1. |
Algenstaedt P,
Antonetti DA,
Yaffe MB,
Kahn CR.
Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+‐ATPases in muscle and heart.
J Biol Chem
272:
23696‐23702,
1997.
|
2. |
Antebi A,
Fink GR.
The yeast Ca(2+)‐ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi‐like distribution.
Mol Biol Cell
3:
633‐654,
1992.
|
3. |
Armesilla AL,
Williams JC,
Buch MH,
Pickard A,
Emerson M,
Cartwright EJ,
Oceandy D,
Vos MD,
Gillies S,
Clark GJ,
Neyses L.
Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras‐associated factor 1 (RASSF1).
J Biol Chem
279:
31318‐31328,
2004.
|
4. |
Autry JM,
Jones LR.
Functional Co‐expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation.
J Biol Chem
272:
15872‐15880,
1997.
|
5. |
Axelsen KB,
Palmgren MG.
Evolution of substrate specificities in the P‐type ATPase superfamily.
J Mol Evol
46:
84‐101,
1998.
|
6. |
Baumrucker CR,
Keenan TW.
Membranes of mammary gland. X. Adenosine triphosphate dependent calcium accumulation by Golgi apparatus rich fractions from bovine mammary gland.
Exp Cell Res
90:
253‐260,
1975.
|
7. |
Bayle D,
Weeks D,
Sachs G.
The membrane topology of the rat sarcoplasmic and endoplasmic reticulum calcium ATPases by in vitro translation scanning.
J Biol Chem
270:
25678‐25684,
1995.
|
8. |
Behne MJ,
Tu CL,
Aronchik I,
Epstein E,
Bench G,
Bikle DD,
Pozzan T,
Mauro TM.
Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca2+ stores.
J Invest Dermatol
121:
688‐694,
2003.
|
9. |
Berridge MJ,
Bootman MD,
Roderick HL.
Calcium signalling: dynamics, homeostasis and remodelling.
Nat Rev Mol Cell Biol
4:
517‐529,
2003.
|
10. |
Bilmen JG,
Khan SZ,
Javed MH,
Michelangeli F.
Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide‐binding and phosphorylation domains in the absence of ATP.
Eur J Biochem
268:
6318‐6327,
2001.
|
11. |
Bobe R,
Bredoux R,
Corvazier E,
Andersen JP,
Clausen JD,
Dode L,
Kovacs T,
Enouf J.
Identification, expression, function, and localization of a novel (sixth) isoform of the human sarco/endoplasmic reticulum Ca2+ATPase 3 gene.
J Biol Chem
279:
24297‐24306,
2004.
|
12. |
Borge PD, Jr.,
Wolf BA.
Insulin receptor substrate 1 regulation of sarco‐endoplasmic reticulum calcium ATPase 3 in insulin‐secreting beta‐cells.
J Biol Chem
278:
11359‐11368,
2003.
|
13. |
Bozulic LD,
Malik MT,
Powell DW,
Nanez A,
Link AJ,
Ramos KS,
Dean WL.
Plasma membrane Ca(2+) ‐ATPase associates with CLP36, alpha‐actinin and actin in human platelets.
Thromb Haemost
97:
587‐597,
2007.
|
14. |
Brandl CJ,
Green NM,
Korczak B,
MacLennan DH.
Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences.
Cell
44:
597‐607,
1986.
|
15. |
Brini M,
Carafoli E.
Calcium pumps in health and disease.
Physiol Rev
89:
1341‐1378,
2009.
|
16. |
Brini M,
Coletto L,
Pierobon N,
Kraev N,
Guerini D,
Carafoli E.
A comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells.
J Biol Chem
278:
24500‐24508,
2003.
|
17. |
Brini M,
Di Leva F,
Ortega CK,
Domi T,
Ottolini D,
Leonardi E,
Tosatto SC,
Carafoli E.
Deletions and mutations in the acidic lipid‐binding region of the plasma membrane Ca2+ pump: a study on different splicing variants of isoform 2.
J Biol Chem
285:
30779‐30791,
2010.
|
18. |
Brodin P,
Falchetto R,
Vorherr T,
Carafoli E.
Identification of two domains which mediate the binding of activating phospholipids to the plasma‐membrane Ca2+ pump.
Eur J Biochem
204:
939‐946,
1992.
|
19. |
Brunati AM,
Contri A,
Muenchbach M,
James P,
Marin O,
Pinna LA.
GRP94 (endoplasmin) co‐purifies with and is phosphorylated by Golgi apparatus casein kinase.
FEBS Lett
471:
151‐155,
2000.
|
20. |
Buch MH,
Pickard A,
Rodriguez A,
Gillies S,
Maass AH,
Emerson M,
Cartwright EJ,
Williams JC,
Oceandy D,
Redondo JM,
Neyses L,
Armesilla AL.
The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T‐cell pathway via interaction with the calcineurin A catalytic subunit.
J Biol Chem
280:
29479‐29487,
2005.
|
21. |
Burk SE,
Lytton J,
MacLennan DH,
Shull GE.
cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump.
