Comprehensive Physiology Wiley Online Library

Autonomic Control of the Eye

Full Article on Wiley Online Library



Abstract

The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. © 2015 American Physiological Society. Compr Physiol 5:439‐473, 2015.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. A schematic diagram showing the parasympathetic and sympathetic innervation of the eye. Neurotransmitters and neuropeptides that are generally present in postganglionic neurons are identified. *Only seen in avian studies to date. Abbreviations: ACh, Acetylcholine; ATP, Adenosine triphosphate; CG, Ciliary ganglion; EWpg, Edinger‐Westphal nucleus, preganglionic; IML, Intermediolateral nucleus (cell column); NA, Noradrenaline; nNOS, neuronal nitric oxide synthase; NPY, Neuropeptide Y; PPG, Pterygopalatine ganglion; SCG, Superior cervical ganglion; SSN, Superior salivatory nucleus; VIP, Vasoactive intestinal peptide.
Figure 2. Figure 2. Autonomic and trigeminal ocular projections. The dotted line shows a ciliary ganglion projection to the choroid which, to date, has been shown only in birds. Line thickness indicates relative strength of projection. Abbreviations: BV, Blood vessels; CNS, Central nervous system; EWpg, Nucleus of Edinger‐Westphal, preganglionic division; ICN, Intrinsic choroidal neurons; IML, Intermediolateral nucleus; NVSM, Nonvascular smooth muscle; SSN, Superior salivatory nucleus.
Figure 3. Figure 3. Line drawings showing the organization of EWpg and EWcp in several selected species: avian, rat, cat, monkey, and human. Representative rostral (left column), middle (middle column), and caudal (right column) sections are shown. The EWcp is indicated by light gray shading and EWpg is indicated by dark gray shading. Scattered cells located outside the nuclear boundaries are indicated by appropriately shaded circles. (Adapted, with permission, from Kozicz et al., 2011) (195).
Figure 4. Figure 4. Three dimensional (3‐D) representations of human, macaque, cat, rat and pigeon oculomotor complex, to illustrate the 3‐D organization of EWpg and EWcp. The 3‐D models are cut at selected points to illustrate how frontal sections through this level would look. In cases where the population is scattered, and so not contained in a discrete nucleus, dots are used. (Adapted, with permission, from Kozicz et al., 2011.) (195).
Figure 5. Figure 5. Diagram showing the location of prechoroidal SSN neurons in rat. Abbreviations: 8n, vestibulocochlear nerve; Acs7, accessory facial nucleus; das, dorsal acoustic stria; DC, dorsal cochlear nucleus; g7, genu of facial nerve; GiA, α part of gigantocellular reticular nucleus; icp, inferior cerebellar peduncle; m7, facial nucleus; mlf, medial longitudinal fasciculus; LPGi, lateral paragigantocellular nucleus; PPy, parapyramidal nucleus; Pr, prepositus nucleus; py, pyramid; RMg, raphe magnus; RPa, raphe pallidus nucleus; rs, rubrospinal tract; scp, superior cerebellar peduncle; Sp5, spinal trigeminal nucleus; sp5, spinal trigeminal tract; SSN, superior salivatory nucleus; ts, tectospinal tract; VeCb, vestibulocerebellar nucleus; VeL, lateral vestibular nucleus; VeM, medial vestibular nucleus. (Modified, with permission, from Li et al. 2010) (210).
Figure 6. Figure 6. Anatomical drawing showing the parasympathetic and sympathetic innervation of the iris in primates. The bilateral projection from the retina to the pretectum is also shown. The pretectal olivary nucleus receives input from the temporal retina of the ipsilateral eye and the nasal retina of the contralateral eye. The pretectal olivary nucleus projects bilaterally to the Edinger‐Westphal nucleus, which contains parasympathetic, preganglionic, pupilloconstriction neurons. The axons of these preganglionic neurons travel in the third cranial nerve to synapse upon postganglionic pupilloconstriction neurons in the ciliary ganglion. The axons of these postganglionic neurons leave the ciliary ganglion and enter the eye via the short ciliary nerves, and travel through the choroid to innervate the sphincter muscle of the iris. The sympathetic preganglionic pupillodilation neurons are found at the C8‐T1 segmental levels of the spinal cord. The axons of these neurons project from the spinal cord via the dorsal roots and enter the sympathetic trunk, and then project rostrally to the superior cervical ganglion where they synapse with the postganglionic neurons. These postganglionic neurons project from the superior cervical ganglion through the neck and carotid plexus, and into the orbit of the eye. These fibers enter the eye either by passing through the ciliary ganglion and entering in the short ciliary nerves, by bypassing the ciliary ganglion and entering via the long ciliary nerves, or through the optic canal (for clarity only one of these alternative pathways is shown). Upon entering the eye, these axons travel through the choroid and innervate the dilator muscle of the iris.
Figure 7. Figure 7. Low power photomicrograph of a cross section of the macaque iris. The approximate location of the dilator pupillae is shown since it is not clearly evident at this magnification. Scale bar = 200 μm.
Figure 8. Figure 8. The response of a pupil‐related EW neuron during 0.5 Hz sinusoidal modulations in light intensity and the resultant pupillary responses. The activity of the neuron is modulated sinusoidally and also shows a phase advance with respect to the pupilloconstriction. Note that the animal maintained fixation of the target for the entire period of the trial. Abbreviations: HL, Horizontal position of the left eye; VL, Vertical position of the left eye. Scale bar = 1 mm.
Figure 9. Figure 9. A Nissl‐stained section through the pretectum of the rhesus macaque showing the location of the pretectal olivary nucleus. Abbreviations: AQ, Aqueduct; PAG, Periaqueductal gray; PC, Posterior commissure; PON, Pretectal olivary nucleus; NOT, Nucleus of the optic tract. Scale bar = 500 μm.
Figure 10. Figure 10. (A) WGA‐HRP anterograde labeling of retinal afferent terminals in the PON after intraocular injections of the tracer on the contralateral side. (B) WGA‐HRP retrogradely labeled neurons indicated with arrows in the PON contralateral to an injection site that included the Edinger‐Westphal nucleus. Most neurons are encountered in the shell surrounding the central neuropil. Scale bars = 50 μm. (Modified, with permission, from Gamlin and Clarke, 1995.) (115).
Figure 11. Figure 11. Schematic diagram of the direct and consensual pupillary light pathways in primates including humans. It is believed that the ipsilateral visual field is of cortical origin (64). Abbreviations: AQ, Aqueduct; EW, Edinger‐Westphal nucleus; F, Fovea; OC, Optic chiasm; PC, Posterior commissure; PON, Pretectal olivary nucleus.
Figure 12. Figure 12. Photograph of melanopsin‐containing ipRGCs cells in peripheral macaque retina. Scale bar = 100 μm. (Modified, with permission, from Dacey et al., 2005.) (72).
Figure 13. Figure 13. Pupilloconstriction elicited by a 10 s light stimulus of 493 nm wavelength light at 14.0 log quanta/cm2/s irradiance (blue trace), and 613 nm wavelength light at 14.1 log quanta/cm2/s irradiance (red trace). Note that a 473 nm stimulus, which effectively activates the intrinsic photoresponse of ipRGCs, drives a larger pupillary response than the 613 nm stimulus (red trace), which does not effectively activate the intrinsic photoresponse of ipRGCs at this irradiance level. Also note that the pupilloconstriction induced by the 473 nm light is maintained following light cessation—this is termed the postillumination pupil response. (Adapted, with permission, from Kankipati et al, 2010.) (107).
Figure 14. Figure 14. Luminance neurons in the pretectal olivary nucleus (PON) drive the pupillary light reflex. (A) The response of a single neuron is the pretectal olivary nucleus in response to a 100 troland light stimulus. The pupillary response to the same light stimulus is shown in the trace above. (B) Electrical microstimulation at the level of the PON produces pupillary constriction, even in the absence of a light stimulus.
Figure 15. Figure 15. Schematic of the modified dual interaction model that accounts for the pupillary near response component of the near response triad. This model indicates that the combined output of the accommodation controller and the convergence controller drive the pupillary near response.
Figure 16. Figure 16. Effect of microstimulation of the EW on ocular accommodation. (A) Shows stimulation (80 ms; 500Hz; 40 μA) producing an accommodative response with a latency of 75 ms. Accommodative velocity (ACCV) is also shown to facilitate estimation of the latency of the accommodative response. Note that, in addition to accommodation, there is an adduction of the right eye which presumably results from current spread to the nearby medial rectus motoneurons of the “C” subgroup of the right oculomotor nucleus. The stimulation also produces a small amount of convergence that is either the result of activation of the axon collaterals of near‐response neurons that project to medial rectus motoneurons and presumably also to the Edinger‐Westphal nucleus or stimulation of nearby medial rectus C‐group motoneurons. (B) Confirms the specificity of the microstimulation effect by showing that only accommodation is elicited when a stimulation train of shorter duration (10 ms; 500 Hz; 40 μA) is used. Abbreviations: HL, Horizontal position of the left eye; HR, Horizontal position of the right eye; VA, Vergence angle. (Scale bar = 1 m angle and 1 diopter.) (Adapted, with permission, from Gamlin et al. 1994.) (118).
Figure 17. Figure 17. Behavior of a preganglionic EW neuron during sine wave tracking of a target moving in depth. The firing rate modulates between approximately 15 spikes/s and 25 spikes/s for the change in accommodation of 5 diopters. Note that there is a significant phase lead in the firing rate of this cell with respect to accommodation that cannot be accounted for solely by the latency between the activity of the cell and accommodation. This phase lead results from a substantial component of the firing rate being related to the dynamics of the movement. Abbreviations: HL, Horizontal position of the left eye; HR, Horizontal position of the right eye; VA, Vergence angle. (Scale bar is equal to 2 m angles and 2 diopters.) (Adapted, with permission, from Gamlin et al. 1994.) (118).
Figure 18. Figure 18. Response properties of a far accommodation cell in the posterior interposed nucleus during normal binocular viewing and partial dissociation of vergence from accommodation during conflict viewing. Initial VA and ACC of 1 MA and 1 D, respectively, in A and B. (A) During normal binocular viewing, activity of this neuron decreases as a function of near response. (B) Response of this cell during a convergence movement similar in amplitude to that in A and an accommodative response substantially lower than that in A. This difference is best appreciated by reference to upper of two dashed lines that indicates accommodative response in A. For reference, lower of two dashed line is located at same relative level as it is in A. Note that decrease in firing rate is much less than in A. (C) Scatterplot and linear regression of firing rate as a function of vergence angle for normal viewing (▴) and conflict viewing (▵). (D) Scatterplot and linear regression of firing rate as a function of accommodation for normal viewing (▴) and conflict viewing condition (▵). Scale bar = 4 m angles and 4 diopters. (Adapted, with permission, from Zhang and Gamlin, 1998.) (435)
Figure 19. Figure 19. Stimulation in the primate frontal eye fields evokes vergence and ocular accommodation. Biphasic electrical microstimulation elicited increases in vergence and ocular accommodation. Stimulation parameters; 500 Hz, 40 ms, 40 μA. AACC, average accommodation; ACC, accommodation; AVA, average vergence angle; AVV, average vergence velocity; VA, vergence angle; STIM, stimulation; VV, vergence velocity. Scale bar, 0.5 degrees, 0.5 diopters, and 5 degrees/s. (Adapted, with permission, from Gamlin and Yoon, 2000.) (109)
Figure 20. Figure 20. Scheme of adrenergic, cholinergic, and nitrergic innervations and roles of neurotransmitters in the regulation of nerve and smooth muscle functions in ciliary and ophthalmic arteries. Squares in nerve terminal and smooth muscle represent receptors. Abbreviations: NOS, NO synthase; L‐Arg., l‐arginine; L‐Citru., l‐citrulline; ATPex, exogenous ATP; PIP2, phosphatidyl inositol bisphosphate; IP3, inositol trisphosphate; DG, diacylglycerol; AC, adenylate cyclase; GC, soluble guanylate cyclase 0. (Adapted, with permission, from Toda et al., 1999.) (391).
Figure 21. Figure 21. EW and SCN electrical microstimulation effects on choroidal blood flow. Solid bars indicate the timing and duration of electrical stimulation. Choroidal blood flow was measured transsclerally at a site below the superior rectus muscle in an anaesthetized animal. (Scale bar = 50 blood flow units). (Redrawn, with permission, from Fitzgerald et al. 1996.) (90).
Figure 22. Figure 22. Laser Doppler flux recordings from the anterior choroid, posterior choroid, and the nasal vortex veins during stimulation of either the superior salivatory nucleus (SSN) or the cervical sympathetic trunk (CST). All recordings were obtained from a single rat with the exception of the anterior choroid. Responses obtained from the vortex veins and anterior choroid during CST stimulation were similar to that shown for the posterior choroid. Bar indicates period of SSN stimulation (20 Hz, 3 V) or CST stimulation (12 Hz, 30 V). (Adapted, with permission, from Steinle et al., 2000.) (355).
Figure 23. Figure 23. Diagram showing the structures involved with aqueous humor formation and outflow through the trabecular meshwork and uveoscleral routes. (Figure adapted, with permission, from Loewy, 1990.) (216).
Figure 24. Figure 24. Changes in the translaminar pressure gradient after site‐directed microinjection of bicuculline methiodide (•; 30 pmol/75 nL; n = 9) or saline (Δ; 75 nL; n = 10) into the DMH and PeF regions. All injections at T = 0 min. *Denotes significant difference between saline and BMI treatment groups, P < 0.05. (Adapted, with permission, from Samuels et al., 2012.) (326).


