Comprehensive Physiology Wiley Online Library

Calcium Pumps: Why So Many?

Full Article on Wiley Online Library



Abstract

Ca2+‐ATPases (pumps) are key to the regulation of Ca2+ in eukaryotic cells: nine are known today, belonging to three multigene families. The three endo(sarco)plasmic reticulum (SERCA) and the four plasma membrane (PMCA) pumps have been known for decades, the two Secretory Pathway Ca2+ ATPase (SPCA) pumps have only become known recently. The number of pump isoforms is further increased by alternative splicing processes. The three pump types share the basic features of the catalytic mechanism, but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of all pumps has received great impetus from the solution of the three‐dimensional (3D) structure of one of them, the SERCA pump. This landmark structural advance has been accompanied by the emergence and rapid expansion of the area of pump malfunction. Most of the pump defects described so far are genetic and produce subtler, often tissue and isoform specific, disturbances that affect individual components of the Ca2+‐controlling and/or processing machinery, compellingly indicating a specialized role for each Ca2+ pump type and/or isoform. © 2012 American Physiological Society. Compr Physiol 2:1045‐1060, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Phylogenetic tree of Ca2+‐transporting ATPases. Protein sequences of P‐type ATPases of different species were aligned using ClustalW software and a phylogenetic tree was generated using TreeView. The three different branches represent the three main Ca2+‐ATPase: SERCAs and SPCAs (type IIA) and PMCAs (type IIB).

Figure 2. Figure 2.

A simplified reaction scheme of the transport cycle of Ca2+‐ATPases. The pumps exist in two main conformational states: E1 binds Ca2+ with high affinity at the cytosolic site; E2 has a low affinity for Ca2+ and thus releases it to the opposite site of the membrane. The cycle has a number of other states which have been omitted for simplicity, but which are discussed in the text. ATP phosphorylates a highly conserved aspartic acid residue allowing the translocation of Ca2+.

Figure 3. Figure 3.

Three‐dimensional structure of the SERCA pump showing the open and closed conformation in the E1 2Ca2+ and E2 (thapsigargin) states. The amino terminus is shown in blue and the carboxy terminus in red. The purple spheres (circled and numbered as I and II) represent bound Ca2+. The three cytoplasmatic domain (A, N, and P), the a‐helices in the A domain (A1‐3) and those in the transmembrane domain (M1‐M10) are indicated. M1′ is an amphipathic part of the M1 helix. M2′ is the top part of M2 helix. Docked ATP and thapsigargin (TG), as several key residues are shown. Figure modified, with permission, from 137.

Figure 4. Figure 4.

Generation of multiple SERCA isoforms by alternative splicing of the human ATP2A1‐3 genes. Exons are represented by colored boxes, introns by the black line. Thin box represents untranslated pseudoexon. 5'D1, 5'D2, and 5'D3 indicate optional splice donor sites for SERCA2a, SERCA2b, and SERCA2c transcripts, respectively. Sa‐f indicate the position of the different stop codons for the corresponding protein isoforms. The size of the protein products is indicated on the left. The boxes are not in scale. Details of the different splicings are described in the text.

Figure 5. Figure 5.

Deduced structure of the SPCA pump (in white) superimposed on that of the SERCA pump (in red). The figure shows the ten transmembrane domains of the two pumps in the lower portion of the figure and the three cytosolic protruding domains, the N (nucleotide binding) domain on the left, the P (phosphorylation) domain in the center and the A (actuator) domain on the right. Naturally, the conclusions on the SPCA pump are only guess from molecular modeling work. The image is a kind gift of Dr. L. Raeymakers (Leuven, Belgium).

Figure 6. Figure 6.

Generation of multiple SPCA1 isoforms by alternative splicing of the human ATP2C1 gene. Exons are represented by filled gray boxes and introns by the black line. 5'D1 and 5'D2 indicate splice donor sites in exon 27 for SPCA1b and SPCA1d, respectively. Sa‐d indicate the position of the different stop codons in the a‐d variants. Details of the different splicings are described in the text. The relative sizes of each splice variant is on the left.

Figure 7. Figure 7.

Deduced structure of the PMCA pump (in blue) superimposed on that of the SERCA pump (in red). The long C‐terminal tail of PMCA pump (absent in the SERCA pump) is not included in the superimposition. See legend for Figure 5 for the explanation of the different pump domains. The image is a kind gift of Dr. S. Pantano (Montevideo, Uruguay).

Figure 8. Figure 8.

Alternative splicing of rat ATP2B1‐4 genes generating multiple PMCA isoforms. The scheme summarizes the splice variants at sites A (Panel A) and C (Panel B). Exons are represented by colored boxes and introns by the black line. Details on the different splicings are described in the text. The numbers in the boxes represent the nucleotides number of each rat exon. Human exons are slightly different in the number of nucleotides, but display essentially the same splice variants.



Figure 1.

Phylogenetic tree of Ca2+‐transporting ATPases. Protein sequences of P‐type ATPases of different species were aligned using ClustalW software and a phylogenetic tree was generated using TreeView. The three different branches represent the three main Ca2+‐ATPase: SERCAs and SPCAs (type IIA) and PMCAs (type IIB).



Figure 2.