J Biol Chem
264:
18561‐18568,
1989.
|
22. |
Callewaert G,
Parys JB,
De Smedt H,
Raeymaekers L,
Wuytack F,
Vanoevelen J,
Van Baelen K,
Simoni A,
Rizzuto R,
Missiaen L.
Similar Ca(2+)‐signaling properties in keratinocytes and in COS‐1 cells overexpressing the secretory‐pathway Ca(2+)‐ATPase SPCA1.
Cell Calcium
34:
157‐162,
2003.
|
23. |
Camacho P,
Lechleiter JD.
Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium‐ATPase.
Science
260:
226‐229,
1993.
|
24. |
Carafoli E.
Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme.
FASEB J
8:
993‐1002,
1994.
|
25. |
Cartwright EJ,
Oceandy D,
Neyses L.
Physiological implications of the interaction between the plasma membrane calcium pump and nNOS.
Pflugers Arch
457:
665‐671,
2009.
|
26. |
Chami M,
Gozuacik D,
Lagorce D,
Brini M,
Falson P,
Peaucellier G,
Pinton P,
Lecoeur H,
Gougeon ML,
le Maire M,
Rizzuto R,
Brechot C,
Paterlini‐Brechot P.
SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis.
J Cell Biol
153:
1301‐1314,
2001.
|
27. |
Chanat E,
Huttner WB.
Milieu‐induced, selective aggregation of regulated secretory proteins in the trans‐Golgi network.
J Cell Biol
115:
1505‐1519,
1991.
|
28. |
Chicka MC,
Strehler EE.
Alternative splicing of the first intracellular loop of plasma membrane Ca2+‐ATPase isoform 2 alters its membrane targeting.
J Biol Chem
278:
18464‐18470,
2003.
|
29. |
Choquette D,
Hakim G,
Filoteo AG,
Plishker GA,
Bostwick JR,
Penniston JT.
Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle.
Biochem Biophys Res Commun
125:
908‐915,
1984.
|
30. |
Clarke DM,
Loo TW,
Inesi G,
MacLennan DH.
Location of high affinity Ca2+‐binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+‐ATPase.
Nature
339:
476‐478,
1989.
|
31. |
Clarke DM,
Loo TW,
MacLennan DH.
Functional consequences of alterations to polar amino acids located in the transmembrane domain of the Ca2(+)‐ATPase of sarcoplasmic reticulum.
J Biol Chem
265:
6262‐6267,
1990.
|
32. |
Dally S,
Bredoux R,
Corvazier E,
Andersen JP,
Clausen JD,
Dode L,
Fanchaouy M,
Gelebart P,
Monceau V,
Del Monte F,
Gwathmey JK,
Hajjar R,
Chaabane C,
Bobe R,
Raies A,
Enouf J.
Ca2+‐ATPases in non‐failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+‐ATPase 2 isoform (SERCA2c).
Biochem J
395:
249‐258,
2006.
|
33. |
de Meis L,
Vianna AL.
Energy interconversion by the Ca2+‐dependent ATPase of the sarcoplasmic reticulum.
Annu Rev Biochem
48:
275‐292,
1979.
|
34. |
Dean WL,
Whiteheart SW.
Plasma membrane Ca(2+)‐ATPase (PMCA) translocates to filopodia during platelet activation.
Thromb Haemost
91:
325‐333,
2004.
|
35. |
DeMarco SJ,
Chicka MC,
Strehler EE.
Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H +exchanger regulatory factor 2 in apical plasma membranes.
J Biol Chem
277:
10506‐10511,
2002.
|
36. |
DeMarco SJ,
Strehler EE.
Plasma membrane Ca2+‐atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane‐associated guanylate kinase family of PDZ (PSD95/Dlg/ZO‐1) domain‐containing proteins.
J Biol Chem
276:
21594‐21600,
2001.
|
37. |
Dode L,
Andersen JP,
Leslie N,
Dhitavat J,
Vilsen B,
Hovnanian A.
Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady‐state and transient kinetic analyses.
J Biol Chem
278:
47877‐47889,
2003.
|
38. |
Dode L,
Andersen JP,
Raeymaekers L,
Missiaen L,
Vilsen B,
Wuytack F.
Functional comparison between secretory pathway Ca2+/Mn2+‐ATPase (SPCA) 1 and sarcoplasmic reticulum Ca2+‐ATPase (SERCA) 1 isoforms by steady‐state and transient kinetic analyses.
J Biol Chem
280:
39124‐39134,
2005.
|
39. |
Dode L,
Andersen JP,
Vanoevelen J,
Raeymaekers L,
Missiaen L,
Vilsen B,
Wuytack F.
Dissection of the functional differences between human secretory pathway Ca2+/Mn2+‐ATPase (SPCA) 1 and 2 isoenzymes by steady‐state and transient kinetic analyses.
J Biol Chem
281:
3182‐3189,
2006.
|
40. |
Dowling P,
Doran P,
Ohlendieck K.
Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)‐deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy.
Biochem J
379:
479‐488,
2004.
|
41. |
Dremina ES,
Sharov VS
Kumar K,
Zaidi A,
Michaelis EK,
Schoneich C.
Anti‐apoptotic protein Bcl‐2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+‐ATPase (SERCA).