Figure 1. A schematic diagram showing the parasympathetic and sympathetic innervation of the eye. Neurotransmitters and neuropeptides that are generally present in postganglionic neurons are identified. *Only seen in avian studies to date. Abbreviations: ACh, Acetylcholine; ATP, Adenosine triphosphate; CG, Ciliary ganglion; EWpg, Edinger‐Westphal nucleus, preganglionic; IML, Intermediolateral nucleus (cell column); NA, Noradrenaline; nNOS, neuronal nitric oxide synthase; NPY, Neuropeptide Y; PPG, Pterygopalatine ganglion; SCG, Superior cervical ganglion; SSN, Superior salivatory nucleus; VIP, Vasoactive intestinal peptide.


Figure 2. Autonomic and trigeminal ocular projections. The dotted line shows a ciliary ganglion projection to the choroid which, to date, has been shown only in birds. Line thickness indicates relative strength of projection. Abbreviations: BV, Blood vessels; CNS, Central nervous system; EWpg, Nucleus of Edinger‐Westphal, preganglionic division; ICN, Intrinsic choroidal neurons; IML, Intermediolateral nucleus; NVSM, Nonvascular smooth muscle; SSN, Superior salivatory nucleus.


Figure 3. Line drawings showing the organization of EWpg and EWcp in several selected species: avian, rat, cat, monkey, and human. Representative rostral (left column), middle (middle column), and caudal (right column) sections are shown. The EWcp is indicated by light gray shading and EWpg is indicated by dark gray shading. Scattered cells located outside the nuclear boundaries are indicated by appropriately shaded circles. (Adapted, with permission, from Kozicz et al., 2011) (195).


Figure 4. Three dimensional (3‐D) representations of human, macaque, cat, rat and pigeon oculomotor complex, to illustrate the 3‐D organization of EWpg and EWcp. The 3‐D models are cut at selected points to illustrate how frontal sections through this level would look. In cases where the population is scattered, and so not contained in a discrete nucleus, dots are used. (Adapted, with permission, from Kozicz et al., 2011.) (195).


Figure 5. Diagram showing the location of prechoroidal SSN neurons in rat. Abbreviations: 8n, vestibulocochlear nerve; Acs7, accessory facial nucleus; das, dorsal acoustic stria; DC, dorsal cochlear nucleus; g7, genu of facial nerve; GiA, α part of gigantocellular reticular nucleus; icp, inferior cerebellar peduncle; m7, facial nucleus; mlf, medial longitudinal fasciculus; LPGi, lateral paragigantocellular nucleus; PPy, parapyramidal nucleus; Pr, prepositus nucleus; py, pyramid; RMg, raphe magnus; RPa, raphe pallidus nucleus; rs, rubrospinal tract; scp, superior cerebellar peduncle; Sp5, spinal trigeminal nucleus; sp5, spinal trigeminal tract; SSN, superior salivatory nucleus; ts, tectospinal tract; VeCb, vestibulocerebellar nucleus; VeL, lateral vestibular nucleus; VeM, medial vestibular nucleus. (Modified, with permission, from Li et al. 2010) (210).


Figure 6. Anatomical drawing showing the parasympathetic and sympathetic innervation of the iris in primates. The bilateral projection from the retina to the pretectum is also shown. The pretectal olivary nucleus receives input from the temporal retina of the ipsilateral eye and the nasal retina of the contralateral eye. The pretectal olivary nucleus projects bilaterally to the Edinger‐Westphal nucleus, which contains parasympathetic, preganglionic, pupilloconstriction neurons. The axons of these preganglionic neurons travel in the third cranial nerve to synapse upon postganglionic pupilloconstriction neurons in the ciliary ganglion. The axons of these postganglionic neurons leave the ciliary ganglion and enter the eye via the short ciliary nerves, and travel through the choroid to innervate the sphincter muscle of the iris. The sympathetic preganglionic pupillodilation neurons are found at the C8‐T1 segmental levels of the spinal cord. The axons of these neurons project from the spinal cord via the dorsal roots and enter the sympathetic trunk, and then project rostrally to the superior cervical ganglion where they synapse with the postganglionic neurons. These postganglionic neurons project from the superior cervical ganglion through the neck and carotid plexus, and into the orbit of the eye. These fibers enter the eye either by passing through the ciliary ganglion and entering in the short ciliary nerves, by bypassing the ciliary ganglion and entering via the long ciliary nerves, or through the optic canal (for clarity only one of these alternative pathways is shown). Upon entering the eye, these axons travel through the choroid and innervate the dilator muscle of the iris.


Figure 7. Low power photomicrograph of a cross section of the macaque iris. The approximate location of the dilator pupillae is shown since it is not clearly evident at this magnification. Scale bar = 200 μm.


Figure 8. The response of a pupil‐related EW neuron during 0.5 Hz sinusoidal modulations in light intensity and the resultant pupillary responses. The activity of the neuron is modulated sinusoidally and also shows a phase advance with respect to the pupilloconstriction. Note that the animal maintained fixation of the target for the entire period of the trial. Abbreviations: HL, Horizontal position of the left eye; VL, Vertical position of the left eye. Scale bar = 1 mm.


Figure 9. A Nissl‐stained section through the pretectum of the rhesus macaque showing the location of the pretectal olivary nucleus. Abbreviations: AQ, Aqueduct; PAG, Periaqueductal gray; PC, Posterior commissure; PON, Pretectal olivary nucleus; NOT, Nucleus of the optic tract. Scale bar = 500 μm.


Figure 10. (A) WGA‐HRP anterograde labeling of retinal afferent terminals in the PON after intraocular injections of the tracer on the contralateral side. (B) WGA‐HRP retrogradely labeled neurons indicated with arrows in the PON contralateral to an injection site that included the Edinger‐Westphal nucleus. Most neurons are encountered in the shell surrounding the central neuropil. Scale bars = 50 μm. (Modified, with permission, from Gamlin and Clarke, 1995.) (115).


Figure 11. Schematic diagram of the direct and consensual pupillary light pathways in primates including humans. It is believed that the ipsilateral visual field is of cortical origin (64). Abbreviations: AQ, Aqueduct; EW, Edinger‐Westphal nucleus; F, Fovea; OC, Optic chiasm; PC, Posterior commissure; PON, Pretectal olivary nucleus.


Figure 12. Photograph of melanopsin‐containing ipRGCs cells in peripheral macaque retina. Scale bar = 100 μm. (Modified, with permission, from Dacey et al., 2005.) (72).


Figure 13. Pupilloconstriction elicited by a 10 s light stimulus of 493 nm wavelength light at 14.0 log quanta/cm2/s irradiance (blue trace), and 613 nm wavelength light at 14.1 log quanta/cm2/s irradiance (red trace). Note that a 473 nm stimulus, which effectively activates the intrinsic photoresponse of ipRGCs, drives a larger pupillary response than the 613 nm stimulus (red trace), which does not effectively activate the intrinsic photoresponse of ipRGCs at this irradiance level. Also note that the pupilloconstriction induced by the 473 nm light is maintained following light cessation—this is termed the postillumination pupil response. (Adapted, with permission, from Kankipati et al, 2010.) (107).


Figure 14. Luminance neurons in the pretectal olivary nucleus (PON) drive the pupillary light reflex. (A) The response of a single neuron is the pretectal olivary nucleus in response to a 100 troland light stimulus. The pupillary response to the same light stimulus is shown in the trace above. (B) Electrical microstimulation at the level of the PON produces pupillary constriction, even in the absence of a light stimulus.


