodological and preliminary report. Chrobiol Int 7: 305‐316, 1990.
 535. Takasu N, Nigi H, Tokura H. Effects of diurnal bright/dim light intensity on circadian core temperature and activity rhythms in the Japanese macaque. Jap J Physiol 52: 573‐578, 2002.
 536. Tanaka H, Yanase M, Kanosue K, Nakayama T. Circadian variation of thermoregulatory responses during exercise in rats. Am J Physiol Regul Integr Comp Physiol 258: R836‐R841, 1990.
 537. Tang I, Murakami DM, Fuller CA. Effects of square‐wave and simulated natural light‐dark cycles on hamster circadian rhythms. Am J Physiol Regul Integr Comp Physiol 276: R1195‐R1202, 1999.
 538. Tankersley CG, Irizarry R, Flanders SE, Rabold R, Frank R. Unstable heart rate and temperature regulation predict mortality in AKR/J mice. Am J Physiol Regul Integr Comp Physiol 284: R742‐R750, 2003.
 539. Tapp WN, Natelson BH. Circadian rhythms and patterns of performance before and after simulated jet lag. Am J Physiol Regul Integr Comp Physiol 257: R796‐R803, 1989.
 540. Tavernier RJ, Largen AL, Bult‐Ito A. Circadian organization of a subarctic rodent, the northern red‐backed vole (Clethrionomys rutilus). J Biol Rhythms 19: 238‐247, 2004.
 541. Tayefeh F, Plattnet O, Sessler DI, Ikeda T, Marder D. Circadian changes in the sweating‐to‐vasoconstriction interthreshold range. Pflügers Arch 435: 402‐406, 1998.
 542. Taylor RC. Thermal preference and temporal distribution in three crayfish species. Comp Biochem Physiol A 77: 513‐517, 1984.
 543. Thonney ML, Touchberry RW, Goodrich RD, Meiske JC. Intraspecies relationship between fasting heat production and body weight. J Anim Sci 43: 692‐704, 1976.
 544. Thornhill JA, Hirst M, Gowdey CW. Measurement of diurnal core temperatures of rats in operant cages by AM telemetry. Can J Physiol Pharmacol 56: 1047‐1050, 1978.
 545. Tokura H, Aschoff J. Effects of temperature on the circadian rhythm of pig‐tailed macaques Macaca nemestrina. Am J Physiol Regul Integr Comp Physiol 245: R800‐R804, 1983.
 546. Tornatzky W, Cole JC, Miczek KA. Recurrent aggressive episodes entrain ultradian heart rate and core temperature rhythms. Physiol Behav 63: 845‐853, 1998.
 547. Tornatzky W, Miczek KA. Long‐term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53: 983‐993, 1993.
 548. Tosini G, Menaker M. Circadian rhythm of body temperature in an ectotherm (Iguana iguana). J Biol Rhythms 10: 248‐255, 1995.
 549. Tosini G, Menaker M. Multioscillatory circadian organization in a vertebrate, Iguana iguana. J Neurosci 18: 1105‐1114, 1998.
 550. Tosini G, Menaker M. The pineal complex and melatonin affect the expression of the daily rhythm of behavioral thermoregulation in the green iguana. J Comp Physiol A 179: 135‐142, 1996.
 551. Tsujimoto T, Yamada N, Shimoda K, Hanada K, Takahashi S. Circadian rhythms in depression. Part I: Monitoring of the circadian body temperature rhythm. J Affect Disord 18: 193‐197, 1990.
 552. Underwood H. Circadian pacemakers in lizards: Phase‐response curves and effects of pinealectomy. Am J Physiol Regul Integr Comp Physiol 244: R857‐R864, 1983.
 553. Underwood H, Edmonds K. The circadian rhythm of thermoregulation in Japanese quail. II. Multioscillator control. J Biol Rhythms 10: 234‐247, 1995.
 554. Usui S, Takahashi Y, Okazaki T. Range of entrainment of rat circadian rhythms to sinusoidal light‐intensity cycles. Am J Physiol Regul Integr Comp Physiol 278: R1148‐R1156, 2000.
 555. Van Dongen HPA, Kerkhof GA, Souverijn JHM. Absence of seasonal variation in the phase of the endogenous circadian rhythm in humans. Chrobiol Int 15: 623‐632, 1998.
 556. Van Eekelen APJ, Kerkhof GA. No interference of task complexity with circadian rhythmicity in a constant routine protocol. Ergonomics 46: 1578‐1593, 2003.
 557. van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Stokkan KA. Where clocks are redundant: Weak circadian mechanisms in reindeer living under polar photic conditions. Naturwissenschaften 94: 183‐194, 2007.