Biochem J
383:
361‐370,
2004.
|
42. |
Dyer JL,
Khan SZ,
Bilmen JG,
Hawtin SR,
Wheatley M,
Javed MU,
Michelangeli F.
Curcumin: a new cell‐permeant inhibitor of the inositol 1,4,5‐trisphosphate receptor.
Cell Calcium
31:
45‐52,
2002.
|
43. |
Ebashi F,
Ebashi S.
Removal of calcium and relaxation in actomyosin systems.
Nature
194:
378‐379,
1962.
|
44. |
Elshorst B,
Hennig M,
Forsterling H,
Diener A,
Maurer M,
Schulte P,
Schwalbe H,
Griesinger C,
Krebs J,
Schmid H,
Vorherr T,
Carafoli E.
NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump.
Biochemistry
38:
12320‐12332,
1999.
|
45. |
Elwess NL,
Filoteo AG,
Enyedi A,
Penniston JT.
Plasma membrane Ca2+ pump isoforms 2a and 2b are unusually responsive to calmodulin and Ca2+.
J Biol Chem
272:
17981‐17986,
1997.
|
46. |
Falchetto R,
Vorherr T,
Brunner J,
Carafoli E.
The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin‐binding domain.
J Biol Chem
266:
2930‐2936,
1991.
|
47. |
Falchetto R,
Vorherr T,
Carafoli E.
The calmodulin‐binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme.
Protein Sci
1:
1613‐1621,
1992.
|
48. |
Gatto C,
Hale CC,
Xu W,
Milanick MA.
Eosin, a potent inhibitor of the plasma membrane Ca pump, does not inhibit the cardiac Na‐Ca exchanger.
Biochemistry
34:
965‐972,
1995.
|
49. |
Gelebart P,
Martin V,
Enouf J,
Papp B.
Identification of a new SERCA2 splice variant regulated during monocytic differentiation.
Biochem Biophys Res Commun
303:
676‐684,
2003.
|
50. |
Goellner GM,
DeMarco SJ,
Strehler EE.
Characterization of PISP, a novel single‐PDZ protein that binds to all plasma membrane Ca2+‐ATPase b‐splice variants.
Ann N Y Acad Sci
986:
461‐471,
2003.
|
51. |
Gopinath RM,
Vincenzi FF.
Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+‐Mg2+)ATPase.
Biochem Biophys Res Commun
77:
1203‐1209,
1977.
|
52. |
Green KN,
Demuro A,
Akbari Y,
Hitt BD,
Smith IF,
Parker I,
LaFerla FM.
SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production.
J Cell Biol
181:
1107‐1116,
2008.
|
53. |
Greenough M,
Pase L,
Voskoboinik I,
Petris MJ,
O'Brien AW,
Camakaris J.
Signals regulating trafficking of Menkes (MNK; ATP7A) copper‐translocating P‐type ATPase in polarized MDCK cells.
Am J Physiol Cell Physiol
287:
C1463‐C1471,
2004.
|
54. |
Guerini D,
Carafoli, E.
The Calcium Pumps. In:
Carafoli E,
Klee C, editors.
Calcium as A Cellular Regulators.
Oxford, UK:
Oxford University Press,
1999, pp.
249‐278, Vol. 10. |
55. |
Guerini D,
Krebs J,
Carafoli E.
Stimulation of the purified erythrocyte Ca2+‐ATPase by tryptic fragments of calmodulin.
J Biol Chem
259:
15172‐15177,
1984.
|
56. |
Guerini D,
Zecca‐Mazza A,
Carafoli E.
Single amino acid mutations in transmembrane domain 5 confer to the plasma membrane Ca2+ pump properties typical of the Ca2+ pump of endo(sarco)plasmic reticulum.
J Biol Chem
275:
31361‐31368,
2000.
|
57. |
Gunteski‐Hamblin AM,
Clarke DM,
Shull GE.
Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump.
Biochemistry
31:
7600‐7608,
1992.
|
58. |
Hao L,
Rigaud JL,
Inesi G.
Ca2+/H +countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca‐ATPase and exogenous lipids.
J Biol Chem
269:
14268‐14275,
1994.
|
59. |
Hasselbach W,
Makinose M.
[The calcium pump of the“relaxing granules” of muscle and its dependence on ATP‐splitting.].
Biochem Z
333:
518‐528,
1961.
|
60. |
Hawkins C,
Xu A,
Narayanan N.
Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin‐dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation.
J Biol Chem
269:
31198‐31206,
1994.
|
61. |
Heilker R,
Manning‐Krieg U,
Zuber JF,
Spiess M.
In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting.
EMBO J
15:
2893‐2899,
1996.
|
62. |
Hilfiker H,
Guerini D,
Carafoli E.
Cloning and expression of isoform 2 of the human plasma membrane Ca2+ ATPase. Functional properties of the enzyme and its splicing products.
J Biol Chem
269:
26178‐26183,
1994.
|
63. |
Hofmann F,
James P,
Vorherr T,
Carafoli E.
The C‐terminal domain of the plasma membrane Ca2+ pump contains three high affinity Ca2+ binding sites.