Figure 15. Schematic of the modified dual interaction model that accounts for the pupillary near response component of the near response triad. This model indicates that the combined output of the accommodation controller and the convergence controller drive the pupillary near response.


Figure 16. Effect of microstimulation of the EW on ocular accommodation. (A) Shows stimulation (80 ms; 500Hz; 40 μA) producing an accommodative response with a latency of 75 ms. Accommodative velocity (ACCV) is also shown to facilitate estimation of the latency of the accommodative response. Note that, in addition to accommodation, there is an adduction of the right eye which presumably results from current spread to the nearby medial rectus motoneurons of the “C” subgroup of the right oculomotor nucleus. The stimulation also produces a small amount of convergence that is either the result of activation of the axon collaterals of near‐response neurons that project to medial rectus motoneurons and presumably also to the Edinger‐Westphal nucleus or stimulation of nearby medial rectus C‐group motoneurons. (B) Confirms the specificity of the microstimulation effect by showing that only accommodation is elicited when a stimulation train of shorter duration (10 ms; 500 Hz; 40 μA) is used. Abbreviations: HL, Horizontal position of the left eye; HR, Horizontal position of the right eye; VA, Vergence angle. (Scale bar = 1 m angle and 1 diopter.) (Adapted, with permission, from Gamlin et al. 1994.) (118).


Figure 17. Behavior of a preganglionic EW neuron during sine wave tracking of a target moving in depth. The firing rate modulates between approximately 15 spikes/s and 25 spikes/s for the change in accommodation of 5 diopters. Note that there is a significant phase lead in the firing rate of this cell with respect to accommodation that cannot be accounted for solely by the latency between the activity of the cell and accommodation. This phase lead results from a substantial component of the firing rate being related to the dynamics of the movement. Abbreviations: HL, Horizontal position of the left eye; HR, Horizontal position of the right eye; VA, Vergence angle. (Scale bar is equal to 2 m angles and 2 diopters.) (Adapted, with permission, from Gamlin et al. 1994.) (118).


Figure 18. Response properties of a far accommodation cell in the posterior interposed nucleus during normal binocular viewing and partial dissociation of vergence from accommodation during conflict viewing. Initial VA and ACC of 1 MA and 1 D, respectively, in A and B. (A) During normal binocular viewing, activity of this neuron decreases as a function of near response. (B) Response of this cell during a convergence movement similar in amplitude to that in A and an accommodative response substantially lower than that in A. This difference is best appreciated by reference to upper of two dashed lines that indicates accommodative response in A. For reference, lower of two dashed line is located at same relative level as it is in A. Note that decrease in firing rate is much less than in A. (C) Scatterplot and linear regression of firing rate as a function of vergence angle for normal viewing (▴) and conflict viewing (▵). (D) Scatterplot and linear regression of firing rate as a function of accommodation for normal viewing (▴) and conflict viewing condition (▵). Scale bar = 4 m angles and 4 diopters. (Adapted, with permission, from Zhang and Gamlin, 1998.) (435)


Figure 19. Stimulation in the primate frontal eye fields evokes vergence and ocular accommodation. Biphasic electrical microstimulation elicited increases in vergence and ocular accommodation. Stimulation parameters; 500 Hz, 40 ms, 40 μA. AACC, average accommodation; ACC, accommodation; AVA, average vergence angle; AVV, average vergence velocity; VA, vergence angle; STIM, stimulation; VV, vergence velocity. Scale bar, 0.5 degrees, 0.5 diopters, and 5 degrees/s. (Adapted, with permission, from Gamlin and Yoon, 2000.) (109)


Figure 20. Scheme of adrenergic, cholinergic, and nitrergic innervations and roles of neurotransmitters in the regulation of nerve and smooth muscle functions in ciliary and ophthalmic arteries. Squares in nerve terminal and smooth muscle represent receptors. Abbreviations: NOS, NO synthase; L‐Arg., l‐arginine; L‐Citru., l‐citrulline; ATPex, exogenous ATP; PIP2, phosphatidyl inositol bisphosphate; IP3, inositol trisphosphate; DG, diacylglycerol; AC, adenylate cyclase; GC, soluble guanylate cyclase 0. (Adapted, with permission, from Toda et al., 1999.) (391).


Figure 21. EW and SCN electrical microstimulation effects on choroidal blood flow. Solid bars indicate the timing and duration of electrical stimulation. Choroidal blood flow was measured transsclerally at a site below the superior rectus muscle in an anaesthetized animal. (Scale bar = 50 blood flow units). (Redrawn, with permission, from Fitzgerald et al. 1996.) (90).


Figure 22. Laser Doppler flux recordings from the anterior choroid, posterior choroid, and the nasal vortex veins during stimulation of either the superior salivatory nucleus (SSN) or the cervical sympathetic trunk (CST). All recordings were obtained from a single rat with the exception of the anterior choroid. Responses obtained from the vortex veins and anterior choroid during CST stimulation were similar to that shown for the posterior choroid. Bar indicates period of SSN stimulation (20 Hz, 3 V) or CST stimulation (12 Hz, 30 V). (Adapted, with permission, from Steinle et al., 2000.) (355).


Figure 23. Diagram showing the structures involved with aqueous humor formation and outflow through the trabecular meshwork and uveoscleral routes. (Figure adapted, with permission, from Loewy, 1990.) (216).