A simplified reaction scheme of the transport cycle of Ca2+‐ATPases. The pumps exist in two main conformational states: E1 binds Ca2+ with high affinity at the cytosolic site; E2 has a low affinity for Ca2+ and thus releases it to the opposite site of the membrane. The cycle has a number of other states which have been omitted for simplicity, but which are discussed in the text. ATP phosphorylates a highly conserved aspartic acid residue allowing the translocation of Ca2+.



Figure 3.

Three‐dimensional structure of the SERCA pump showing the open and closed conformation in the E1 2Ca2+ and E2 (thapsigargin) states. The amino terminus is shown in blue and the carboxy terminus in red. The purple spheres (circled and numbered as I and II) represent bound Ca2+. The three cytoplasmatic domain (A, N, and P), the a‐helices in the A domain (A1‐3) and those in the transmembrane domain (M1‐M10) are indicated. M1′ is an amphipathic part of the M1 helix. M2′ is the top part of M2 helix. Docked ATP and thapsigargin (TG), as several key residues are shown. Figure modified, with permission, from 137.



Figure 4.

Generation of multiple SERCA isoforms by alternative splicing of the human ATP2A1‐3 genes. Exons are represented by colored boxes, introns by the black line. Thin box represents untranslated pseudoexon. 5'D1, 5'D2, and 5'D3 indicate optional splice donor sites for SERCA2a, SERCA2b, and SERCA2c transcripts, respectively. Sa‐f indicate the position of the different stop codons for the corresponding protein isoforms. The size of the protein products is indicated on the left. The boxes are not in scale. Details of the different splicings are described in the text.



Figure 5.

Deduced structure of the SPCA pump (in white) superimposed on that of the SERCA pump (in red). The figure shows the ten transmembrane domains of the two pumps in the lower portion of the figure and the three cytosolic protruding domains, the N (nucleotide binding) domain on the left, the P (phosphorylation) domain in the center and the A (actuator) domain on the right. Naturally, the conclusions on the SPCA pump are only guess from molecular modeling work. The image is a kind gift of Dr. L. Raeymakers (Leuven, Belgium).



Figure 6.

Generation of multiple SPCA1 isoforms by alternative splicing of the human ATP2C1 gene. Exons are represented by filled gray boxes and introns by the black line. 5'D1 and 5'D2 indicate splice donor sites in exon 27 for SPCA1b and SPCA1d, respectively. Sa‐d indicate the position of the different stop codons in the a‐d variants. Details of the different splicings are described in the text. The relative sizes of each splice variant is on the left.



Figure 7.

Deduced structure of the PMCA pump (in blue) superimposed on that of the SERCA pump (in red). The long C‐terminal tail of PMCA pump (absent in the SERCA pump) is not included in the superimposition. See legend for Figure 5 for the explanation of the different pump domains. The image is a kind gift of Dr. S. Pantano (Montevideo, Uruguay).



Figure 8.

Alternative splicing of rat ATP2B1‐4 genes generating multiple PMCA isoforms. The scheme summarizes the splice variants at sites A (Panel A) and C (Panel B). Exons are represented by colored boxes and introns by the black line. Details on the different splicings are described in the text. The numbers in the boxes represent the nucleotides number of each rat exon. Human exons are slightly different in the number of nucleotides, but display essentially the same splice variants.