 558. van Vonderen IK, Kooistra HS, Rijnberk A. Intra‐ and interindividual variation in urine osmolality and urine specific gravity in healthy pet dogs of various ages. J Vet Intern Med 11: 30‐35, 1997.
 559. Varkevisser M, Kerkhof GA. 24‐Hour assessment of performance on a palmtop computer: Validating a self‐constructed test battery. Chrobiol Int 20: 109‐121, 2003.
 560. Varosi SM, Brigmon RL, Besch EL. A simplified telemetry system for monitoring body temperature in small animals. Lab Anim Sci 40: 299‐302, 1990.
 561. Viola AU, Simon C, Ehrhart J, Geny B, Piquard F, Muzet A, Brandenberger G. Sleep processes exert a predominant influence on the 24‐h profile of heart rate variability. J Biol Rhythms 17: 539‐547, 2002.
 562. Von Gall C, Duffield GE, Hastings MH, Kopp MDA, Dehghani F, Korf HW, Stehle JH. CREB in the mouse SCN: A molecular interface coding the phase‐adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci 18: 10389‐10397, 1998.
 563. Walker JM, Walker LE, Harris DV, Berger RJ. Cessation of thermoregulation during REM sleep. Am J Physiol Regul Integr Comp Physiol 244: R114‐R118, 1983.
 564. Warren WS, Cassone VM. The pineal gland: Photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs. J Biol Rhythms 10: 64‐79, 1995.
 565. Waßmer T, Wollnik F. Timing of torpor bouts during hibernation in European hamsters (Cricetus cricetus L.). J Comp Physiol B 167: 270‐279, 1997.
 566. Watson D, Wiese D, Vaidya J, Tellegen A. The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. J Pers Socl Psychol 76: 820‐838, 1999.
 567. Watson WH, Bedford L, Chabot CC. Rhythms of locomotion expressed by Limulus polyphemus, the American horseshoe crab: II. Relationship to circadian rhythms of visual sensitivity. Biol Bull 215: 46‐56, 2008.
 568. Watts RH Jr, Refinetti R. Circadian modulation of cold‐induced thermogenesis in the golden hamster. Biol Rhythm Res 27: 87‐94, 1996.
 569. Weinert D, Fritzche P, Gattermann R. Activity rhythms of wild and laboratory golden hamsters (Mesocricetus auratus) under entrained and free‐running conditions. Chrobiol Int 18: 921‐932, 2001.
 570. Weinert D, Nevill A, Weinandy R, Waterhouse J. The development of new purification methods to assess the circadian rhythm of body temperature in Mongolian gerbils. Chrobiol Int 20: 249‐270, 2003.
 571. Weinert D, Waterhouse J. Diurnally changing effects of locomotor activity on body temperature in laboratory mice. Physiol Behav 63: 837‐843, 1998.
 572. Weinert D, Waterhouse J. Daily activity and body temperature rhythms do not change simultaneously with age in laboratory mice. Physiol Behav 66: 605‐612, 1999.
 573. Weitzman ED, Moline ML, Czeisler CA, Zimmerman JC. Chronobiology of aging: Temperature, sleep‐wake rhythms and entrainment. Neurobiol Aging 3: 299‐309, 1982.
 574. Wells RT. Thermoregulation and activity rhythms in the hairy‐nosed wombat, Lasiorhinus latifrons (Owen), (Vombatidae). Aust J Zool 26: 639‐651, 1978.
 575. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: Cell autonomy and network properties. Ann Rev Physiol 72: 551‐577, 2010.
 576. Wever R. Zur Zeitgeber‐Stärke eines Licht‐Dunkel‐Wechsels für die circadiane Periodik des Menschen. Pflügers Arch 321: 133‐142, 1970.
 577. Wever RA. Light effects on human circadian rhythms: A review of recent Andechs experiments. J Biol Rhythms 4: 161‐185, 1989.
 578. Wever R, Zink RA. Fortlaufende registrierung der rectaltemperatur des menschen unter extremen bedingungen. Pflügers Arch 327: 186‐190, 1971.
 579. Wikelski M, Hau M. Is there an endogenous tidal foraging rhythm in marine iguanas? J Biol Rhythms 10: 335‐350, 1995.
 580. Wilson HR, Mather FB, Brigmon RL, Besch EL, Dugan VP, Boulos NZ. Feeding time and body temperature interactions in broiler breeders. Poultry Sci 68: 608‐616, 1989.
 581. Winget CM, Card DH. Daily rhythm changes associated with variations in light intensity and color. Life Sci Space Res 5: 148‐158, 1967.
 582. Winget CM, Card DH, Hetherington NW. Circadian oscillations of deep‐body temperature and heart rate in a primate (Cebus albafrons). Aerospace Medicine 39: 350‐353, 1968.