Figure 24. Changes in the translaminar pressure gradient after site‐directed microinjection of bicuculline methiodide (•; 30 pmol/75 nL; n = 9) or saline (Δ; 75 nL; n = 10) into the DMH and PeF regions. All injections at T = 0 min. *Denotes significant difference between saline and BMI treatment groups, P < 0.05. (Adapted, with permission, from Samuels et al., 2012.) (326).
References
 1. Abe S , Karita K , Izumi H , Tamai M . Increased and decreased choroidal blood flow elicited by cervical sympathetic nerve stimulation in the cat. Jpn J Physiol 45: 347‐353, 1995.
 2. Agassandian K , Fazan VPS , Adanina V , Talman WT . Direct projections from the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons: A link to cerebrovascular regulation. J Comp Neurol 452: 242‐254, 2002.
 3. Akao T , Mustari MJ , Fukushima J , Kurkin S , Fukushima K . Discharge characteristics of pursuit neurons in mst during vergence eye movements. J Neurophysiol 93: 2415‐2434, 2005.
 4. Akert K , Glicksman MA , Lang W , Grob P , Huber A . Edinger‐westphal nucleus in the monkey—retrograde tracer study. Brain Res 184: 491‐498, 1980.
 5. Alessandri M , Fusco BM , Maggi CA , Fanciullacci M . In vivo pupillary constrictor effects of substance P in man. Life sci 48: 2301‐2308, 1991.
 6. Alm A . The effect of stimulation of the cervical sympathetic chain on regional cerebral blood flow in monkeys. A Study with Radioactively Labelled Microspheres. Acta Physiol Scand 93: 483‐489, 1975.
 7. Alm A . The effect of sympathetic stimulation on blood flow through T,E uvea, retina and optic nerve in monkeys (macacca irus). Exp Eye Res 25: 19‐24, 1977.
 8. Alm A . Ocular circulation. In: Adler FH , Hart WM , editor. Adler's Physiology of the Eye: Clinical Application (9th ed.). St. Louis: Mosby Year Book, 1992, pp. 198–227.
 9. Alm A , Bill A . The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats. Acta Physiol Scand 88: 84‐94, 1973.
 10. Alm A , Bill A . The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 84: 306‐319, 1972.
 11. Alm A , Nilsson SF . Uveoscleral outflow–a review. Exp Eye Res 88: 760‐768, 2009.
 12. Alm P , Uvelius B , Ekstrom J , Holmqvist B , Larsson B , Andersson KE . Nitric oxide synthase‐containing neurons in rat parasympathetic, sympathetic and sensory ganglia: A comparative study. Histochem J 27: 819‐831, 1995.
 13. Alpern M , Mason GL , Jardinico RE . Vergence and accommodation. V. pupil size changes associated with changes in accommodative vergence. Am J Ophthalmol 52: 762‐767, 1961.
 14. Andersson SE . Responses to antidromic trigeminal nerve stimulation, substance P, Nka, Cgrp and Capsaicin in the rat eye. Acta Physiol Scand 131: 371‐376, 1987.
 15. Asanuma H , Kosar E , Tsukahara N , Robinson H . Modification of the projection from the sensory cortex to the motor cortex following the elimination of thalamic projections to the motor cortex in cats. Brain Res 345: 79‐86, 1985.
 16. Backer WD , Ogle KN . Pupillary response to fusional eye movements. Am J Ophthalmol 58: 743‐756, 1964.
 17. Ballas I , Hoffmann KP , Wagner HJ . Retinal projection to the nucleus of the optic tract in the cat as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 26: 197‐202, 1981.
 18. Bando T , Ishihara A , Tsukahara N . The mode of cerebellar control of lens accommodation. In: Ito M , Tsukahara N , Kubota K , Yagi K , editors. Integrative Control Functions of the Brain. New York, New York: Kodansha Ltd, 1978, pp. 149‐150.
 19. Bando T , Tsukuda K , Yamamoto N , Maeda J , Tsukahara N . Physiological identification of midbrain neurons related to lens accommodation in cats. J Neurophysiol 52: 870‐878, 1984.
 20. Barbur JL . A study of pupil response components in human vision. In: Robbins JG , Djamgoz MBA , Taylor A , editors. Basic and Clinical Perspectives in Vision Research: A Celebration of the Career of Hisako Ikeda. New York: Plenum Press, 1995, pp. 3‐18.
 21. Barrionuevo PA , Nicandro N , McAnany JJ , Zele AJ , Gamlin P , Cao D . Assessing rod, cone, and melanopsin contributions to human pupil flicker responses. Invest Ophthalmol Vis Sci 55: 719‐727, 2014.
 22. Beckers HJ , Klooster J , Vrensen GF , Lamers WP . Substance P in rat corneal and iridal nerves: An ultrastructural immunohistochemical study. Ophthalmic Res 25: 192‐200, 1993.
 23. Belmonte C , Bartels SP , Liu JH , Neufeld AH . Effects of stimulation of the ocular sympathetic nerves on iop and aqueous humor flow. Invest Ophthalmol Vis Sci 28: 1649‐1654, 1987.
 24. Bender MB , Weinstein EA . Functional representation in the oculomotor and trochlear nuclei. Arch Neurol Psych 49: 98‐06, 1943.
 25. Benevento LA , Rezak M , Santosanderson R . Autoradiographic study of projections of pretectum in rhesus‐monkey (macaca‐mulatta)—evidence for sensorimotor links to thalamus and oculomotor nuclei. Brain Res 127: 197‐218, 1977.
 26. Bergua A , Junemann A , Naumann GO . Nadph‐D reactive choroid ganglion cells in the human. Klin Monbl Augenheilkd 203: 77‐82, 1993.
 27. Bergua A , Kapsreiter M , Neuhuber WL , Reitsamer HA , Schrodl F . Innervation pattern of the preocular human central retinal artery. Exp Eye Res 110: 142‐147, 2013.
 28. Bergua A , Schrodl F , Neuhuber WL . Vasoactive intestinal and calcitonin gene‐related peptides, tyrosine hydroxylase and nitrergic markers in the innervation of the rat central retinal artery. Exp Eye Res 77: 367‐374, 2003.
 29. Berman N . Connections of pretectum in cat. J Comp Neurol 174: 227‐254, 1977.
 30. Bernheimer S . Weitere experimentelle studien zur kenntnis der lage des sphinkter‐ und levatorkerns. Graefes Arhiv für Ophthalmol 70: 539‐562, 1909.
 31. Berson DM . Strange vision: Ganglion cells as circadian photoreceptors. Trends Neurosci 26: 314‐320, 2003.
 32. Berson DM , Dunn FA , Takao M . Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070‐1073, 2002.
 33. Bill A . Early effects of epinephrine on aqueous humor dynamics in vervet monkeys (cercopithecus ethiops). Exp Eye Res 8: 35‐43, 1969.
 34. Bill A . The effect of changes in arterial blood pressure on the rate of aqueous humour formation in a primate (cercopithecus ethiops). Ophthalmic Res 1: 193‐200, 1970.
 35. Bill A . The circulation in the eye. In: Renkin E , Michel C , editors. Handbook of Physiology: The Cardiovascular System Iv: Microcirculation Part 2. Baltimore, Md.: Waverly Press, 1984, pp. 1001‐1035.
 36. Bill A . Some aspects of the ocular Circulation. Friedenwald lecture. Invest Ophthalmol Vis Sci 26: 410‐424, 1985.
 37. Bill A . Effects of some neuropeptides on the uvea. Exp Eye Res 53: 3‐11, 1991.
 38. Bill A , Linder J . Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand 96: 114‐121, 1976.
 39. Bill A , Nilsson SF . Control of ocular blood flow. J Cardiovasc Pharmacol 7(Suppl 3): 96‐9102, 1985.
 40. Bill A , Sperber G , Ujiie K . Physiology of the choroidal vascular bed. Int Ophthalmol 6: 101‐107, 1983.
 41. Bill A , Sperber GO . Control of retinal and choroidal blood flow. Eye (Lond) 4(Pt 2): 319‐325, 1990.
 42. Bjorklund H , Hokfelt T , Goldstein M , Terenius L , Olson L . Appearance of the noradrenergic markers tyrosine hydroxylase and neuropeptide Y in cholinergic nerves of the iris following sympathectomy. J Neurosci 5: 1633‐1640, 1985.
 43. Boehm S , Kubista H . Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54: 43‐99, 2002.
 44. Bognar IT , Pallas S , Fuder H , Muscholl E . Muscarinic inhibition of [3h]‐noradrenaline release on rabbit iris in vitro: Effects of stimulation conditions on intrinsic activity of methacholine and pilocarpine. Brit J Pharmacol 94: 890‐900, 1988.
 45. Bron AJ , Tripathi RC , Tripathi BJ , Wolff E . Wolff's Anatomy of the Eye and Orbit. London; New York: Chapman & Hall Medical, 1997.
 46. Bruun A , Ehinger B , Sundler F , Tornqvist K , Uddman R . Neuropeptide Y immunoreactive neurons in the guinea‐pig uvea and retina. Invest Ophthalmol Vis Sci 25: 1113‐1123, 1984.
 47. Burde RM , Loewy AD . Central origin of oculomotor parasympathetic neurons in the monkey. Brain Res 198: 434‐439, 1980.
 48. Burde RM , Parelman JJ , Luskin M . Lack of unity of edinger‐westphal nucleus projections to the ciliary ganglion and spinal cord: A double‐labeling approach. Brain Res 249: 379‐382, 1982.
 49. Burde RM , Williams F . Parasympathetic nuclei. Brain Res 498: 371‐375, 1989.
 50. Busettini C , Davison RC , Gamlin PDR . The near triad: Vergence, accommodation, and pupilloconstriction. In: Squire L , editor. New Encyclopedia of Neuroscience. Oxford: Elsevier, 2007.
 51. Butler JM , Ruskell GL , Cole DF , Unger WG , Zhang SQ , Blank MA , McGregor GP , Bloom SR . Effects of VIIth (facial) nerve degeneration on vasoactive intestinal polypeptide and substance‐P levels in ocular and orbital tissues of the rabbit. Exp Eye Res 39: 523‐532, 1984.
 52. Buttner‐Ennever JA , Cohen B , Horn AK , Reisine H . Pretectal projections to the oculomotor complex of the monkey and their role in eye movements. J Comp Neurol 366: 348‐359, 1996.
 53. Campbell FW , Green DG . Optical and retinal factors affecting visual resolution. J Physiol 181: 576‐593, 1965.
 54. Campbell FW , Gregory AH . Effect of size of pupil on visual acuity. Nature 187: 1121‐1123, 1960.
 55. Campbell FW , Gubisch RW . Optical quality of the human eye. J Physiol 186: 558‐578, 1966.
 56. Carpenter MB , Peter P . Accessory oculomotor nuclei in the monkey. J Hirnforsch 12: 405‐418, 1970.
 57. Chamot SR , Movaffaghy A , Petrig BL , Riva CE . Iris blood flow response to acute decreases in ocular perfusion pressure: A laser doppler flowmetry study in humans. Exp Eye Res 70: 107‐112, 2000.
 58. Charman WN . Optics of the eye. In: Bass M , editor. Handbook of Optics. New York: McGraw‐Hill, 1995, pp. 24.23‐24.54.
 59. Chin NB , Ishikawa S , Lappin H , Davidowitz J , Breinin GM . Accommodation in monkeys induced by midbrain stimulation. Invest Ophthalmol 7: 386‐396, 1968.
 60. Clarke RJ , Coimbra CJP , Alessio ML . Distribution of parasympathetic motoneurones in the oculomotor complex innervating the ciliary ganglion in the marmoset (callithrix‐jacchus). Acta Anatomica 121: 53‐58, 1985.
