Comprehensive Physiology Wiley Online Library

miRNA in the Regulation of Ion Channel/Transporter Expression

Full Article on Wiley Online Library



Abstract

Ion channels and transporters are expressed in every living cell, where they participate in controlling a plethora of biological processes and physiological functions, such as excitation of cells in response to stimulation, electrical activities of cells, excitation‐contraction coupling, cellular osmolarity, and even cell growth and death. Alterations of ion channels/transporters can have profound impacts on the cellular physiology associated with these proteins. Expression of ion channels/transporters is tightly regulated and expression deregulation can trigger abnormal processes, leading to pathogenesis, the channelopathies. While transcription factors play a critical role in controlling the transcriptome of ion channels/transporters at the transcriptional level by acting on the 5′‐flanking region of the genes, microribonucleic acids (miRNAs), a newly discovered class of regulators in the gene network, are also crucial for expression regulation at the posttranscriptional level through binding to the 3′untranslated region of the genes. These small noncoding RNAs fine tune expression of genes involved in a wide variety of cellular processes. Recent studies revealed the role of miRNAs in regulating expression of ion channels/transporters and the associated physiological functions. miRNAs can target ion channel genes to alter cardiac excitability (conduction, repolarization, and automaticity) and affect arrhythmogenic potential of heart. They can modulate circadian rhythm, pain threshold, neuroadaptation to alcohol, brain edema, etc., through targeting ion channel genes in the neuronal systems. miRNAs can also control cell growth and tumorigenesis by acting on the relevant ion channel genes. Future studies are expected to rapidly increase to unravel a new repertoire of ion channels/transporters for miRNA regulation. © 2013 American Physiological Society. Compr Physiol 3:599‐653, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

The human genome project has been completed years ago. Only less than 2% of all transcribed bases of the entire human genome constitutes the genetic sequence encoding proteins and the rest of 98% accounting for approximately 70% of all genes carry the sequences for ribonucleic acids (RNAs) not encoding a polypeptide chain that was used to be considered for many years “junk DNA” of no physiologic function. We now known that “junk DNA” encodes nonprotein‐coding RNAs that are involved in determining the expression of protein‐coding genes by regulating the activity of that less than 2% of the genome. These ncRNAs include microRNAs (miRNAs): to date, more than 1200 human miRNAs have been identified. Gene expression regulation occurs at least at two levels: transcriptional and posttranscriptional levels. For transcriptional regulation, transcription factors bind to the respective cis‐acting elements, the protein‐binding motifs, in the 5’‐flanking region of a gene to switch on or off the transcription of the targeted gene to define the transcriptome of cells. For posttranscriptional regulation, miRNAs bind to the respective binding sites in the 3′UTR of target genes to aid to define the proteome of cells.

Figure 2. Figure 2.

Genomic organization and classification of miRNAs. TSS, transcription start site.

Figure 3. Figure 3.

Schematic illustration of miRNA biogenesis pathway (see detailed description in text) and the sites for miRNA interference along the pathway. The arrows and the numbers indicate the sites of miRNAi action. RNA Pol II, RNA polymerase II; TF, transcription factor; intergenic miRNAs, miRNA‐coding genes located in between protein‐coding genes; intronic miRNAs, miRNA‐coding genes located within introns of their host protein‐coding genes; mirtron, the intron within a protein‐coding gene (the host gene) which contains miRNA sequences; Drosha, the nuclear RNase III ribonuclease; Dicer, cytoplasmic RNase III ribonuclease; pri‐miRNA, primary miRNA; pre‐miRNA, precursor miRNA; RISC, RNA‐induced silencing complex. represents the site for interfering transcription of endogenous miRNAs by altering TFs; represents the site for interfering miRNA biogenesis by silencing Drosha; represents the site for interfering miRNA biogenesis by manipulating exportin‐5 to influence the translocation of miRNA from nucleus to cytoplasm; represents the site for interfering miRNA biogenesis by knocking down or knocking out Dicer; represents the site for interfering miRNA action by inhibiting RISC; represents the site for interfering miRNA action and stability by targeting mature miRNA using antisense [such as anti‐miRNA antisense oligonucleotides, multiple‐target anti‐miRNA antisense oligonucleotides , microribonucleic acid (miRNA) sponge, antagomiR, and locked nucleic acid‐antimiR; and represents the site for interfering miRNA action in a gene‐specific manner by using miR‐Mimic and miR‐Mask technologies (see Section “Manipulating miRNA by miRNA interference”).

Figure 4. Figure 4.

Upper panel: the sequence motifs within a microribonucleic acid (miRNA) (miR‐1 as an example) important to its function (see Section “Mechanisms of miRNA action” for detail). Seed site is highlighted in yellow, cleavage site in green, and 3'supplementary and 3'compensatory site in red. Centered site is indicated by the region below a blue bar. Lower panel: an example of seed‐site targeting of the GJA1 gene by miR‐1 and centered site targeting of the VAMP1 gene by miR‐1.

Figure 5. Figure 5.

Procedures for experimental validation of ion channel genes as targets for microribonucleic acids.

Figure 6. Figure 6.

Schematic illustration of a cardiac action potential, the underlying ion currents in five sequential phases (0‐4), the protein subunits carrying the currents, and the genes encoding the subunits.

Figure 7. Figure 7.

The miR‐1 seed family members and the base pairing between miR‐1 and its target genes GJA1 (encoding connexin 43 for Ij current), and between miR‐1 and KCNJ2 (encoding Kir2.1 for IK1). The seed sites are highlighted in yellow. Note the seed‐site and cleavage‐site base pairing between miR‐1 and GJA1, and only the seed‐site base pairing between miR‐1 and KCNJ2.

Figure 8. Figure 8.

Schematic diagram showing miR‐1 targeting of GJA1/Cx43/Ij and KCNJ2/ Kir2.1/IK1, leading to ischemic arrhythmias in myocardial infarction.

Figure 9. Figure 9.

The miR‐26 seed family members and miR‐26a:KCNJ2 base pairing and miR‐26b:KCNJ2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity between miR‐26 and KCNJ2.

Figure 10. Figure 10.

Schematic diagram showing the upregulation of KCNJ2/Kir2.1/IK1 due to a relief of repression with miR‐26 downregulation and the consequent promotion of atrial fibrillation.

Figure 11. Figure 11.

The miR‐133 seed family members and miR‐133:KCNQ1 base pairing and miR‐133:KCNH2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity for both.

Figure 12. Figure 12.

Schematic diagram showing the repression of KCNH2/h‐erg1/IKr and KCNQ1/KvLQT1/IKs by miR‐133.

Figure 13. Figure 13.

Schematic diagram showing the repression of KCNH2/h‐erg1/IKr and KCNQ1/KvLQT1/IKs by miR‐133.

Figure 14. Figure 14.

Diagram showing the steps miR‐1 causes arrhythmias via disrupting intracellular Ca2+ handling process. miR‐1 produces translational inhibition of the B56α regulatory subunit of protein phosphatase PP2A, which in turn causes hyperphosphorylation of LTCC (L‐type Ca2+ channels) RyR2 (ryanodine receptor 2) by CaMKII, enhancing DAD (delayed afterdepolarization) and EAD (early afterdepolarization) leading to arrhythmogenesis. This mechanism likely works with the conduction slowing mechanism to promote arrhythmogenesis.

Figure 15. Figure 15.

The miR‐328 seed family members and miR‐328:CACNA1C base pairing. The seed site is highlighted in yellow. Note the seed‐site complementarity between miR‐328 and CACNA1C.

Figure 16. Figure 16.

The miR‐26 seed family members and miR‐26a:CACNA1C base pairing and miR‐26b:CACNA1C base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity between miR‐26 and CACNA1C.

Figure 17. Figure 17.

Diagram showing how miR‐26a is involved in the regulation of intrinsic circadian rhythm. CLOCK, circadian locomoter output cycles kaput; CREB, cAMP‐response element‐binding protein; LTCC, L‐type Ca2+ channels.

Figure 18. Figure 18.

The miR‐9 seed family members and miR‐9:KCNMA1 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity and cleavage site complementarity between miR‐9 and KCNMA1.

Figure 19. Figure 19.

Ion channels known to be involved in regulation of pain threshold and their alterations in expression in a mice line with conditional deletion of Dicer to produce overall downregulation of microribonucleic acids (miRNAs). Removal of miRNAs paradoxically downregulates Nax1.x and TRPCx, possibly via altering expression of transcription factors (TFs) that regulate these channel genes at the transcriptional level. Nav1.x: mainly referring to Nav1.7, Nav1.8, and Nav1.9; TRPCx: mainly referring to TRPC3 and TRPC6.

Figure 20. Figure 20.

The miR‐320 seed family members and miR‐320a:AQP1 base pairing and miR‐320a:AQP4 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity and centered site complementarity between miR‐320a and AQP1.

Figure 21. Figure 21.

The miR‐204 seed family members and miR‐204/miR‐211:TGFBR2 base pairing and miR‐204/miR‐211:SNAIL2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity and cleavage site complementarity between miR‐204/miR‐211 and their target genes.

Figure 22. Figure 22.

Diagram showing how miR‐204/miR‐211 regulates epithelial function in the retinal pigment epithelium via indirectly modulating expression of claudins and Kir7.1 K+ channel genes by directly targeting the TGFBR2 and SNAIL2 genes. TER, transepithelial electrical resistance; TJ, tight junction.

Figure 23. Figure 23.

The miR‐124 seed family members and miR‐124:FOXA2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site, cleavage site, and centered site complementarity between miR‐124a and FOXA2.

Figure 24. Figure 24.

Diagram showing how miR‐124 regulates intracellular Ca2+ signaling in the pancreatic β‐cells via indirectly modulating Kir6.2 and SUR1 expression by directly targeting the FOXA2 gene.

Figure 25. Figure 25.

The miR‐34 seed family members and detailed juxtaposition of miR‐34 with h‐eag1 3′UTR and h‐erg1 3′UTR. The seed sites are highlighted in yellow. Note the seed‐site complementarity and cleavage site complementarity between miR‐34a/miR‐34b/miR‐34c and their target genes.

Figure 26. Figure 26.

Schematic illustration of the p53‐miR‐34‐E2F1‐h‐eag1/h‐erg1

signaling pathway as a mechanism for oncogenic upregulation of h‐eag1/h‐erg1 and the growth‐stimulating action of h‐eag1/h‐erg1 in cancer cells.

Figure 27. Figure 27.

Schematic depiction of roles of microribonucleic acids in regulating ion channel genes and the associated pathophysiological processes. AMI, acute myocardial infarction, CH, cardiac hypertrophy, HF, heart failure; AF, atrial fibrillation; OS, oxidative stress. Dashlines indicate downregulation and solid lines indicate upregulation.



Figure 1.

The human genome project has been completed years ago. Only less than 2% of all transcribed bases of the entire human genome constitutes the genetic sequence encoding proteins and the rest of 98% accounting for approximately 70% of all genes carry the sequences for ribonucleic acids (RNAs) not encoding a polypeptide chain that was used to be considered for many years “junk DNA” of no physiologic function. We now known that “junk DNA” encodes nonprotein‐coding RNAs that are involved in determining the expression of protein‐coding genes by regulating the activity of that less than 2% of the genome. These ncRNAs include microRNAs (miRNAs): to date, more than 1200 human miRNAs have been identified. Gene expression regulation occurs at least at two levels: transcriptional and posttranscriptional levels. For transcriptional regulation, transcription factors bind to the respective cis‐acting elements, the protein‐binding motifs, in the 5’‐flanking region of a gene to switch on or off the transcription of the targeted gene to define the transcriptome of cells. For posttranscriptional regulation, miRNAs bind to the respective binding sites in the 3′UTR of target genes to aid to define the proteome of cells.