J Biol Chem
268:
10252‐10259,
1993.
|
64. |
Hu Z,
Bonifas JM,
Beech J,
Bench G,
Shigihara T,
Ogawa H,
Ikeda S,
Mauro T,
Epstein EH, Jr.
Mutations in ATP2C1, encoding a calcium pump, cause Hailey‐Hailey disease.
Nat Genet
24:
61‐65,
2000.
|
65. |
Hutter MC,
Krebs J,
Meiler J,
Griesinger C,
Carafoli E,
Helms V.
A structural model of the complex formed by phospholamban and the calcium pump of sarcoplasmic reticulum obtained by molecular mechanics.
Chembiochem
3:
1200‐1208,
2002.
|
66. |
James P,
Inui M,
Tada M,
Chiesi M,
Carafoli E.
Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum.
Nature
342:
90‐92,
1989.
|
67. |
James P,
Maeda M,
Fischer R,
Verma AK,
Krebs J,
Penniston JT,
Carafoli E.
Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes.
J Biol Chem
263:
2905‐2910,
1988.
|
68. |
James P,
Vorherr T,
Krebs J,
Morelli A,
Castello G,
McCormick DJ,
Penniston JT,
De Flora A,
Carafoli E.
Modulation of erythrocyte Ca2+‐ATPase by selective calpain cleavage of the calmodulin‐binding domain.
J Biol Chem
264:
8289‐8296,
1989.
|
69. |
Jarrett HW,
Penniston JT.
Partial purification of the Ca2+‐Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3':5′ ‐ cyclic nucleotide phosphodiesterase.
Biochem Biophys Res Commun
77:
1210‐1216,
1977.
|
70. |
John LM,
Lechleiter JD,
Camacho P.
Differential modulation of SERCA2 isoforms by calreticulin.
J Cell Biol
142:
963‐973,
1998.
|
71. |
Kadambi VJ,
Ponniah S,
Harrer JM,
Hoit BD,
Dorn GW, II,
Walsh RA,
Kranias EG.
Cardiac‐specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice.
J Clin Invest
97:
533‐539,
1996.
|
72. |
Katz AM.
Discovery of phospholamban. A personal history.
Ann N Y Acad Sci
853:
9‐19,
1998.
|
73. |
Kaufman RJ,
Swaroop M,
Murtha‐Riel P.
Depletion of manganese within the secretory pathway inhibits O‐linked glycosylation in mammalian cells.
Biochemistry
33:
9813‐9819,
1994.
|
74. |
Keeton TP,
Burk SE,
Shull GE.
Alternative splicing of exons encoding the calmodulin‐binding domains and C termini of plasma membrane Ca(2+)‐ATPase isoforms 1, 2, 3, and 4.
J Biol Chem
268:
2740‐2748,
1993.
|
75. |
Kiewitz R,
Acklin C,
Schafer BW,
Maco B,
Uhrik B,
Wuytack F,
Erne P,
Heizmann CW.
Ca2+‐dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+‐ATPase2a and phospholamban in the human heart.
Biochem Biophys Res Commun
306:
550‐557,
2003.
|
76. |
Kimura Y,
Kurzydlowski K,
Tada M,
MacLennan DH.
Phospholamban inhibitory function is activated by depolymerization.
J Biol Chem
272:
15061‐15064,
1997.
|
77. |
Koitabashi N,
Arai M,
Tomaru K,
Takizawa T,
Watanabe A,
Niwano K,
Yokoyama T,
Wuytack F,
Periasamy M,
Nagai R,
Kurabayashi M.
Carvedilol effectively blocks oxidative stress‐mediated downregulation of sarcoplasmic reticulum Ca2+‐ATPase 2 gene transcription through modification of Sp1 binding.
Biochem Biophys Res Commun
328:
116‐124,
2005.
|
78. |
Kulkarni RN,
Roper MG,
Dahlgren G,
Shih DQ,
Kauri LM,
Peters JL,
Stoffel M,
Kennedy RT.
Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA)‐2b and ‐3.
Diabetes
53:
1517‐1525,
2004.
|
79. |
Kuo TH,
Kim HR,
Zhu L,
Yu Y,
Lin HM,
Tsang W.
Modulation of endoplasmic reticulum calcium pump by Bcl‐2.
Oncogene
17:
1903‐1910,
1998.
|
80. |
Lamberth S,
Schmid, H.,
Muenchbach, M.,
Vorherr, T.,
Krebs, J.,
Carafoli, E.,
Griesinger, C.
NMR solution structure of phospholamban.
Helvetica Chimica Acta
83:
2141‐2152,
2000.
|
81. |
Lapinskas PJ,
Cunningham KW,
Liu XF,
Fink GR,
Culotta VC.
Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase.
Mol Cell Biol
15:
1382‐1388,
1995.
|
82. |
Lasa M,
Marin O,
Pinna LA.
Rat liver Golgi apparatus contains a protein kinase similar to the casein kinase of lactating mammary gland.
Eur J Biochem
243:
719‐725,
1997.
|
83. |
Laursen M,
Bublitz M,
Moncoq K,
Olesen C,
Moller JV,
Young HS,
Nissen P,
Morth JP.
Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+‐ATPase.
J Biol Chem
284:
13513‐13518,
2009.
|
84. |
Li Y,
Camacho P.