 61. Clarke RJ , Ikeda H . Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I. Studies with steady luminance levels. Exp Brain Res 57: 224‐232, 1985.
 62. Clarke RJ , Zhang H , Gamlin PD . Characteristics of the pupillary light reflex in the alert rhesus monkey. J Neurophysiol 89: 3179‐3189, 2003.
 63. Clarke RJ , Zhang H , Gamlin PD . Primate pupillary light reflex: Receptive field characteristics of pretectal luminance neurons. J Neurophysiol 89: 3168‐3178, 2003.
 64. Collier RH . Experimental embolic ischemia of the choroid. Arch Ophthalmol 77: 683‐692, 1967.
 65. Contreras RJ , Gomez MM , Norgren R . Central origins of cranial nerve parasympathetic neurons in the rat. J Comp Neurol 190: 373‐394, 1980.
 66. Crawford K , Terasawa E , Kaufman PL . Reproducible stimulation of ciliary muscle‐contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode. Brain Res 503: 265‐272, 1989.
 67. Crawford K , Terasawa E , Kaufman PL . Reproducible stimulation of ciliary muscle contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode. Brain Res 503: 265‐272, 1989.
 68. Cuthbertson S , Jackson B , Toledo C , Fitzgerald ME , Shih YF , Zagvazdin Y , Reiner A . Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons. J Comp Neurol 386: 422‐442, 1997.
 69. Cuthbertson S , LeDoux MS , Jones S , Jones J , Zhou Q , Gong S , Ryan P , Reiner A . Localization of preganglionic neurons that innervate choroidal neurons of pterygopalatine ganglion. Invest Ophthalmol Vis Sci 44: 3713‐3724, 2003.
 70. Cuthbertson S , White J , Fitzgerald ME , Shih YF , Reiner A . Distribution within the choroid of cholinergic nerve fibers from the ciliary ganglion in pigeons. Vision Res 36: 775‐786, 1996.
 71. Dacey DM , Liao HW , Peterson BB , Robinson FR , Smith VC , Pokorny J , Yau KW , Gamlin PD . Melanopsin‐expressing ganglion cells in primate retina signal colour and irradiance and project to the lgn. Nature 433: 749‐754, 2005.
 72. Deussen A , Sonntag M , Vogel R . L‐arginine‐derived nitric oxide: A major determinant of uveal blood flow. Exp Eye Res 57: 129‐134, 1993.
 73. Diestelhorst M , Nordmann JP , Toris CB . Combined therapy of pilocarpine or latanoprost with timolol versus latanoprost monotherapy. Surv Ophthalmol 47(Suppl 1): S155‐S161, 2002.
 74. Dineen JT , Hendrickson A . Overlap of retinal and prestriate cortical pathways in the primate pretectum. Brain Res 278: 250‐254, 1983.
 75. Dismuke WM , Liang J , Overby DR , Stamer WD . Concentration‐related effects of nitric oxide and endothelin‐1 on human trabecular meshwork cell contractility. Exp Eye Res 120C: 28‐35, 2013.
 76. Distler C , Hoffmann KP . The pupillary light reflex in normal and innate microstrabismic cats, ii: Retinal and cortical input to the nucleus praetectalis olivaris. Visual Neurosci 3: 139‐153, 1989.
 77. Edinger L . Uber U den verlauf der centralen hirnnervenbahnen mit demonstrationen von praparaten. Arch Psychiat Nervenkr 16: 858‐859, 1885.
 78. Eglen RM , Hegde SS , Watson N . Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48: 531‐565, 1996.
 79. Ehinger B . Adrenergic nerves to the eye and to related structures in man and in the cynomolgus monkey (macaca irus). Invest Ophthalmol Vis Sci 5: 42‐52, 1966.
 80. Ehinger B . Distribution of adrenergic nerves in eye and some related structures in cat. Acta Physiol Scand 66: 123, 1966.
 81. Ehinger B . A comparative study of the adrenergic nerves to the anterior eye segment of some primates. Zeitschrift fur Zellforschung und mikroskopische Anatomie 116: 157‐177, 1971.
 82. Ehinger B , Sundler F , Tervo K , Tervo T , Tornqvist K . Substance P fibres in the anterior segment of the rabbit eye. Acta Physiol Scand 118: 215‐218, 1983.
 83. Elsas T , Edvinsson L , Sundler F , Uddman R . Neuronal pathways to the rat conjunctiva revealed by retrograde tracing and immunocytochemistry. Exp Eye Res 58: 117‐126, 1994.
 84. Elsas T , Uddman R , Sundler F . Pituitary adenylate cyclase‐activating peptide‐immunoreactive nerve fibers in the cat eye. Graefes Arch Clin Exp Ophthalmol 234: 573‐580, 1996.
 85. Ernest JT . The effect of systolic hypertension on rhesus monkey eyes after ocular sympathectomy. Am J Ophthalmol 84: 341‐344, 1977.
 86. Falsini B , Riva CE , Logean E . Flicker‐evoked changes in human optic nerve blood flow: Relationship with retinal neural activity. Invest Ophthalmol Vis Sci 43: 2309‐2316, 2002.
 87. Feigl B , Zele AJ , Fader SM , Howes AN , Hughes CE , Jones KA , Jones R . The post‐illumination pupil response of melanopsin‐expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol (Copenh) 90: e230‐234, 2012.
 88. Fitzgerald ME , Vana BA , Reiner A . Control of choroidal blood flow by the nucleus of edinger‐westphal in pigeons: A laser doppler study. Invest Ophthalmol Vis Sci 31: 2483‐2492, 1990.
 89. Fitzgerald MEC , Gamlin PDR , Zagvazdin Y , Reiner A . Central neural circuits for the light‐mediated reflexive control of choroidal blood flow in the pigeon eye: A laser doppler study. Visual Neurosci 13: 655‐669, 1996.
 90. Flugel‐Koch C , Kaufman P , Lutjen‐Drecoll E . Association of a choroidal ganglion cell plexus with the fovea centralis. Invest Ophthalmol Vis Sci 35: 4268‐4272, 1994.
 91. Flugel C , Tamm ER , Mayer B , Lutjen‐Drecoll E . Species differences in choroidal vasodilative innervation: Evidence for specific intrinsic nitrergic and vip‐positive neurons in the human eye. Invest Ophthalmol Vis Sci 35: 592‐599, 1994.
 92. Fry GA . The optical performance of the human eye. Prog Optics 8: 53‐131, 1970.
 93. Fry GA . The relation of pupil size to accommodation and convergence. Am J Optom & Arch Am Acad Optom 22: 451‐465, 1945.
 94. Fu Y , Liao HW , Do MTH , Yau KW . Non‐image‐forming ocular photoreception in vertebrates. Curr Opin Neurobiol 15: 415‐422, 2005.
 95. Fu Y , Zhong H , Wang MH , Luo DG , Liao HW , Maeda H , Hattar S , Frishman LJ , Yau KW . Intrinsically photosensitive retinal ganglion cells detect light with a vitamin a‐based photopigment, melanopsin. Proc Natl Acad Sci U S A 102: 10339‐10344, 2005.
 96. Fuchsjager‐Mayrl G , Polska E , Malec M , Schmetterer L . Unilateral light‐dark transitions affect choroidal blood flow in both eyes. Vision Res 41: 2919‐2924, 2001.
 97. Fuder H , Schopf J , Unckell J , Wesner MT , Melchiorre C , Tacke R , Mutschler E , Lambrecht G . Different Muscarine receptors mediate the prejunctional inhibition of [3h]‐noradrenaline release in rat or guinea‐pig iris and the contraction of the rabbit iris sphincter muscle. Naunyn Schmiedebergs Arch Pharmacol 340: 597‐604, 1989.
 98. Fuller JH , Schlag JD . Determination of antidromic excitation by the collision test: Problems of interpretation. Brain Res 112: 283‐298, 1976.
 99. Funk RH , Gehr J , Rohen JW . Short‐term hemodynamic changes in episcleral arteriovenous anastomoses correlate with venous pressure and iop changes in the albino rabbit. Curr Eye Res 15: 87‐93, 1996.
 100. Gabelt B , Kaufman PL . Production and flow of aqueous humor. In: Levin LA , Kaufman PL , editors. Adler's Physiology of the Eye: Clinical Application (11th ed.). New York: Elsevier, 2011, pp. 274‐307.
 101. Gabelt BT , Kaufman PL . Prostaglandin F2 alpha increases uveoscleral outflow in the cynomolgus monkey. Exp Eye Res 49: 389‐402, 1989.
 102. Gallar J , Liu JH . Stimulation of the cervical sympathetic nerves increases intraocular pressure. Invest Ophthalmol Vis Sci 34: 596‐605, 1993.
 103. Gamlin PD . Functions of the edinger‐westphal nucleus. In: Burnstock G , Sillito AM , editors. Nervous Control of the Eye. Amsterdam: Harwood Academic, 2000, pp. 117‐154.
 104. Gamlin PD . The pretectum: Connections and oculomotor‐related roles. Prog Brain Res 151: 379‐405, 2006.
 105. Gamlin PD , Clarke RJ . The pupillary light reflex pathway of the primate. J Am Optom Assoc 66: 415‐418, 1995.
 106. Gamlin PD , McDougal DH , Pokorny J , Smith VC , Yau KW , Dacey DM . Human and macaque pupil responses driven by melanopsin‐containing retinal ganglion cells. Vision Res 47: 946‐954, 2007.
 107. Gamlin PD , Reiner A , Karten HJ . Substance P‐containing neurons of the avian suprachiasmatic nucleus project directly to the nucleus of edinger‐westphal. Proc Natl Acad Sci U S A 79: 3891‐3895, 1982.
 108. Gamlin PD , Yoon K . An area for vergence eye movement in primate frontal cortex. Nature 407: 1003‐1007, 2000.
 109. Gamlin PD , Yoon K , Zhang H . The role of cerebro‐ponto‐cerebellar pathways in the control of vergence eye movements. Eye 10 (Pt 2): 167‐171, 1996.
 110. Gamlin PD , Zhang H , Clarke RJ . Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey. Exp Brain Res 106: 169‐176, 1995.
 111. Gamlin PD , Zhang H , Harlow A , Barbur JL . Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey. Vision Res 38: 3353‐3358, 1998.
 112. Gamlin PDR . Neural mechanisms for the control of vergence eye movements. Ann Ny Acad Sci 956: 264‐272, 2002.
 113. Gamlin PDR . Subcortical neural circuits for ocular accommodation and vergence in primates. Ophthal Physl Opt 19: 81‐89, 1999.
 114. Gamlin PDR , Clarke RJ . Single‐unit activity in the primate nucleus‐reticularis tegmenti pontis related to vergence and ocular accommodation. J Neurophysiol 73: 2115‐2119, 1995.
 115. Gamlin PDR , Reiner A . The edinger‐westphal nucleus—sources of input influencing accommodation, pupilloconstriction, and choroidal blood‐flow. J Comp Neurol 306: 425‐438, 1991.
 116. Gamlin PDR , Reiner A , Erichsen JT , Karten HJ , Cohen DH . The neural substrate for the pupillary light reflex in the pigeon (columba‐livia). J Comp Neurol 226: 523‐543, 1984.
 117. Gamlin PDR , Zhang YH , Clendaniel RA , Mays LE . Behavior of identified edinger‐westphal neurons during ocular accommodation. J Neurophysiol 72: 2368‐2382, 1994.
 118. Gaudric A , Coscas G , Bird AC . Choroidal ischemia. Am J Ophthalmol 94: 489‐498, 1982.
 119. Gay AJ , Goldor H , Smith M . Chorioretinal vascular occlusions with latex spheres. Invest Ophthalmol 3: 647‐656, 1964.