 1. Algenstaedt P, Antonetti DA, Yaffe MB, Kahn CR. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+‐ATPases in muscle and heart. J Biol Chem 272: 23696‐23702, 1997.
 2. Antebi A, Fink GR. The yeast Ca(2+)‐ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi‐like distribution. Mol Biol Cell 3: 633‐654, 1992.
 3. Armesilla AL, Williams JC, Buch MH, Pickard A, Emerson M, Cartwright EJ, Oceandy D, Vos MD, Gillies S, Clark GJ, Neyses L. Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras‐associated factor 1 (RASSF1). J Biol Chem 279: 31318‐31328, 2004.
 4. Autry JM, Jones LR. Functional Co‐expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation. J Biol Chem 272: 15872‐15880, 1997.
 5. Axelsen KB, Palmgren MG. Evolution of substrate specificities in the P‐type ATPase superfamily. J Mol Evol 46: 84‐101, 1998.
 6. Baumrucker CR, Keenan TW. Membranes of mammary gland. X. Adenosine triphosphate dependent calcium accumulation by Golgi apparatus rich fractions from bovine mammary gland. Exp Cell Res 90: 253‐260, 1975.
 7. Bayle D, Weeks D, Sachs G. The membrane topology of the rat sarcoplasmic and endoplasmic reticulum calcium ATPases by in vitro translation scanning. J Biol Chem 270: 25678‐25684, 1995.
 8. Behne MJ, Tu CL, Aronchik I, Epstein E, Bench G, Bikle DD, Pozzan T, Mauro TM. Human keratinocyte ATP2C1 localizes to the Golgi and controls Golgi Ca2+ stores. J Invest Dermatol 121: 688‐694, 2003.
 9. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517‐529, 2003.
 10. Bilmen JG, Khan SZ, Javed MH, Michelangeli F. Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide‐binding and phosphorylation domains in the absence of ATP. Eur J Biochem 268: 6318‐6327, 2001.
 11. Bobe R, Bredoux R, Corvazier E, Andersen JP, Clausen JD, Dode L, Kovacs T, Enouf J. Identification, expression, function, and localization of a novel (sixth) isoform of the human sarco/endoplasmic reticulum Ca2+ATPase 3 gene. J Biol Chem 279: 24297‐24306, 2004.
 12. Borge PD, Jr., Wolf BA. Insulin receptor substrate 1 regulation of sarco‐endoplasmic reticulum calcium ATPase 3 in insulin‐secreting beta‐cells. J Biol Chem 278: 11359‐11368, 2003.
 13. Bozulic LD, Malik MT, Powell DW, Nanez A, Link AJ, Ramos KS, Dean WL. Plasma membrane Ca(2+) ‐ATPase associates with CLP36, alpha‐actinin and actin in human platelets. Thromb Haemost 97: 587‐597, 2007.
 14. Brandl CJ, Green NM, Korczak B, MacLennan DH. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44: 597‐607, 1986.
 15. Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev 89: 1341‐1378, 2009.
 16. Brini M, Coletto L, Pierobon N, Kraev N, Guerini D, Carafoli E. A comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells. J Biol Chem 278: 24500‐24508, 2003.
 17. Brini M, Di Leva F, Ortega CK, Domi T, Ottolini D, Leonardi E, Tosatto SC, Carafoli E. Deletions and mutations in the acidic lipid‐binding region of the plasma membrane Ca2+ pump: a study on different splicing variants of isoform 2. J Biol Chem 285: 30779‐30791, 2010.
 18. Brodin P, Falchetto R, Vorherr T, Carafoli E. Identification of two domains which mediate the binding of activating phospholipids to the plasma‐membrane Ca2+ pump. Eur J Biochem 204: 939‐946, 1992.
 19. Brunati AM, Contri A, Muenchbach M, James P, Marin O, Pinna LA. GRP94 (endoplasmin) co‐purifies with and is phosphorylated by Golgi apparatus casein kinase. FEBS Lett 471: 151‐155, 2000.
 20. Buch MH, Pickard A, Rodriguez A, Gillies S, Maass AH, Emerson M, Cartwright EJ, Williams JC, Oceandy D, Redondo JM, Neyses L, Armesilla AL. The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T‐cell pathway via interaction with the calcineurin A catalytic subunit. J Biol Chem 280: 29479‐29487, 2005.
 21. Burk SE, Lytton J, MacLennan DH, Shull GE. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem 264: 18561‐18568, 1989.
 22. Callewaert G, Parys JB, De Smedt H, Raeymaekers L, Wuytack F, Vanoevelen J, Van Baelen K, Simoni A, Rizzuto R, Missiaen L. Similar Ca(2+)‐signaling properties in keratinocytes and in COS‐1 cells overexpressing the secretory‐pathway Ca(2+)‐ATPase SPCA1. Cell Calcium 34: 157‐162, 2003.
 23. Camacho P, Lechleiter JD. Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium‐ATPase. Science 260: 226‐229, 1993.
 24. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J 8: 993‐1002, 1994.
 25. Cartwright EJ, Oceandy D, Neyses L. Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457: 665‐671, 2009.
 26. Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, Pinton P, Lecoeur H, Gougeon ML, le Maire M, Rizzuto R, Brechot C, Paterlini‐Brechot P. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 153: 1301‐1314, 2001.
 27. Chanat E, Huttner WB. Milieu‐induced, selective aggregation of regulated secretory proteins in the trans‐Golgi network. J Cell Biol 115: 1505‐1519, 1991.
 28. Chicka MC, Strehler EE. Alternative splicing of the first intracellular loop of plasma membrane Ca2+‐ATPase isoform 2 alters its membrane targeting. J Biol Chem 278: 18464‐18470, 2003.