Ca2+‐dependent redox modulation of SERCA 2b by ERp57.
J Cell Biol
164:
35‐46,
2004.
|
85. |
Lin P,
Le‐Niculescu H,
Hofmeister R,
McCaffery JM,
Jin M,
Hennemann H,
McQuistan T,
De Vries L,
Farquhar MG.
The mammalian calcium‐binding protein, nucleobindin (CALNUC), is a Golgi resident protein.
J Cell Biol
141:
1515‐1527,
1998.
|
86. |
Linde CI,
Di Leva F,
Domi T,
Tosatto SC,
Brini M,
Carafoli E.
Inhibitory interaction of the 14‐3‐3 proteins with ubiquitous (PMCA1) and tissue‐specific (PMCA3) isoforms of the plasma membrane Ca2+ pump.
Cell Calcium
43:
550‐561,
2008.
|
87. |
Lissandron V,
Podini P,
Pizzo P,
Pozzan T.
Unique characteristics of Ca2+ homeostasis of the trans‐Golgi compartment.
Proc Natl Acad Sci U S A
107:
9198‐9203,
2010.
|
88. |
Liu LH,
Paul RJ,
Sutliff RL,
Miller ML,
Lorenz JN,
Pun RY,
Duffy JJ,
Doetschman T,
Kimura Y,
MacLennan DH,
Hoying JB,
Shull GE.
Defective endothelium‐dependent relaxation of vascular smooth muscle and endothelial cell Ca2+ signaling in mice lacking sarco(endo)plasmic reticulum Ca2+‐ATPase isoform 3.
J Biol Chem
272:
30538‐30545,
1997.
|
89. |
Luo W,
Grupp IL,
Harrer J,
Ponniah S,
Grupp G,
Duffy JJ,
Doetschman T,
Kranias EG.
Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta‐agonist stimulation.
Circ Res
75:
401‐409,
1994.
|
90. |
Lytton J,
Westlin M,
Burk SE,
Shull GE,
MacLennan DH.
Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps.
J Biol Chem
267:
14483‐14489,
1992.
|
91. |
Lytton J,
Westlin M,
Hanley MR.
Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca‐ATPase family of calcium pumps.
J Biol Chem
266:
17067‐17071,
1991.
|
92. |
Lytton J,
Zarain‐Herzberg A,
Periasamy M,
MacLennan DH.
Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+‐ATPase.
J Biol Chem
264:
7059‐7065,
1989.
|
93. |
Ma H,
Zhong L,
Inesi G,
Fortea I,
Soler F,
Fernandez‐Belda F.
Overlapping effects of S3 stalk segment mutations on the affinity of Ca2+‐ATPase (SERCA) for thapsigargin and cyclopiazonic acid.
Biochemistry
38:
15522‐15527,
1999.
|
94. |
MacLennan DH.
Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum.
J Biol Chem
245:
4508‐4518,
1970.
|
95. |
MacLennan DH,
Brandl CJ,
Korczak B,
Green NM.
Amino‐acid sequence of a Ca2+ +Mg2+‐dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence.
Nature
316:
696‐700,
1985.
|
96. |
Missiaen L,
Vanoevelen J,
Parys JB,
Raeymaekers L,
De Smedt H,
Callewaert G,
Erneux C,
Wuytack F.
Ca2+ uptake and release properties of a thapsigargin‐insensitive nonmitochondrial Ca2+ store in A7r5 and 16HBE14o‐ cells.
J Biol Chem
277:
6898‐6902,
2002.
|
97. |
Moncoq K,
Trieber CA,
Young HS.
The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump.
J Biol Chem
282:
9748‐9757,
2007.
|
98. |
Monteith GR,
Roufogalis BD.
The plasma membrane calcium pump–a physiological perspective on its regulation.
Cell Calcium
18:
459‐470,
1995.
|
99. |
Most P,
Pleger ST,
Volkers M,
Heidt B,
Boerries M,
Weichenhan D,
Loffler E,
Janssen PM,
Eckhart AD,
Martini J,
Williams ML,
Katus HA,
Remppis A,
Koch WJ.
Cardiac adenoviral S100A1 gene delivery rescues failing myocardium.
J Clin Invest
114:
1550‐1563,
2004.
|
100. |
Negash S,
Yao Q,
Sun H,
Li J,
Bigelow DJ,
Squier TC.
Phospholamban remains associated with the Ca2+‐ and Mg2+‐dependent ATPase following phosphorylation by cAMP‐dependent protein kinase.
Biochem J
351:
195‐205,
2000.
|
101. |
Neville MC,
Selker F,
Semple K,
Watters C.
ATP‐dependent calcium transport by a Golgi‐enriched membrane fraction from mouse mammary gland.
J Membr Biol
61:
97‐105,
1981.
|
102. |
Niggli V,
Adunyah ES,
Carafoli E.
Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+‐ATPase.
J Biol Chem
256:
8588‐8592,
1981.
|
103. |
Niggli V,
Adunyah ES,
Penniston JT,
Carafoli E.
Purified (Ca2+‐Mg2+)‐ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids.