 120. Geijer C , Bill A . Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 18: 1030‐1042, 1979.
 121. Gherezghiher T , Hey JA , Koss MC . Parasympathetic nervous control of intraocular pressure. Exp Eye Res 50: 457‐462, 1990.
 122. Gibbins IL , Furness JB , Costa M , MacIntyre I , Hillyard CJ , Girgis S . Co‐localization of calcitonin gene‐related peptide‐like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57: 125‐130, 1985.
 123. Gibbins IL , Morris JL . Co‐existence of neuropeptides in sympathetic, cranial autonomic and sensory neurons innervating the iris of the guinea‐pig. J Autonom Nerv Syst 21: 67‐82, 1987.
 124. Gil DW , Krauss HA , Bogardus AM , WoldeMussie E . Muscarinic receptor subtypes in human iris‐ciliary body measured by immunoprecipitation. IOVS 38: 1434‐1442, 1997.
 125. Gilmartin B. A review of the role of sympathetic innervation of the ciliary muscle in ocular accommodation. Ophthalmic Physiol Opt 6: 23‐37, 1986.
 126. Gloster J , Greaves DP . Effect of diencephalic stimulation upon intra‐ocular pressure. Br J Ophthalmol 41: 513‐532, 1957.
 127. Goel M , Picciani RG , Lee RK , Bhattacharya SK . Aqueous humor dynamics: A review. Open Ophthalmol J 4: 52‐59, 2010.
 128. Gooley JJ , Ho Mien I , St Hilaire MA , Yeo SC , Chua EC , van Reen E , Hanley CJ , Hull JT , Czeisler CA , Lockley SW . Melanopsin and rod‐cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans. J Neurosci 32: 14242‐14253, 2012.
 129. Gooley JJ , Lu J , Chou TC , Scammell TE , Saper CB . Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4: 1165‐1165, 2001.
 130. Gooley JJ , Lu J , Fischer D , Saper CB . Broad role for melanopsin in nonvisual photoreception. J Neurosci 23: 7093‐7106, 2003.
 131. Gottanka J , Kirch W , Tamm ER . The origin of extrinsic nitrergic axons supplying the human eye. J Anat 206: 225‐229, 2005.
 132. Granstam E , Nilsson SF . Non‐adrenergic sympathetic vasoconstriction in the eye and some other facial tissues in the rabbit. Eur J Pharmacol 175: 175‐186, 1990.
 133. Graybiel AM , Hartwieg EA . Some afferent connections of the oculomotor complex in the cat: An experimental study with tracer techniques. Brain Res 81: 543‐551, 1974.
 134. Greaves DP , Perkins ES . Influence of the sympathetic nervous system on the intra‐ocular pressure and vascular circulation of the eye. Brit J Ophthalmol 36: 258‐264, 1952.
 135. Grimes PA , Macri FJ , Von Sallmann L , Wanko T . Some mechanisms of centrally induced eye pressure responses. Am J Ophthalmol 42: 130‐147, 1956.
 136. Grkovic I , Edwards SL , Murphy SM , Anderson CR . Chemically distinct preganglionic inputs to iris‐projecting postganglionic neurons in the rat: A light and electron microscopic study. J Comp Neurol 412: 606‐616, 1999.
 137. Gu Q . Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neurosci 111: 815‐835, 2002.
 138. Guglielmone R , Cantino D . Autonomic innervation of the ocular choroid membrane in the chicken: A fluorescence‐histochemical and electron‐microscopic study. Cell Tissue Res 222: 417‐431, 1982.
 139. Gupta N , McAllister R , Drance SM , Rootman J , Cynader MS . Muscarinic receptor M1 and M2 subtypes in the human eye: Qnb, pirenzipine, oxotremorine, and Afdx‐116 in vitro autoradiography. Brit J Ophthalmol 78: 555‐559, 1994.
 140. Guyenet PG . The sympathetic control of blood pressure. Nat Rev Neurosci 7: 335‐346, 2006.
 141. Hattar S , Liao HW , Takao M , Berson DM , Yau KW . Melanopsin‐containing retinal. Ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295: 1065‐1070, 2002.
 142. Hattar S , Lucas RJ , Mrosovsky N , Thompson S , Douglas RH , Hankins MW , Lem J , Biel M , Hofmann F , Foster RG , Yau KW . Melanopsin and rod‐cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76‐81, 2003.
 143. Helmholtz Hv . Handbuch Der Physiologischen Optik. Leipzig: Voss, 1867.
 144. Heywood CA , Nicholas JJ , LeMare C , Cowey A . The effect of lesions to cortical areas V4 or ait on pupillary responses to chromatic and achromatic stimuli in monkeys. Exp Brain Res 122: 475‐480, 1998.
 145. Hirai R , Tamamaki N , Hukami K , Nojyo Y . Ultrastructural analysis of tyrosine hydroxylase‐, substance P‐, and calcitonin gene‐related peptide‐immunoreactive nerve fibers in the rat iris. Ophthalmic Res 26: 169‐180, 1994.
 146. Hiraoka M , Shimamura M . The midbrain reticular‐formation as an integration center for the near reflex in the cat. Neurosci Res 7: 1‐12, 1989.
 147. Hirata Y , Yamaji K , Sakai H , Usui S . Function of the pupil in vision and information capacity of retinal image. Syst Comput Jpn 34: 48‐57, 2003.
 148. Hockman CH. Essentials of Autonomic Function :The Autonomic Nervous System: Fundamental Concepts from Anatomy, Physiology, Pharmacology, and Neuroscience for Students and Professionals in the Health Sciences. Springfield, Ill., USA: Thomas, 1987.
 149. Holzer P . Local effector functions of capsaicin‐sensitive sensory nerve‐endings—involvement of tachykinins, calcitonin gene‐related peptide and other neuropeptides. Neuroscience 24: 739‐768, 1988.
 150. Hood D , Finkelstein M . Sensitivity to light. In: Boff KR , Kaufman L , Thomas JP , editors. Handbook of Perception and Human Performance. New York: Wiley, 1986, pp. 5/1–5/66.
 151. Horn AK , Eberhorn A , Haertig W , Ardeleanu P , Messoudi A , Buettner‐Ennever JA . Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: Reappraisal of the edinger‐westphal nucleus. J Comp Neurol 507: 1317‐1335, 2008.
 152. Hosoba M , Bando T , Tsukahara N . Cerebellar control of accommodation of eye in cat. Brain Res 153: 495‐505, 1978.
 153. Hultborn H , Mori K , Tsukahara N . The neuronal pathway subserving the pupillary light reflex and its facilitation from cerebellar nuclei. Brain Res 63: 357‐361, 1973.
 154. Hultborn H , Mori K , Tsukahara N . Cerebellar influence on parasympathetic neurones innervating intra‐ocular muscles. Brain Res 159: 269‐278, 1978.
 155. Hung GK , Semmlow JL . Static behavior of accommodation and vergence: Computer simulation of an interactive dual‐feedback system. IEEE T Bio‐Med Eng 27: 439‐447, 1980.
 156. Hutchins B . Evidence for a direct retinal projection to the anterior pretectal nucleus in the cat. Brain Res 561: 169‐173, 1991.
 157. Hutchins B , Weber JT . The pretectal complex of the monkey: A reinvestigation of the morphology and retinal terminations. J Comp Neurol 232: 425‐442, 1985.
 158. Ijichi Y , Kiyohara T , Hosoba M , Tsukahara N . The cerebellar control of the pupillary light reflex in the cat. Brain Res 128: 69‐79, 1977.
 159. Inoue T . The response of rabbit ciliary nerve to luminance intensity. Brain Res 201: 206‐209, 1980.
 160. Ishikawa H , Miller DD , Patil PN . Comparison of post‐junctional alpha‐adrenoceptors in iris dilator muscle of humans, and albino and pigmented rabbits. Naunyn Schmiedebergs Arch Pharmacol 354: 765‐772, 1996.
 161. Ishikawa S , Sekiya H , Kondo Y . The center for controlling the near reflex in the midbrain of the monkey—a double labeling study. Brain Res 519: 217‐222, 1990.
 162. Jacot JL , O'Neill JT , Scandling DM , West SD , McKenzie JE . Nitric oxide modulation of retinal, choroidal, and anterior uveal blood flow in newborn piglets. J Ocul Pharmacol Ther 14: 473‐489, 1998.
 163. Jaeger RJ , Benevento LA . A horseradish‐peroxidase study of the innervation of the internal structures of the eye—evidence for a direct pathway. Invest Ophthalmol Vis Sci 19: 575‐583, 1980.
 164. Jampel RS , Mindel J . The nucleus for accommodation in the midbrain of the macaque. Invest Ophthalmol 6: 40‐50, 1967.
 165. Jampel RS , Mindel J . The nucleus for accommodation in the midbrain of the macaque. Invest Ophth 6: 40‐50, 1967.
 166. Jansen AS , Ter Horst GJ , Mettenleiter TC , Loewy AD . Cns cell groups projecting to the submandibular parasympathetic preganglionic neurons in the rat: A retrograde transneuronal viral cell body labeling study. Brain Res 572: 253‐260, 1992.
 167. Jenkins TCA . Aberrations of the eye and their effects on vision: Part 2. Br J Physiol Opt 20: 161‐201, 1963.
 168. Johnson DA , Purves D . Tonic and reflex synaptic activity recorded in ciliary ganglion cells of anaesthetized rabbits. J Physiol 339: 599‐613, 1983.
 169. Jones MA , Marfurt CF . Peptidergic innervation of the rat cornea. Exp Eye Res 66: 421‐435, 1998.
 170. Jones R . The effect of accomodation and convergence on the pupil. IOVS 30: 45, 1989.
 171. Joshi AC , Das VE . Muscimol inactivation of caudal fastigial nucleus and posterior interposed nucleus in monkeys with strabismus. J Neurophysiol 110: 1882‐1891, 2013.
 172. Judge SJ , Cumming BG . Neurons in the monkey midbrain with activity related to vergence eye‐movement and accommodation. J Neurophysiol 55: 915‐930, 1986.
 173. Jumblatt JE . Innervation and pharmacology of the iris and ciliary body. In: Burnstock G , Sillito AM , editors. Nervous Control of the Eye. Amsterdam: Harwood Academic, 2000, pp. 1‐40.
 174. Jumblatt JE , Hackmiller RC . M2‐type muscarinic receptors mediate prejunctional inhibition of norepinephrine release in the human iris‐ciliary body. Exp Eye Res 58: 175‐180, 1994.
 175. Kahl BF , Reid TW . Substance‐P and the eye. Prog Retin Eye Res 14: 473‐504, 1995.
 176. Kankipati L , Girkin CA , Gamlin PD . Post‐illumination pupil response in subjects without ocular disease. Invest Ophthalmol Vis Sci 51: 2764‐2769, 2010.
 177. Kardon R . Pupillary light reflex. Curr Opin Ophthalmol 6: 20‐26, 1995.
 178. Kardon RH . Anatomy and physiology of the autonomic nervous system. In: Miller NR , Walsh FB , Hoyt WF , editors. Walsh and Hoyt's Clinical Neuro‐Ophthalmology (6th ed.). Philadelphia: Lippincott Williams & Wilkins, 2005, p. 3 v.
 179. Karplus JP , Kreidl A . Über die bahn des pupillarreflexes. Pflüger's Arch 149: 115‐155, 1912.
 180. Kasthurirangan S , Glasser A . Characteristics of pupil responses during far‐to‐near and near‐to‐far accommodation. Ophthal Physl Opt 25: 328‐339, 2005.