 583. Witting W, Boerma D, Koster‐Van‐ Hoffen GC, Swaab DF, Mirmiran M. Light suppresses frequency and endogenous amplitude of the circadian system in nocturnal animals. Biol Rhythm Res 26: 477‐485, 1995.
 584. Wollnik F, Schmidt B. Seasonal and daily rhythms of body temperature in the European hamster (Cricetus cricetus) under semi‐natural conditions. J Comp Physiol B 165: 171‐182, 1995.
 585. Wright KP, Hull JT, Czeisler CA. Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol 283: R1370‐R1377, 2002.
 586. Wyatt JK, Ritz‐de‐Cecco A, Czeisler CA, Dijk DJ. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20‐h day. Am J Physiol Regul Integr Comp Physiol 277: R1152‐R1163, 1999.
 587. Yamada N, Shimoda K, Ohi K, Takahashi S, Takahashi K. Free‐access to a running wheel shortens the period of free‐running rhythm in blinded rats. Physiol Behav 42: 87‐91, 1988.
 588. Yang J, Morgan JLM, Kirby JD, Long DW, Bacon WL. Circadian rhythm of the preovulatory surge of luteinizing hormone and its relationships to rhythms of body temperature and locomotor activity in turkey hens. Biol Reprod 62: 1452‐1458, 2000.
 589. Yang Y, Gordon CJ. Ambient temperature limits and stability of temperature regulation in telemetered male and female rats. J Therm Biol 21: 353‐363, 1996.
 590. Yerushalmi S, Bodenhaimer S, Bloch G. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J Exp Biol 209: 1044‐1051, 2006.
 591. Yoda T, Crawshaw LI, Yoshida K, Su L, Hosono T, Shido O, Sakurada S, Fukuda Y, Kanosue K. Effects of food deprivation on daily changes in body temperature and behavioral thermoregulation in rats. Am J Physiol Regul Integr Comp Physiol 278: R133‐R139, 2000.
 592. Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H, Yoneda H, Mignot E, Nishino S. Fluctuation of extracellular hypocretin‐1 (orexin A) levels in the rat in relation to the light‐dark cycle and sleep‐wake activities. Eur J Neurosci 14: 1075‐1081, 2001.
 593. Yoshii T, Funada Y, Ibuki‐Ishibashi T, Matsumoto A, Tanimura T, Tomioka K. Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J Insect Physiol 50: 479‐488, 2004.
 594. Zivkovic BD, Underwood H, Siopes T. Circadian ovulatory rhythms in Japanese quail: Role of ocular and extraocular pacemakers. J Biol Rhythms 15: 172‐183, 2000.
 595. Zivkovic BD, Underwood H, Steele CT, Edmonds K. Formal properties of the circadian and photoperiodic systems of Japanese quail: Phase response curve and effects of T‐cycles. J Biol Rhythms 14: 378‐390, 1999.
Further Reading
 1.Dunlap JC, Loros JJ, DeCoursey PJ, editors. Chronobiology: Biological Timekeeping. Sunderland, Mass.: Sinauer, 2004.
 2. Koukkari WL, Sothern RB. Introducing Biological Rhythms. New York: Springer, 2006.
 3. Refinetti R. Circadian Physiology (2nd ed). Boca Raton, Fla.: CRC Press, 2006.
 4.Rosato E, editor. Circadian Rhythms: Methods and Protocols. Totowa, NJ: Humana Press, 2007.
 5.Stillman B, Stewart D, Grodzicker T, editors. Clocks and Rhythms. Woodbury, NY: Cold Spring Harbor Laboratory Press, 2007.
 6.Young MW, editor. Circadian Rhythms. New York: Elsevier, 2005.

Further Reading

Dunlap JC, Loros JJ, DeCoursey PJ, eds. Chronobiology: Biological Timekeeping. Sunderland, Mass.: Sinauer, 2004.

Koukkari WL, Sothern RB. Introducing Biological Rhythms. New York: Springer, 2006.

Refinetti R. Circadian Physiology, 2nd edition. Boca Raton, Fla.: CRC Press, 2006.

Rosato E, ed. Circadian Rhythms: Methods and Protocols. Totowa, NJ: Humana Press, 2007.

Stillman B, Stewart D, Grodzicker T, eds. Clocks and Rhythms. Woodbury, NY: Cold Spring Harbor Laboratory Press.

Young MW, ed. Circadian Rhythms. New York: Elsevier, 2005.


Related Articles:

Circadian Rhythms
Sleep, Thermoregulation, and Circadian Rhythms
Torpor and Hibernation in Mammals: Metabolic, Physiological, and Biochemical Adaptations
Daily and Seasonal Rhythms
Metabolic Flexibility: Hibernation, Torpor, and Estivation

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Roberto Refinetti. Integration of Biological Clocks and Rhythms. Compr Physiol 2012, 2: 1213-1239. doi: 10.1002/cphy.c100088