 29. Choquette D, Hakim G, Filoteo AG, Plishker GA, Bostwick JR, Penniston JT. Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun 125: 908‐915, 1984.
 30. Clarke DM, Loo TW, Inesi G, MacLennan DH. Location of high affinity Ca2+‐binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+‐ATPase. Nature 339: 476‐478, 1989.
 31. Clarke DM, Loo TW, MacLennan DH. Functional consequences of alterations to polar amino acids located in the transmembrane domain of the Ca2(+)‐ATPase of sarcoplasmic reticulum. J Biol Chem 265: 6262‐6267, 1990.
 32. Dally S, Bredoux R, Corvazier E, Andersen JP, Clausen JD, Dode L, Fanchaouy M, Gelebart P, Monceau V, Del Monte F, Gwathmey JK, Hajjar R, Chaabane C, Bobe R, Raies A, Enouf J. Ca2+‐ATPases in non‐failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+‐ATPase 2 isoform (SERCA2c). Biochem J 395: 249‐258, 2006.
 33. de Meis L, Vianna AL. Energy interconversion by the Ca2+‐dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 48: 275‐292, 1979.
 34. Dean WL, Whiteheart SW. Plasma membrane Ca(2+)‐ATPase (PMCA) translocates to filopodia during platelet activation. Thromb Haemost 91: 325‐333, 2004.
 35. DeMarco SJ, Chicka MC, Strehler EE. Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H +exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem 277: 10506‐10511, 2002.
 36. DeMarco SJ, Strehler EE. Plasma membrane Ca2+‐atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane‐associated guanylate kinase family of PDZ (PSD95/Dlg/ZO‐1) domain‐containing proteins. J Biol Chem 276: 21594‐21600, 2001.
 37. Dode L, Andersen JP, Leslie N, Dhitavat J, Vilsen B, Hovnanian A. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady‐state and transient kinetic analyses. J Biol Chem 278: 47877‐47889, 2003.
 38. Dode L, Andersen JP, Raeymaekers L, Missiaen L, Vilsen B, Wuytack F. Functional comparison between secretory pathway Ca2+/Mn2+‐ATPase (SPCA) 1 and sarcoplasmic reticulum Ca2+‐ATPase (SERCA) 1 isoforms by steady‐state and transient kinetic analyses. J Biol Chem 280: 39124‐39134, 2005.
 39. Dode L, Andersen JP, Vanoevelen J, Raeymaekers L, Missiaen L, Vilsen B, Wuytack F. Dissection of the functional differences between human secretory pathway Ca2+/Mn2+‐ATPase (SPCA) 1 and 2 isoenzymes by steady‐state and transient kinetic analyses. J Biol Chem 281: 3182‐3189, 2006.
 40. Dowling P, Doran P, Ohlendieck K. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)‐deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Biochem J 379: 479‐488, 2004.
 41. Dremina ES, Sharov VS Kumar K, Zaidi A, Michaelis EK, Schoneich C. Anti‐apoptotic protein Bcl‐2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+‐ATPase (SERCA). Biochem J 383: 361‐370, 2004.
 42. Dyer JL, Khan SZ, Bilmen JG, Hawtin SR, Wheatley M, Javed MU, Michelangeli F. Curcumin: a new cell‐permeant inhibitor of the inositol 1,4,5‐trisphosphate receptor. Cell Calcium 31: 45‐52, 2002.
 43. Ebashi F, Ebashi S. Removal of calcium and relaxation in actomyosin systems. Nature 194: 378‐379, 1962.
 44. Elshorst B, Hennig M, Forsterling H, Diener A, Maurer M, Schulte P, Schwalbe H, Griesinger C, Krebs J, Schmid H, Vorherr T, Carafoli E. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry 38: 12320‐12332, 1999.
 45. Elwess NL, Filoteo AG, Enyedi A, Penniston JT. Plasma membrane Ca2+ pump isoforms 2a and 2b are unusually responsive to calmodulin and Ca2+. J Biol Chem 272: 17981‐17986, 1997.
 46. Falchetto R, Vorherr T, Brunner J, Carafoli E. The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin‐binding domain. J Biol Chem 266: 2930‐2936, 1991.
 47. Falchetto R, Vorherr T, Carafoli E. The calmodulin‐binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1: 1613‐1621, 1992.
 48. Gatto C, Hale CC, Xu W, Milanick MA. Eosin, a potent inhibitor of the plasma membrane Ca pump, does not inhibit the cardiac Na‐Ca exchanger. Biochemistry 34: 965‐972, 1995.
 49. Gelebart P, Martin V, Enouf J, Papp B. Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303: 676‐684, 2003.
 50. Goellner GM, DeMarco SJ, Strehler EE. Characterization of PISP, a novel single‐PDZ protein that binds to all plasma membrane Ca2+‐ATPase b‐splice variants. Ann N Y Acad Sci 986: 461‐471, 2003.
 51. Gopinath RM, Vincenzi FF. Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+‐Mg2+)ATPase. Biochem Biophys Res Commun 77: 1203‐1209, 1977.
 52. Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, LaFerla FM. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 181: 1107‐1116, 2008.
 53. Greenough M, Pase L, Voskoboinik I, Petris MJ, O'Brien AW, Camakaris J. Signals regulating trafficking of Menkes (MNK; ATP7A) copper‐translocating P‐type ATPase in polarized MDCK cells. Am J Physiol Cell Physiol 287: C1463‐C1471, 2004.
 54. Guerini D, Carafoli, E. The Calcium Pumps. In: Carafoli E, Klee C, editors. Calcium as A Cellular Regulators. Oxford, UK: Oxford University Press, 1999, pp. 249‐278, Vol. 10.
 55. Guerini D, Krebs J, Carafoli E. Stimulation of the purified erythrocyte Ca2+‐ATPase by tryptic fragments of calmodulin. J Biol Chem 259: 15172‐15177, 1984.