Figure 2.

Genomic organization and classification of miRNAs. TSS, transcription start site.



Figure 3.

Schematic illustration of miRNA biogenesis pathway (see detailed description in text) and the sites for miRNA interference along the pathway. The arrows and the numbers indicate the sites of miRNAi action. RNA Pol II, RNA polymerase II; TF, transcription factor; intergenic miRNAs, miRNA‐coding genes located in between protein‐coding genes; intronic miRNAs, miRNA‐coding genes located within introns of their host protein‐coding genes; mirtron, the intron within a protein‐coding gene (the host gene) which contains miRNA sequences; Drosha, the nuclear RNase III ribonuclease; Dicer, cytoplasmic RNase III ribonuclease; pri‐miRNA, primary miRNA; pre‐miRNA, precursor miRNA; RISC, RNA‐induced silencing complex. represents the site for interfering transcription of endogenous miRNAs by altering TFs; represents the site for interfering miRNA biogenesis by silencing Drosha; represents the site for interfering miRNA biogenesis by manipulating exportin‐5 to influence the translocation of miRNA from nucleus to cytoplasm; represents the site for interfering miRNA biogenesis by knocking down or knocking out Dicer; represents the site for interfering miRNA action by inhibiting RISC; represents the site for interfering miRNA action and stability by targeting mature miRNA using antisense [such as anti‐miRNA antisense oligonucleotides, multiple‐target anti‐miRNA antisense oligonucleotides , microribonucleic acid (miRNA) sponge, antagomiR, and locked nucleic acid‐antimiR; and represents the site for interfering miRNA action in a gene‐specific manner by using miR‐Mimic and miR‐Mask technologies (see Section “Manipulating miRNA by miRNA interference”).



Figure 4.

Upper panel: the sequence motifs within a microribonucleic acid (miRNA) (miR‐1 as an example) important to its function (see Section “Mechanisms of miRNA action” for detail). Seed site is highlighted in yellow, cleavage site in green, and 3'supplementary and 3'compensatory site in red. Centered site is indicated by the region below a blue bar. Lower panel: an example of seed‐site targeting of the GJA1 gene by miR‐1 and centered site targeting of the VAMP1 gene by miR‐1.



Figure 5.

Procedures for experimental validation of ion channel genes as targets for microribonucleic acids.



Figure 6.

Schematic illustration of a cardiac action potential, the underlying ion currents in five sequential phases (0‐4), the protein subunits carrying the currents, and the genes encoding the subunits.



Figure 7.

The miR‐1 seed family members and the base pairing between miR‐1 and its target genes GJA1 (encoding connexin 43 for Ij current), and between miR‐1 and KCNJ2 (encoding Kir2.1 for IK1). The seed sites are highlighted in yellow. Note the seed‐site and cleavage‐site base pairing between miR‐1 and GJA1, and only the seed‐site base pairing between miR‐1 and KCNJ2.



Figure 8.

Schematic diagram showing miR‐1 targeting of GJA1/Cx43/Ij and KCNJ2/ Kir2.1/IK1, leading to ischemic arrhythmias in myocardial infarction.



Figure 9.

The miR‐26 seed family members and miR‐26a:KCNJ2 base pairing and miR‐26b:KCNJ2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity between miR‐26 and KCNJ2.



Figure 10.

Schematic diagram showing the upregulation of KCNJ2/Kir2.1/IK1 due to a relief of repression with miR‐26 downregulation and the consequent promotion of atrial fibrillation.



Figure 11.

The miR‐133 seed family members and miR‐133:KCNQ1 base pairing and miR‐133:KCNH2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity for both.



Figure 12.

Schematic diagram showing the repression of KCNH2/h‐erg1/IKr and KCNQ1/KvLQT1/IKs by miR‐133.



Figure 13.

Schematic diagram showing the repression of KCNH2/h‐erg1/IKr and KCNQ1/KvLQT1/IKs by miR‐133.



Figure 14.

Diagram showing the steps miR‐1 causes arrhythmias via disrupting intracellular Ca2+ handling process. miR‐1 produces translational inhibition of the B56α regulatory subunit of protein phosphatase PP2A, which in turn causes hyperphosphorylation of LTCC (L‐type Ca2+ channels) RyR2 (ryanodine receptor 2) by CaMKII, enhancing DAD (delayed afterdepolarization) and EAD (early afterdepolarization) leading to arrhythmogenesis. This mechanism likely works with the conduction slowing mechanism to promote arrhythmogenesis.



Figure 15.

The miR‐328 seed family members and miR‐328:CACNA1C base pairing. The seed site is highlighted in yellow. Note the seed‐site complementarity between miR‐328 and CACNA1C.



Figure 16.

The miR‐26 seed family members and miR‐26a:CACNA1C base pairing and miR‐26b:CACNA1C base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity between miR‐26 and CACNA1C.



Figure 17.

Diagram showing how miR‐26a is involved in the regulation of intrinsic circadian rhythm. CLOCK, circadian locomoter output cycles kaput; CREB, cAMP‐response element‐binding protein; LTCC, L‐type Ca2+ channels.



Figure 18.

The miR‐9 seed family members and miR‐9:KCNMA1 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity and cleavage site complementarity between miR‐9 and KCNMA1.



Figure 19.

Ion channels known to be involved in regulation of pain threshold and their alterations in expression in a mice line with conditional deletion of Dicer to produce overall downregulation of microribonucleic acids (miRNAs). Removal of miRNAs paradoxically downregulates Nax1.x and TRPCx, possibly via altering expression of transcription factors (TFs) that regulate these channel genes at the transcriptional level. Nav1.x: mainly referring to Nav1.7, Nav1.8, and Nav1.9; TRPCx: mainly referring to TRPC3 and TRPC6.



Figure 20.

The miR‐320 seed family members and miR‐320a:AQP1 base pairing and miR‐320a:AQP4 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity and centered site complementarity between miR‐320a and AQP1.



Figure 21.

The miR‐204 seed family members and miR‐204/miR‐211:TGFBR2 base pairing and miR‐204/miR‐211:SNAIL2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site complementarity and cleavage site complementarity between miR‐204/miR‐211 and their target genes.



Figure 22.

Diagram showing how miR‐204/miR‐211 regulates epithelial function in the retinal pigment epithelium via indirectly modulating expression of claudins and Kir7.1 K+ channel genes by directly targeting the TGFBR2 and SNAIL2 genes. TER, transepithelial electrical resistance; TJ, tight junction.



Figure 23.

The miR‐124 seed family members and miR‐124:FOXA2 base pairing. The seed sites are highlighted in yellow. Note the seed‐site, cleavage site, and centered site complementarity between miR‐124a and FOXA2.



Figure 24.

Diagram showing how miR‐124 regulates intracellular Ca2+ signaling in the pancreatic β‐cells via indirectly modulating Kir6.2 and SUR1 expression by directly targeting the FOXA2 gene.



Figure 25.

The miR‐34 seed family members and detailed juxtaposition of miR‐34 with h‐eag1 3′UTR and h‐erg1 3′UTR. The seed sites are highlighted in yellow. Note the seed‐site complementarity and cleavage site complementarity between miR‐34a/miR‐34b/miR‐34c and their target genes.



Figure 26.

Schematic illustration of the p53‐miR‐34‐E2F1‐h‐eag1/h‐erg1

signaling pathway as a mechanism for oncogenic upregulation of h‐eag1/h‐erg1 and the growth‐stimulating action of h‐eag1/h‐erg1 in cancer cells.



Figure 27.

Schematic depiction of roles of microribonucleic acids in regulating ion channel genes and the associated pathophysiological processes. AMI, acute myocardial infarction, CH, cardiac hypertrophy, HF, heart failure; AF, atrial fibrillation; OS, oxidative stress. Dashlines indicate downregulation and solid lines indicate upregulation.