J Biol Chem
256:
395‐401,
1981.
|
104. |
Niggli V,
Penniston JT,
Carafoli E.
Purification of the (Ca2+‐Mg2+)‐ATPase from human erythrocyte membranes using a calmodulin affinity column.
J Biol Chem
254:
9955‐9958,
1979.
|
105. |
Niggli V,
Sigel E,
Carafoli E.
The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+‐H+ exchange in reconstituted liposomal systems.
J Biol Chem
257:
2350‐2356,
1982.
|
106. |
Oda K.
Calcium depletion blocks proteolytic cleavages of plasma protein precursors which occur at the Golgi and/or trans‐Golgi network. Possible involvement of Ca(2+)‐dependent Golgi endoproteases.
J Biol Chem
267:
17465‐17471,
1992.
|
107. |
Odermatt A,
Becker S,
Khanna VK,
Kurzydlowski K,
Leisner E,
Pette D,
MacLennan DH.
Sarcolipin regulates the activity of SERCA1, the fast‐twitch skeletal muscle sarcoplasmic reticulum Ca2+‐ATPase.
J Biol Chem
273:
12360‐12369,
1998.
|
108. |
Odermatt A,
Kurzydlowski K,
MacLennan DH.
The vmax of the Ca2+‐ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin‐dependent phosphorylation or by interaction with phospholamban.
J Biol Chem
271:
14206‐14213,
1996.
|
109. |
Oldershaw KA,
Taylor CW.
2,5‐Di‐(tert‐butyl)‐1,4‐benzohydroquinone mobilizes inositol 1,4,5‐trisphosphate‐sensitive and ‐insensitive Ca2+ stores.
FEBS Lett
274:
214‐216,
1990.
|
110. |
Ortega C,
Ortolano, S,
Carafoli, E.
The plasma membrane calcium pump. In:
Krebs J,
Michalak M, editors.
Calcium: A Matter of Life or Death,
Oxford, UK: Elsevier,
2007, pp.
179‐197, Vol. 41. |
111. |
Pantano S,
Carafoli E.
The role of phosphorylation on the structure and dynamics of phospholamban: a model from molecular simulations.
Proteins
66:
930‐940,
2007.
|
112. |
Pedersen P,
Carafoli, E.
Ion motive ATPases. I. Ubiquity, properties, and significance to cell function.
Trends Biochem Sci
12:
146‐150,
1987.
|
113. |
Penniston JT,
Enyedi A.
Modulation of the plasma membrane Ca2+ pump.
J Membr Biol
165:
101‐109,
1998.
|
114. |
Preiano BS,
Guerini D,
Carafoli E.
Expression and functional characterization of isoforms 4 of the plasma membrane calcium pump.
Biochemistry
35:
7946‐7953,
1996.
|
115. |
Reinhardt TA,
Horst RL,
Waters WR.
Characterization of Cos‐7 cells overexpressing the rat secretory pathway Ca2+‐ATPase.
Am J Physiol Cell Physiol
286:
C164‐C169,
2004.
|
116. |
Rimessi A,
Coletto L,
Pinton P,
Rizzuto R,
Brini M,
Carafoli E.
Inhibitory interaction of the 14‐3‐3{epsilon} protein with isoform 4 of the plasma membrane Ca(2+)‐ATPase pump.
J Biol Chem
280:
37195‐37203,
2005.
|
117. |
Roderick HL,
Lechleiter JD,
Camacho P.
Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b.
J Cell Biol
149:
1235‐1248,
2000.
|
118. |
Rudolph HK,
Antebi A,
Fink GR,
Buckley CM,
Dorman TE,
LeVitre J,
Davidow LS,
Mao JI,
Moir DT.
The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ATPase family.
Cell
58:
133‐145,
1989.
|
119. |
Sagara Y,
Fernandez‐Belda F,
de Meis L,
Inesi G.
Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin.
J Biol Chem
267:
12606‐12613,
1992.
|
120. |
Sagara Y,
Inesi G.
Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations.
J Biol Chem
266:
13503‐13506,
1991.
|
121. |
Salamino F,
Sparatore B,
Melloni E,
Michetti M,
Viotti PL,
Pontremoli S,
Carafoli E.
The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte.
Cell Calcium
15:
28‐35,
1994.
|
122. |
Schatzmann HJ.
ATP‐dependent Ca++‐extrusion from human red cells.
Experientia
22:
364‐365,
1966.
|
123. |
Scherer PE,
Lederkremer GZ,
Williams S,
Fogliano M,
Baldini G,
Lodish HF.
Cab45, a novel (Ca2+)‐binding protein localized to the Golgi lumen.
J Cell Biol
133:
257‐268,
1996.
|
124. |
Schuh K,
Uldrijan S,
Gambaryan S,
Roethlein N,
Neyses L.
Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin‐dependent membrane‐associated kinase CASK.
J Biol Chem
278:
9778‐9783,
2003.
|
125. |
Seidler NW,
Jona I,
Vegh M,
Martonosi A.
Cyclopiazonic acid is a specific inhibitor of the Ca2+‐ATPase of sarcoplasmic reticulum.
J Biol Chem
264:
17816‐17823,
1989.
|
126. |
Sgambato‐Faure V XY,
Berke JD,
Hyman SE,
Strehler EE.