 56. Guerini D, Zecca‐Mazza A, Carafoli E. Single amino acid mutations in transmembrane domain 5 confer to the plasma membrane Ca2+ pump properties typical of the Ca2+ pump of endo(sarco)plasmic reticulum. J Biol Chem 275: 31361‐31368, 2000.
 57. Gunteski‐Hamblin AM, Clarke DM, Shull GE. Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. Biochemistry 31: 7600‐7608, 1992.
 58. Hao L, Rigaud JL, Inesi G. Ca2+/H +countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca‐ATPase and exogenous lipids. J Biol Chem 269: 14268‐14275, 1994.
 59. Hasselbach W, Makinose M. [The calcium pump of the“relaxing granules” of muscle and its dependence on ATP‐splitting.]. Biochem Z 333: 518‐528, 1961.
 60. Hawkins C, Xu A, Narayanan N. Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin‐dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation. J Biol Chem 269: 31198‐31206, 1994.
 61. Heilker R, Manning‐Krieg U, Zuber JF, Spiess M. In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. EMBO J 15: 2893‐2899, 1996.
 62. Hilfiker H, Guerini D, Carafoli E. Cloning and expression of isoform 2 of the human plasma membrane Ca2+ ATPase. Functional properties of the enzyme and its splicing products. J Biol Chem 269: 26178‐26183, 1994.
 63. Hofmann F, James P, Vorherr T, Carafoli E. The C‐terminal domain of the plasma membrane Ca2+ pump contains three high affinity Ca2+ binding sites. J Biol Chem 268: 10252‐10259, 1993.
 64. Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, Ikeda S, Mauro T, Epstein EH, Jr. Mutations in ATP2C1, encoding a calcium pump, cause Hailey‐Hailey disease. Nat Genet 24: 61‐65, 2000.
 65. Hutter MC, Krebs J, Meiler J, Griesinger C, Carafoli E, Helms V. A structural model of the complex formed by phospholamban and the calcium pump of sarcoplasmic reticulum obtained by molecular mechanics. Chembiochem 3: 1200‐1208, 2002.
 66. James P, Inui M, Tada M, Chiesi M, Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342: 90‐92, 1989.
 67. James P, Maeda M, Fischer R, Verma AK, Krebs J, Penniston JT, Carafoli E. Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem 263: 2905‐2910, 1988.
 68. James P, Vorherr T, Krebs J, Morelli A, Castello G, McCormick DJ, Penniston JT, De Flora A, Carafoli E. Modulation of erythrocyte Ca2+‐ATPase by selective calpain cleavage of the calmodulin‐binding domain. J Biol Chem 264: 8289‐8296, 1989.
 69. Jarrett HW, Penniston JT. Partial purification of the Ca2+‐Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3':5′ ‐ cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 77: 1210‐1216, 1977.
 70. John LM, Lechleiter JD, Camacho P. Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142: 963‐973, 1998.
 71. Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dorn GW, II, Walsh RA, Kranias EG. Cardiac‐specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97: 533‐539, 1996.
 72. Katz AM. Discovery of phospholamban. A personal history. Ann N Y Acad Sci 853: 9‐19, 1998.
 73. Kaufman RJ, Swaroop M, Murtha‐Riel P. Depletion of manganese within the secretory pathway inhibits O‐linked glycosylation in mammalian cells. Biochemistry 33: 9813‐9819, 1994.
 74. Keeton TP, Burk SE, Shull GE. Alternative splicing of exons encoding the calmodulin‐binding domains and C termini of plasma membrane Ca(2+)‐ATPase isoforms 1, 2, 3, and 4. J Biol Chem 268: 2740‐2748, 1993.
 75. Kiewitz R, Acklin C, Schafer BW, Maco B, Uhrik B, Wuytack F, Erne P, Heizmann CW. Ca2+‐dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+‐ATPase2a and phospholamban in the human heart. Biochem Biophys Res Commun 306: 550‐557, 2003.
 76. Kimura Y, Kurzydlowski K, Tada M, MacLennan DH. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 272: 15061‐15064, 1997.
 77. Koitabashi N, Arai M, Tomaru K, Takizawa T, Watanabe A, Niwano K, Yokoyama T, Wuytack F, Periasamy M, Nagai R, Kurabayashi M. Carvedilol effectively blocks oxidative stress‐mediated downregulation of sarcoplasmic reticulum Ca2+‐ATPase 2 gene transcription through modification of Sp1 binding. Biochem Biophys Res Commun 328: 116‐124, 2005.
 78. Kulkarni RN, Roper MG, Dahlgren G, Shih DQ, Kauri LM, Peters JL, Stoffel M, Kennedy RT. Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA)‐2b and ‐3. Diabetes 53: 1517‐1525, 2004.
 79. Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W. Modulation of endoplasmic reticulum calcium pump by Bcl‐2. Oncogene 17: 1903‐1910, 1998.
 80. Lamberth S, Schmid, H., Muenchbach, M., Vorherr, T., Krebs, J., Carafoli, E., Griesinger, C. NMR solution structure of phospholamban. Helvetica Chimica Acta 83: 2141‐2152, 2000.
 81. Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta VC. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol Cell Biol 15: 1382‐1388, 1995.
 82. Lasa M, Marin O, Pinna LA. Rat liver Golgi apparatus contains a protein kinase similar to the casein kinase of lactating mammary gland. Eur J Biochem 243: 719‐725, 1997.
 83. Laursen M, Bublitz M, Moncoq K, Olesen C, Moller JV, Young HS, Nissen P, Morth JP. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+‐ATPase. J Biol Chem 284: 13513‐13518, 2009.