 1. Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez‐Barbera JP, Nassar MA, Dickenson AH, Wood JN. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321: 702‐705, 2008.
 2. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117: 421‐426, 2004.
 3. Agre P, Kozono D. Aquaporin water channels: Molecular mechanisms for human diseases. FEBS Lett 555: 72‐78, 2003.
 4. Adelman JP, Shen KZ, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, Bond CT, North RA. Calcium‐activated potassium channels expressed from cloned complementary DNAs. Neuron 9: 209‐216, 1992.
 5. Aguilar‐Bryan L, Bryan J. Molecular biology of adenosine triphosphate‐sensitive potassium channels. Endocr Rev 20: 101‐135, 1999.
 6. Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Li Z, Yang B. Circulating microRNA‐1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391: 73‐77, 2010.
 7. Alvarez‐Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 132: 4653‐4662, 2005.
 8. Ambros V. A hierarchy of regulatory genes controls a larva‐to‐adult developmental switch in C. elegans. Cell 57: 49‐57, 1989.
 9. Ambros V. The functions of animal microRNAs. Nature 431: 350‐355, 2004.
 10. Arcangeli A. Expression and role of hERG channels in cancer cells. Novartis Found Symp 266: 225‐232, 2005.
 11. Atienza F, Almendral J, Moreno J, Vaidyanathan R, Talkachou A, Kalifa J, Arenal A, Villacastín JP, Torrecilla EG, Sánchez A, Ploutz‐Snyder R, Jalife J, Berenfeld O. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: Evidence for a reentrant mechanism. Circulation 114: 2434‐2442, 2006.
 12. Antoons G, Sipido KR. Targeting calcium handling in arrhythmias. Europace 10: 1364‐1369, 2008.
 13. Atkinson NS, Robertson GA, Ganetzky B. A component of calcium‐activated potassium channels encoded by the Drosophila slo locus. Science 253: 551‐555, 1991.
 14. Azuma‐Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, Siomi H, Siomi MC. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci USA 105: 7964‐7969, 2008.
 15. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor‐independent, Dicer‐dependent small RNAs. Genes Dev 22: 2773‐2785, 2008.
 16. Babij P, Askew GR, Nieuwenhuijsen B, Su CM, Bridal TR, Jow B, Argentieri TM, Kulik J, DeGennaro LJ, Spinelli W, Colatsky TJ. Inhibition of cardiac delayed rectifier K+ current by overexpression of the long‐QT syndrome HERG G628S mutation in transgenic mice. Circ Res 83: 668‐678, 1998.
 17. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 455: 64‐71, 2008.
 18. Bailey MJ, Beremand PD, Hammer R, Reidel E, Thomas TL, Cassone VM. Transcriptional profiling of circadian patterns of mRNA expression in the chick retina. J Biol Chem 279: 52247‐52254, 2004.
 19. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN. GTP induced tetrodotoxin‐resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurons. J Physiol 548: 373‐382, 2003.
 20. Banerjee D, Kwok A, Lin SY, Slack FJ. Developmental timing in C. elegans is regulated by kin‐20 and tim‐1, homologs of core circadian clock genes. Dev Cell 8: 287‐295, 2005.
 21. Barnes S, Kelly ME. Calcium channels at the photoreceptor synapse. Adv Exp Med Biol 514: 465‐476, 2002.
 22. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E. MicroRNA‐124a regulates Foxa2 expression and intracellular signaling in pancreatic beta‐cell lines. J Biol Chem 282: 19575‐19588, 2007.
 23. Baroukh NN, Van Obberghen E. Function of microRNA‐375 and microRNA‐124a in pancreas and brain. FEBS J 276: 6509‐6521, 2009.
 24. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 136: 215‐233, 2009.
 25. Baruscotti M, DiFrancesco D. Pacemaker channels. Ann NY Acad Sci 1015: 111‐121, 2004.
 26. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11: 241‐247, 2005.
 27. Benarroch EE. Sodium channels and pain. Neurology 68: 233‐236, 2007.
 28. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell 28: 328‐336, 2007.
 29. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363‐366, 2001.
 30. Bers DM. Cardiac excitation‐contraction coupling. Nature 415: 198‐205, 2002.
 31. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: Targets and expression. Nucleic Acids Res 36: D149‐D153, 2008.
 32. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA‐mediated translational repression in human cells subjected to stress. Cell 125: 1111‐1124, 2006.
 33. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, Crociani O, Rosati B, Faravelli L, Olivotto M, Wanke E. herg encodes a K+ current highly conserved in tumors of different histogenesis: A selective advantage for cancer cells? Cancer Res 58: 815–822, 1998.
 34. Bizzozero T. Osservazion: Sulla struttura degli epitheli pavimentosi stratificati. Rend Ist Lomabardo Sc e Lettere, Series II 3: 675, 1870.
 35. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP‐dependent dsRNA‐binding protein that mediates nuclear export of pre‐miRNAs. RNA 10: 185‐191, 2004.
 36. Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA‐298 and microRNA‐328 regulate expression of mouse beta‐amyloid precursor protein converting enzyme 1. J Biol Chem 284: 1971‐1981, 2009.
 37. Bosch RF, Scherer CR, Rüb N, Wöhrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kühlkamp V. Molecular mechanisms of early electrical remodeling: Transcriptional downregulation of ion channel subunits reduces ICaL and Ito in rapid atrial pacing in rabbits. J Am Coll Cardiol 41: 858‐869, 2003.
 38. Bosch RF, Zeng X, Grammer JB, Popovic CM, Kuhlkamp V. Ionic mechanisms of electrical remodelling in human atrial fibrillation. Cardiovasc Res 44: 121‐131, 1999.
 39. Boštjančič E, Zidar N, Stajer D, Glavač D. MicroRNA miR‐1 is up‐regulated in remote myocardium in patients with myocardial infarction. Folia Biol (Praha) 56: 27‐31, 2010.
 40. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA‐target recognition. PLoS Biol 3: e85, 2005.
 41. Brundel BJ, Van Gelder IC, Henning RH, Tieleman RG, Tuinenburg AE, Wietses M, Grandjean JG, Van Gilst WH, Crijns HJ. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103: 684‐690, 2001.
 42. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 23: 175‐205, 2007.
 43. Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L. mSlo, a complex mouse gene encoding “maxi” calcium‐activated potassium channels. Science 261: 221‐224, 1993.
 44. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957‐1966, 2004.
 45. Cahill GM, Besharse JC. Circadian clock functions localized in xenopus retinal photoreceptors. Neuron 10: 573‐577, 1993.
 46. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down‐regulation of micro‐ RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99: 15524‐15529, 2002.
 47. Carbrey JM, Agre P. Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190: 3‐28, 2009.
 48. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW, Ellingsen O, Ruiz‐Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA‐133 controls cardiac hypertrophy. Nat Med 13: 613‐618, 2007.
 49. Carmeliet E. Cardiac ionic currents and acute ischemia: From channels to arrhythmias. Physiol Rev 79: 917‐1017, 1999.
 50. Carrozzino F, Soulie P, Huber D, Mensi N, Orci L, Cano A, Feraille E, Montesano R. Inducible expression of Snail selectively increases paracellular ion permeability and differentially modulates tight junction proteins. Am J Physiol Cell Physiol 289: C1002‐C1014, 2005.
 51. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642‐655, 2009.
 52. Casis O, Echevarria E. Diabetic cardiomyopathy: Electromechanical cellular alterations. Curr Vasc Pharmacol 2: 237‐248, 2004.
 53. Catalucci D, Gallo P, Condorelli G. MicroRNAs in cardiovascular biology and heart disease. Circ Cardiovasc Genet 2: 402‐408, 2009.
 54. Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, Giunti G, Mugelli A. Characterization of the hyperpolarization‐activated current, If, in ventricular myocytes from human failing heart. Circulation 95: 568‐571, 1997.
 55. Cerbai E, Sartiani L, DePaoli P, Pino R, Maccherini M, Bizzarri F, DiCiolla F, Davoli G, Sani G, Mugelli A. The properties of the pacemaker current If in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol 3: 441‐448, 2001.
 56. Cha TJ, Ehrlich JR, Zhang L, Nattel S. Atrial ionic remodelling induced by atrial tachycardia in the presence of congestive heart failure. Circulation 110: 1520‐1526, 2004.
 57. Chalfie M, Horvitz HR, Sulston JE. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24: 59‐69, 1981.
 58. Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8: 215‐239, 2007.
 59. Chelouf S, Dos Santos CO, Chong MM, Hannon GJ. A dicer‐independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465: 584‐589, 2010.
 60. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA‐1 and microRNA‐133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228‐233, 2006.
 61. Cheng HY, Obrietan K. Revealing a role of microRNAs in the regulation of the biological clock. Cell Cycle 6: 3034‐3035, 2007.
 62. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K. microRNA modulation of circadian‐clock period and entrainment. Neuron 54: 813‐829, 2007.
 63.Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? Am J Pathol 170: 1831‐1840, 2007.
 64. Chendrimada T, Gregory R, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436: 740‐744, 2005.
 65. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, Noci I, Borri P, Borrani E, Giachi M, Becchetti A, Rosati B, Wanke E, Olivotto M, Arcangeli A. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non cancerous endometrium. Br J Cancer 83: 1722‐1729, 2000.
 66. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP. Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev 24: 992‐1009, 2010.
 67. Christ T, Boknik P, Wöhrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D. L‐type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110: 2651‐2657, 2004.
 68. Christensen PK, Gall MA, Major‐Pedersen A, Sato A, Rossing P, Breum L, Pietersen A, Kastrup J, Parving HH. QTc interval length and QT dispersion as predictor of mortality in patients with non‐insulin‐dependent diabetes. Scand J Clin Lab Invest 60: 323‐332, 2000.
 69. Chu B, Dopico AM, Lemos JR, Treistman SN. Ethanol potentiation of calcium‐activated potassium channels reconstituted into planar lipid bilayers. Mol Pharmacol 54: 397‐406, 1998.
 70. Cook DL, Satin LS, Ashford ML, Hales CN. ATP‐sensitive K+ channels in pancreatic beta‐cells. Spare‐channel hypothesis. Diabetes 37: 495‐498, 1988.
 71. Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 116: 817‐829, 2004.
 72. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS ONE 4: e5279, 2009.
 73. Cortright DN, Szallasi A. TRP channels and pain. Curr Pharm Des 15: 1736‐1749, 2009.
 74. Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123: 347‐358, 2005.
 75. Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain 131: 243‐257, 2007.
 76. Dai B, Saada N, Echetebu C, Dettbarn C, Palade P. A new promoter for alpha1C subunit of human L‐type cardiac calcium channel Cav1.2. Biochem Biophys Res Commun 296: 429‐433, 2002.
 77. Davare MA, Horne MC, Hell JW. Protein phosphatase 2A is associated with class C L‐type calcium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP‐dependent protein kinase. J Biol Chem 275: 39710‐39717, 2000.
 78. Davis BN, Hata A. Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Commun Signal 7: 18, 2009.
 79. Davis‐Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem 148: 381‐392, 2010.
 80. Davis E, Caiment F, Tordoir X, Cavaillé J, Ferguson‐Smith A, Cockett N, Georges M, Charlier C. RNAi‐mediated allelic trans‐interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15: 743‐749, 2005.
 81. Day CP, McComb JM, Campbell RWF. QT dispersion: An indication of arrhythmia risk in patients with long QT intervals. Br Heart J 63: 342‐344, 1990.
 82. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature 432: 231‐235, 2004.
 83. Deo M, Yu JY, Chung KH, Tippens M, Turner DL. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235: 2538‐2548, 2006.
 84. Desai AD, Yaw TS, Yamazaki T, Kaykha A, Chun S, Froelicher VF. Prognostic significance of quantitative QRS duration. Am J Med 119: 600‐606, 2006.
 85. Dhamoon AS, Jalife J. The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2: 316‐324, 2005.
 86. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29: 675‐687, 2009.
 87. Ding XW, Luo HS, Jin X, Yan JJ, Ai YW. Aberrant expression of Eag1 potassium channels in gastric cancer patients and cell lines. Med Oncol 24: 345‐350, 2007.
 88. Ding XW, Wang XG, Luo HS, Tan SY, Gao S, Luo B, Jiang H. Expression and prognostic roles of Eag1 in resected esophageal squamous cell carcinomas. Dig Dis Sci 53: 2039‐2044, 2008.
 89. Ding XW, Yan JJ, An P, Lu P, Luo HS. Aberrant expression of ether à go‐go potassium channel in colorectal cancer patients and cell lines. World J Gastroenterol 13: 1257‐1261, 2007.
 90. Dobrev D, Wettwer E, Kortner A, Knaut M, Schuler S, Ravens U. Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res 54: 397‐ 404, 2002.
 91. Downie BR, Sánchez A, Knötgen H, Contreras‐Jurado C, Gymnopoulos M, Weber C, Stühmer W, Pardo LA. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 283: 36234‐36240, 2008.
 92. Duncan SA, Navas MA, Dufort D, Rossant J, Stoffel M. Regulation of a transcription factor network required for differentiation and metabolism. Science 281: 692‐695, 1998.
 93. Ehrlich JR. Inward rectifier potassium currents as a target for atrial fibrillation therapy. J Cardiovasc Pharmacol 52: 129‐135, 2008.
 94. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Villeneuve L, Hébert TE, Nattel S. Characterization of a hyperpolarization activated time‐dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. J Physiol 557: 583‐597, 2004.
 95. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. LNA‐mediated microRNA silencing in non‐human primates. Nature 452: 896‐899, 2008.
 96. Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, PfeVer S, Rajewsky N, Meister G. A human snoRNA with microRNA‐like functions. Mol Cell 32: 519‐528, 2008.
 97. Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol 223: 102‐115, 2011.
