Comprehensive Physiology Wiley Online Library

Calcium Signaling in the Liver

Full Article on Wiley Online Library



Abstract

Intracellular free Ca2+ ([Ca2+]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca2+ signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca2+ signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca2+ signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca2+]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca2+ signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca2+ signaling in the liver, and the role of Ca2+ signaling in liver disease. © 2013 American Physiological Society. Compr Physiol 3:515‐539, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Molecular machinery for Ca2+ signal formation in hepatocytes. Ca2+ signals may be generated by Ca2+‐mobilizing hormones (through activation of G‐protein‐coupled receptors) or growth factors (through receptor tyrosine kinases). Binding of a ligand to its specific receptor leads to the activation of phospholipase C (PLC), which hydrolyzes Phosphotidylinositol‐4‐5‐bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5‐trisphosphate (InsP3). DAG remains in the plasma membrane and InsP3 diffuses throughout the cytosol and binds to the InsP3 receptor (InsP3R) in the endoplasmic reticulum to allow Ca2+ release to the cytosol. Alternatively, receptor tyrosine kinases may translocate to the nucleus to locally activate PLC and induce Ca2+ release from the nucleoplasmic reticulum into the nucleoplasm. Nuclear PIP2 is depicted. However, its exact localization within the nucleus remains unknown [modified from references (212) and (137), with permission].

Figure 2. Figure 2.

Physiological and pathophysiological actions of Ca2+ in hepatocytes. 1. Cytosolic and mitochondrial Ca2+ signals are closely interrelated. Ca2+ is transmitted from inositol 1,4,5‐trisphosphate receptors (InsP3Rs) to mitochondria, leading to an increase in mitochondrial free Ca2+ and the formation of the permeability transition pore (PTP). Reversible opening of the PTP is observed in normal mitochondrial function and shapes Ca2+ signals, but persistent opening of the PTP leads to leakage of cytochrome c, augmenting the cellular sensitivity to apoptotic stimuli. 2. Type II InsP3R‐mediated Ca2+ release regulates organic anion and bile salt secretion through the insertion of the transporters multidrug resistance‐associated protein 2 (MRP2) and bile salt export pump (BSEP), respectively, into the canalicular membrane. Loss of this isoform results in impaired transporter activity and contributes to the pathophysiology of intrahepatic cholestasis. 3. Nuclear Ca2+ is essential for cell‐cycle progression through the control of gene transcription and expression of proliferative proteins. Furthermore, nuclear Ca2+ may be associated with liver tumor growth. 4. The endoplasmic reticulum (ER) regulates protein folding, quality control, trafficking, and targeting, and these depend on adequate amounts of Ca2+ in the ER lumen. Unbalance between ER load and protein‐folding capacity leads to ER stress. In obesity, liver expression and activity of SERCA are impaired, leading to ER stress and defective glucose metabolism.

Figure 3. Figure 3.

Ca2+ waves begin in the apical region of hepatocytes. (A) Confocal images of an isolated rat hepatocyte couplet loaded with the Ca2+ sensitive dye Fluo‐4/AM and stimulated with vasopressin. Serial images of the region of interest outlined in yellow show that a Ca2+ wave starts in the apical (a) region of the cell and spreads to the basolateral (b) region. Images were pseudocolored according to the scale shown at the bottom. (B) Graphical representation of the fluorescence increase in the apical and basolateral region shows that the apical Ca2+ signal precedes the basolateral Ca2+ signal [modified from reference (264), with permission].

Figure 4. Figure 4.

Inositol 1,4,5‐trisphosphate receptors (InsP3R) expression is lost in bile duct epithelia after bile duct ligation. Confocal immunofluorescence of liver sections from normal rats and rats subjected to bile duct ligation (BDL) labeled with isoform‐specific InsP3R antibodies (green) and rhodamine phalloidin (red). Type 1 InsP3R labeling in normal bile duct cells (A) is found throughout each cell although is expressed at low levels, similar to that observed 2 weeks after BDL (B). Type 2 InsP3R labeling is seen throughout each cell in normal liver sections (C) and it is nearly absent 2 weeks after BDL (D). Type 3 InsP3R labeling is found predominantly in the apical region of bile duct cells in normal liver sections (E) and is also markedly reduced 2 weeks after BDL (F) [reprinted from reference (356), with permission].



Figure 1.

Molecular machinery for Ca2+ signal formation in hepatocytes. Ca2+ signals may be generated by Ca2+‐mobilizing hormones (through activation of G‐protein‐coupled receptors) or growth factors (through receptor tyrosine kinases). Binding of a ligand to its specific receptor leads to the activation of phospholipase C (PLC), which hydrolyzes Phosphotidylinositol‐4‐5‐bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5‐trisphosphate (InsP3). DAG remains in the plasma membrane and InsP3 diffuses throughout the cytosol and binds to the InsP3 receptor (InsP3R) in the endoplasmic reticulum to allow Ca2+ release to the cytosol. Alternatively, receptor tyrosine kinases may translocate to the nucleus to locally activate PLC and induce Ca2+ release from the nucleoplasmic reticulum into the nucleoplasm. Nuclear PIP2 is depicted. However, its exact localization within the nucleus remains unknown [modified from references (212) and (137), with permission].



Figure 2.

Physiological and pathophysiological actions of Ca2+ in hepatocytes. 1. Cytosolic and mitochondrial Ca2+ signals are closely interrelated. Ca2+ is transmitted from inositol 1,4,5‐trisphosphate receptors (InsP3Rs) to mitochondria, leading to an increase in mitochondrial free Ca2+ and the formation of the permeability transition pore (PTP). Reversible opening of the PTP is observed in normal mitochondrial function and shapes Ca2+ signals, but persistent opening of the PTP leads to leakage of cytochrome c, augmenting the cellular sensitivity to apoptotic stimuli. 2. Type II InsP3R‐mediated Ca2+ release regulates organic anion and bile salt secretion through the insertion of the transporters multidrug resistance‐associated protein 2 (MRP2) and bile salt export pump (BSEP), respectively, into the canalicular membrane. Loss of this isoform results in impaired transporter activity and contributes to the pathophysiology of intrahepatic cholestasis. 3. Nuclear Ca2+ is essential for cell‐cycle progression through the control of gene transcription and expression of proliferative proteins. Furthermore, nuclear Ca2+ may be associated with liver tumor growth. 4. The endoplasmic reticulum (ER) regulates protein folding, quality control, trafficking, and targeting, and these depend on adequate amounts of Ca2+ in the ER lumen. Unbalance between ER load and protein‐folding capacity leads to ER stress. In obesity, liver expression and activity of SERCA are impaired, leading to ER stress and defective glucose metabolism.



Figure 3.

Ca2+ waves begin in the apical region of hepatocytes. (A) Confocal images of an isolated rat hepatocyte couplet loaded with the Ca2+ sensitive dye Fluo‐4/AM and stimulated with vasopressin. Serial images of the region of interest outlined in yellow show that a Ca2+ wave starts in the apical (a) region of the cell and spreads to the basolateral (b) region. Images were pseudocolored according to the scale shown at the bottom. (B) Graphical representation of the fluorescence increase in the apical and basolateral region shows that the apical Ca2+ signal precedes the basolateral Ca2+ signal [modified from reference (264), with permission].



Figure 4.

Inositol 1,4,5‐trisphosphate receptors (InsP3R) expression is lost in bile duct epithelia after bile duct ligation. Confocal immunofluorescence of liver sections from normal rats and rats subjected to bile duct ligation (BDL) labeled with isoform‐specific InsP3R antibodies (green) and rhodamine phalloidin (red). Type 1 InsP3R labeling in normal bile duct cells (A) is found throughout each cell although is expressed at low levels, similar to that observed 2 weeks after BDL (B). Type 2 InsP3R labeling is seen throughout each cell in normal liver sections (C) and it is nearly absent 2 weeks after BDL (D). Type 3 InsP3R labeling is found predominantly in the apical region of bile duct cells in normal liver sections (E) and is also markedly reduced 2 weeks after BDL (F) [reprinted from reference (356), with permission].