 84. Li Y, Camacho P. Ca2+‐dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164: 35‐46, 2004.
 85. Lin P, Le‐Niculescu H, Hofmeister R, McCaffery JM, Jin M, Hennemann H, McQuistan T, De Vries L, Farquhar MG. The mammalian calcium‐binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J Cell Biol 141: 1515‐1527, 1998.
 86. Linde CI, Di Leva F, Domi T, Tosatto SC, Brini M, Carafoli E. Inhibitory interaction of the 14‐3‐3 proteins with ubiquitous (PMCA1) and tissue‐specific (PMCA3) isoforms of the plasma membrane Ca2+ pump. Cell Calcium 43: 550‐561, 2008.
 87. Lissandron V, Podini P, Pizzo P, Pozzan T. Unique characteristics of Ca2+ homeostasis of the trans‐Golgi compartment. Proc Natl Acad Sci U S A 107: 9198‐9203, 2010.
 88. Liu LH, Paul RJ, Sutliff RL, Miller ML, Lorenz JN, Pun RY, Duffy JJ, Doetschman T, Kimura Y, MacLennan DH, Hoying JB, Shull GE. Defective endothelium‐dependent relaxation of vascular smooth muscle and endothelial cell Ca2+ signaling in mice lacking sarco(endo)plasmic reticulum Ca2+‐ATPase isoform 3. J Biol Chem 272: 30538‐30545, 1997.
 89. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta‐agonist stimulation. Circ Res 75: 401‐409, 1994.
 90. Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267: 14483‐14489, 1992.
 91. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca‐ATPase family of calcium pumps. J Biol Chem 266: 17067‐17071, 1991.
 92. Lytton J, Zarain‐Herzberg A, Periasamy M, MacLennan DH. Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+‐ATPase. J Biol Chem 264: 7059‐7065, 1989.
 93. Ma H, Zhong L, Inesi G, Fortea I, Soler F, Fernandez‐Belda F. Overlapping effects of S3 stalk segment mutations on the affinity of Ca2+‐ATPase (SERCA) for thapsigargin and cyclopiazonic acid. Biochemistry 38: 15522‐15527, 1999.
 94. MacLennan DH. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 245: 4508‐4518, 1970.
 95. MacLennan DH, Brandl CJ, Korczak B, Green NM. Amino‐acid sequence of a Ca2+ +Mg2+‐dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316: 696‐700, 1985.
 96. Missiaen L, Vanoevelen J, Parys JB, Raeymaekers L, De Smedt H, Callewaert G, Erneux C, Wuytack F. Ca2+ uptake and release properties of a thapsigargin‐insensitive nonmitochondrial Ca2+ store in A7r5 and 16HBE14o‐ cells. J Biol Chem 277: 6898‐6902, 2002.
 97. Moncoq K, Trieber CA, Young HS. The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J Biol Chem 282: 9748‐9757, 2007.
 98. Monteith GR, Roufogalis BD. The plasma membrane calcium pump–a physiological perspective on its regulation. Cell Calcium 18: 459‐470, 1995.
 99. Most P, Pleger ST, Volkers M, Heidt B, Boerries M, Weichenhan D, Loffler E, Janssen PM, Eckhart AD, Martini J, Williams ML, Katus HA, Remppis A, Koch WJ. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest 114: 1550‐1563, 2004.
 100. Negash S, Yao Q, Sun H, Li J, Bigelow DJ, Squier TC. Phospholamban remains associated with the Ca2+‐ and Mg2+‐dependent ATPase following phosphorylation by cAMP‐dependent protein kinase. Biochem J 351: 195‐205, 2000.
 101. Neville MC, Selker F, Semple K, Watters C. ATP‐dependent calcium transport by a Golgi‐enriched membrane fraction from mouse mammary gland. J Membr Biol 61: 97‐105, 1981.
 102. Niggli V, Adunyah ES, Carafoli E. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+‐ATPase. J Biol Chem 256: 8588‐8592, 1981.
 103. Niggli V, Adunyah ES, Penniston JT, Carafoli E. Purified (Ca2+‐Mg2+)‐ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 256: 395‐401, 1981.
 104. Niggli V, Penniston JT, Carafoli E. Purification of the (Ca2+‐Mg2+)‐ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254: 9955‐9958, 1979.
 105. Niggli V, Sigel E, Carafoli E. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+‐H+ exchange in reconstituted liposomal systems. J Biol Chem 257: 2350‐2356, 1982.
 106. Oda K. Calcium depletion blocks proteolytic cleavages of plasma protein precursors which occur at the Golgi and/or trans‐Golgi network. Possible involvement of Ca(2+)‐dependent Golgi endoproteases. J Biol Chem 267: 17465‐17471, 1992.
 107. Odermatt A, Becker S, Khanna VK, Kurzydlowski K, Leisner E, Pette D, MacLennan DH. Sarcolipin regulates the activity of SERCA1, the fast‐twitch skeletal muscle sarcoplasmic reticulum Ca2+‐ATPase. J Biol Chem 273: 12360‐12369, 1998.
 108. Odermatt A, Kurzydlowski K, MacLennan DH. The vmax of the Ca2+‐ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin‐dependent phosphorylation or by interaction with phospholamban. J Biol Chem 271: 14206‐14213, 1996.
 109. Oldershaw KA, Taylor CW. 2,5‐Di‐(tert‐butyl)‐1,4‐benzohydroquinone mobilizes inositol 1,4,5‐trisphosphate‐sensitive and ‐insensitive Ca2+ stores. FEBS Lett 274: 214‐216, 1990.
 110. Ortega C, Ortolano, S, Carafoli, E. The plasma membrane calcium pump. In: Krebs J, Michalak M, editors. Calcium: A Matter of Life or Death, Oxford, UK: Elsevier, 2007, pp. 179‐197, Vol. 41.
 111. Pantano S, Carafoli E. The role of phosphorylation on the structure and dynamics of phospholamban: a model from molecular simulations. Proteins 66: 930‐940, 2007.
 112. Pedersen P, Carafoli, E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12: 146‐150, 1987.