 98. Farias LM, Ocaña DB, Díaz L, Larrea F, Avila‐Chávez E, Cadena A, Hinojosa LM, Lara G, Villanueva LA, Vargas C, Hernández‐Gallegos E, Camacho‐Arroyo I, Dueñas‐González A, Pérez‐Cárdenas E, Pardo LA, Morales A, Taja‐Chayeb L, Escamilla J, Sánchez‐Peña C, Camacho J. Ether a go‐go potassium channels as human cervical cancer markers. Cancer Res 64: 6996‐7001, 2004.
 99. Fernandez‐Velasco M, Goren N, Benito G, Blanco‐Rivero J, Bosca L, Delgado C. Regional distribution of hyperpolarization‐activated current If and hyperpolarization‐activated cyclic nucleotide‐gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts. J Physiol 553: 395‐405, 2003.
 100. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post‐transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet 9: 102‐114, 2008.
 101. Finlayson K, Pennington AJ, Kelly JS. [3H]dofetilide binding in SHSY5Y and HEK293 cells expressing a HERG‐like K+ channel? Eur J Pharmacol 412: 203‐212, 2001.
 102. Fisher SK, Steinberg RH. Origin and organization of pigment epithelial apical projections to cones in cat retina. J Comp Neurol 206: 131‐145, 1982.
 103. Flynt AS, Patton JG. Crosstalk between planar cell polarity signaling and miR‐8 control of NHERF1‐mediated actin reorganization. Cell Cycle 9: 235‐237, 2010.
 104. Flynt AS, Thatcher EJ, Burkewitz K, Li N, Liu Y, Patton JG. miR‐8 microRNAs regulate the response to osmotic stress in zebrafish embryos. J Cell Biol 185: 115‐127, 2009.
 105. Fontemaggi G, Dell'Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F, Terrenato I, Mottolese M, Muti P, Domany E, Del Bufalo D, Strano S, Blandino G. The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo‐angiogenesis. Nat Struct Mol Biol 16: 1086‐1093, 2009.
 106. Forman JJ, Legesse‐Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let‐7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105: 14879‐14884, 2008.
 107. Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD. Normal microRNA maturation and germ‐line stem cell maintenance requires Loquacious, a double‐stranded RNA‐binding domain protein. PLoS Biol 3: e236, 2005.
 108. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19: 92‐105, 2009.
 109. Fu X, Li Q, Feng Z, Mu D. The roles of aquaporin‐4 in brain edema following neonatal hypoxia ischemia and reoxygenation in a cultured rat astrocyte model. Glia 55: 935‐941, 2007.
 110. Fujita S, Iba H. Putative promoter regions of miRNA genes involved in evolutionarily conserved regulatory systems among vertebrates. Bioinformatics 24: 303‐308, 2008.
 111. Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O'Malley BW, Kato S. DEAD‐box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9: 604‐611, 2007.
 112. Furuse, M, Fujita K, Fujimoto K, and Tsukita S. Claudin 1 and 2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141: 1539‐1550, 1998.
 113. Furuse, M, Furuse K, Sasaki H, and Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin‐2 into Madin‐Darby canine kidney I cells. J Cell Biol 153: 263‐272, 2001.
 114. Furuse, M, Sasaki H, Fujimoto K, and Tsukita S. A single gene product, claudin‐1 or ‐2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143: 391‐401, 1998.
 115. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, Leger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S. Human atrial ion channel and transporter subunit gene‐expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 112: 471‐481, 2005.
 116. Gallemore R, Hughes B, Miller S. Light‐induced responses of the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ, editors. The Retinal Pigment Epithelium. New York: Oxford University Press, 1998.
 117. Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8: 113‐126, 2007.
 118. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med 60: 167‐179, 2009.
 119. Golden DE, Gerbasi VR, Sontheimer EJ. An inside job for siRNAs. Mol Cell 31: 309‐312, 2008.
 120. Gómez‐Varela D, Zwick‐Wallasch E, Knötgen H, Sánchez A, Hettmann T, Ossipov D, Weseloh R, Contreras‐Jurado C, Rothe M, Stühmer W, Pardo LA. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 67: 7343‐7349, 2007.
 121. Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123: 347‐358, 2005.
 122. Gregory RI, Yan K‐P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The microprocessor complex mediates the genesis of microRNAs. Nature 432: 235‐240, 2004.
 123. Greiser M, Halaszovich CR, Frechen D, Boknik P, Ravens U, Dobrev D, Lückhoff A, Schotten U. Pharmacological evidence for altered src kinase regulation of ICaL in patients with chronic atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 375: 383‐392, 2007.
 124. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFβ signaling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol 11: 1287‐1296, 2009.
 125. Girmatsion Z, Biliczki P, Bonauer A, Wimmer‐Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A, Nattel S, Hohnloser SH, Ehrlich JR. Changes in microRNA‐1 expression and IK1 up‐regulation in human atrial fibrillation. Heart Rhythm 6: 1802‐1809, 2009.
 126. Green CB, Besharse JC. Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19: 91‐102, 2004.
 127. Griffiths‐Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: Tools for microRNA genomics. Nucleic Acids Res 36: D154‐D158, 2008.
 128. Grimson A, Farh KK, Johnston WK, Garrett‐Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 27: 91‐105, 2007.
 129. Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP. Early origins and evolution of microRNAs and Piwi‐interacting RNAs in animals. Nature 455: 1193‐1197, 2008.
 130. Grueter CE, Colbran RJ, Anderson ME. CaMKII, an emerging molecular driver for calcium homeostasis, arrhythmias, and cardiac dysfunction. J Mol Med 85: 5‐14, 2007.
 131. Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N. microRNAs target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1: e13, 2005.
 132. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835‐840, 2010.
 133. Ha TS, Jeong SY, Cho SW, Jeon H, Roh GS, Choi WS, Park CS. Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues. Eur J Biochem 267: 910‐918, 2000.
 134. Haase AD, Jaskiewicz L, Zhang H, Laine' S, Sack R, Gatignol A, Filipowicz W. TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6: 961‐967, 2005.
 135. Haley B, Zamore PD. Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11: 599‐606, 2004.
 136. Hall DD, Feekes JA, Arachchige Don AS, Shi M, Hamid J, Chen L, Strack S, Zamponi GW, Horne MC, Hell JW. Binding of protein phosphatase 2A to the L‐type calcium channel Cav1.2 next to Ser1928, its main PKA site, is critical for Ser1928 dephosphorylation. Biochemistry 45: 3448‐3459, 2006.
 137. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha‐DGCR8 complex in primary microRNA processing. Genes Dev 18: 3016‐3027, 2004.
 138. Hara M, Shvilkin A, Rosen MR, Danilo P,Jr, Boyden PA. Steady‐state and nonsteady‐state action potentials in fibrillating canine atrium: Abnormal rate adaptation and its possible mechanisms. Cardiovasc Res 42: 455‐469, 1999.
 139. Harteneck C, Reiter B. TRP channels activated by extracellular hypo‐osmoticity in epithelia. Biochem Soc Trans 35: 91‐95, 2007.
 140. Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: New clinical syndromes, new scientific insights, and new therapy. Diabetes 54: 2503‐2513, 2005.
 141. Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B. MicroRNA regulation of Alzheimer′s amyloid precursor protein expression. Neurobiol Dis 33: 422‐428, 2009.
 142. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B. Loss of microRNA cluster miR‐29a/b‐1 in sporadic Alzheimer′s disease correlates with increased BACE1/beta‐secretase expression. Proc Natl Acad Sci U S A 105: 6415‐6420, 2008.
 143. Hejtmancik JF, Jiao X, Li A, Sergeev YV, Ding X, Sharma AK, Chan CC, Medina I, Edwards AO. Mutations in KCNJ13 cause autosomal‐dominant snowflake vitreoretinal degeneration. Am J Hum Genet 82: 174‐180, 2008.
 144. Hemmerlein B, Weseloh RM, Mello de Queiroz F, Knotgen H, Sanchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Radzun HJ, Stuhmer W, Pardo LA. Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 5: 41, 2006.
 145.Hermeking H. The miR‐34 family in cancer and apoptosis. Cell Death Differ 17: 193‐199, 2010.
 146. Huang HL, Cendan CM, Roza C, Okuse K, Cramer R, Timms JF, Wood JN. Proteomic profiling of neuromas reveals alterations in protein composition and local protein synthesis in hyper‐excitable nerves. Mol Pain 4: 33, 2008.
 147. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ.A microRNA component of the p53 tumour suppressor network. Nature 447: 1130‐1135, 2007.
 148. Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ. Hyperpolarization activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97: 55‐65, 1998.
 149. Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA. Claudin‐16 and claudin‐19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106: 10350‐10355, 2009.
 150. Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA. Claudin‐16 and claudin‐19 interact and form a cation‐selective tight junction complex. J Clin Invest 118: 619‐628, 2008.
 151. Hughes TA. Regulation of gene expression by alternative untranslated regions. Trends Genet 22: 119‐122, 2006.
 152. Humphreys DT, Westman BJ, Martin DI, Preiss T: MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102: 16961‐16966, 2005.
 153. Hutvagner G, Simard MJ. Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol 9: 22‐32, 2008.
 154. Hutvagner G, Zamore PD. A microRNA in a multiple‐turnover RNAi enzyme complex. Science 297: 2056‐2060, 2002.
 155. Ivanova TN, Iuvone PM. Circadian rhythm and photic control of cAMP level in chick retinal cell cultures: A mechanism for coupling the circadian oscillator to the melatonin‐synthesizing enzyme, arylalkylamine N‐acetyltransferase, in photoreceptor cells. Brain Res 991: 96‐103, 2003.
 156. Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE 23: 243‐249, 2007.
 157. Jakab M, Weiger TM, Hermann A. Ethanol activates maxi Ca2+‐activated K+ channels of clonal pituitary (GH3) cells. J Membr Biol 157: 237‐245, 1997.
 158. Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39: 959‐966, 2008.
 159. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361: 1437‐1447, 2009.
 160. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisense‐mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res 100: 1579‐1588, 2007.
 161. Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q. Dicer‐1 and R3D1‐L catalyze microRNA maturation in Drosophila. Genes Dev 19: 1674‐1679, 2005.
 162. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver‐specific MicroRNA. Science 309: 1577‐1581, 2005.
 163. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM. Repression of alpha‐synuclein expression and toxicity by microRNA‐7. Proc Natl Acad Sci U S A 106: 13052‐13057, 2009.
 164. Kaestner KH. The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism. Trends Endocrinol Metab 11: 281‐285, 2000.
 165. Kapsimali M. The wide variety of miRNA expression profiles in the developing and mature CNS. In: de Strooper B, Christen Y, editors. Macro Roles for microRNAs in the Life and Death of Neurons. Berlin, Heidelberg: Springer‐Verlag , p. 11, 2010.
 166. Karali M, Peluso I, Marigo V, Banfi S. Identification and characterization of microRNAs expressed in the mouse eye. Invest Ophthalmol Vis Sci 48: 509‐515, 2007.
 167. Kass RS, Tsien RW. Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers. Biophys J 38: 259‐269, 1982.
 168. Kaupp UB, Seifert R. Cyclic nucleotide‐gated ion channels. Physiol Rev 82: 769‐824, 2002.
 169. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209‐216, 2003.
 170. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317: 1220‐1224, 2007.
 171. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126‐139, 2009.
 172. Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J 26: 775‐783, 2007.
 173. Kharche S, Garratt CJ, Boyett MR, Inada S, Holden AV, Hancox JC, Zhang H. Atrial proarrhythmia due to increased inward rectifier current (IK1) arising from KCNJ2 mutation‐a simulation study. Prog Biophys Mol Biol 98: 186‐197, 2008.
 174. Klaassen I, Hughes J M, Vogels I M, Schalkwijk CG, Van Noorden CJ, Schlingemann RO. Altered expression of genes related to blood‐retina barrier disruption in streptozotocin‐induced diabetes. Exp Eye Res 89: 4‐15, 2009.
 175. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G. Distribution of high‐conductance Ca2+‐activated K+ channels in rat brain: Targeting to axons and nerve terminals. J Neurosci 16: 955‐963, 1996.
 176. Ko GY, Ko ML, Dryer SE. Circadian regulation of cGMP‐gated cationic channels of chick retinal cones. Erk MAP Kinase and Ca2+/calmodulin‐dependent protein kinase II. Neuron 29: 255‐266, 2001.
 177. Ko ML, Jian K, Shi L, Ko GY. Phosphatidylinositol 3 kinase‐Akt signaling serves as a circadian output in the retina. J Neurochem 108: 1607‐1620, 2009.
 178. Ko ML, Liu Y, Dryer SE, Ko GY. The expression of L‐type voltage‐gated calcium channels in retinal photoreceptors is under circadian control. J Neurochem 103: 784‐792, 2007.
 179. Koch WJ, Ellinor PT, Schwartz A. cDNA cloning of a dihydropyridinesensitive calcium channel from rat aorta: Evidence for the existence of alternatively spliced forms. J Biol Chem 265: 17786‐17791, 1990.
 180. Kosik KS. The neuronal microRNA system. Nat Rev Neurosci 7: 911‐920, 2006.
 181. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005‐1017, 2009.
 182. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet 37: 495‐500, 2005.
 183. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell‐derived neurogenesis. Stem Cells 24: 857‐864, 2006.
 184. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597‐610, 2010.
 185. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs'. Nature 438: 685‐689, 2005.
 186. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101: 59‐68, 2007.
 187. Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC. Nutlin‐3a activates p53 to both down‐regulate inhibitor of growth 2 and up‐regulate mir‐34a, mir‐34b, and mir‐34c expression, and induce senescence. Cancer Res 68: 3193‐3203, 2008.
 188.Kuner R. Central mechanisms of pathological pain. Nat Med 16: 1258‐1266, 2010.