References
 1. Adams JM, Cory S. The Bcl‐2 protein family: Arbiters of cell survival. Science 281: 1322–1326, 1998.
 2. Akazawa Y, Cazanave S, Mott JL, Elmi N, Bronk SF, Kohno S, Charlton MR, Gores GJ. Palmitoleate attenuates palmitate‐induced Bim and PUMA up‐regulation and hepatocyte lipoapoptosis. J Hepatol 52: 586–593, 2010.
 3. Alonso MT, Garcia‐Sancho J. Nuclear Ca(2+) signalling. Cell Calcium 49: 280–289, 2011.
 4. Alpini G, Glaser SS, Ueno Y, Pham L, Podila PV, Caligiuri A, Lesage G, Larusso NF. Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. Am J Physiol 274: G767‐G775, 1998.
 5. Alpini G, Lenzi R, Zhai WR, Slott PA, Liu MH, Sarkozi L, Tavoloni N. Bile secretory function of intrahepatic biliary epithelium in the rat. Am J Physiol 257: G124‐G133, 1989.
 6. Alvaro D, Alpini G, Jezequel AM, Bassotti C, Francia C, Fraioli F, Romeo R, Marucci L, Le Sage G, Glaser SS, Benedetti A. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J Clin Invest 100: 1349–1362, 1997.
 7. Anderson PA, Greenberg RM. Phylogeny of ion channels: Clues to structure and function. Comp Biochem Physiol B Biochem Mol Biol 129: 17–28, 2001.
 8. Andrade V, Guerra M, Jardim C, Melo F, Silva W, Ortega JM, Robert M, Nathanson MH, Leite F. Nucleoplasmic calcium regulates cell proliferation through legumain. J Hepatol 55: 626–635, 2011.
 9. Angelis Campos AC, Rodrigues MA, de Andrade C, de Goes AM, Nathanson MH, Gomes DA. Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin‐dependent pathway. Biochem Biophys Res Commun 412: 341–346, 2011.
 10. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 281: 1305–1308, 1998.
 11. Badminton MN, Campbell AK, Rembold CM. Differential regulation of nuclear and cytosolic Ca2+ in HeLa cells. J Biol Chem 271: 31210–31214, 1996.
 12. Baffy G, Yang LJ, Michalopoulos GK, Williamson JR. Hepatocyte growth‐factor induces calcium mobilization and inositol phosphate production in rat hepatocytes. J Cell Physiol 153: 332–339, 1992.
 13. Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ. Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol Chem 282: 27141–27154, 2007.
 14. Barritt GJ, Chen J, Rychkov GY. Ca(2+)‐permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology. Biochim Biophys Acta 1783: 651–672, 2008.
 15. Barritt GJ, Litjens TL, Castro J, Aromataris E, Rychkov GY. Store‐operated Ca2+ channels and microdomains of Ca2+ in liver cells. Clin Exp Pharmacol Physiol 36: 77–83, 2009.
 16. Bartlett PJ, Young KW, Nahorski SR, Challiss RA. Single cell analysis and temporal profiling of agonist‐mediated inositol 1,4,5‐trisphosphate, Ca2+, diacylglycerol, and protein kinase C signaling using fluorescent biosensors. J Biol Chem 280: 21837–21846, 2005.
 17. Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ. Phosphorylation of BCL‐2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207–1216, 2004.
 18. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 115: 209–218, 2005.
 19. Benali‐Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R, Paterlini‐Brechot P. Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24: 4921–4933, 2005.
 20. Bernardi P. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev 79: 1127–1155, 1999.
 21. Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly‐Dyson E, Di Lisa F, Forte MA. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273: 2077–2099, 2006.
 22. Bernardi P, Rasola A. Calcium and cell death: The mitochondrial connection. Subcell Biochem 45: 481–506, 2007.
 23. Berridge MJ. Inositol trisphosphate and calcium signaling. Ann N Y Acad Sci 766: 31–43, 1995.
 24. Berridge MJ. Elementary and global aspects of calcium signalling. J Physiol 499 (Pt 2): 291–306, 1997.
 25. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517–529, 2003.
 26. Berridge MJ, Galione A. Cytosolic calcium oscillators. FASEB J 2: 3074–3082, 1988.
 27. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 341: 197–205, 1989.
 28. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1: 11–21, 2000.
 29. Beuers U, Bilzer M, Chittattu A, Kullak‐Ublick GA, Keppler D, Paumgartner G, Dombrowski F. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C‐dependent mechanisms in cholestatic rat liver. Hepatology 33: 1206–1216, 2001.
 30. Beuers U, Nathanson MH, Boyer JL. Effects of tauroursodeoxycholic acid on cytosolic Ca2+ signals in isolated rat hepatocytes. Gastroenterology 104: 604–612, 1993.
 31. Beuers U, Nathanson MH, Isales CM, Boyer JL. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest 92: 2984–2993, 1993.
 32. Bezprozvanny I. The inositol 1,4,5‐trisphosphate receptors. Cell Calcium 38: 261–272, 2005.
 33. Bezprozvanny I, Watras J, Ehrlich BE. Bell‐shaped calcium‐response curves of Ins(1,4,5)P3‐ and calcium‐gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751–754, 1991.
 34. Blackmore PF, Assimacopoulos‐Jeannet F, Chan TM, Exton JH. Studies on alpha‐adrenergic activation of hepatic glucose output. Insulin inhibition of alpha‐adrenergic and glucagon actions in normal and calcium‐depleted hepatocytes. J Biol Chem 254: 2828–2834, 1979.
 35. Blackmore PF, Strickland WG, Bocckino SB, Exton JH. Mechanism of hepatic glycogen synthase inactivation induced by Ca2+‐mobilizing hormones. Studies using phospholipase C and phorbol myristate acetate. Biochem J 237: 235–242, 1986.
 36. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium‐dependent apoptosis. Nat Cell Biol 5: 1051–1061, 2003.
 37. Boehning D, van Rossum DB, Patterson RL, Snyder SH. A peptide inhibitor of cytochrome c/inositol 1,4,5‐trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci U S A 102: 1466–1471, 2005.
 38. Boitano S, Dirksen ER, Evans WH. Sequence‐specific antibodies to connexins block intercellular calcium signaling through gap junctions. Cell Calcium 23: 1–9, 1998.
 39. Boitano S, Dirksen ER, Sanderson MJ. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258: 292–295, 1992.
 40. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 15: 255–273, 2004.
 41. Bootman MD, Berridge MJ, Roderick HL. Calcium signalling: More messengers, more channels, more complexity. Curr Biol 12: R563‐R565, 2002.
 42. Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47: 2726–2737, 2006.
 43. Bouchard MJ, Puro RJ, Wang L, Schneider RJ. Activation and inhibition of cellular calcium and tyrosine kinase signaling pathways identify targets of the HBx protein involved in hepatitis B virus replication. J Virol 77: 7713–7719, 2003.
 44. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol 78: 12725–12734, 2004.
 45. Bouchard MJ, Wang L, Schneider RJ. Activation of focal adhesion kinase by hepatitis B virus HBx protein: Multiple functions in viral replication. J Virol 80: 4406–4414, 2006.
 46. Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 294: 2376–2378, 2001.
 47. Boucherie S, Koukoui O, Nicolas V, Combettes L. Cholestatic bile acids inhibit gap junction permeability in rat hepatocyte couplets and normal rat cholangiocytes. J Hepatol 42: 244–251, 2005.
 48. Bouscarel B, Fromm H, Nussbaum R. Ursodeoxycholate mobilizes intracellular Ca2+ and activates phosphorylase a in isolated hepatocytes. Am J Physiol 264: G243‐G251, 1993.
 49. Bradford PG, Maglich JM, Kirkwood KL. IL‐1 beta increases type 1 inositol trisphosphate receptor expression and IL‐6 secretory capacity in osteoblastic cell cultures. Mol Cell Biol Res Commun 3: 73–75, 2000.
 50. Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S. Essential requirement for two‐pore channel 1 in NAADP‐mediated calcium signaling. J Cell Biol 186: 201–209, 2009.
 51. Brini M, Murgia M, Pasti L, Picard D, Pozzan T, Rizzuto R. Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J 12: 4813–4819, 1993.
 52. Bruce JI, Straub SV, Yule DI. Crosstalk between cAMP and Ca2+ signaling in non‐excitable cells. Cell Calcium 34: 431–444, 2003.
 53. Bruck R, Nathanson MH, Roelofsen H, Boyer JL. Effects of protein kinase C and cytosolic Ca2+ on exocytosis in the isolated perfused rat liver. Hepatology 20: 1032–1040, 1994.
 54. Burdakov D, Petersen OH, Verkhratsky A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 38: 303–310, 2005.
 55. Burgess GM, Bird GS, Obie JF, Putney JW, Jr. The mechanism for synergism between phospholipase C‐ and adenylylcyclase‐linked hormones in liver. Cyclic AMP‐dependent kinase augments inositol trisphosphate‐mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem 266: 4772–4781, 1991.
 56. Burgstahler AD, Nathanson MH. Coordination of calcium waves among hepatocytes: Teamwork gets the job done. Hepatology 27: 634–635, 1998.
 57. Bustamante JO, Michelette ER, Geibel JP, Dean DA, Hanover JA, McDonnell TJ. Calcium, ATP and nuclear pore channel gating. Pflugers Arch 439: 433–444, 2000.
 58. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX. NAADP mobilizes calcium from acidic organelles through two‐pore channels. Nature 459: 596–600, 2009.
 59. Camello‐Almaraz C, Gomez‐Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 291: C1082‐C1088, 2006.
 60. Cancela JM, Churchill GC, Galione A. Coordination of agonist‐induced Ca2+‐signalling patterns by NAADP in pancreatic acinar cells. Nature 398: 74–76, 1999.
 61. Carafoli E. The fateful encounter of mitochondria with calcium: How did it happen? Biochim Biophys Acta 1797: 595–606, 2010.
 62. Cardenas C, Escobar M, Garcia A, Osorio‐Reich M, Hartel S, Foskett JK, Franzini‐Armstrong C. Visualization of inositol 1,4,5‐trisphosphate receptors on the nuclear envelope outer membrane by freeze‐drying and rotary shadowing for electron microscopy. J Struct Biol 171: 372–381, 2010.
 63. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC. Regulation of cell death protease caspase‐9 by phosphorylation. Science 282: 1318–1321, 1998.
 64. Carver RS, Stevenson MC, Scheving LA, Russell WE. Diverse expression of ErbB receptor proteins during rat liver development and regeneration. Gastroenterology 123: 2017–2027, 2002.