 113. Penniston JT, Enyedi A. Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165: 101‐109, 1998.
 114. Preiano BS, Guerini D, Carafoli E. Expression and functional characterization of isoforms 4 of the plasma membrane calcium pump. Biochemistry 35: 7946‐7953, 1996.
 115. Reinhardt TA, Horst RL, Waters WR. Characterization of Cos‐7 cells overexpressing the rat secretory pathway Ca2+‐ATPase. Am J Physiol Cell Physiol 286: C164‐C169, 2004.
 116. Rimessi A, Coletto L, Pinton P, Rizzuto R, Brini M, Carafoli E. Inhibitory interaction of the 14‐3‐3{epsilon} protein with isoform 4 of the plasma membrane Ca(2+)‐ATPase pump. J Biol Chem 280: 37195‐37203, 2005.
 117. Roderick HL, Lechleiter JD, Camacho P. Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol 149: 1235‐1248, 2000.
 118. Rudolph HK, Antebi A, Fink GR, Buckley CM, Dorman TE, LeVitre J, Davidow LS, Mao JI, Moir DT. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ATPase family. Cell 58: 133‐145, 1989.
 119. Sagara Y, Fernandez‐Belda F, de Meis L, Inesi G. Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin. J Biol Chem 267: 12606‐12613, 1992.
 120. Sagara Y, Inesi G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 266: 13503‐13506, 1991.
 121. Salamino F, Sparatore B, Melloni E, Michetti M, Viotti PL, Pontremoli S, Carafoli E. The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte. Cell Calcium 15: 28‐35, 1994.
 122. Schatzmann HJ. ATP‐dependent Ca++‐extrusion from human red cells. Experientia 22: 364‐365, 1966.
 123. Scherer PE, Lederkremer GZ, Williams S, Fogliano M, Baldini G, Lodish HF. Cab45, a novel (Ca2+)‐binding protein localized to the Golgi lumen. J Cell Biol 133: 257‐268, 1996.
 124. Schuh K, Uldrijan S, Gambaryan S, Roethlein N, Neyses L. Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin‐dependent membrane‐associated kinase CASK. J Biol Chem 278: 9778‐9783, 2003.
 125. Seidler NW, Jona I, Vegh M, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2+‐ATPase of sarcoplasmic reticulum. J Biol Chem 264: 17816‐17823, 1989.
 126. Sgambato‐Faure V XY, Berke JD, Hyman SE, Strehler EE. The Homer‐1 protein Ania‐3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun 343: 630‐637, 2006.
 127. Shull GE, Greeb J. Molecular cloning of two isoforms of the plasma membrane Ca2+‐transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+‐ and other cation transport ATPases. J Biol Chem 263: 8646‐8657, 1988.
 128. Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81: 21‐50, 2001.
 129. Sudbrak R, Brown J, Dobson‐Stone C, Carter S, Ramser J, White J, Healy E, Dissanayake M, Larregue M, Perrussel M, Lehrach H, Munro CS, Strachan T, Burge S, Hovnanian A, Monaco AP. Hailey‐Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump. Hum Mol Genet 9: 1131‐1140, 2000.
 130. Szasz I, Sarkadi B, Schubert A, Gardos G. Effects of lanthanum on calcium‐dependent phenomena in human red cells. Biochim Biophys Acta 512: 331‐340, 1978.
 131. Szewczyk MM, Pande J, Grover AK. Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch 456: 255‐266, 2008.
 132. Takahashi M, Kondou Y, Toyoshima C. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc Natl Acad Sci U S A 104: 5800‐5805, 2007.
 133. Taylor RS, Jones SM, Dahl RH, Nordeen MH, Howell KE. Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8: 1911‐1931, 1997.
 134. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)‐ATPase. Proc Natl Acad Sci U S A 87: 2466‐2470, 1990.
 135. Thomas RC. The plasma membrane calcium ATPase (PMCA) of neurones is electroneutral and exchanges 2 H+ for each Ca2+ or Ba2+ ion extruded. J Physiol 587: 315‐327, 2009.
 136. Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH. Identification of regions in the Ca(2+)‐ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem 268: 2809‐2815, 1993.
 137. Toyoshima C. Structural aspects of ion pumping by Ca2+‐ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476: 3‐11, 2008.
 138. Toyoshima C. Structural aspects of ion pumping by Ca(2+)‐ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476: 3‐11, 2008.
 139. Toyoshima C, Asahi M, Sugita Y, Khanna R, Tsuda T, MacLennan DH. Modeling of the inhibitory interaction of phospholamban with the Ca2+ ATPase. Proc Natl Acad Sci U S A 100: 467‐472, 2003.
 140. Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647‐655, 2000.
 141. Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418: 605‐611, 2002.
 142. Van Baelen K, Vanoevelen J, Callewaert G, Parys JB, De Smedt H, Raeymaekers L, Rizzuto R, Missiaen L, Wuytack F. The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA‐mediated interference. Biochem Biophys Res Commun 306: 430‐436, 2003.
 143. Van Baelen K, Vanoevelen J, Missiaen L, Raeymaekers L, Wuytack F. The Golgi PMR1 P‐type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J Biol Chem 276: 10683‐10691, 2001.
 144. Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C, Roudbaraki M, Mauroy B, Wuytack F, Prevarskaya N. Bcl‐2‐dependent modulation of Ca(2+) homeostasis and store‐operated channels in prostate cancer cells. Cancer Cell 1: 169‐179, 2002.