 189. Lagos‐Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 294: 853‐858, 2001.
 190. Lagrutta A, Shen KZ, North RA, Adelman JP. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium‐activated potassium channel. J Biol Chem 269: 20347‐20351, 1994.
 191. Lai EC, Burks C, Posakony JW. The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125: 4077‐4088, 1998.
 192. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14: 2162‐2167, 2004.
 193. Lantz KA, Vatamaniuk MZ, Brestelli JE, Friedman JR, Matschinsky FM, Kaestner KH. Foxa2 regulates multiple pathways of insulin secretion. J Clin Invest 114: 512‐520, 2004.
 194. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, Bencini L, Calistri M, Messerini L, Scatizzi M, Moretti R, Wanke E, Olivotto M, Mugnai G, Arcangeli A. herg1 and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 64: 606‐611, 2004.
 195. Lastraioli E, Taddei A, Messerini L, Comin CE, Festini M, Giannelli M, Tomezzoli A, Paglierani M, Mugnai G De, Manzoni G, Bechi P, Arcangeli A. hERG1 channels in human esophagus: Evidence for their aberrant expression in the malignant progression of Barrett's esophagus. J Cell Physiol 209: 398‐404, 2006.
 196. Latronico MV, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ Res 101: 1225‐1236, 2007.
 197. Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol 6: 419‐429, 2009a.
 198. Latronico MV, Condorelli G. RNA silencing: Small RNA‐mediated posttranscriptional regulation of mRNA and the implications for heart electropathophysiology. J Cardiovasc Electrophysiol 20: 230‐237, 2009b.
 199. Lau NC, Lim LP, Weinstein E, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858‐862, 2001.
 200. Lee CS, Sund NJ, Vatamaniuk MZ, Matschinsky FM, Stoffers DA, Kaestner KH. Foxa2 controls Pdx1 gene expression in pancreatic beta‐cells in vivo. Diabetes 51: 2546‐2551, 2002.
 201. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862‐864, 2001.
 202. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell 75: 843‐854, 1993.
 203. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO J 25: 522‐532, 2006.
 204. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 21: 4663‐4670, 2002.
 205. Lee Y, Kim M, Han JJ, Yeom KH, Lee S, Baek SH, Kim VN. Micro‐RNA genes are transcribed by RNA polymerase II. EMBO J 23: 4051‐4060, 2004.
 206. Lei P, Li Y, Chen X, Yang S, Zhang J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 1284: 191‐201, 2009.
 207. Levitan IB. miXED messages in ion channel modulation. Neuron 59: 188‐189, 2008.
 208. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15‐20, 2005.
 209. Lewis BP, Shih IH, Jones‐Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 115: 787‐798, 2003.
 210. Li J, McLerie M, Lopatin AN. Transgenic up‐regulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability. Am J Physiol 287: H2790‐H2802, 2004.
 211. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, Lopes B, Schiff D, Purow B, Abounader R. MicroRNA‐34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69: 7569‐7576, 2009.
 212. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8: 166, 2007.
 213. Lim LP, Lau NC, Garrett‐Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769‐773, 2005.
 214. Lin H, Li Z, Luo X, Xiao J, Chen C, Zhang J, Dong D, Lu Y, Yang B, Wang Z. MicroRNA miR‐34 controls oncogenic expression and action of ether à go‐go K+ channel through dual mechanisms. Available from Nature Precedings at: http://hdl.handle.net/10101/npre.2010.4507.1, 2010.
 215. Lindemann, B, and Soloman AK. Permeability of luminal surface of intestinal mucosal cells. J Gen Physiol 45: 801‐810, 1962.
 216. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, midmyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res 72: 671‐687, 1993.
 217. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua‐Tor L, Hannon GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437‐1441, 2004.
 218. Lizé M, Pilarski S, Dobbelstein M. E2F1‐inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 17: 452‐458, 2010.
 219. Lagos‐Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue‐specific microRNAs from mouse. Curr Biol 12: 735‐739, 2002.
 220. Lozinskaya IM, Cox RH. Effects of age on Ca2+ currents in small mesenteric artery myocytes from Wistar‐Kyoto and spontaneously hypertensive rats. Hypertension 29: 1329‐1336, 1997.
 221. Lu J, Getz G, Miska EA, Alvarez‐Saavedra E, Lamb J, Peck D, Sweet‐Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 435: 745‐746, 2005.
 222. Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B. A single anti‐microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 37: e24, 2009.
 223. Lu Y, Zhang Y, Shan H, Pan Z, Li X, Li B, Xu C, Zhang B, Zhang F, Dong D, Song W, Qiao G, Yang B. MicroRNA‐1 downregulation by propranolol in a rat model of myocardial infarction: A new mechanism for ischaemic cardioprotection. Cardiovasc Res 84: 434‐441, 2009.
 224. Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Lin H, Luo X, Xiao J, Qiao G, Li Y, Bai Y, Sun L, Ma N, Hui Y, Chen G, Xu, C, Wang Z, Yang B. Control of experimental atrial fibrillation by microRNA‐328. Circulation 122: 2378‐2387, 2010.
 225. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 303: 95‐98, 2004.
 226. Luo X, Lin H, Pan Z, Xiao J, Zhang Y, Lu Y, Yang B, Wang Z. Down‐regulation of miR‐1/miR‐133 contributes to re‐expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem 283: 20045‐20052, 2008.
 227. Luo X, Xiao J, Lin H, Li B, Lu Y, Yang B, Wang Z. Transcriptional activation by stimulating protein 1 and post‐transcriptional repression by muscle‐specific microRNAs of IKs‐encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 212: 358‐367, 2007.
 228. Luo X, Zhang H, Xiao J, Wang Z. Regulation of human cardiac ion channel genes by microRNAs: Theoretical perspective and pathophysiological implications. Cell Physiol Biochem 25: 571‐586, 2010.
 229. Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA‐binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci U S A 104: 9667‐9672, 2007.
 230. MacDonald SH, Ruth P, Knaus HG, Shipston MJ. Increased large conductance calcium‐activated potassium (BK) channel expression accompanied by STREX variant downregulation in the developing mouse CNS. BMC Dev Biol 6: 37, 2006.
 231. Maier LS, Bers DM. Role of Ca2+/calmodulin‐dependent protein kinase (CaMK) in excitation‐contraction coupling in the heart. Cardiovasc Res 73: 631‐640, 2007.
 232. Malzkorn B, Wolter M, Liesenberg F, Grzendowski M, Stühler K, Meyer HE, Reifenberger G. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20: 539‐550, 2009.
 233. Maminishkis A, Chen S, Jalickee S, Banzon, T, Shi G, Wang FE, Ehalt T, Hammer J A, Miller SS. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 47: 3612‐3624, 2006.
 234. Mancarella S, Yue Y, Karnabi E, Qu Y, El‐Sherif N, Boutjdir M. Impaired Ca2+ homeostasis is associated with atrial fibrillation in the alpha1D L‐type Ca2+ channel KO mouse. Am J Physiol 295: H2017‐H2024, 2008.
 235. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin‐4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6: 159‐163, 2000.
 236. Marmor MF, Wolfensberger TJ. The Retinal Pigment Epithelium: Function and Disease. New York: Oxford University Press, 1998.
 237. Martin G, Puig S, Pietrzykowski A, Zadek P, Emery P, Treistman S. Somatic localization of a specific large‐conductance calcium‐activated potassium channel subtype controls compartmentalized ethanol sensitivity in the nucleus accumbens. J Neurosci 24: 6563‐6572, 2004.
 238. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell 101: 365‐376, 2000.
 239. Matera AG, Terns RM, Terns MP. Non‐coding RNAs: Lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8: 209‐220, 2007.
 240. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW II. MicroRNA‐133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure‐overloaded adult hearts. Circ Res 106: 166‐175, 2010.
 241. Meister G, Landthaler M, Patkaniowska A, Dorset Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15: 185‐197, 2004.
 242. Mello de Queiroz F, Suarez‐Kurtz G, Stuhmer W, Pardo LA. Ether a go‐go potassium channel expression in soft tissue sarcoma patients. Mol Cancer 5: 42, 2006.
 243. Mendell JT. miRiad roles for the miR‐17–92 cluster in development and disease. Cell 133: 217‐222, 2008.
 244. Meyer R, Heinemann SH. Characterization of an eag‐like potassium channel in human neuroblastoma cells. J Physiol 508: 49‐56, 1998.
 245. Miki T, Nagashima K, Seino S. The structure and function of the ATP‐sensitive K+ channel in insulin‐secreting pancreatic beta‐cells. J Mol Endocrinol 22: 113‐123, 1999.
 246. Misonou H, Menegola M, Buchwalder L, Park EW, Meredith A, Rhodes KJ, Aldrich RW, Trimmer JS. Immunolocalization of the Ca2+‐activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol 496: 289‐302, 2006.
 247. Miyoshi K, Miyoshi T, Siomi H. Many ways to generate microRNA‐like small RNAs: Non‐canonical pathways for microRNA production. Mol Genet Genomics 284: 95‐103, 2010.
 248. Modell SM, Lehmann MH. The long QT syndrome family of cardiac ion channelopathies: A HuGE review. Genet Med 8: 143‐155, 2006.
 249.Moe GK. A conceptual model of atrial fibrillation. J Electrocardiol 1: 145‐146, 1968.
 250. Moore RY, Eichler VB. Loss of circadian adrenal corticosterone rhythm following suprachiasmatic nucleus lesions. Brain Res 42: 201‐206, 1972.
 251. Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L‐type calcium channel Cav1.2 for blood pressure regulation. EMBO J 22: 6027‐6034, 2003.
 252. Morgans CW. Localization of the alpha(1F) calcium channel subunit in the rat retina. Invest Ophthalmol Vis Sci 42: 2414‐2418, 2001.
 253. Murashov AK, Chintalgattu V, Islamov RR, Lever TE, Pak ES, Sierpinski PL, Katwa LC, Van Scott MR. RNAi pathway is functional in peripheral nerve axons. FASEB J 21: 656‐670, 2007.
 254. Nattel S. New ideas about atrial fibrillation 50 years on. Nature 415: 219‐226, 2002.
 255. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion‐channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87: 425‐456, 2007.
 256. Navaratnam DS, Bell TJ, Tu TD, Cohen EL, Oberholtzer JC. Differential distribution of Ca2+‐activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 19: 1077‐1085, 1997.
 257. Newman MA, Hammond SM. Emerging paradigms of regulated microRNA processing. Genes Dev 24: 1086‐1092, 2010.
 258. Nigam V, Sievers HH, Jensen BC, Sier HA, Simpson PC, Srivastava D, Mohamed SA. Altered microRNAs in bicuspid aortic valve: A comparison between stenotic and insufficient valves. J Heart Valve Dis 19: 459‐465, 2010.
 259. Nilsen TW. Mechanisms of microRNA‐mediated gene regulation in animal cells. Trends Genet 23: 243‐249, 2007.
 260. Nottrott S, Simard MJ, Richter JD. Human let‐7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13: 1108‐1114, 2006.
 261. Noujaim SF, Pandit SV, Berenfeld O, Vikstrom K, Cerrone M, Mironov S, Zugermayr M, Lopatin AN, Jalife J. Up‐regulation of the inward rectifier K+ current (IK1) in the mouse heart accelerates and stabilizes rotors. J Physiol 578: 315‐326, 2007.
 262. Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE. TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal 2: 21, 2009.
 263. Ohya Y, Abe I, Fujii K, Takata Y, Fujishima M. Voltage‐dependent Ca2+ channels in resistance arteries from spontaneously hypertensive rats. Circ Res 73: 1090‐1099, 1993.
 264. Okamura K, Hagen JW, Duan H, Tyler DM, Lai E. The mirtron pathway generates microRNA‐class regulatory RNAs in Drosophila. Cell 130: 89‐100, 2007.
 265. Okin PM, Devereux RB, Lee ET, Galloway JM, Howard BV. Strong Heart Study: Electrocardiographic repolarization complexity and abnormality predict all‐cause and cardiovascular mortality in diabetes: The strong heart study. Diabetes 53: 434‐440, 2004.
 266. Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol 222: 540‐545, 2010.
 267. Ørom UA, Kauppinen S, Lund AH. LNA‐modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372: 137‐141, 2006.
 268. O'Neill JS, Hastings MH. Circadian clocks: Timely interference by microRNAs. Curr Biol 17: R760‐R762, 2007.
 269. Oren M, Rotter V. Mutant p53 gain‐of‐function in cancer. Cold Spring Harb Perspect Biol 2: a001107, 2010.
 270. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31‐q32 amplification in malignant lymphoma. Cancer Res 64: 3087‐3095, 2004.
 271. Ouadid‐Ahidouch H, Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N. Changes in the K+ current‐density of MCF‐7 cells during progression through the cell cycle: Possible involvement of a h‐ether á‐gogo K+ channel. Receptors Channels 7: 345‐356, 2001.
 272. Ozsolak F, Poling LL, Wan, Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE. Chromatin structure analyses identify miRNA promoters. Genes Dev 22: 3172‐3183, 2008.
 273. Padgett KA, Lan RY, Leung PC, Lleo A, Dawson K, Pfeiff J, Mao TK, Coppel RL, Ansari AA, Gershwin ME. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 32: 246‐253, 2009.
 274. Pan YZ, Morris ME, Yu AM. MicroRNA‐328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75: 1374‐1379, 2009.
 275. Pandit SV, Berenfeld O, Anumonwo JM, Zaritski RM, Kneller J, Nattel S, Jalife J. Ionic determinants of functional reentry in a 2‐D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J 88: 3806‐3821, 2005.
 276. Pang L, Koren G, Wang Z, Nattel S. Tissue‐specific expression of two human CaV1.2 isoforms under the control of distinct 5’ flanking regulatory elements. FEBS Lett 546: 349‐354, 2003.
 277. Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin‐4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18: 1291‐1293, 2004.
 278. Pardo LA, Brüggemann A, Camacho J, Stühmer W. Cell cycle‐related changes in the conducting properties of r‐eag K+ channels. J Cell Biol 143: 767‐775, 1998.
 279. Pardo LA, Stühmer W. Eag1: An emerging oncological target. Cancer Res 68: 1611‐1613, 2008.
 280.Parker JS. How to slice: Snapshots of Argonaute in action. Silence 1: 3, 2010.
 281. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let‐7 heterochronic regulatory RNA. Nature 408: 86‐89, 2000.