 65. Cazanave SC, Mott JL, Elmi NA, Bronk SF, Werneburg NW, Akazawa Y, Kahraman A, Garrison SP, Zambetti GP, Charlton MR, Gores GJ. JNK1‐dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 284: 26591–26602, 2009.
 66. Chami M, Oules B, Paterlini‐Brechot P. Cytobiological consequences of calcium‐signaling alterations induced by human viral proteins. Biochim Biophys Acta 1763: 1344–1362, 2006.
 67. Charest R, Blackmore PF, Berthon B, Exton JH. Changes in free cytosolic Ca2+ in hepatocytes following alpha 1‐adrenergic stimulation. Studies on Quin‐2‐loaded hepatocytes. J Biol Chem 258: 8769–8773, 1983.
 68. Chen HS, Kaneko S, Girones R, Anderson RW, Hornbuckle WE, Tennant BC, Cote PJ, Gerin JL, Purcell RH, Miller RH. The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J Virol 67: 1218–1226, 1993.
 69. Choe CU, Ehrlich BE. The inositol 1,4,5‐trisphosphate receptor (IP3R) and its regulators: Sometimes good and sometimes bad teamwork. Sci STKE (363): re15, 2006.
 70. Choi Y, Gyoo PS, Yoo JH, Jung G. Calcium ions affect the hepatitis B virus core assembly. Virology 332: 454–463, 2005.
 71. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A. NAADP mobilizes Ca(2+) from reserve granules, lysosome‐related organelles, in sea urchin eggs. Cell 111: 703–708, 2002.
 72. Clapham DE. Calcium signaling. Cell 80: 259–268, 1995.
 73. Clark EA, Brugge JS. Integrins and signal transduction pathways: The road taken. Science 268: 233–239, 1995.
 74. Cocco L, Faenza I, Fiume R, Maria BA, Gilmour RS, Manzoli FA. Phosphoinositide‐specific phospholipase C (PI‐PLC) beta1 and nuclear lipid‐dependent signaling. Biochim Biophys Acta 1761: 509–521, 2006.
 75. Combettes L, Berthon B, Doucet E, Erlinger S, Claret M. Bile acids mobilise internal Ca2 +independently of external Ca2+ in rat hepatocytes. Eur J Biochem 190: 619–623, 1990.
 76. Combettes L, Dumont M, Berthon B, Erlinger S, Claret M. Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem 263: 2299–2303, 1988.
 77. Combettes L, Tran D, Tordjmann T, Laurent M, Berthon B, Claret M. Ca(2+)‐mobilizing hormones induce sequentially ordered Ca2+ signals in multicellular systems of rat hepatocytes. Biochem J 304 (Pt 2): 585–594, 1994.
 78. Correa PR, Guerra MT, Leite MF, Spray DC, Nathanson MH. Endotoxin unmasks the role of gap junctions in the liver. Biochem Biophys Res Commun 322: 718–726, 2004.
 79. Craske M, Takeo T, Gerasimenko O, Vaillant C, Torok K, Petersen OH, Tepikin AV. Hormone‐induced secretory and nuclear translocation of calmodulin: Oscillations of calmodulin concentration with the nucleus as an integrator. Proc Natl Acad Sci U S A 96: 4426–4431, 1999.
 80. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 (Pt 2): 233–249, 1999.
 81. Crompton M, Kunzi M, Carafoli E. The calcium‐induced and sodium‐induced effluxes of calcium from heart mitochondria. Evidence for a sodium‐calcium carrier. Eur J Biochem 79: 549–558, 1977.
 82. Cruise JL, Muga SJ, Lee YS, Michalopoulos GK. Regulation of hepatocyte growth ‐ alpha‐1 adrenergic‐receptor and Ras P21 changes in liver‐regeneration. J Cell Physiol 140: 195–201, 1989.
 83. Cruz LN, Guerra MT, Kruglov E, Mennone A, Garcia CR, Chen J, Nathanson MH. Regulation of multidrug resistance‐associated protein 2 by calcium signaling in mouse liver. Hepatology 52: 327–337, 2010.
 84. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174: 915–921, 2006.
 85. Csordas G, Thomas AP, Hajnoczky G. Quasi‐synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18: 96–108, 1999.
 86. Czochra P, Klopcic B, Meyer E, Herkel J, Garcia‐Lazaro JF, Thieringer F, Schirmacher P, Biesterfeld S, Galle PR, Lohse AW, Kanzler S. Liver fibrosis induced by hepatic overexpression of PDGF‐B in transgenic mice. J Hepatol 45: 419–428, 2006.
 87. De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2 +oscillations. Science 279: 227–230, 1998.
 88. De Young GW, Keizer J. A single‐pool inositol 1,4,5‐trisphosphate‐receptor‐based model for agonist‐stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A 89: 9895–9899, 1992.
 89. Dehaye JP, Hughes BP, Blackmore PF, Exton JH. Insulin inhibition of alpha‐adrenergic actions in liver. Biochem J 194: 949–956, 1981.
 90. Deisseroth K, Heist EK, Tsien RW. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392: 198–202, 1998.
 91. Deisseroth K, Tsien RW. Dynamic multiphosphorylation passwords for activity‐dependent gene expression. Neuron 34: 179–182, 2002.
 92. Dellis O, Dedos SG, Tovey SC, Taufiq UR, Dubel SJ, Taylor CW. Ca2+ entry through plasma membrane IP3 receptors. Science 313: 229–233, 2006.
 93. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, Brenner C. Endoplasmic reticulum stress induces calcium‐dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27: 285–299, 2008.
 94. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid‐induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121: 140–147, 2001.
 95. Diaz‐Munoz M, Canedo‐Merino R, Gutierrez‐Salinas J, Hernandez‐Munoz R. Modifications of intracellular calcium release channels and calcium mobilization following 70% hepatectomy. Arch Biochem Biophys 349: 105–112, 1998.
 96. Dixon CJ, Hall JF, Webb TE, Boarder MR. Regulation of rat hepatocyte function by P2Y receptors: Focus on control of glycogen phosphorylase and cyclic AMP by 2‐methylthioadenosine 5′‐diphosphate. J Pharmacol Exp Ther 311: 334–341, 2004.
 97. Dixon CJ, White PJ, Hall JF, Kingston S, Boarder MR. Regulation of human hepatocytes by P2Y receptors: Control of glycogen phosphorylase, Ca2+, and mitogen‐activated protein kinases. J Pharmacol Exp Ther 313: 1305–1313, 2005.
 98. Dixon CJ, Woods NM, Webb TE, Green AK. Evidence that rat hepatocytes co‐express functional P2Y1 and P2Y2 receptors. Br J Pharmacol 129: 764–770, 2000.
 99. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386: 855–858, 1997.
 100. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933–936, 1998.
 101. Dranoff JA, Masyuk AI, Kruglov EA, Larusso NF, Nathanson MH. Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 281: G1059‐G1067, 2001.
 102. Dranoff JA, Ogawa M, Kruglov EA, Gaca MD, Sevigny J, Robson SC, Wells RG. Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287: G417‐G424, 2004.
 103. Dufour JF, Luthi M, Forestier M, Magnino F. Expression of inositol 1,4,5‐trisphosphate receptor isoforms in rat cirrhosis. Hepatology 30: 1018–1026, 1999.
 104. DuPont G, Combettes L, Leybaert L. Calcium dynamics: Spatio‐temporal organization from the subcellular to the organ level. Int Rev Cytol 261: 193–245, 2007.
 105. DuPont G, Swillens S, Clair C, Tordjmann T, Combettes L. Hierarchical organization of calcium signals in hepatocytes: From experiments to models. Biochim Biophys Acta 1498: 134–152, 2000.
 106. Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5: 440–446, 2003.
 107. Eugenin EA, Gonzalez H, Saez CG, Saez JC. Gap junctional communication coordinates vasopressin‐induced glycogenolysis in rat hepatocytes. Am J Physiol 274: G1109‐G1116, 1998.
 108. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 411: 342–348, 2001.
 109. Exton JH. Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab Rev 3: 163–183, 1987.
 110. Failli P, Ruocco C, De Franco R, Caligiuri A, Gentilini A, Giotti A, Gentilini P, Pinzani M. The mitogenic effect of platelet‐derived growth factor in human hepatic stellate cells requires calcium influx. Am J Physiol 269: C1133‐C1139, 1995.
 111. Fallon MB, Nathanson MH, Mennone A, Saez JC, Burgstahler AD, Anderson JM. Altered expression and function of hepatocyte gap junctions after common bile duct ligation in the rat. Am J Physiol 268: C1186‐C1194, 1995.
 112. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 43: S45‐S53, 2006.
 113. Feng L, Krausfriedmann N. Changes in 1,4,5‐inositol trisphosphate binding following partial‐hepatectomy. Biochem Biophys Res Commun 205: 291–297, 1994.
 114. Finch EA, Turner TJ, Goldin SM. Calcium as a coagonist of inositol 1,4,5‐trisphosphate‐induced calcium release. Science 252: 443–446, 1991.
 115. Fiorotto R, Spirli C, Fabris L, Cadamuro M, Okolicsanyi L, Strazzabosco M. Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR‐dependent ATP secretion. Gastroenterology 133: 1603–1613, 2007.
 116. Fitz JG, Basavappa S, McGill J, Melhus O, Cohn JA. Regulation of membrane chloride currents in rat bile duct epithelial cells. J Clin Invest 91: 319–328, 1993.
 117. Foskett JK, Roifman CM, Wong D. Activation of calcium oscillations by thapsigargin in parotid acinar cells. J Biol Chem 266: 2778–2782, 1991.
 118. Fox JL, Burgstahler AD, Nathanson MH. Mechanism of long‐range Ca2+ signalling in the nucleus of isolated rat hepatocytes. Biochem J 326 (Pt 2): 491–495, 1997.
 119. Foyouzi‐Youssefi R, Arnaudeau S, Borner C, Kelley WL, Tschopp J, Lew DP, Demaurex N, Krause KH. Bcl‐2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci U S A 97: 5723–5728, 2000.
 120. Francis H, Glaser S, DeMorrow S, Gaudio E, Ueno Y, Venter J, Dostal D, Onori P, Franchitto A, Marzioni M, Vaculin S, Vaculin B, Katki K, Stutes M, Savage J, Alpini G. Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol Cell Physiol 295: C499‐C513, 2008.
 121. Francis H, Glaser S, Ueno Y, Lesage G, Marucci L, Benedetti A, Taffetani S, Marzioni M, Alvaro D, Venter J, Reichenbach R, Fava G, Phinizy JL, Alpini G. cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. J Hepatol 41: 528–537, 2004.
 122. Francis HL, DeMorrow S, Franchitto A, Venter JK, Mancinelli RA, White MA, Meng F, Ueno Y, Carpino G, Renzi A, Baker KK, Shine HE, Francis TC, Gaudio E, Alpini GD, Onori P. Histamine stimulates the proliferation of small and large cholangiocytes by activation of both IP(3)/Ca(2+) and cAMP‐dependent signaling mechanisms. Lab Invest 92: 282–294, 2012.
 123. Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR, Hotamisligil GS. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473: 528–531, 2011.