The Homer‐1 protein Ania‐3 interacts with the plasma membrane calcium pump.
Biochem Biophys Res Commun
343:
630‐637,
2006.
|
127. |
Shull GE,
Greeb J.
Molecular cloning of two isoforms of the plasma membrane Ca2+‐transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+‐ and other cation transport ATPases.
J Biol Chem
263:
8646‐8657,
1988.
|
128. |
Strehler EE,
Zacharias DA.
Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps.
Physiol Rev
81:
21‐50,
2001.
|
129. |
Sudbrak R,
Brown J,
Dobson‐Stone C,
Carter S,
Ramser J,
White J,
Healy E,
Dissanayake M,
Larregue M,
Perrussel M,
Lehrach H,
Munro CS,
Strachan T,
Burge S,
Hovnanian A,
Monaco AP.
Hailey‐Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump.
Hum Mol Genet
9:
1131‐1140,
2000.
|
130. |
Szasz I,
Sarkadi B,
Schubert A,
Gardos G.
Effects of lanthanum on calcium‐dependent phenomena in human red cells.
Biochim Biophys Acta
512:
331‐340,
1978.
|
131. |
Szewczyk MM,
Pande J,
Grover AK.
Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology.
Pflugers Arch
456:
255‐266,
2008.
|
132. |
Takahashi M,
Kondou Y,
Toyoshima C.
Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors.
Proc Natl Acad Sci U S A
104:
5800‐5805,
2007.
|
133. |
Taylor RS,
Jones SM,
Dahl RH,
Nordeen MH,
Howell KE.
Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities.
Mol Biol Cell
8:
1911‐1931,
1997.
|
134. |
Thastrup O,
Cullen PJ,
Drobak BK,
Hanley MR,
Dawson AP.
Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)‐ATPase.
Proc Natl Acad Sci U S A
87:
2466‐2470,
1990.
|
135. |
Thomas RC.
The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded.
J Physiol
587:
315‐327,
2009.
|
136. |
Toyofuku T,
Kurzydlowski K,
Tada M,
MacLennan DH.
Identification of regions in the Ca(2+)‐ATPase of sarcoplasmic reticulum that affect functional association with phospholamban.
J Biol Chem
268:
2809‐2815,
1993.
|
137. |
Toyoshima C.
Structural aspects of ion pumping by Ca2+‐ATPase of sarcoplasmic reticulum.
Arch Biochem Biophys
476:
3‐11,
2008.
|
138. |
Toyoshima C.
Structural aspects of ion pumping by Ca(2+)‐ATPase of sarcoplasmic reticulum.
Arch Biochem Biophys
476:
3‐11,
2008.
|
139. |
Toyoshima C,
Asahi M,
Sugita Y,
Khanna R,
Tsuda T,
MacLennan DH.
Modeling of the inhibitory interaction of phospholamban with the Ca2+ ATPase.
Proc Natl Acad Sci U S A
100:
467‐472,
2003.
|
140. |
Toyoshima C,
Nakasako M,
Nomura H,
Ogawa H.
Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution.
Nature
405:
647‐655,
2000.
|
141. |
Toyoshima C,
Nomura H.
Structural changes in the calcium pump accompanying the dissociation of calcium.
Nature
418:
605‐611,
2002.
|
142. |
Van Baelen K,
Vanoevelen J,
Callewaert G,
Parys JB,
De Smedt H,
Raeymaekers L,
Rizzuto R,
Missiaen L,
Wuytack F.
The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA‐mediated interference.
Biochem Biophys Res Commun
306:
430‐436,
2003.
|
143. |
Van Baelen K,
Vanoevelen J,
Missiaen L,
Raeymaekers L,
Wuytack F.
The Golgi PMR1 P‐type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport.
J Biol Chem
276:
10683‐10691,
2001.
|
144. |
Vanden Abeele F,
Skryma R,
Shuba Y,
Van Coppenolle F,
Slomianny C,
Roudbaraki M,
Mauroy B,
Wuytack F,
Prevarskaya N.
Bcl‐2‐dependent modulation of Ca(2+) homeostasis and store‐operated channels in prostate cancer cells.
Cancer Cell
1:
169‐179,
2002.
|
145. |
Vanoevelen J,
Dode L,
Van Baelen K,
Fairclough RJ,
Missiaen L,
Raeymaekers L,
Wuytack F.
The secretory pathway Ca2+/Mn2+‐ATPase 2 is a Golgi‐localized pump with high affinity for Ca2+ ions.
J Biol Chem
280:
22800‐22808,
2005.
|
146. |
Varki A.
Factors controlling the glycosylation potential of the Golgi apparatus.
Trends Cell Biol
8:
34‐40,
1998.
|
147. |
Ver Heyen M,
Heymans S,
Antoons G,
Reed T,
Periasamy M,
Awede B,
Lebacq J,
Vangheluwe P,
Dewerchin M,
Collen D,
Sipido K,
Carmeliet P,
Wuytack F.
Replacement of the muscle‐specific sarcoplasmic reticulum Ca(2+)‐ATPase isoform SERCA2a by the nonmuscle SERCA2b homologue causes mild concentric hypertrophy and impairs contraction‐relaxation of the heart.