 282. Patt S, Preussat K, Beetz C, Kraft R, Schrey M, Kalff R, Schonherr K, Heinemann SH. Expression of ether à go‐go potassium channels in human gliomas. Neurosci Lett 368: 249‐253, 2004.
 283. Pesic A, Madden JA, Pesic M, Rusch NJ. High blood pressure upregulates arterial L‐type Ca2+ channels: Is membrane depolarization the signal? Circ Res 94: e97‐104, 2004.
 284. Petrocca F, Vecchione A, Croce CM. Emerging role of miR‐106b‐25/miR‐17–92 clusters in the control of transforming growth factor beta signaling. Cancer Res 68: 8191‐8194, 2008.
 285. Petersen CP, Bordeleau ME, Pelletier J, Sharp PA. Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21: 533‐542, 2006.
 286. Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN. Posttranscriptional regulation of BK channel splice variant stability by miR‐9 underlies neuroadaptation to alcohol. Neuron 59: 274‐287, 2008.
 287. Pietrzykowski AZ, Martin GE, Puig SI, Knott TK, Lemos JR, Treistman SN. Alcohol tolerance in large‐conductance, calcium‐activated potassium channels of CNS terminals is intrinsic and includes two components: Decreased ethanol potentiation and decreased channel density. J Neurosci 24: 8322‐8332, 2004.
 288. Pillozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A, Guasti L, Bartolozzi B, Becchetti A, Wanke E, Bernabei PA, Olivotto M, Pegoraro L, Arcangeli A. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 16: 1791‐1798, 2002.
 289. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E,Bertrand E, Filipowicz W. Inhibition of translational initiation by Let‐7 MicroRNA in human cells. Science 309: 1573‐1576, 2005.
 290. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium/calcium exchange, inward rectifier potassium current, and residual beta‐adrenergic responsiveness. Circ Res 88: 1159‐1167, 2001.
 291.Powell, DW. Barrier function of epithelia. Am J Physiol Gastrointest Liver Physiol 241: G275‐G288, 1981.
 292. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet‐specific microRNA regulates insulin secretion. Nature 432: 226‐230, 2004.
 293. Pratt PF, Bonnet S, Ludwig LM, Bonnet P, and Rusch NJ. Upregulation of L‐type Ca2+ channels in mesenteric and skeletal arteries of SHR. Hypertension 40: 214‐219, 2002.
 294. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, Napolitano C, Anumonwo J, di Barletta MR, Gudapakkam S, Bosi G, Stramba‐Badiale M, Jalife J. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96: 800‐804, 2005.
 295. Proks P, Lippiat JD. Membrane ion channels and diabetes. Curr Pharm Des 12: 485‐501, 2006.
 296. Puigserver P, Rodgers JT. Foxa2, a novel transcriptional regulator of insulin sensitivity. Nat Med 12: 38‐39, 2006.
 297. Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD. siRNA, miRNA, and shRNA: In vivo applications. J Dent Res 87: 992‐1003, 2008.
 298. Qi XY, Yeh YH, Xiao L, Burstein B, Maguy A, Chartier D, Villeneuve LR, Brundel BJ, Dobrev D, Nattel S. Cellular signaling underlying atrial tachycardia remodeling of L‐type calcium current. Circ Res 103: 845‐854, 2008.
 299. Qu J, Barbuti A, Protas L, Santoro B, Cohen IS, Robinson RB. HCN2 overexpression in newborn and adult ventricular myocytes: Distinct effects on gating and excitability. Circ Res 89: E8‐E14, 2001.
 300. Rahman OA, Sasvari‐Szekely M, Szekely A, Faludi G, Guttman A, Nemoda Z. Analysis of a polymorphic microRNA target site in the purinergic receptor P2RX7 gene. Electrophoresis 31: 1790‐1795, 2010.
 301. Rajewsky N, Socci ND. Computational identification of microRNA targets. Dev Biol 267: 529‐535, 2004.
 302. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975‐978, 1990.
 303. Ramakers C, Vos MA, Doevendans PA, Schoenmakers M, Wu YS, Scicchitano S, Iodice A, Thomas GP, Antzelevitch C, Dumaine R. Coordinated down‐regulation of KCNQ1 and KCNE1 expression contributes to reduction of IKs in canine hypertrophied hearts. Cardiovasc Res 57: 486‐496, 2003.
 304. Raouf R, Quick K, Wood JN. Pain as a channelopathy. J Clin Invest 120: 3745‐3752, 2010.
 305. Raver‐Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR‐34a contributes to p53‐mediated apoptosis. Mol Cell 26: 731‐743, 2007.
 306. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 10: 1507‐1517, 2004.
 307. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21‐nucleotide let‐7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901‐906, 2000.
 308. Remedi MS, Koster JC. KATP channelopathies in the pancreas. Pflugers Arch 460: 307‐320, 2010.
 309. Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC. MicroRNA‐320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat‐shock protein 20. Circulation 119: 2357‐2366, 2009.
 310.Ribeiro Mde C, Hirt L, Bogousslavsky J, Regli L, Badaut J. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 83: 1231‐1240, 2006.
 311. Rodriguez A, Griffiths‐Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902‐1910, 2004.
 312.Roden DM. Long QT syndrome: Reduced repolarization reserve and the genetic link. J Intern Med 259: 59‐69, 2006.
 313. Roden DM, Yang T. Protecting the heart against arrhythmias: Potassium current physiology and repolarization reserve. Circulation 112: 1376‐1378, 2005.
 314. Rosati B, Grau F, McKinnon D. Regional variation in mRNA transcript abundance within the ventricular wall. J Mol Cell Cardiol 40: 295‐302, 2006.
 315. Rosenblatt KP, Sun ZP, Heller S. Hudspeth AJ. Distribution of Ca2+‐activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea. Neuron 19: 1061‐1075, 1997.
 316. Ruvkun G, Wightman B, Burglin T, Arasu P. Dominant gain‐of‐function mutations that lead to misregulation of the C. elegans heterochronic gene lin‐14, and the evolutionary implications of dominant mutations in pattern‐formation genes. Dev Suppl 1: 47‐54, 1991.
 317. Ryan DG, Oliveira‐Fernandes M, Lavker RM. MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 12: 1175‐1184, 2006.
 318. Saada N, Dai B, Echetebu C, Sarna SK, Palade P. Smooth muscle uses another promoter to express primarily a form of human CaV1.2 L‐type calcium channel different from the principal heart form. Biochem Biophys Res Commun 302: 23‐28, 2003.
 319. Saada NI, Carrillo ED, Dai B, Wang WZ, Dettbarn C, Sanchez J, Palade P. Expression of multiple CaV1.2 transcripts in rat tissues mediated by different promoters. Cell Calcium 37: 301‐309, 2005.
 320. Safayhi H, Haase H, Kramer U, Bihlmayer A, Roenfeldt M, Ammon HP, Froschmayr M, Cassidy TN, Morano I, Ahlijanian MK, Striessnig J. L‐type calcium channels in insulin‐secreting cells: Biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol 11: 619‐629, 1997.
 321. Saito K, Ishizuka A, Siomi H, Siomi MC. Processing of pre‐microRNAs by the Dicer‐1‐Loquacious complex in Drosophila cells. PLoS Biol 3: e235, 2005.
 322.Sanchez Freire V, Burkhard FC, Kessler TM, Kuhn A, Draeger A, Monastyrskaya K. MicroRNAs may mediate the down‐regulation of neurokinin‐1 receptor in chronic bladder pain syndrome. Am J Pathol 176: 288‐303, 2010.
 323. Sanders P, Berenfeld O, Hocini M, Jaïs P, Vaidyanathan R, Hsu LF, Garrigue S, Takahashi Y, Rotter M, Sacher F, Scavée C, Ploutz‐Snyder R, Jalife J, Haïssaguerre M. Spectral analysis identifies sites of high‐frequency activity maintaining atrial fibrillation in humans. Circulation 112: 789‐797, 2005.
 324. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384: 80‐83, 1996.
 325. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81: 299‐307, 1995.
 326. Sanguinetti MC, Tristani‐Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 40: 463‐469, 2006.
 327. Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 30: 1564‐1576, 2010.
 328. Sawicki PT, Dahne R, Bender R, Berger M. Prolonged QT interval as a predictor of mortality in diabetic nephropathy. Diabetologia 39: 77‐81, 1996.
 329. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100: 416‐424, 2007.
 330. Schimpf R, Wolpert C, Gaita F, Giustetto C, Borggrefe M. Short QT syndrome. Cardiovasc Res 67: 357‐366, 2005.
 331. Schneeberger EE. Claudins form ion‐selective channels in the paracellular pathway. Focus on “Claudin extracellular domains determine paracellular charge selectively and resistance but not tight junction fibril architecture” Am J Physiol Cell Physiol 284: C1331‐C1333, 2003.
 332. Schöler N, Langer C, Döhner H, Buske C, Kuchenbauer F. Serum microRNAs as a novel class of biomarkers: A comprehensive review of the literature. Exp Hematol 38: 1126‐1130, 2010.
 333. Schotten U, Haase H, Frechen D, Greiser M, Stellbrink C, Vazquez‐Jimenez JF, Morano I, Allessie MA, Hanrath P. The L‐type Ca2+‐channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol 35: 437‐443, 2003.
 334. Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90: 939‐950, 2002.
 335. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain‐specific microRNA regulates dendritic spine development. Nature 439: 283‐289, 2006.
 336. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199‐208, 2003.
 337. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58‐63, 2008.
 338. Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, Jeyaseelan K. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 285: 29223‐29230, 2010.
 339. Shan H, Li X, Pan Z, Zhang L, Cai B, Zhang Y, Xu C, Chu W, Qiao G, Li B, Lu Y, Yang B. Tanshinone IIA protects against sudden cardiac death induced by lethal arrhythmias via repression of microRNA‐1. Br J Pharmacol 158: 1227‐1235, 2009.
 340. Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG, Yu XY. Upregulated expression of miR‐1/miR‐206 in a rat model of myocardial infarction. Biochem Biophys Res Commun 381: 597‐601, 2009.
 341. Shi L, Ko ML, Ko GY. Rhythmic expression of microRNA‐26a regulates the L‐type voltage‐gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem 284: 25791‐25803, 2009.
 342. Shimura M, Yuan Y, Chang JT, Zhang S, Campochiaro PA, Zack DJ, Hughes BA. Expression and permeation properties of Kir7.1 in the retinal pigment epithelium. J Physiol 531: 329‐346, 2001.
 343. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. Expanding the microRNA targeting code: Functional sites with centered pairing. Mol Cell 38: 789‐802, 2010.
 344. Shipston MJ. Alternative splicing of potassium channels: A dynamic switch of cellular excitability. Trends Cell Biol 11: 353‐358, 2001.
 345. Sidel VW, Soloman AK. Entrance of water into human red blood cells under an osmotic pressure gradient. J Gen Physiol 41: 243‐255, 1957.
 346. Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, Hubel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg ME, Draguhn A, Rehmsmeier M, Martinez J, Schratt GM. A functional screen implicates microRNA‐138‐dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 11: 705‐716, 2009.
 347. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38: 323‐332, 2010.
 348. Sipido KR, Bito V, Antoons G, Volders PG, Vos MA. Na/Ca exchange and cardiac ventricular arrhythmias. Ann N Y Acad Sci 1099: 339‐348, 2007.
 349. Smith GAM, Tsui H, Newell EW, Jiang X, Zhu XP, Tsui FWL, Schlichter LC. Functional up‐regulation of HERG KC channels in neoplastic hematopoietic cells. J Biol Chem 277: 18528‐18534, 2002.
 350. Song JJ, Smith SK, Hannon GJ, Joshua‐Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305: 1434‐1437, 2010.
 351. Spitzner M, Martins JR, Soria RB, Ousingsawat J, Scheidt K, Schreiber R, Kunzelmann K. Eag1 and Bestrophin 1 are up‐regulated in fast‐growing colonic cancer cells. J Biol Chem 283: 7421‐7428, 2008.
 352. Steenaart NAE, Ganim JR, DiSalvo J, Kranias EG. The phospholamban phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch Biochem Biophys 293: 17‐24, 1992.
 353. Steinberg RH, Oakley B II,, Niemeyer G. Light‐evoked changes in [K+]o in retina of intact cat eye. J Neurophysiol 44: 897‐921, 1980.
 354. Stilli D, Sgoifo A, Macchi E, Zaniboni M, De Iasio S, Cerbai E, Mugelli A, Lagrasta C, Olivetti G, Musso E. Myocardial remodeling and arrhythmogenesis in moderate cardiac hypertrophy in rats. Am J Physiol 280: H142‐H150, 2001.
 355. Storm JF. Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83: 161‐187, 1990.
 356. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev 85: 845‐881, 2005.
 357. Stühmer W, Alves F, Hartung F, Zientkowska M, Pardo LA. Potassium channels as tumour markers. FEBS Lett 580: 2850‐2852, 2006.
 358. Sund NJ, Vatamaniuk MZ, Casey M, Ang SL, Magnuson MA, Stoffers DA, Matschinsky FM, Kaestner KH. Tissue‐specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes Dev 15: 1706‐1715, 2001.
 359. Suzuki R, Okuda M, Asai J, Nagashima G, Itokawa H, Matsunaga A, Fujimoto T, Suzuki T. Astrocytes co‐express aquaporin‐1, ‐4, and vascul ar endothelial growth factor in brain edema tissue associated with brain contusion. Acta Neurochir Suppl 96: 398‐401, 2006.
 360. Szabo G, Szentandrassy N, Biro T, Toth BI, Czifra G, Magyar J, Banyasz T, Varro A, Kovacs L, Nanasi PP. Asymmetrical distribution of ion channels in canine and human left ventricular wall: Epicardium versus midmyocardium. Pflugers Arch 450: 307‐316, 2005.
 361. Szentadrassy N, Banyasz T, Biro T, Szabo G, Toth BI, Magyar J, Lazar J, Varro A, Kovacs L, Nanasi PP. Apico‐basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovasc Res 65: 851‐860, 2005.
 362. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K. Expression profile of MicroRNAs in young stroke patients. PLoS One 4: e7689, 2009.
 363. Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G. MicroRNA‐1 regulates cardiomyocyte apoptosis by targeting Bcl‐2. Int Heart J 50: 377‐387, 2009.
 364. Tang ZZ, Hong X, Wang J, Soong TW. Signature combinatorial splicing profiles of rat cardiac‐ and smooth‐muscle Cav1.2 channels with distinct biophysical properties. Cell Calcium 41: 417‐428, 2007.
 365. Taniguchi M, Yamashita T, Kumura E, Tamatani M, Kobayashi A, Yokawa T, Maruno M, Kato A, Ohnishi T, Kohmura E, Tohyama M, Yoshimine T. Induction of aquaporin‐4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res 78: 131‐137, 2000.
 366. Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42: 1137‐1141, 2007.
 367. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 1124‐1128, 2008.
 368. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor‐suppressive miR‐34a induces senescence‐like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104: 15472‐15477, 2007.