 124. Fukuda K, Yamamoto M. Acquisition of resistance to apoptosis and necrosis by Bcl‐xL over‐expression in rat hepatoma McA‐RH8994 cells. J Gastroenterol Hepatol 14: 682–690, 1999.
 125. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5‐trisphosphate‐binding protein P400. Nature 342: 32–38, 1989.
 126. Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, Kitaguchi T, Takahashi‐Iwanaga H, Noda T, Aruga J, Mikoshiba K. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309: 2232–2234, 2005.
 127. Galione A, Churchill GC. Interactions between calcium release pathways: Multiple messengers and multiple stores. Cell Calcium 32: 343–354, 2002.
 128. Galione A, Petersen OH. The NAADP receptor: New receptors or new regulation? Mol Interv 5: 73–79, 2005.
 129. Gaspers LD, Thomas AP. Calcium signaling in liver. Cell Calcium 38: 329–342, 2005.
 130. Gearhart TL, Bouchard MJ. Replication of the hepatitis B virus requires a calcium‐dependent HBx‐induced G1 phase arrest of hepatocytes. Virology 407: 14–25, 2010a.
 131. Gearhart TL, Bouchard MJ. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J Virol 84: 2675–2686, 2010b.
 132. Gerasimenko O, Gerasimenko J. New aspects of nuclear calcium signalling. J Cell Sci 117: 3087–3094, 2004.
 133. Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. ATP‐dependent accumulation and inositol trisphosphate‐ or cyclic ADP‐ribose‐mediated release of Ca2+ from the nuclear envelope. Cell 80: 439–444, 1995.
 134. Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. Calcium transport pathways in the nucleus. Pflugers Arch 432: 1–6, 1996.
 135. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128: 893–904, 1995.
 136. Gincel D, Zaid H, Shoshan‐Barmatz V. Calcium binding and translocation by the voltage‐dependent anion channel: A possible regulatory mechanism in mitochondrial function. Biochem J 358: 147–155, 2001.
 137. Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, Bennett AM, Nathanson MH. c‐Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 283: 4344–4351, 2008.
 138. Gonzales E, Julien B, Serriere‐Lanneau V, Nicou A, Doignon I, Lagoudakis L, Garcin I, Azoulay D, Duclos‐Vallee JC, Castaing D, Samuel D, Hernandez‐Garcia A, Awad SS, Combettes L, Thevananther S, Tordjmann T. ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 52: 54–62, 2010.
 139. Gonzalez HE, Eugenin EA, Garces G, Solis N, Pizarro M, Accatino L, Saez JC. Regulation of hepatic connexins in cholestasis: Possible involvement of Kupffer cells and inflammatory mediators. Am J Physiol Gastrointest Liver Physiol 282: G991‐G1001, 2002.
 140. Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: Folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8: 1391–1418, 2006.
 141. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, Larusso NF. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 104: 19138–19143, 2007.
 142. Grimm S, Brdiczka D. The permeability transition pore in cell death. Apoptosis 12: 841–855, 2007.
 143. Groigno L, Whitaker M. An anaphase calcium signal controls chromosome disjunction in early sea urchin embryos. Cell 92: 193–204, 1998.
 144. Gross A, McDonnell JM, Korsmeyer SJ. BCL‐2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911, 1999.
 145. Guerra MT, Fonseca EA, Melo FM, Andrade VA, Aguiar CJ, Andrade LM, Pinheiro ACN, Casteluber MCF, Resende RR, Pinto MCX, Fernandes SOA, Cardoso VN, Souza‐Fagundes EM, Menezes GB, de Paula AM, Nathanson MH, Leite MD. Mitochondrial calcium regulates rat liver regeneration through the modulation of apoptosis. Hepatology 54: 296–306, 2011.
 146. Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: Physiological and pathological relevance. Am J Physiol 267: C313‐C339, 1994.
 147. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Lett 567: 96–102, 2004.
 148. Guo YS, Tang J, Chen B, Huang W, Li Y, Cui HY, Zhang X, Wang SJ, Chen ZN, Jiang JL. ssig‐h3 regulates store‐operated Ca(2+) entry and promotes the invasion of human hepatocellular carcinoma cells. Cell Biol Int 35: 811–817, 2011.
 149. Gwiazda KS, Yang TL, Lin Y, Johnson JD. Effects of palmitate on ER and cytosolic Ca2 +homeostasis in beta‐cells. Am J Physiol Endocrinol Metab 296: E690‐E701, 2009.
 150. Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 396: 81–84, 1998.
 151. Hagar RE, Ehrlich BE. Regulation of the type III InsP(3) receptor by InsP(3) and ATP. Biophys J 79: 271–278, 2000.
 152. Hajnoczky G, Csordas G. Calcium signalling: Fishing out molecules of mitochondrial calcium transport. Curr Biol 20: R888‐R891, 2010.
 153. Hajnoczky G, Hager R, Thomas AP. Mitochondria suppress local feedback activation of inositol 1,4, 5‐trisphosphate receptors by Ca2+. J Biol Chem 274: 14157–14162, 1999.
 154. Hajnoczky G, Robb‐Gaspers LD, Seitz MB, Thomas AP. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82: 415–424, 1995.
 155. Hansen CA, Yang LJ, Williamson JR. Mechanisms of receptor‐mediated Ca2+ signaling in rat hepatocytes. J Biol Chem 266: 18573–18579, 1991.
 156. Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes: A review. Diabetes 51 (Suppl 3): S455‐S461, 2002.
 157. Hardingham GE, Chawla S, Johnson CM, Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385: 260–265, 1997.
 158. Hayashi PH, Di Bisceglie AM. The progression of hepatitis B‐ and C‐infections to chronic liver disease and hepatocellular carcinoma: Epidemiology and pathogenesis. Med Clin North Am 89: 371–389, 2005.
 159. Hems DA, Whitton PD. Control of hepatic glycogenolysis. Physiol Rev 60: 1–50, 1980.
 160. Hennager DJ, Welsh MJ, DeLisle S. Changes in either cytosolic or nucleoplasmic inositol 1,4,5‐trisphosphate levels can control nuclear Ca2+ concentration. J Biol Chem 270: 4959–4962, 1995.
 161. Hernandez E, Leite MF, Guerra MT, Kruglov EA, Bruna‐Romero O, Rodrigues MA, Gomes DA, Giordano FJ, Dranoff JA, Nathanson MH. The spatial distribution of inositol 1,4,5‐trisphosphate receptor isoforms shapes Ca2+ waves. J Biol Chem 282: 10057–10067, 2007.
 162. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, Brandt GS, Iwakoshi NN, Schinzel A, Glimcher LH, Korsmeyer SJ. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312: 572–576, 2006.
 163. Hirata K, Dufour JF, Shibao K, Knickelbein R, O'Neill AF, Bode HP, Cassio D, St Pierre MV, Larusso NF, Leite MF, Nathanson MH. Regulation of Ca(2+) signaling in rat bile duct epithelia by inositol 1,4,5‐trisphosphate receptor isoforms. Hepatology 36: 284–296, 2002.
 164. Hirata K, Nathanson MH. Bile duct epithelia regulate biliary bicarbonate excretion in normal rat liver. Gastroenterology 121: 396–406, 2001.
 165. Hirata K, Pusl T, O'Neill AF, Dranoff JA, Nathanson MH. The type II inositol 1,4,5‐trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes. Gastroenterology 122: 1088–1100, 2002.
 166. Holzinger F, Schteingart CD, Ton‐Nu HT, Eming SA, Monte MJ, Hagey LR, Hofmann AF. Fluorescent bile acid derivatives: Relationship between chemical structure and hepatic and intestinal transport in the rat. Hepatology 26: 1263–1271, 1997.
 167. Hoppe UC. Mitochondrial calcium channels. FEBS Lett 584: 1975–1981, 2010.
 168. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140: 900–917, 2010.
 169. Huertabahena J, Villalobosmolina R, Corvera S, Garciasainz JA. Sensitivity of liver‐cells formed after partial‐hepatectomy to glucagon, vasopressin and angiotensin‐II. Biochim Biophys Acta 763: 120–124, 1983.
 170. Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c‐met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A 101: 4477–4482, 2004.
 171. Humbert JP, Matter N, Artault JC, Koppler P, Malviya AN. Inositol 1,4,5‐trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5‐trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem 271: 478–485, 1996.
 172. Husain SZ, Prasad P, Grant WM, Kolodecik TR, Nathanson MH, Gorelick FS. The ryanodine receptor mediates early zymogen activation in pancreatitis. Proc Natl Acad Sci U S A 102: 14386–14391, 2005.
 173. Ichas F, Jouaville LS, Mazat JP. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153, 1997.
 174. Ichas F, Jouaville LS, Sidash SS, Mazat JP, Holmuhamedov EL. Mitochondrial calcium spiking: A transduction mechanism based on calcium‐induced permeability transition involved in cell calcium signalling. FEBS Lett 348: 211–215, 1994.
 175. Iizuka M, Murata T, Hori M, Ozaki H. Increased contractility of hepatic stellate cells in cirrhosis is mediated by enhanced Ca2+‐dependent and Ca2+‐sensitization pathways. Am J Physiol Gastrointest Liver Physiol 300: G1010‐G1021, 2011.
 176. Irvine RF. Nuclear lipid signalling. Nat Rev Mol Cell Biol 4: 349–360, 2003.
 177. Irvine RF. Nuclear inositide signalling – expansion, structures and clarification. Biochim Biophys Acta 1761: 505–508, 2006.
 178. Ishibashi K, Suzuki M, Imai M. Molecular cloning of a novel form (two‐repeat) protein related to voltage‐gated sodium and calcium channels. Biochem Biophys Res Commun 270: 370–376, 2000.
 179. Jafri MS, Keizer J. Diffusion of inositol 1,4,5‐trisphosphate but not Ca2+ is necessary for a class of inositol 1,4,5‐trisphosphate‐induced Ca2+ waves. Proc Natl Acad Sci U S A 91: 9485–9489, 1994.
 180. Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. Three‐dimensional structure of the type 1 inositol 1,4,5‐trisphosphate receptor at 24 A resolution. EMBO J 21: 3575–3581, 2002.
 181. Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol 13: 827–837, 2011.
 182. Jones BF, Boyles RR, Hwang SY, Bird GS, Putney JW. Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology 48: 1273–1281, 2008.
 183. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377: 438–441, 1995.
 184. Jungermann K, Katz N. Functional specialization of different hepatocyte populations. Physiol Rev 69: 708–764, 1989.