Circ Res
89:
838‐846,
2001.
|
148. |
Verboomen H,
Wuytack F,
De Smedt H,
Himpens B,
Casteels R.
Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban.
Biochem J
286
(Pt 2):
591‐595,
1992.
|
149. |
Verboomen H,
Wuytack F,
Van den Bosch L,
Mertens L,
Casteels R.
The functional importance of the extreme C‐terminal tail in the gene 2 organellar Ca(2+)‐transport ATPase (SERCA2a/b).
Biochem J
303
(Pt 3):
979‐984,
1994.
|
150. |
Verma AK,
Filoteo AG,
Stanford DR,
Wieben ED,
Penniston JT,
Strehler EE,
Fischer R,
Heim R,
Vogel G,
Mathews S,
et al.
Complete primary structure of a human plasma membrane Ca2+ pump.
J Biol Chem
263:
14152‐14159,
1988.
|
151. |
Virk SS,
Kirk CJ,
Shears SB.
Ca2+ transport and Ca2+‐dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands.
Biochem J
226:
741‐748,
1985.
|
152. |
Vorum H,
Hager H,
Christensen BM,
Nielsen S,
Honore B.
Human calumenin localizes to the secretory pathway and is secreted to the medium.
Exp Cell Res
248:
473‐481,
1999.
|
153. |
Wang P,
Wang X,
Pei D.
Mint‐3 regulates the retrieval of the internalized membrane‐type matrix metalloproteinase, MT5‐MMP, to the plasma membrane by binding to its carboxyl end motif EWV.
J Biol Chem
279:
20461‐20470,
2004.
|
154. |
Watters CD.
A Ca2+‐stimulated adenosine triphosphatase in Golgi‐enriched membranes of lactating murine mammary tissue.
Biochem J
224:
39‐45,
1984.
|
155. |
Wei Y,
Chen J,
Rosas G,
Tompkins DA,
Holt PA,
Rao R.
Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+‐ATPase, reveals residues critical for ion selectivity and transport.
J Biol Chem
275:
23927‐23932,
2000.
|
156. |
Wei Y,
Marchi V,
Wang R,
Rao R.
An N‐terminal EF hand‐like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)‐ATPase.
Biochemistry
38:
14534‐14541,
1999.
|
157. |
West DW.
Energy‐dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary glands.
Biochim Biophys Acta
673:
374‐386,
1981.
|
158. |
West DW,
Clegg RA.
Casein kinase activity in rat mammary gland Golgi vesicles. Demonstration of latency and requirement for a transmembrane ATP carrier.
Biochem J
219:
181‐187,
1984.
|
159. |
Williams JC,
Armesilla AL,
Mohamed TM,
Hagarty CL,
McIntyre FH,
Schomburg S,
Zaki AO,
Oceandy D,
Cartwright EJ,
Buch MH,
Emerson M,
Neyses L.
The sarcolemmal calcium pump, alpha‐1 syntrophin, and neuronal nitric‐oxide synthase are parts of a macromolecular protein complex.
J Biol Chem
281:
23341‐23348,
2006.
|
160. |
Wuytack F,
Dode L,
Baba‐Aissa F,
Raeymaekers L.
The SERCA3‐type of organellar Ca2+ pumps.
Biosci Rep
15:
299‐306,
1995.
|
161. |
Xiang M,
Mohamalawari D,
Rao R.
A novel isoform of the secretory pathway Ca2+,Mn(2+)‐ATPase, hSPCA2, has unusual properties and is expressed in the brain.
J Biol Chem
280:
11608‐11614,
2005.
|
162. |
Xu A,
Hawkins C,
Narayanan N.
Phosphorylation and activation of the Ca(2+)‐pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin‐dependent protein kinase.
J Biol Chem
268:
8394‐8397,
1993.
|
163. |
Xu GG,
Gao ZY,
Borge PD, Jr.,
Jegier PA,
Young RA,
Wolf BA.
Insulin regulation of beta‐cell function involves a feedback loop on SERCA gene expression, Ca(2+) homeostasis, and insulin expression and secretion.
Biochemistry
39:
14912‐14919,
2000.
|
164. |
Yu M,
Zhong L,
Rishi AK,
Khadeer M,
Inesi G,
Hussain A.
Specific substitutions at amino acid 256 of the sarcoplasmic/endoplasmic reticulum Ca2+ transport ATPase mediate resistance to thapsigargin in thapsigargin‐resistant hamster cells.
J Biol Chem
273:
3542‐3546,
1998.
|
165. |
Yu X,
Carroll S,
Rigaud JL,
Inesi G.
H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes.
Biophys J
64:
1232‐1242,
1993.
|
166. |
Zvaritch E,
James P,
Vorherr T,
Falchetto R,
Modyanov N,
Carafoli E.
Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis.
Biochemistry
29:
8070‐8076,
1990.
|
Further Reading |
1. | Calcium Signalling and disease. Molecular Pathology of Calcium. In:
Ernesto Carafoli,
Marisa Brini, editors.
Subcellular Biochemistry. New York: Springer Science + Business Media,
2007, Vol. 45. |