 369. Technau U. Evolutionary biology: Small regulatory RNAs pitch in. Nature 455: 1184‐1185, 2008.
 370. Terentyev D, Belevych AE, Terentyeva R, Martin MM, Malana GE, Kuhn DE, Abdellatif M, Feldman DS, Elton TS, Györke S. miR‐1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII‐dependent hyperphosphorylation of RyR2. Circ Res 104: 514‐521, 2009.
 371. Thatcher E, Bond J, Paydar I, Patton J. Genomic organization of zebrafish microRNAs. BMC Genomics 9: 253, 2008.
 372. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J. MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure. Circulation 116: 258‐267, 2007.
 373. Thuringer D, Lauribe P, Escande D. A hyperpolarization‐activated inward current in human myocardial cells. J Mol Cell Cardiol 24: 451‐455, 1992.
 374. Todorovic SM, Jevtovic‐Todorovic V. The role of T‐type calcium channels in peripheral and central pain processing. CNS Neurol Disord Drug Targets 5: 639‐653, 2006.
 375. Tomari Y, Du T, Haley Bc, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116: 831‐841, 2004.
 376. Tran ND, Kim S, Vincent HK, Rodriguez A, Hinton DR, Bullock MR, Young HF. Aquaporin‐1‐mediated cerebral edema following traumatic brain injury: Effects of acidosis and corticosteroid administration. J Neurosurg 112: 1095‐1104, 2010.
 377. Tribulova N, Seki S, Radosinska J, Kaplan P, Babusikova E, Knezl V, Mochizuki S. Myocardial Ca2+ handling and cell‐to‐cell coupling, key factors in prevention of sudden cardiac death. Can J Physiol Pharmacol 87: 1120‐1129, 2009.
 378. Tseng‐Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ, Reinhart PH. Cloning, expression, and distribution of functionally distinct Ca2+‐activated K+ channel isoforms from human brain. Neuron 13: 1315‐1330, 1994.
 379. Tsukita, S, Furuse M, and Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285‐293, 2001.
 380. van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 68: 403‐429, 2006.
 381. van Rooij E, Olson EN. MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117: 2369‐2376, 2007.
 382. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress‐responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103: 18255‐18260, 2006.
 383. van Wagoner DR, Nerbonne JM. Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol 32: 1101‐1117, 2000.
 384. Veglio M, Chinaglia A, Cavallo‐Perin P. QT interval, cardiovascular risk factors and risk of death in diabetes. J Endocrinol Invest 27: 175‐181, 2004.
 385. Venetucci LA, Trafford AW, Eisner DA. Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: Threshold sarcoplasmic reticulum calcium content is required. Circ Res 100: 105‐111, 2007.
 386. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR‐17 through 92 family of miRNA clusters. Cell 132: 875‐886, 2008.
 387. Verbalis JG. Brain volume regulation in response to changes in osmolality. Neuroscience 168: 862‐870, 2010.
 388. Verduyn SC, Vos MA, van der Zande J, van der Hulst FF, Wellens HJ. Role of interventricular dispersion of repolarization in acquired torsade‐de‐pointes arrhythmias: Reversal by magnesium. Cardiovasc Res 34: 453‐463, 1997.
 389. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S. A cAMP‐response element binding protein‐induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102: 16426‐16431, 2005.
 390. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 99: 206‐210, 1999.
 391. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103: 2257‐2261, 2006.
 392. Wadhwa S, Wadhwa P, Dinda AK, Gupta NP. Differential expression of potassium ion channels in human renal cell carcinoma. Int Urol Nephrol 41: 251‐257, 2009.
 393. Wang D, Lu M, Miao J, Li T, Wang E, Cui Q. Cepred: Predicting the co‐expression patterns of the human intronic microRNAs with their host genes. PLoS One 4: e4421, 2009.
 394. Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S, Miller SS. MicroRNA‐204/211 alters epithelial physiology. FASEB J 24: 1552‐1571, 2010.
 395. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM. Variation in the miRNA‐433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha‐synuclein. Am J Hum Genet 82: 283‐289, 2008.
 396. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31: 659‐666, 2010.
 397. Wang H, Gauthier BR, Hagenfeldt‐Johansson KA, Iezzi M, Wollheim CB. Foxa2 (HNF3beta) controls multiple genes implicated in metabolism‐secretion coupling of glucose‐induced insulin release. J Biol Chem 277: 17564‐17570, 2002.
 398. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z. HERG K+ channel: A regulator of tumor cell apoptosis and proliferation. Cancer Res 62: 4843‐4848, 2002.
 399. Wang L, Wang R, Herrup K. E2F1 works as a cell cycle suppressor in mature neurons. J Neurosci 27: 12555‐12564, 2007.
 400. Wang PY, Li YJ, Zhang S, Li ZL, Yue Z, Xie N, Xie SY. Regulating A549 cells growth by ASO inhibiting miRNA expression. Mol Cell Biochem 339: 163‐171, 2010.
 401. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT. The expression of microRNA miR‐107 decreases early in Alzheimer′s disease and may accelerate disease progression through regulation of beta‐site amyloid precursor protein‐cleaving enzyme 1. J Neurosci 28: 1213‐1223, 2008.
 402. Wang Z. Roles of K+ channels in regulating tumor cell proliferation and apoptosis. Pflugers Arch 448: 274‐286, 2004.
 403. Wang Z. MicroRNA‐interference Technologies. New York: Springer‐Verlag, 2009, pp. 20‐25.
 404. Wang Z. The role of microRNA in cardiac excitability. J Cardiovasc Pharmacol 56: 460‐470, 2010a.
 405. Wang Z. MicroRNAs and Cardiovascular Disease. Bentham Science, 2010b.
 406. Wang Z. Functional Genomics of Human Cardiac Ion Channels. New York, USA: Transworld Research Network, 2010.
 407. Wang Z, Luo X, Lu Y, Yang B. miRNAs at the heart of the matter. J Mol Med 86: 772‐783, 2008.
 408. Wang Z, Yang B. MicroRNA Expression Detection Methods. New York: Springer‐Verlag, 2010.
 409. Wang Z, Yue L, White M, Pelletier G, Nattel S. Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 98: 2422‐2428, 1998.
 410. Wanner SG, Koch RO, Koschak A, Trieb M, Garcia ML, Kaczorowski GJ, Knaus HG. High‐conductance calcium‐activated potassium channels in rat brain: Pharmacology, distribution, and subunit composition. Biochemistry 38: 5392‐5400, 1999.
 411. Warren M, Guha PK, Berenfeld O, Zaitsev A, Anumonwo JM, Dhamoon AS, Bagwe S, Taffet SM, Jalife J. Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart. J Cardiovasc Electrophysiol 14: 621‐631, 2003.
 412. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, Impey S. An activity‐regulated microRNA controls dendritic plasticity by down‐regulating p250GAP. Proc Natl Acad Sci U S A 105: 9093‐9098, 2008.
 413. Weber C, Mello de Queiroz F, Downie BR, Suckow A, Stuhmer W, Pardo LA. Silencing the activity and proliferative properties of the human EagI Potassium Channel by RNA Interference. J Biol Chem 281: 13030‐13037, 2006.
 414. Wehrens XH, Marks AR. Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Discov 3: 565‐573, 2004.
 415. Welch C, Chen Y, Stallings RL. MicroRNA‐34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26: 5017‐5022, 2007.
 416. Wickenden AD, McNaughton‐Smith G. Kv7 channels as targets for the treatment of pain. Curr Pharm Des 15: 1773‐1798, 2009.
 417. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin‐14 by lin‐4 mediates temporal pattern formation in C. elegans. Cell 75: 855‐562, 1993.
 418. Wimmers S, Karl MO, Strauss O. Ion channels in the RPE. Prog Retin Eye Res 26: 263‐301, 2007.
 419. Witchel HJ, Hancox JC. Familial and acquired long qt syndrome and the cardiac rapid delayed rectifier potassium current. Clin Exp Pharmacol Physiol 27: 753‐766, 2000.
 420. Wood JN, Boorman JP, Okuse K, Baker MD. Voltage‐gated sodium channels and pain pathways. J Neurobiol 61: 55‐71, 2004.
 421. Workman AJ, Kane KA, Rankin AC. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52: 226‐235, 2001.
 422. Wu KL, Gannon M, Peshavaria M, Offield MF, Henderson E, Ray M, Marks A, Gamer LW, Wright CV, Stein R. Hepatocyte nuclear factor 3beta is involved in pancreatic beta‐cell‐specific transcription of the pdx‐1 gene. Mol Cell Biol 17: 6002‐6013, 1997.
 423. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J. Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2: 113‐121, 2006.
 424. Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, Zhou Q, Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z, Wang R, Wan H, Qiu W, Xu W, Eurlings P, Barhanin J, Chen Y. A Kir2.1 gain‐of‐function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 332: 1012‐1019, 2005.
 425. Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N, Zhang Y, Yang B, Wang Z. MicroRNA miR‐133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282: 12363‐12367, 2007.
 426. Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z. Novel approaches for gene‐specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212: 285‐292, 2007.
 427. Xiao L, Xiao J, Luo X, Lin H, Wang Z, Nattel S. Feedback remodeling of cardiac potassium current expression: A novel potential mechanism for control of repolarization reserve. Circulation 118: 983‐992, 2008.
 428. Xie J, McCobb DP. Control of alternative splicing of potassium channels by stress hormones. Science 280: 443‐446, 1998.
 429. Xu J, Lamouille S, Derynck R. TGF‐β‐induced epithelial to mesenchymal transition. Cell Res 19: 156‐172, 2009.
 430. Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ‐specific miRNA cluster. J Biol Chem 282: 25053‐25066, 2007.
 431. Xu Y, Zhang Q, Chiamvimonvat N. IK1 and cardiac hypoxia: After the long and short QT syndromes, what else can go wrong with the inward rectifier K+ currents? J Mol Cell Cardiol 43: 15‐17, 2007.
 432. Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S. Regulation of Smad signaling by protein kinase C. FASEB J 15: 553‐555, 2001.
 433. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. The muscle‐specific microRNA miR‐1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13: 486‐491, 2007.
 434. Yang B, Lu Y, Wang Z. Control of cardiac excitability by microRNAs. Cardiovasc Res 79: 571‐580, 2008.
 435. Yang D, Pan A, Swaminathan A, Kumar G, Hughes BA. Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci 44: 3178‐3185, 2003.
 436. Yang D, Zhang X, Hughes BA. Expression of inwardly rectifying potassium channel subunits in native human retinal pigment epithelium. Exp Eye Res 87: 176‐183, 2008.
 437. Yang M, Gao F, Liu H, Yu WH, Sun SQ. Temporal changes in expression of aquaporin‐3, ‐4, ‐5 and ‐8 in rat brains after permanent focal cerebral ischemia. Brain Res 1290: 121‐132, 2009.
 438. Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, Kodama I. If current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 88: 536‐542, 2001.
 439. Yekta S, Shih IH, Bartel DP. MicroRNA‐directed cleavage of HOXB8 mRNA. Science 304: 594‐596, 2004.
 440. Yi R, Qin Y, Macara IG, Cullen BR. Exportin‐5 mediates the nuclear export of pre‐microRNAs and short hairpin RNAs. Genes Dev 17: 3011‐3016, 2003.
 441. Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat‐shock reduce myocardial infarction following ischemia‐reperfusion in mice. FEBS Lett 582: 4137‐4142, 2008.
 442. Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE. miR‐497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38: 17‐26, 2010.
 443. Yuan X, Liu C, Yang P, He S, Liao Q, Kang S, Zhao Y. Clustered microRNAs' coordination in regulating protein‐protein interaction network. BMC Syst Biol 3: 65, 2009.
 444. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81: 512‐520, 1997.
 445. Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84: 776‐784, 1999.
 446. Zaugg CE, Buser PT. When calcium turns arrhythmogenic: Intracellular calcium handling during the development of hypertrophy and heart failure. Croat Med J 42: 24‐32, 2001.
 447. Zelenina M. Regulation of brain aquaporins. Neurochem Int 57: 468‐488, 2010.
 448. Zhang H, Garratt CJ, Zhu J, Holden AV. Role of up‐regulation of IK1 in action potential shortening associated with atrial fibrillation in humans. Cardiovasc Res 66: 493‐502, 2005.
 449. Zhang W, Zitron E, Bloehs R, Muller‐Krebs S, Scholz E, Zeier M, Katus H, Karle C, Schwenger V. Dual regulation of renal Kir7.1 potassium channels by protein kinase A and protein kinase C. Biochem Biophys Res Commun 377: 981‐986, 2008.
 450. Zhang Y, Lin H, Xiao J, Luo X, Bai YL, Wang J, Zhang H, Yang B, Wang Z. Abnormal QT prolongation and the associated arrhythmias in diabetic rabbits: HERG K+ channelopathy as the result of metabolic perturbations. Cell Physiol Biochem 19: 225‐238, 2007.
 451. Zhang Y, Wang J, Bai Y, Zhang H, Yang B, Wang H, Wang Z. Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of the abnormal QT prolongation and the associated arrhythmias in diabetic rabbits. Am J Physiol 291: 1446‐1455, 2006.
 452. Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, Nassar MA, Abrahamsen B, Dickenson A, Cobb BS, Merkenschlager M, Wood JN. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30: 10860‐10871, 2010.
 453. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA‐1–2. Cell 129: 303‐317, 2007.
 454. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a musclespecific microRNA that targets Hand2 during cardiogenesis. Nature 436: 214‐220, 2005.
 455. Zhou J, Kodirov S, Murata M, Buckett PD, Nerbonne JM, Koren G. Regional upregulation of Kv2.1‐encoded current, IK,slow2, in Kv1DN mice is abolished by crossbreeding with Kv2DN mice. Am J Physiol Heart Circ Physiol 284: H491‐H500, 2003.
 456. Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447: 855‐858, 2007.
Further Reading
 1.Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol 6: 419‐429, 2009.
 2.Latronico MV, Condorelli G. RNA silencing: Small RNA‐mediated posttranscriptional regulation of mRNA and the implications for heart electropathophysiology. J Cardiovasc Electrophysiol 20: 230‐237, 2009.
 3.Wang Z. MicroRNA‐interference Technologies. New York: Springer‐Verlag, 2009.
 4.Wang Z. The role of microRNA in cardiac excitability. J Cardiovasc Pharmacol 56: 460‐470, 2010.
 5.Wang Z. MicroRNAs and Cardiovascular Disease. Bentham Science, 2010.