 185. Kahl CR, Means AR. Regulation of cell cycle progression by calcium/calmodulin‐dependent pathways. Endocr Rev 24: 719–736, 2003.
 186. Kanno N, Lesage G, Glaser S, Alpini G. Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 281: G612‐G625, 2001.
 187. Kasai H, Augustine GJ. Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348: 735–738, 1990.
 188. Katz A, Wu D, Simon MI. Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 360: 686–689, 1992.
 189. Kawanishi T, Blank LM, Harootunian AT, Smith MT, Tsien RY. Ca2+ oscillations induced by hormonal stimulation of individual fura‐2‐loaded hepatocytes. J Biol Chem 264: 12859–12866, 1989.
 190. Keppens S, De Wulf H. Characterization of the liver P2‐purinoceptor involved in the activation of glycogen phosphorylase. Biochem J 240: 367–371, 1986.
 191. Khan MT, Wagner L, Yule DI, Bhanumathy C, Joseph SK. Akt kinase phosphorylation of inositol 1,4,5‐trisphosphate receptors. J Biol Chem 281: 3731–3737, 2006.
 192. Khoo KM, Han MK, Park JB, Chae SW, Kim UH, Lee HC, Bay BH, Chang CF. Localization of the cyclic ADP‐ribose‐dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem 275: 24807–24817, 2000.
 193. Kim HR, Lee GH, Ha KC, Ahn T, Moon JY, Lee BJ, Cho SG, Kim S, Seo YR, Shin YJ, Chae SW, Reed JC, Chae HJ. Bax Inhibitor‐1 Is a pH‐dependent regulator of Ca2+ channel activity in the endoplasmic reticulum. J Biol Chem 283: 15946–15955, 2008.
 194. Kim SY, Cho BH, Kim UH. CD38‐mediated Ca2+ signaling contributes to angiotensin II‐induced activation of hepatic stellate cells: Attenuation of hepatic fibrosis by CD38 ablation. J Biol Chem 285: 576–582, 2010.
 195. Kinnally KW, Peixoto PM, Ryu SY, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813: 616–622, 2011.
 196. Kitamura T, Brauneis U, Gatmaitan Z, Arias IM. Extracellular ATP, intracellular calcium and canalicular contraction in rat hepatocyte doublets. Hepatology 14: 640–647, 1991.
 197. Kitamura T, Watanabe S, Ikejima KI, Hirose M, Miyazaki A, Yumoto A, Suzuki S, Yamada T, Kitami N, Sato N. Different features of Ca2+ oscillations in differentiated and undifferentiated hepatocyte doublets. Hepatology 21: 1395–1404, 1995.
 198. Kojima N, Hori M, Murata T, Morizane Y, Ozaki H. Different profiles of Ca2+ responses to endothelin‐1 and PDGF in liver myofibroblasts during the process of cell differentiation. Br J Pharmacol 151: 816–827, 2007.
 199. Kraskiewicz H, FitzGerald U. InterfERing with endoplasmic reticulum stress. Trends Pharmacol Sci 33: 53–63, 2012.
 200. Krebs EG. The Albert Lasker Medical Awards. Role of the cyclic AMP‐dependent protein kinase in signal transduction. JAMA 262: 1815–1818, 1989.
 201. Kruglov EA, Correa PR, Arora G, Yu J, Nathanson MH, Dranoff JA. Molecular basis for calcium signaling in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292: G975–G982, 2007.
 202. Kruglov EA, Gautam S, Guerra MT, Nathanson MH. Type 2 inositol 1,4,5‐trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology 54: 1790–1799, 2011.
 203. Kullak‐Ublick GA, Meier PJ. Mechanisms of cholestasis. Clin Liver Dis 4: 357–385, 2000.
 204. Kumar NM, Gilula NB. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol 103: 767–776, 1986.
 205. Kupzig S, Deaconescu D, Bouyoucef D, Walker SA, Liu Q, Polte CL, Daumke O, Ishizaki T, Lockyer PJ, Wittinghofer A, Cullen PJ. GAP1 family members constitute bifunctional Ras and Rap GTPase‐activating proteins. J Biol Chem 281: 9891–9900, 2006.
 206. Lagoudakis L, Garcin I, Julien B, Nahum K, Gomes DA, Combettes L, Nathanson MH, Tordjmann T. Cytosolic calcium regulates liver regeneration in the rat. Hepatology 52: 602–611, 2010.
 207. Lanini L, Bachs O, Carafoli E. The calcium pump of the liver nuclear membrane is identical to that of endoplasmic reticulum. J Biol Chem 267: 11548–11552, 1992.
 208. Lazaridis KN, Strazzabosco M, Larusso NF. The cholangiopathies: Disorders of biliary epithelia. Gastroenterology 127: 1565–1577, 2004.
 209. Lee HC, Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP‐ribose. J Biol Chem 270: 2152–2157, 1995.
 210. Lei K, Davis RJ. JNK phosphorylation of Bim‐related members of the Bcl2 family induces Bax‐dependent apoptosis. Proc Natl Acad Sci U S A 100: 2432–2437, 2003.
 211. Leite FM, Guerra MT, Nathanson MH. Ca2+ Signaling in the Liver. In: Arias I, Wolkoff A, Boyer J, Shafritz D, Fausto N, Alter H, Cohen D. The Liver: Biology and Pathobiology. John Wiley & Sons, Ltd, 2009, pp. 485–510.
 212. Leite MF, Burgstahler AD, Nathanson MH. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini. Gastroenterology 122: 415–427, 2002.
 213. Leite MF, Dranoff JA, Gao L, Nathanson MH. Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochem J 337 (Pt 2): 305–309, 1999.
 214. Leite MF, Hirata K, Pusl T, Burgstahler AD, Okazaki K, Ortega JM, Goes AM, Prado MA, Spray DC, Nathanson MH. Molecular basis for pacemaker cells in epithelia. J Biol Chem 277: 16313–16323, 2002.
 215. Leite MF, Thrower EC, Echevarria W, Koulen P, Hirata K, Bennett AM, Ehrlich BE, Nathanson MH. Nuclear and cytosolic calcium are regulated independently. Proc Natl Acad Sci U S A 100: 2975–2980, 2003.
 216. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787: 1395–1401, 2009.
 217. Lesage G, Glaser S, Ueno Y, Alvaro D, Baiocchi L, Kanno N, Phinizy JL, Francis H, Alpini G. Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. Am J Physiol Gastrointest Liver Physiol 281: G182‐G190, 2001.
 218. LeSage GD, Alvaro D, Glaser S, Francis H, Marucci L, Roskams T, Phinizy JL, Marzioni M, Benedetti A, Taffetani S, Barbaro B, Fava G, Ueno Y, Alpini G. Alpha‐1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca(2+)‐ and PKC‐dependent stimulation of cAMP. Hepatology 40: 1116–1127, 2004.
 219. LeSage GD, Glaser SS, Marucci L, Benedetti A, Phinizy JL, Rodgers R, Caligiuri A, Papa E, Tretjak Z, Jezequel AM, Holcomb LA, Alpini G. Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. Am J Physiol 276: G1289‐G1301, 1999.
 220. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)‐induced regulation of ion channel and MAP kinase functions. Nature 376: 737–745, 1995.
 221. Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB. Bcl‐X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5‐trisphosphate receptors. Proc Natl Acad Sci U S A 99: 9830–9835, 2002.
 222. Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY. Cell‐permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392: 936–941, 1998.
 223. Lin C, Hajnoczky G, Thomas AP. Propagation of cytosolic calcium waves into the nuclei of hepatocytes. Cell Calcium 16: 247–258, 1994.
 224. Lin‐Moshier Y, Walseth TF, Churamani D, Davidson SM, Slama JT, Hooper R, Brailoiu E, Patel S, Marchant JS. Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells. J Biol Chem 287: 2296–2307, 2012.
 225. Lipp P, Thomas D, Berridge MJ, Bootman MD. Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J 16: 7166–7173, 1997.
 226. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Jr, Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid‐induced lipotoxicity. Proc Natl Acad Sci U S A 100: 3077–3082, 2003.
 227. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell‐free extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157, 1996.
 228. Llovet JM, Beaugrand M. Hepatocellular carcinoma: Present status and future prospects. J Hepatol 38: S136‐S149, 2003.
 229. Lowe PJ, Miyai K, Steinbach JH, Hardison WG. Hormonal regulation of hepatocyte tight junctional permeability. Am J Physiol 255: G454‐G461, 1988.
 230. Lui PP, Kong SK, Fung KP, Lee CY. The rise of nuclear and cytosolic Ca2+ can be uncoupled in HeLa cells. Pflugers Arch 436: 371–376, 1998.
 231. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490, 1998.
 232. Magnino F, Luthi M, Schmidt K, Dufour JF. The calcium signaling machinery during hepatic regeneration. J Hepatol 32: 78, 2000.
 233. Mak DO, Foskett JK. Single‐channel inositol 1,4,5‐trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei. J Biol Chem 269: 29375–29378, 1994.
 234. Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: Form and function. Trends Cell Biol 21: 362–373, 2011.
 235. Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK‐dependent hepatocyte lipoapoptosis. J Biol Chem 281: 12093–12101, 2006.
 236. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol 54: 795–809, 2011.
 237. Malli R, Graier WF. Mitochondrial Ca2+ channels: Great unknowns with important functions. FEBS Lett 584: 1942–1947, 2010.
 238. Malviya AN, Klein C. Mechanism regulating nuclear calcium signaling. Can J Physiol Pharmacol 84: 403–422, 2006.
 239. Mancinelli R, Franchitto A, Gaudio E, Onori P, Glaser S, Francis H, Venter J, DeMorrow S, Carpino G, Kopriva S, White M, Fava G, Alvaro D, Alpini G. After damage of large bile ducts by gamma‐aminobutyric acid, small ducts replenish the biliary tree by amplification of calcium‐dependent signaling and de novo acquisition of large cholangiocyte phenotypes. Am J Pathol 176: 1790–1800, 2010.
 240. Maranto AR. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5‐trisphosphate receptor expressed in intestinal epithelium. J Biol Chem 269: 1222–1230, 1994.
 241. Marchenko SM, Yarotskyy VV, Kovalenko TN, Kostyuk PG, Thomas RC. Spontaneously active and InsP3‐activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones. J Physiol 565: 897–910, 2005.
 242. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18: 3066–3077, 2004.
 243. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl‐2 family members and mitochondrial dynamics. Dev Cell 21: 92–101, 2011.
 244. Marzioni M, Francis H, Benedetti A, Ueno Y, Fava G, Venter J, Reichenbach R, Mancino MG, Summers R, Alpini G, Glaser S. Ca2+‐dependent cytoprotective effects of ursodeoxycholic and tauroursodeoxycholic acid on the biliary epithelium in a rat model of cholestasis and loss of bile ducts. Am J Pathol 168: 398–409, 2006.