 181. Kawarai M , Koss MC . Sympathetic vasoconstriction in the rat anterior choroid is mediated by Alpha1‐adrenoceptors. Eur J Pharmacol 363: 35‐40, 1998.
 182. Kiel JW. The Ocular Circulation. San Rafael, CA: Morgan & Claypool Life Science, 2010.
 183. Kiel JW , Hollingsworth M , Rao R , Chen M , Reitsamer HA . Ciliary blood flow and aqueous humor production. Prog Retin Eye Res 30: 1‐17, 2011.
 184. Kiel JW , Lovell MO . Adrenergic modulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 37: 673‐679, 1996.
 185. Kimura E , Young RSL . Sustained pupillary constrictions mediated by an L‐ and M‐cone opponent process. Vision Res 50: 489‐496, 2010.
 186. Kirch W , Neuhuber W , Tamm ER . Immunohistochemical localization of neuropeptides in the human ciliary ganglion. Brain Res 681: 229‐234, 1995.
 187. Klooster J , Beckers HJ , Ten Tusscher MP , Vrensen GF , van der Want JJ , Lamers WP . Sympathetic innervation of the rat choroid: An autoradiographic tracing and immunohistochemical study. Ophthalmic Res 28: 36‐43, 1996.
 188. Klooster J , Vrensen GFJM . New indirect pathways subserving the pupillary light reflex: Projections of the accessory oculomotor nuclei and the periaqueductal gray to the edinger‐westphal nucleus and the thoracic spinal cord in rats. Anat Embryol 198: 123‐132, 1998.
 189. Klyce SD , Beuerman RW , Crosson CE . Alteration of corneal epithelial ion transport by sympathectomy. Invest Ophthalmol Vis Sci 26: 434‐442, 1985.
 190. Knoll HA . Pupillary changes associated with accommodation and convergence. Am J Ophthalmol 26: 346‐357, 1949.
 191. Koontz MA , Rodieck RW , Farmer SG . The retinal projection to the cat pretectum. J Comp Neurol 236: 42‐59, 1985.
 192. Koss MC . Pupillary dilation as an index of central‐nervous‐system alpha‐2‐adrenoceptor activation. J Pharmacol Method 15: 1‐19, 1986.
 193. Kourouyan HD , Horton JC . Transneuronal retinal input to the primate edinger‐westphal nucleus. J Comp Neurol 381: 68‐80, 1997.
 194. Kozicz T , Bittencourt JC , May PJ , Reiner A , Gamlin PD , Palkovits M , Horn AK , Toledo CA , Ryabinin AE . The edinger‐westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 519: 1413‐1434, 2011.
 195. Krieglstein GK , Langham ME , Leydhecker W . The peripheral and central neural actions of clonidine in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 17: 149‐158, 1978.
 196. Kruger PB . Infrared recording retinoscope for monitoring accomodation. Am J Optom Physiol Opt 56: 116‐123, 1979.
 197. Kuchiiwa S , Kuchiiwa T , Nakagawa S . Localization of preganglionic neurons of the accessory ciliary ganglion in the midbrain—Hrp and Wga‐Hrp studies in the cat. J Comp Neurol 340: 577‐591, 1994.
 198. Kuchiiwa S , Kuchiiwa T , Suzuki T . Comparative anatomy of the accessory ciliary ganglion in mammals. Anat Embryol 180: 199‐205, 1989.
 199. Kumagai N , Yuda K , Kadota T , Goris RC , Kishida R . Substance P‐like immunoreactivity in the central retinal artery of the rabbit. Exp Eye Res 46: 591‐596, 1988.
 200. Kuwayama Y , Grimes PA , Ponte B , Stone RA . Autonomic neurons supplying the rat eye and the intraorbital distribution of vasoactive intestinal polypeptide (Vip)‐like immunoreactivity. Exp Eye Res 44: 907‐922, 1987.
 201. Larson MD , Talke PO . Effect of dexmedetomidine, an alpha‐adrenoceptor agonist, on human pupillary reflexes during general anaesthesia. Brit J Clin Pharmaco 51: 27‐33, 2001.
 202. Laties AM . Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 77: 405‐409, 1967.
 203. Laties AM , Jacobowitz D . A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit. Anat Rec 156: 383‐395, 1966.
 204. Laties AM , Stone RA , Brecha NC . Substance P‐like immunoreactive nerve fibers in the trabecular meshwork. Invest Ophthalmol Vis Sci 21: 484‐486, 1981.
 205. Laughlin SB . Retinal information capacity and the function of the pupil. Ophthal Physl Opt 12: 161‐164, 1992.
 206. LeDoux MS , Zhou QH , Murphy RB , Greene ML , Ryan P . Parasympathetic innervation of the meibomian glands in rats. Invest Ophthalmol Vis Sci 42: 2434‐2441, 2001.
 207. Lee Y , Kawai Y , Shiosaka S , Takami K , Kiyama H , Hillyard CJ , Girgis S , Macintyre I , Emson PC , Tohyama M . Coexistence of calcitonin gene‐related peptide and substance‐P‐like peptide in single cells of the trigeminal ganglion of the rat—immunohistochemical analysis. Brain Res 330: 194‐196, 1985.
 208. Leichnetz GR . Preoccipital cortex receives a differential input from the frontal eye field and projects to the pretectal olivary nucleus and other visuomotor‐related structures in the rhesus monkey. Visual Neurosci 5: 123‐133, 1990.
 209. Li C , Fitzgerald ME , Ledoux MS , Gong S , Ryan P , Del Mar N , Reiner A . Projections from the hypothalamic paraventricular nucleus and the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: Pathways controlling rodent choroidal blood flow. Brain Res 1358: 123‐139, 2010.
 210. Li H , Grimes P . Adrenergic innervation of the choroid and iris in diabetic rats. Curr Eye Res 12: 89‐94, 1993.
 211. Liang J , Williams DR . Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A 14: 2873‐2883, 1997.
 212. Linsenmeier RA , Braun RD . Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99: 177‐197, 1992.
 213. Linsenmeier RA , Goldstick TK , Blum RS , Enroth‐Cugell C . Estimation of retinal oxygen transients from measurements made in the vitreous humor. Exp Eye Res 32: 369‐379, 1981.
 214. Loewenfeld IE , Lowenstein O . The Pupil: Anatomy, Physiology, and Clinical Applications: Iowa State University Press, 1993.
 215. Loewy AD . Autonomic control of the eye. In: Loewy AD , Spyer KM , editors. Central Regulation of Autonomic Functions. New York: Oxford University Press, 1990, pp. 266‐283.
 216. Loewy AD , Saper CB . Edinger‐westphal nucleus: Projections to the brain stem and spinal cord in the cat. Brain Res 150: 1‐27, 1978.
 217. Loewy AD , Saper CB , Yamodis ND . Re‐evaluation of the efferent projections of the edinger‐westphal nucleus in the cat. Brain Res 141: 153‐159, 1978.
 218. Lovasik JV , Kergoat H , Riva CE , Petrig BL , Geiser M . Choroidal blood flow during exercise‐induced changes in the ocular perfusion pressure. Invest Ophthalmol Vis Sci 44: 2126‐2132, 2003.
 219. Lowenstein O . The argyll robertson pupillary syndrome; mechanism and localization. Am J Ophthalmol 42: 105‐121, 1956.
 220. Lucas RJ , Hattar S , Takao M , Berson DM , Foster RG , Yau KW . Diminished pupillary light reflex at high irradiances in melanopsin‐knockout mice. Science 299: 245‐247, 2003.
 221. Luhtala J , Uusitalo H . The distribution and origin of substance P immunoreactive nerve fibres in the rat conjunctiva. Exp Eye Res 53: 641‐646, 1991.
 222. Lui F , Gregory KM , Blanks RH , Giolli RA . Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey. J Comp Neurol 363: 439‐460, 1995.
 223. Lutjen‐Drecoll E . Choroidal innervation in primate eyes. Exp Eye Res 82: 357‐361, 2006.
 224. Magoun HW , Atlas D , Hare WK , Ranson SW . The afferent path of the pupillary light reflex in the monkey. Brain 59: 234‐249, 1936.
 225. Magoun HW , Ranson SW . The afferent path of the light reflex—a review of the literature. Arch Ophthalmol 13: 862‐874, 1935.
 226. Magoun HW , Ranson SW . The central path of the light reflex—a study of the effect of lesions. Arch Ophthalmol 13: 791‐811, 1935.
 227. Mandahl A , Bill A . Effects of the substance P antagonist, (D‐Arg1, D‐Pro2, D‐Trp7,9, Leu11)‐Sp on the miotic response to substance P, antidromic trigeminal nerve stimulation, capsaicin, prostaglandin E1, compound 48/80 and histamine. Acta Physiol Scand 120: 27‐35, 1984.
 228. Marcos S , Moreno E , Navarro R . The depth‐of‐field of the human eye from objective and subjective measurements. Vision Res 39: 2039‐2049, 1999.
 229. Marfurt C . Nervous control of the cornea. In: Burnstock G , Sillito AM , editors. Nervous Control of the Eye. Amsterdam: Harwood Academic, 2000, pp. 41‐92.
 230. Marfurt CF , Kingsley RE , Echtenkamp SE . Sensory and sympathetic innervation of the mammalian cornea—a retrograde tracing study. Invest Ophthalmol Vis Sci 30: 461‐472, 1989.
 231. Marg E . Accommodative response of the eye to electrical stimulation of the ciliary ganglion in cats. Am J Optom Arch Am Acad Optom 31: 127‐136, 1954.
 232. Marg E , Morgan MW . The pupillary near reflex. Am J Optom 26: 183‐198, 1949.
 233. Marg E , Morgan W . Further investigation of the pupillary near reflex. Am J Optom 27: 217‐225, 1950.
 234. May CA . Description and function of the ciliary nerves–some historical remarks on choroidal innervation. Exp Eye Res 65: 1‐5, 1997.
 235. May CA , Neuhuber W , Lutjen‐Drecoll E . Immunohistochemical classification and functional morphology of human choroidal ganglion cells. Invest Ophthalmol Vis Sci 45: 361‐367, 2004.
 236. May CA , Skorski LM , Lutjen‐Drecoll E . Innervation of the porcine ciliary muscle and outflow region. J Anat 206: 231‐236, 2005.
 237. May PJ , Porter JD , Gamlin PD . Interconnections between the primate cerebellum and midbrain near‐response regions. J Comp Neurol 315: 98‐9116, 1992.
 238. May PJ , Reiner AJ , Ryabinin AE . Comparison of the distributions of urocortin‐containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 507: 1300‐1316, 2008.
 239. May PJ , Sun W , Erichsen JT . Defining the pupillary component of the perioculomotor preganglionic population within a unitary primate edinger‐westphal nucleus. In: Kennard C , Leigh RJ , editors. Using Eye Movements as an Experimental Probe of Brain Function—a Symposium in Honor of Jean Buttner‐Ennever. Elsevier, 2008, pp. 97‐106.
 240. May PJ , Warren S . Ultrastructure of the macaque ciliary ganglion. J Neurocytol 22: 1073‐1095, 1993.
 241. Mays LE , Gamlin PDR . Neuronal circuitry controlling the near response. Curr Opin Neurobiol 5: 763‐768, 1995.
 242. Mays LE , Porter JD . Neural control of vergence eye‐movements—activity of abducens and oculomotor neurons. J Neurophysiol 52: 743‐761, 1984.
 243. Mays LE , Porter JD , Gamlin PDR , Tello CA . Neural control of vergence eye‐movements—neurons encoding vergence velocity. J Neurophysiol 56: 1007‐1021, 1986.