Further Reading

Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol 6: 419–429, 2009.

Latronico MV, Condorelli G. RNA silencing: small RNA-mediated posttranscriptional regulation of mRNA and the implications for heart electropathophysiology. J Cardiovasc Electrophysiol 20: 230–237, 2009.

Wang Z. The role of microRNA in cardiac excitability. J Cardiovasc Pharmacol 56: 460–470, 2010.

Wang Z. MicroRNAs and cardiovascular disease. Bentham Science, 2010.

Wang Z. MicroRNA-interference technologies. New York: Springer-Verlag, 2009.

 

 

 

 

 

 

 

 

Corrigendum

miRNA in the Regulation of Ion Channel/Transporter Expression, Zhiguo Wang, Comprehensive Physiology 2:599-653, 2013.

It has come to our attention that four of the references (226, 227, 425 and 426) listed in the article were retracted from the literature prior to publication of this article and should have been removed from the final version of the article.  The author apologizes for this error and draws your attention to the fact that the article content related to these references may be unreliable.


Related Articles:

Ion Channels in the Heart: Cellular and Molecular Properties of Cardiac Na, Ca, and K Channels
Mechanisms of Transmembrane Signaling
Ionic Basis of Resting and Action Potentials
The Cardiac Ventricular Action Potential
Electrophysiology and Excitation‐Contraction Coupling

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Zhiguo Wang. miRNA in the Regulation of Ion Channel/Transporter Expression. Compr Physiol 2013, 3: 599-653. doi: 10.1002/cphy.c110002