 245. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, Larusso NF. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2 +and cAMP signaling. Gastroenterology 131: 911–920, 2006.
 246. Matsu‐ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K. Cytosolic inositol 1,4,5‐trisphosphate dynamics during intracellular calcium oscillations in living cells. J Cell Biol 173: 755–765, 2006.
 247. Matsumoto K, Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. J Biochem 119: 591–600, 1996.
 248. Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, Yoneshima H, Miyawaki A, Fukuuchi Y, Furuichi T, Okano H, Mikoshiba K, Noda T. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5‐trisphosphate receptor. Nature 379: 168–171, 1996.
 249. Mauger JP. Role of the nuclear envelope in calcium signalling. Biol Cell 104: 70–83, 2012.
 250. McGill JM, Basavappa S, Mangel AW, Shimokura GH, Middleton JP, Fitz JG. Adenosine triphosphate activates ion permeabilities in biliary epithelial cells. Gastroenterology 107: 236–243, 1994.
 251. McPherson PS, Campbell KP. The ryanodine receptor/Ca2+ release channel. J Biol Chem 268: 13765–13768, 1993.
 252. Meldolesi J, Pozzan T. The endoplasmic reticulum Ca2+ store: A view from the lumen. Trends Biochem Sci 23: 10–14, 1998.
 253. Meszaros LG, Bak J, Chu A. Cyclic ADP‐ribose as an endogenous regulator of the non‐skeletal type ryanodine receptor Ca2+ channel. Nature 364: 76–79, 1993.
 254. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6: 87–97, 2000.
 255. Michalopoulos GK, DeFrances MC. Liver regeneration. Science 276: 60–66, 1997.
 256. Michikawa T, Hirota J, Kawano S, Hiraoka M, Yamada M, Furuichi T, Mikoshiba K. Calmodulin mediates calcium‐dependent inactivation of the cerebellar type 1 inositol 1,4,5‐trisphosphate receptor. Neuron 23: 799–808, 1999.
 257. Mikoshiba K. The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol 7: 339–345, 1997.
 258. Minagawa N, Kruglov EA, Dranoff JA, Robert ME, Gores GJ, Nathanson MH. The anti‐apoptotic protein Mcl‐1 inhibits mitochondrial Ca2+ signals. J Biol Chem 280: 33637–33644, 2005.
 259. Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, Lesage G, Akiba Y, Kaunitz JD, Ehrlich BE, Larusso NF, Nathanson MH. Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology 133: 1592–1602, 2007.
 260. Mine T, Kojima I, Ogata E, Nakamura T. Comparison of effects of Hgf and Egf on cellular calcium in rat hepatocytes. Biochem Biophys Res Commun 181: 1173–1180, 1991.
 261. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18: 1303–1308, 1999.
 262. Moseley RH, Wang W, Takeda H, Lown K, Shick L, Ananthanarayanan M, Suchy FJ. Effect of endotoxin on bile acid transport in rat liver: A potential model for sepsis‐associated cholestasis. Am J Physiol 271: G137‐G146, 1996.
 263. Nagata J, Guerra MT, Shugrue CA, Gomes DA, Nagata N, Nathanson MH. Lipid rafts establish calcium waves in hepatocytes. Gastroenterology 133: 256–267, 2007.
 264. Nakamura M, Nagano H, Sakon M, Yamamoto T, Ota H, Wada H, Damdinsuren B, Noda T, Marubashi S, Miyamoto A, Takeda Y, Umeshita K, Nakamori S, Dono K, Monden M. Role of the Fas/FasL pathway in combination therapy with interferon‐alpha and fluorouracil against hepatocellular carcinoma in vitro. J Hepatol 46: 77–88, 2007.
 265. Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology 14: 551–566, 1991.
 266. Nathanson MH, Burgstahler AD. Coordination of hormone‐induced calcium signals in isolated rat hepatocyte couplets: Demonstration with confocal microscopy. Mol Biol Cell 3: 113–121, 1992.
 267. Nathanson MH, Burgstahler AD, Fallon MB. Multistep mechanism of polarized Ca2+ wave patterns in hepatocytes. Am J Physiol 267: G338‐G349, 1994.
 268. Nathanson MH, Burgstahler AD, Masyuk A, Larusso NF. Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J 358: 1–5, 2001.
 269. Nathanson MH, Burgstahler AD, Mennone A, Boyer JL. Characterization of cytosolic Ca2 +signaling in rat bile duct epithelia. Am J Physiol 271: G86‐G96, 1996.
 270. Nathanson MH, Burgstahler AD, Mennone A, Dranoff JA, Rios‐Velez L. Stimulation of bile duct epithelial secretion by glybenclamide in normal and cholestatic rat liver. J Clin Invest 101: 2665–2676, 1998.
 271. Nathanson MH, Burgstahler AD, Mennone A, Fallon MB, Gonzalez CB, Saez JC. Ca2+ waves are organized among hepatocytes in the intact organ. Am J Physiol 269: G167‐G171, 1995.
 272. Nathanson MH, Fallon MB, Padfield PJ, Maranto AR. Localization of the type 3 inositol 1,4,5‐trisphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J Biol Chem 269: 4693–4696, 1994.
 273. Nathanson MH, Gautam A, Bruck R, Isales CM, Boyer JL. Effects of Ca2+ agonists on cytosolic Ca2+ in isolated hepatocytes and on bile secretion in the isolated perfused rat liver. Hepatology 15: 107–116, 1992.
 274. Nathanson MH, Gautam A, Ng OC, Bruck R, Boyer JL. Hormonal regulation of paracellular permeability in isolated rat hepatocyte couplets. Am J Physiol 262: G1079‐G1086, 1992.
 275. Nathanson MH, Padfield PJ, O'Sullivan AJ, Burgstahler AD, Jamieson JD. Mechanism of Ca2 +wave propagation in pancreatic acinar cells. J Biol Chem 267: 18118–18121, 1992.
 276. Nazareth W, Yafei N, Crompton M. Inhibition of anoxia‐induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23: 1351–1354, 1991.
 277. Newton CL, Mignery GA, Sudhof TC. Co‐expression in vertebrate tissues and cell lines of multiple inositol 1,4,5‐trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269: 28613–28619, 1994.
 278. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A‐sensitive channel. J Biol Chem 271: 2185–2192, 1996.
 279. Nicotera P, McConkey DJ, Jones DP, Orrenius S. ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci U S A 86: 453–457, 1989.
 280. Nicou A, Serriere V, Hilly M, Prigent S, Combettes L, Guillon G, Tordjmann T. Remodelling of calcium signalling during liver regeneration in the rat. J Hepatol 46: 247–256, 2007.
 281. Nicou A, Serriere V, Prigent S, Boucherie S, Combettes L, Guillon G, Alonso G, Tordjmann T. Hypothalamic vasopressin release and hepatocyte Ca2+signaling during liver regeneration: An interplay stimulating liver growth and bile flow. Hepatology 38: 564A‐565A, 2003.
 282. Niessen H, Willecke K. Strongly decreased gap junctional permeability to inositol 1,4, 5‐trisphosphate in connexin32 deficient hepatocytes. FEBS Lett 466: 112–114, 2000.
 283. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG, O'Neil RG, McConkey DJ. Bax‐mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277: 20301–20308, 2002.
 284. Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ, Swisher SG. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277: 9219–9225, 2002.
 285. O'Brien EM, Gomes DA, Sehgal S, Nathanson MH. Hormonal regulation of nuclear permeability. J Biol Chem 282: 4210–4217, 2007.
 286. Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L. Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL‐2 family members. Biochem Pharmacol 66: 1335–1340, 2003.
 287. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A 102: 105–110, 2005.
 288. Oh JC, Jeong DL, Kim IK, Oh SH. Activation of calcium signaling by hepatitis B virus‐X protein in liver cells. Exp Mol Med 35: 301–309, 2003.
 289. Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122: 366–375, 2002.
 290. Oshio C, Phillips MJ. Contractility of bile canaliculi: Implications for liver function. Science 212: 1041–1042, 1981.
 291. Panasiuk A, Dzieciol J, Panasiuk B, Prokopowicz D. Expression of p53, Bax and Bcl‐2 proteins in hepatocytes in non‐alcoholic fatty liver disease. World J Gastroenterol 12: 6198–6202, 2006.
 292. Park KS, Sin PJ, Lee DH, Cha SK, Kim MJ, Kim NH, Baik SK, Jeong SW, Kong ID. Switching‐on of serotonergic calcium signaling in activated hepatic stellate cells. World J Gastroenterol 17: 164–173, 2011.
 293. Park SW, Zhou Y, Lee J, Lee J, Ozcan U. Sarco(endo)plasmic reticulum Ca2+‐ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci U S A 107: 19320–19325, 2010.
 294. Patel S, Churchill GC, Galione A. Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci 26: 482–489, 2001.
 295. Patt YZ, Hassan MM, Lozano RD, Brown TD, Vauthey JN, Curley SA, Ellis LM. Phase II trial of systemic continuous fluorouracil and subcutaneous recombinant interferon Alfa‐2b for treatment of hepatocellular carcinoma. J Clin Oncol 21: 421–427, 2003.
 296. Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease: Mechanisms of action and therapeutic use revisited. Hepatology 36: 525–531, 2002.
 297. Peach MJ. Molecular actions of angiotensin. Biochem Pharmacol 30: 2745–2751, 1981.
 298. Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 1201: 183–188, 2010.
 299. Petronilli V, Cola C, Massari S, Colonna R, Bernardi P. Physiological effectors modify voltage sensing by the cyclosporin A‐sensitive permeability transition pore of mitochondria. J Biol Chem 268: 21939–21945, 1993.
 300. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+‐induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)‐dependent and MPT‐independent mechanisms: Role of cardiolipin. J Biol Chem 279: 53103–53108, 2004.
 301. Phillips MJ, Poucell S, Oda M. Mechanisms of cholestasis. Lab Invest 54: 593–608, 1986.
 302. Piccoli C, Scrima R, Quarato G, D'Aprile A, Ripoli M, Lecce L, Boffoli D, Moradpour D, Capitanio N. Hepatitis C virus protein expression causes calcium‐mediated mitochondrial bioenergetic dysfunction and nitro‐oxidative stress. Hepatology 46: 58–65, 2007.
 303. Pierobon N, Renard‐Rooney DC, Gaspers LD, Thomas AP. Ryanodine receptors in liver. J Biol Chem 281: 34086–34095, 2006.
 304. Pinton P, Tsuboi T, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA. Dynamics of glucose‐induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta‐cells. J Biol Chem 277: 37702–37710, 2002.
 305. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 21: 397–416, 2001.