 145. Vanoevelen J, Dode L, Van Baelen K, Fairclough RJ, Missiaen L, Raeymaekers L, Wuytack F. The secretory pathway Ca2+/Mn2+‐ATPase 2 is a Golgi‐localized pump with high affinity for Ca2+ ions. J Biol Chem 280: 22800‐22808, 2005.
 146. Varki A. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8: 34‐40, 1998.
 147. Ver Heyen M, Heymans S, Antoons G, Reed T, Periasamy M, Awede B, Lebacq J, Vangheluwe P, Dewerchin M, Collen D, Sipido K, Carmeliet P, Wuytack F. Replacement of the muscle‐specific sarcoplasmic reticulum Ca(2+)‐ATPase isoform SERCA2a by the nonmuscle SERCA2b homologue causes mild concentric hypertrophy and impairs contraction‐relaxation of the heart. Circ Res 89: 838‐846, 2001.
 148. Verboomen H, Wuytack F, De Smedt H, Himpens B, Casteels R. Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J 286 (Pt 2): 591‐595, 1992.
 149. Verboomen H, Wuytack F, Van den Bosch L, Mertens L, Casteels R. The functional importance of the extreme C‐terminal tail in the gene 2 organellar Ca(2+)‐transport ATPase (SERCA2a/b). Biochem J 303 (Pt 3): 979‐984, 1994.
 150. Verma AK, Filoteo AG, Stanford DR, Wieben ED, Penniston JT, Strehler EE, Fischer R, Heim R, Vogel G, Mathews S, et al. Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263: 14152‐14159, 1988.
 151. Virk SS, Kirk CJ, Shears SB. Ca2+ transport and Ca2+‐dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands. Biochem J 226: 741‐748, 1985.
 152. Vorum H, Hager H, Christensen BM, Nielsen S, Honore B. Human calumenin localizes to the secretory pathway and is secreted to the medium. Exp Cell Res 248: 473‐481, 1999.
 153. Wang P, Wang X, Pei D. Mint‐3 regulates the retrieval of the internalized membrane‐type matrix metalloproteinase, MT5‐MMP, to the plasma membrane by binding to its carboxyl end motif EWV. J Biol Chem 279: 20461‐20470, 2004.
 154. Watters CD. A Ca2+‐stimulated adenosine triphosphatase in Golgi‐enriched membranes of lactating murine mammary tissue. Biochem J 224: 39‐45, 1984.
 155. Wei Y, Chen J, Rosas G, Tompkins DA, Holt PA, Rao R. Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+‐ATPase, reveals residues critical for ion selectivity and transport. J Biol Chem 275: 23927‐23932, 2000.
 156. Wei Y, Marchi V, Wang R, Rao R. An N‐terminal EF hand‐like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)‐ATPase. Biochemistry 38: 14534‐14541, 1999.
 157. West DW. Energy‐dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary glands. Biochim Biophys Acta 673: 374‐386, 1981.
 158. West DW, Clegg RA. Casein kinase activity in rat mammary gland Golgi vesicles. Demonstration of latency and requirement for a transmembrane ATP carrier. Biochem J 219: 181‐187, 1984.
 159. Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S, Zaki AO, Oceandy D, Cartwright EJ, Buch MH, Emerson M, Neyses L. The sarcolemmal calcium pump, alpha‐1 syntrophin, and neuronal nitric‐oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281: 23341‐23348, 2006.
 160. Wuytack F, Dode L, Baba‐Aissa F, Raeymaekers L. The SERCA3‐type of organellar Ca2+ pumps. Biosci Rep 15: 299‐306, 1995.
 161. Xiang M, Mohamalawari D, Rao R. A novel isoform of the secretory pathway Ca2+,Mn(2+)‐ATPase, hSPCA2, has unusual properties and is expressed in the brain. J Biol Chem 280: 11608‐11614, 2005.
 162. Xu A, Hawkins C, Narayanan N. Phosphorylation and activation of the Ca(2+)‐pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin‐dependent protein kinase. J Biol Chem 268: 8394‐8397, 1993.
 163. Xu GG, Gao ZY, Borge PD, Jr., Jegier PA, Young RA, Wolf BA. Insulin regulation of beta‐cell function involves a feedback loop on SERCA gene expression, Ca(2+) homeostasis, and insulin expression and secretion. Biochemistry 39: 14912‐14919, 2000.
 164. Yu M, Zhong L, Rishi AK, Khadeer M, Inesi G, Hussain A. Specific substitutions at amino acid 256 of the sarcoplasmic/endoplasmic reticulum Ca2+ transport ATPase mediate resistance to thapsigargin in thapsigargin‐resistant hamster cells. J Biol Chem 273: 3542‐3546, 1998.
 165. Yu X, Carroll S, Rigaud JL, Inesi G. H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J 64: 1232‐1242, 1993.
 166. Zvaritch E, James P, Vorherr T, Falchetto R, Modyanov N, Carafoli E. Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis. Biochemistry 29: 8070‐8076, 1990.
Further Reading
 1.Calcium Signalling and disease. Molecular Pathology of Calcium. In: Ernesto Carafoli, Marisa Brini, editors. Subcellular Biochemistry. New York: Springer Science + Business Media, 2007, Vol. 45.

Further Reading

Calcium Signalling and disease. Molecular Pathology of Calcium. Subcellular Biochemistry vol.45 Edited by Ernesto Carafoli and Marisa Brini. 2007 Springer


Related Articles:

Mechanism of Ca2+ Transport by Sarcoplasmic Reticulum
Cardiac Sarcoplasmic Reticulum Ca2+‐ATPase
Calcium Transport and Signaling in Mitochondria

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Marisa Brini, Tito Calì, Denis Ottolini, Ernesto Carafoli. Calcium Pumps: Why So Many?. Compr Physiol 2012, 2: 1045-1060. doi: 10.1002/cphy.c110034