 306. Pitt SJ, Funnell TM, Sitsapesan M, Venturi E, Rietdorf K, Ruas M, Ganesan A, Gosain R, Churchill GC, Zhu MX, Parrington J, Galione A, Sitsapesan R. TPC2 is a novel NAADP‐sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285: 35039–35046, 2010.
 307. Plevin R, Palmer S, Gardner SD, Wakelam MJ. Regulation of bombesin‐stimulated inositol 1,4,5‐trisphosphate generation in Swiss 3T3 fibroblasts by a guanine‐nucleotide‐binding protein. Biochem J 268: 605–610, 1990.
 308. Poenie M, Alderton J, Steinhardt R, Tsien R. Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science 233: 886–889, 1986.
 309. Poupon RE, Poupon R, Balkau B. Ursodiol for the long‐term treatment of primary biliary cirrhosis. The UDCA‐PBC Study Group. N Engl J Med 330: 1342–1347, 1994.
 310. Pozzan T, Rizzuto R. High tide of calcium in mitochondria. Nat Cell Biol 2: E25‐E27, 2000.
 311. Pralong WF, Spat A, Wollheim CB. Dynamic pacing of cell metabolism by intracellular Ca2 +transients. J Biol Chem 269: 27310–27314, 1994.
 312. Pusl T, Nathanson MH. The role of inositol 1,4,5‐trisphosphate receptors in the regulation of bile secretion in health and disease. Biochem Biophys Res Commun 322: 1318–1325, 2004.
 313. Pusl T, Rhode F, Ott T, Drabent B, Willecke K, Beuers U. Gap junctional intercellular communication is not needed for the anticholestatic effect of tauroursodeoxycholic acid in mouse liver. J Hepatol 42: 604–605, 2005.
 314. Pusl T, Wu JJ, Zimmerman TL, Zhang L, Ehrlich BE, Berchtold MW, Hoek JB, Karpen SJ, Nathanson MH, Bennett AM. Epidermal growth factor‐mediated activation of the ETS domain transcription factor Elk‐1 requires nuclear calcium. J Biol Chem 277: 27517–27527, 2002.
 315. Qin Y, Pan X, Tang TT, Zhou L, Gong XG. Anti‐proliferative effects of the novel squamosamide derivative (FLZ) on HepG2 human hepatoma cells by regulating the cell cycle‐related proteins are associated with decreased Ca(2+)/ROS levels. Chem Biol Interact 193: 246–253, 2011.
 316. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492, 1998.
 317. Ramos‐Franco J, Fill M, Mignery GA. Isoform‐specific function of single inositol 1,4,5‐trisphosphate receptor channels. Biophys J 75: 834–839, 1998.
 318. Rasmussen CD, Means AR. The presence of parvalbumin in a nonmuscle cell‐line attenuates progression through mitosis. Mol Endocrinol 3: 588–596, 1989.
 319. Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12: 815–833, 2007.
 320. Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)‐dependent apoptosis and necrosis. Cell Calcium 50: 222–233, 2011.
 321. Reed JC. Bcl‐2 family proteins. Oncogene 17: 3225–3236, 1998.
 322. Reinehr RM, Kubitz R, Peters‐Regehr T, Bode JG, Haussinger D. Activation of rat hepatic stellate cells in culture is associated with increased sensitivity to endothelin 1. Hepatology 28: 1566–1577, 1998.
 323. Rhee SG, Choi KD. Regulation of inositol phospholipid‐specific phospholipase C isozymes. J Biol Chem 267: 12393–12396, 1992.
 324. Rizzuto R, Brini M, Murgia M, Pozzan T. Microdomains with high Ca2+ close to IP3‐sensitive channels that are sensed by neighboring mitochondria. Science 262: 744–747, 1993.
 325. Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86: 369–408, 2006.
 326. Robb‐Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17: 4987–5000, 1998.
 327. Robb‐Gaspers LD, Rutter GA, Burnett P, Hajnoczky G, Denton RM, Thomas AP. Coupling between cytosolic and mitochondrial calcium oscillations: Role in the regulation of hepatic metabolism. Biochim Biophys Acta 1366: 17–32, 1998.
 328. Robb‐Gaspers LD, Thomas AP. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem 270: 8102–8107, 1995.
 329. Roberts SK, Ludwig J, LaRusso NF. The pathobiology of biliary epithelia. Gastroenterology 112: 269–279, 1997.
 330. Rockey DC. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis 21: 337–349, 2001.
 331. Rodrigues MA, Gomes DA, Andrade VA, Leite MF, Nathanson MH. Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology 48: 1621–1631, 2008.
 332. Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM, Nathanson MH. Nucleoplasmic calcium is required for cell proliferation. J Biol Chem 282: 17061–17068, 2007.
 333. Roma MG, Crocenzi FA, Mottino AD. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 14: 6786–6801, 2008.
 334. Roman RM, Bodily KO, Wang Y, Raymond JR, Fitz JG. Activation of protein kinase C alpha couples cell volume to membrane Cl‐ permeability in HTC hepatoma and Mz‐ChA‐1 cholangiocarcinoma cells. Hepatology 28: 1073–1080, 1998.
 335. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529, 2007.
 336. Rooney TA, Renard DC, Sass EJ, Thomas AP. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5‐trisphosphate formation in hepatocytes. J Biol Chem 266: 12272–12282, 1991.
 337. Rooney TA, Sass EJ, Thomas AP. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura‐2‐loaded hepatocytes. J Biol Chem 264: 17131–17141, 1989.
 338. Rooney TA, Sass EJ, Thomas AP. Agonist‐induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J Biol Chem 265: 10792–10796, 1990.
 339. Rottingen J, Iversen JG. Ruled by waves? Intracellular and intercellular calcium signalling. Acta Physiol Scand 169: 203–219, 2000.
 340. Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd‐Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A. Purified TPC isoforms form NAADP receptors with distinct roles for Ca(2+) signaling and endolysosomal trafficking. Curr Biol 20: 703–709, 2010.
 341. Rudnick DA, Perlmutter DH, Muglia LJ. Prostaglandins are required for CREB activation and cellular proliferation during liver regeneration. Proc Natl Acad Sci U S A 98: 8885–8890, 2001.
 342. Rusinko N, Lee HC. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+‐mobilizing activity. J Biol Chem 264: 11725–11731, 1989.
 343. Rutter GA, Rizzuto R. Regulation of mitochondrial metabolism by ER Ca2+ release: An intimate connection. Trends Biochem Sci 25: 215–221, 2000.
 344. Saez JC, Connor JA, Spray DC, Bennett MV. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5‐trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A 86: 2708–2712, 1989.
 345. Sakon M, Nagano H, Dono K, Nakamori S, Umeshita K, Yamada A, Kawata S, Imai Y, Iijima S, Monden M. Combined intraarterial 5‐fluorouracil and subcutaneous interferon‐therapy for advanced hepatocellular carcinoma with tumor thrombi in the major portal branches. Cancer 95: 2581, 2002.
 346. Sanderson MJ, Charles AC, Boitano S, Dirksen ER. Mechanisms and function of intercellular calcium signaling. Mol Cell Endocrinol 98: 173–187, 1994.
 347. Santella L, Carafoli E. Calcium signaling in the cell nucleus. FASEB J 11: 1091–1109, 1997.
 348. Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, Meldolesi J. The inositol 1,4,5,‐trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 111: 615–624, 1990.
 349. Scarpa A, Azzone GF. The mechanism of ion translocation in mitochondria. 4. Coupling of K +efflux with Ca2+ uptake. Eur J Biochem 12: 328–335, 1970.
 350. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 103: 211–225, 2000.
 351. Schlosser SF, Burgstahler AD, Nathanson MH. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A 93: 9948–9953, 1996.
 352. Servillo G, Della Fazia MA, Sassone‐Corsi P. Coupling cAMP signaling to transcription in the liver: Pivotal role of CREB and CREM. Exp Cell Res 275: 143–154, 2002.
 353. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5: 558–567, 2005.
 354. Shibao K, Hirata K, Robert ME, Nathanson MH. Loss of inositol 1,4,5‐trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Gastroenterology 125: 1175–1187, 2003.
 355. Shirakawa H, Miyazaki S. Spatiotemporal analysis of calcium dynamics in the nucleus of hamster oocytes. J Physiol 494 (Pt 1): 29–40, 1996.
 356. Shoshan‐Barmatz V. High affinity ryanodine binding sites in rat liver endoplasmic reticulum. FEBS Lett 263: 317–320, 1990.
 357. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 252: 802–808, 1991.
 358. Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG, Jansson JO, Ohlsson C. Liver‐derived insulin‐like growth factor I (IGF‐I) is the principal source of IGF‐I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci U S A 96: 7088–7092, 1999.
 359. Soliman EM, Rodrigues MA, Gomes DA, Sheung N, Yu J, Amaya MJ, Nathanson MH, Dranoff JA. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression. Cell Calcium 45: 284–292, 2009.
 360. Spirli C, Nathanson MH, Fiorotto R, Duner E, Denson LA, Sanz JM, Di Virgilio F, Okolicsanyi L, Casagrande F, Strazzabosco M. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 121: 156–169, 2001.
 361. Staddon JM, Hansford RG. Evidence indicating that the glucagon‐induced increase in cytoplasmic free Ca2+ concentration in hepatocytes is mediated by an increase in cyclic AMP concentration. Eur J Biochem 179: 47–52, 1989.
 362. Stehno‐Bittel L, Luckhoff A, Clapham DE. Calcium release from the nucleus by InsP3 receptor channels. Neuron 14: 163–167, 1995.
 363. Steiling H, Wustefeld T, Bugnon P, Brauchle M, Fassler R, Teupser D, Thiery J, Gordon JI, Trautwein C, Werner S. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration. Oncogene 22: 4380–4388, 2003.
 364. Steinhardt RA, Alderton J. Intracellular free calcium rise triggers nuclear‐envelope breakdown in the sea‐urchin embryo. Nature 332: 364–366, 1988.
 365. Stoffler D, Goldie KN, Feja B, Aebi U. Calcium‐mediated structural changes of native nuclear pore complexes monitored by time‐lapse atomic force microscopy. J Mol Biol 287: 741–752, 1999.
 366. Strambio‐De‐Castillia C, Niepel M, Rout MP. The nuclear pore complex: Bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11: 490–501, 2010.
 367. Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol‐1,4,5‐trisphosphate. Nature 306: 67–69, 1983.
 368. Stumpel F, Ott T, Willecke K, Jungermann K. Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology 28: 1616–1620, 1998.
 369. Sudhof TC, Newton CL, Archer BT, III, Ushkaryov YA, Mignery GA. Structure of a novel InsP3 receptor. EMBO J 10: 3199–3206, 1991.
 370. Sudhof TC, Rothman JE. Membrane fusion: Grappling with SNARE and SM proteins. Science 323: 474–477, 2009.
 371. Swillens S, DuPont G, Combettes L, Champeil P. From calcium blips to calcium puffs: Theoretical analysis of the requirements for interchannel communication. Proc Natl Acad Sci U S A 96: 13750–13755, 1999.
 372. Talarmin H, Rescan C, Cariou S, Glaise D, Zanninelli G, Bilodeau M, Loyer P, Guguen‐Guillouzo C, Baffet G. The mitogen‐activated protein kinase kinase/extracellular signal‐regulated kinase cascade activation is a key signalling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes. Mol Cell Biol 19: 6003–6011, 1999.
 373. Tanaka Y, Hayashi N, Kaneko A, Ito T, Miyoshi E, Sasaki Y, Fusamoto H, Kamada T. Epidermal growth‐factor induces dose‐dependent calcium oscillations in single fura‐2 loaded hepatocytes. Hepatology 16: 479–486, 1992.
 374. Tang J, Wu YM, Zhao P, Jiang JL, Chen ZN. beta ig‐h3 Interacts with alpha 3 beta 1 integrin to promote adhesion and migration of human hepatoma cells. Exp Biol Med 234: 35–39, 2009.
 375. Tardif KD, Mori K, Kaufman RJ, Siddiqui A. Hepatitis C virus suppresses the IRE1‐XBP1 pathway of the unfolded protein response. J Biol Chem 279: 17158–17164, 2004.
 376. Tardif KD, Waris G, Siddiqui A. Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol 13: 159–163, 2005.
 377. Taub R. Liver regeneration: From myth to mechanism. Nat Rev Mol Cell Biol 5: 836–847, 2004.
 378. Thapa N, Lee BH, Kim IS. TGFBIp/beta ig‐h3 protein: A versatile matrix molecule induced by TGF‐beta. Int J Biochem Cell Biol 39: 2183–2194, 2007.
 379. Thomas AP, Bird GS, Hajnoczky G, Robb‐Gaspers LD, Putney JW, Jr. Spatial and temporal aspects of cellular calcium signaling. FASEB J 10: 1505–1517, 1996.
 380. Thomas AP, Martin‐Requero A, Williamson JR. Interactions between insulin and alpha 1‐adrenergic agents in the regulation of glycogen metabolism in isolated hepatocytes. J Biol Chem 260: 5963–5973, 1985.
 381. Thomas AP, Renard DC, Rooney TA. Spatial and temporal organization of calcium signalling in hepatocytes. Cell Calcium 12: 111–126, 1991.
 382. Thomas AP, Robb‐Gaspers LD, Rooney TA, Hajnoczky G, Renard‐Rooney DC, Lin C. Spatial organization of oscillating calcium signals in liver. Biochem Soc Trans 23: 642–648, 1995.
 383. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31: 339–346, 2002.
 384. Tomida T, Hirose K, Takizawa A, Shibasaki F, Iino M. NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J 22: 3825–3832, 2003.
 385. Tordjmann T, Berthon B, Claret M, Combettes L. Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: Dual control by gap junction permeability and agonist. EMBO J 16: 5398–5407, 1997.
 386. Tordjmann T, Berthon B, Combettes L, Claret M. The location of hepatocytes in the rat liver acinus determines their sensitivity to calcium‐mobilizing hormones. Gastroenterology 111: 1343–1352, 1996.
 387. Tordjmann T, Berthon B, Jacquemin E, Clair C, Stelly N, Guillon G, Claret M, Combettes L. Receptor‐oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes. EMBO J 17: 4695–4703, 1998.
 388. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med 339: 1217–1227, 1998.
 389. Trusolino L, Bertotti A, Comoglio PM. MET signalling: Principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11: 834–848, 2010.
 390. Twigg J, Patel R, Whitaker M. Translational Control of InsP3‐induced chromatin condensation during the early cell‐cyc les of sea‐urchin embryos. Nature 332: 366–369, 1988.
 391. Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology 140: 1410–1426, 2011.
 392. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 27: 55–76, 2007.
 393. Violin JD, Zhang J, Tsien RY, Newton AC. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161: 899–909, 2003.
 394. Visnjic D, Banfic H. Nuclear phospholipid signaling: Phosphatidylinositol‐specific phospholipase C and phosphoinositide 3‐kinase. Pflugers Arch 455: 19–30, 2007.
 395. Wakelam MJ, Murphy GJ, Hruby VJ, Houslay MD. Activation of two signal‐transduction systems in hepatocytes by glucagon. Nature 323: 68–71, 1986.
 396. Wakui M, Potter BV, Petersen OH. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339: 317–320, 1989.
 397. Walker SA, Kupzig S, Bouyoucef D, Davies LC, Tsuboi T, Bivona TG, Cozier GE, Lockyer PJ, Buckler A, Rutter GA, Allen MJ, Philips MR, Cullen PJ. Identification of a Ras GTPase‐activating protein regulated by receptor‐mediated Ca2+ oscillations. EMBO J 23: 1749–1760, 2004.
 398. Watanabe N, Tsukada N, Smith CR, Edwards V, Phillips MJ. Permeabilized hepatocyte couplets. Adenosine triphosphate‐dependent bile canalicular contractions and a circumferential pericanalicular microfilament belt demonstrated. Lab Invest 65: 203–213, 1991.
 399. Watanabe N, Tsukada N, Smith CR, Phillips MJ. Motility of bile canaliculi in the living animal: Implications for bile flow. J Cell Biol 113: 1069–1080, 1991.
 400. Watanabe S, Smith CR, Phillips MJ. Coordination of the contractile activity of bile canaliculi. Evidence from calcium microinjection of triplet hepatocytes. Lab Invest 53: 275–279, 1985.
 401. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730, 2001.
 402. Wei Y, Wang D, Gentile CL, Pagliassotti MJ. Reduced endoplasmic reticulum luminal calcium links saturated fatty acid‐mediated endoplasmic reticulum stress and cell death in liver cells. Mol Cell Biochem 331: 31–40, 2009.
 403. Whitaker M. Calcium at fertilization and in early development. Physiol Rev 86: 25–88, 2006a.
 404. Whitaker M. Calcium microdomains and cell cycle control. Cell Calcium 40: 585–592, 2006b.
 405. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK. The endoplasmic reticulum gateway to apoptosis by Bcl‐X‐L modulation of the InsP(3)R. Nat Cell Biol 7: 1021‐U135, 2005.
 406. Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29: 4989–5005, 2010.
 407. Williams TF, Exton JH, Friedmann N, Park CR. Effects of insulin and adenosine 3′,5′‐monophosphate on K+ flux and glucose output in perfused rat liver. Am J Physiol 221: 1645–1651, 1971.
 408. Wimmer R, Hohenester S, Pusl T, Denk GU, Rust C, Beuers U. Tauroursodeoxycholic acid exerts anticholestatic effects by a cooperative cPKC alpha‐/PKA‐dependent mechanism in rat liver. Gut 57: 1448–1454, 2008.
 409. Wojcikiewicz RJ. Type I, II, and III inositol 1,4,5‐trisphosphate receptors are unequally susceptible to down‐regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 270: 11678–11683, 1995.
 410. Wojcikiewicz RJ, Ernst SA, Yule DI. Secretagogues cause ubiquitination and down‐regulation of inositol 1, 4,5‐trisphosphate receptors in rat pancreatic acinar cells. Gastroenterology 116: 1194–1201, 1999.
 411. Woo K, Sathe M, Kresge C, Esser V, Ueno Y, Venter J, Glaser SS, Alpini G, Feranchak AP. Adenosine triphosphate release and purinergic (P2) receptor‐mediated secretion in small and large mouse cholangiocytes. Hepatology 52: 1819–1828, 2010.
 412. Woods NM, Cuthbertson KS, Cobbold PH. Repetitive transient rises in cytoplasmic free calcium in hormone‐stimulated hepatocytes. Nature 319: 600–602, 1986.
 413. Woods NM, Cuthbertson KS, Cobbold PH. Agonist‐induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium 8: 79–100, 1987.
 414. Wu DQ, Lee CH, Rhee SG, Simon MI. Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos‐7 cells. J Biol Chem 267: 1811–1817, 1992.
 415. Yamaguchi Y, Dalle‐Molle E, Hardison WG. Vasopressin and A23187 stimulate phosphorylation of myosin light chain‐1 in isolated rat hepatocytes. Am J Physiol 261: G312‐G319, 1991.
 416. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL‐2 is phosphorylated and inactivated by an ASK1/Jun N‐terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19: 8469–8478, 1999.
 417. Yamamoto‐Hino M, Miyawaki A, Segawa A, Adachi E, Yamashina S, Fujimoto T, Sugiyama T, Furuichi T, Hasegawa M, Mikoshiba K. Apical vesicles bearing inositol 1,4,5‐trisphosphate receptors in the Ca2+ initiation site of ductal epithelium of submandibular gland. J Cell Biol 141: 135–142, 1998.
 418. Yamasaki M, Masgrau R, Morgan AJ, Churchill GC, Patel S, Ashcroft SJ, Galione A. Organelle selection determines agonist‐specific Ca2+ signals in pancreatic acinar and beta cells. J Biol Chem 279: 7234–7240, 2004.
 419. Yang B, Bouchard MJ. The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J Virol 86: 313–327, 2012.
 420. Yang S, Huang XY. Ca2+ influx through L‐type Ca2+ channels controls the trailing tail contraction in growth factor‐induced fibroblast cell migration. J Biol Chem 280: 27130–27137, 2005.
 421. Yao Y, Choi J, Parker I. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482 (Pt 3): 533–553, 1995.
 422. Yin H, Xie F, Zhang J, Yang Y, Deng B, Sun J, Wang Q, Qu X, Mao H. Combination of interferon‐alpha and 5‐fluorouracil induces apoptosis through mitochondrial pathway in hepatocellular carcinoma in vitro. Cancer Lett 306: 34–42, 2011.
 423. Zhang Y, Xue R, Zhang Z, Yang X, Shi H. Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells. Lipids Health Dis 11: 1, 2012.
 424. Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rotzer K, Griesbeck O, Harz H, Biel M, Wahl‐Schott C. The two‐pore channel TPCN2 mediates NAADP‐dependent Ca(2+)‐release from lysosomal stores. Pflugers Arch 458: 891–899, 2009.
 425. Zoulim F, Saputelli J, Seeger C. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J Virol 68: 2026–2030, 1994.

Related Articles:

Calcium Signaling Systems
Cell Biology of Secretion
Overview of Bile Secretion
Pathways and Functions of Biliary Protein Secretion

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Maria Jimena Amaya, Michael H. Nathanson. Calcium Signaling in the Liver. Compr Physiol 2013, 3: 515-539. doi: 10.1002/cphy.c120013