 244. McDougal DH , Gamlin PD . The influence of intrinsically‐photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Res 50: 72‐87, 2010.
 245. Melnitchenko LV , Skok VI . Natural electrical activity in mammalian parasympathetic ganglion neurones. Brain Res 23: 277‐279, 1970.
 246. Meriney SD , Pilar G . Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development. J Neurosci 7: 3827‐3839, 1987.
 247. Millar C , Kaufman PL . Aqueous humor: Secretion and dynamics. In: Duane TD , Tasman W , Jaeger EA , editors. Duane's Foundations of Clinical Ophthalmology. Lippincott, 1998.
 248. Miller A , Costa M , Furness JB , Chubb IW . Substance P immunoreactive sensory nerves supply the rat iris and cornea. Neurosci Lett 23: 243‐249, 1981.
 249. Mione MC , Cavanagh JF , Lincoln J , Milner P , Burnstock G . Long‐term chemical sympathectomy leads to an increase of neuropeptide Y immunoreactivity in cerebrovascular nerves and iris of the developing rat. Neuroscience 34: 369‐378, 1990.
 250. Mitchelson F . Muscarinic receptor agonists and antagonists: Effects on ocular function. Handb Exp Pharmacol 2012, 263‐298.
 251. Morgan C , DeGroat WC , Jannetta PJ . Sympathetic innervation of the cornea from the superior cervical ganglion. An hrp study in the cat. J Autonom Nerv Syst 20: 179‐183, 1987.
 252. Movaffaghy A , Chamot SR , Petrig BL , Riva CE . Blood flow in the human optic nerve head during isometric exercise. Exp Eye Res 67: 561‐568, 1998.
 253. Mueller H . Ueber glatte muskeln und nervengeflechte der chorioidea im menschlichen auge. Vehr physik‐med Ges Wurzburg 10: 179‐192, 1859.
 254. Muller LJ , Marfurt CF , Kruse F , Tervo TMT . Corneal nerves: Structure, contents and function. Exp Eye Res 76: 521‐542, 2003.
 255. Munch M , Kawasaki A . Intrinsically photosensitive retinal ganglion cells: Classification, function and clinical implications. Curr Opin Neurol 26: 45‐51, 2013.
 256. Myers GA , Stark L . Topology of the near response triad. Ophthal Physl Opt 10: 175‐181, 1990.
 257. Nakai M , Ogino K . The relevance of cardio‐pulmonary‐vascular reflex to regulation of the brain vessels. Jpn J Physiol 34: 193‐197, 1984.
 258. Nakai M , Tamaki K , Ogata J , Matsui Y , Maeda M . Parasympathetic cerebrovasodilator center of the facial nerve. Circ Res 72: 470‐475, 1993.
 259. Nakanome Y , Karita K , Izumi H , Tamai M . Two types of vasodilatation in cat choroid elicited by electrical stimulation of the short ciliary nerve. Exp Eye Res 60: 37‐42, 1995.
 260. Neuhuber W , Schrodl F . Autonomic control of the eye and the iris. Auton Neurosci‐Basic Clinic 165: 67‐79, 2011.
 261. Ng YK , Wong WC , Ling EA . A light and electron microscopical localisation of the superior salivatory nucleus of the rat. J Hirnforsch 35: 39‐48, 1994.
 262. Nicholson J , Severin CM . Afferent‐projections of the edinger‐westphal nucleus in the rat. Anat Rec 199: A183‐A183, 1981.
 263. Nicholson JE , Severin CM . The superior and inferior salivatory nuclei in the rat. Neurosci Lett 21: 149‐154, 1981.
 264. Nickla DL , Wallman J . The multifunctional choroid. Prog Retin Eye Res 29: 144‐168, 2010.
 265. Nickla DL , Wildsoet C , Wallman J . Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 66: 163‐181, 1998.
 266. Nickla DL , Wildsoet CF , Troilo D . Endogenous rhythms in axial length and choroidal thickness in chicks: Implications for ocular growth regulation. Invest Ophthalmol Vis Sci 42: 584‐588, 2001.
 267. Nilsson SF . Neuropeptide Y (Npy): A vasoconstrictor in the eye, brain and other tissues in the rabbit. Acta Physiol Scand 141: 455‐467, 1991.
 268. Nilsson SF . Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit. Invest Ophthalmol Vis Sci 37: 2110‐2119, 1996.
 269. Nilsson SF . The significance of nitric oxide for parasympathetic vasodilation in the eye and other orbital tissues in the cat. Exp Eye Res 70: 61‐72, 2000.
 270. Nilsson SF , Linder J , Bill A . Characteristics of uveal vasodilation produced by facial nerve stimulation in monkeys, cats and rabbits. Exp Eye Res 40: 841‐852, 1985.
 271. Nisida I , Okada H , Nakano O . The activity of the ciliospinal centers and their inhibition in pupillary light reflex. Jpn J Physiol 10: 73‐84, 1960.
 272. Nomura T , Smelser GK . The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork. Invest Ophthalmol 13: 525‐532, 1974.
 273. Okada H , Nakano O , Okamoto K , Nakayama K , Nisida I . The central path of the light reflex via the sympathetic nerve in the cat. Jpn J Physiol 10: 646‐658, 1960.
 274. Oksala O . Effects of calcitonin gene‐related peptide and substance P on regional blood flow in the cat eye. Exp Eye Res 47: 283‐289, 1988.
 275. Oksala O , Stjernschantz J . Increase in outflow facility of aqueous humor in cats induced by calcitonin gene‐related peptide. Exp Eye Res 47: 787‐790, 1988.
 276. Olmsted JMD . The role of the autonomic nervous system in accommodation for far and near vision. J Nerv Ment Dis 99: 794‐798, 1944.
 277. Ostrin LA , Glasser A . Autonomic drugs and the accommodative system in rhesus monkeys. Exp Eye Res 90: 104‐112, 2010.
 278. Ostrin LA , Glasser A . Comparisons between pharmacologically and edinger‐westphal‐stimulated accommodation in rhesus monkeys. Invest Ophthalmol Vis Sci 46: 609‐617, 2005.
 279. Ostrin LA , Glasser A . Edinger‐westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys. Exp Eye Res 84: 302‐313, 2007.
 280. Oyster CW. The Human Eye: Structure and Function. Sunderland, Mass.: Sinauer Associates, 1999.
 281. Oyster CW . The iris and the pupil. In: Oyster CW , editor. The Human Eye: Structure and Function. Sunderland, Mass.: Sinauer Associates, 1999, pp. 411‐446.
 282. Panda S , Provencio I , Tu DC , Pires SS , Rollag MD , Castrucci AM , Pletcher MT , Sato TK , Wiltshire T , Andahazy M , Kay SA , Van Gelder RN , Hogenesch JB . Melanopsin is required for non‐image‐forming photic responses in blind mice. Science 301: 525‐527, 2003.
 283. Papastergiou GI , Schmid GF , Riva CE , Mendel MJ , Stone RA , Laties AM . Ocular axial length and choroidal thickness in newly hatched chicks and one‐year‐old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes. Exp Eye Res 66: 195‐205, 1998.
 284. Parelman JJ , Fay MT , Burde RM . Confirmatory evidence for a direct parasympathetic pathway to internal eye structures. Trans Am Ophthalmol Soc 82: 371‐380, 1984.
 285. Parssinen O , Leppanen E , Keski‐Rahkonen P , Mauriala T , Dugue B , Lehtonen M . Influence of tamsulosin on the iris and its implications for cataract surgery. IOVS 47: 3766‐3771, 2006.
 286. Parver LM , Auker CR , Carpenter DO . Choroidal blood flow. Iii. Reflexive control in human eyes. Arch Ophthalmol 101: 1604‐1606, 1983.
 287. Parver LM , Auker CR , Carpenter DO , Doyle T . Choroidal blood flow Ii. Reflexive control in the monkey. Arch Ophthalmol 100: 1327‐1330, 1982.
 288. Passatore M , Pettorossi VE . Efferent fibers in the cervical sympathetic nerve influenced by light. Exp Neurol 52: 66‐82, 1976.
 289. Perez‐Leon JA , Warren EJ , Allen CN , Robinson DW , Brown RL . Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci 24: 1117‐1123, 2006.
 290. Perry VH , Cowey A . Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12: 1125‐1137, 1984.
 291. Phillips NJ , Winn B , Gilmartin B . Absence of pupil response to blur‐driven accommodation. Vision Res 32: 1775‐1779, 1992.
 292. Pierson RJ , Carpenter DO . Anatomical analysis of pupillary reflex pathways in rhesus‐monkey. J Comp Neurol 158: 121‐143, 1974.
 293. Pilar G , Tuttle JB . A simple neuronal system with a range of uses: The avian ciliary ganglion. In: Hanin I , Goldberg AM , editors. Progress in Modern Cholinergic Biology: Model Cholinergic Synapses. New York: Raven Press, 1982, pp. 213‐247.
 294. Pintor J . Purinergic signalling in the eye. In: Burnstock G , Sillito AM , editors. Nervous Control of the Eye. Amsterdam: Harwood Academic, 2000, pp. 171‐210.
 295. Pitts DG . Electrical stimulation of oculomotor nucleus: The effects of stimulus voltage and anesthesia. Am J Optom Arch Am Acad Optom 44: 505‐516, 1967.
 296. Polansky JR , Zlock D , Brasier A , Bloom E . Adrenergic and cholinergic receptors in isolated non‐pigmented ciliary epithelial cells. Curr Eye Res 4: 517‐522, 1985.
 297. Polska E , Simader C , Weigert G , Doelemeyer A , Kolodjaschna J , Scharmann O , Schmetterer L . Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Invest Ophthalmol Vis Sci 48: 3768‐3774, 2007.
 298. Ponsford JR , Bannister R , Paul EA . Methacholine pupillary responses in third nerve palsy and adie's syndrome. Brain 105(Pt 3): 583‐597, 1982.
 299. Poukens V , Glasgow BJ , Demer JL . Nonvascular contractile cells in sclera and choroid of humans and monkeys. Invest Ophthalmol Vis Sci 39: 1765‐1774, 1998.
 300. Provencio I , Jiang GS , De Grip WJ , Hayes WP , Rollag MD . Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95: 340‐345, 1998.
 301. Provencio I , Rodriguez IR , Jiang GS , Hayes WP , Moreira EF , Rollag MD . A novel human opsin in the inner retina. J Neurosci 20: 600‐605, 2000.
 302. Qiu X , Kumbalasiri T , Carlson SM , Wong KY , Krishna V , Provencio I , Berson DM . Induction of photosensitivity by heterologous expression of melanopsin. Nature 433: 745‐749, 2005.
 303. Quigley HA , Silver DM , Friedman DS , He M , Plyler RJ , Eberhart CG , Jampel HD , Ramulu P . Iris cross‐sectional area decreases with pupil dilation and its dynamic behavior is a risk factor in angle closure. J Glaucoma 18: 173‐179, 2009.
 304. Ranson SW , Magoun HW . The central path of the pupilloconstricter reflex in response to light. Arch Neurol Psych 30: 1193‐1204, 1933.
 305. Reiner A , Fitzgerald MC , Li C . Neural control of ocular blood flow. In: Schmetterer L , Kiel J , editors. Ocular Blood Flow. Berlin Heidelberg: Springer, 2012, pp. 243‐309.
 306. Reitsamer HA , Kiel JW . Relationship between ciliary blood flow and aqueous production in rabbits. Invest Ophthalmol Vis Sci 44: 3967‐3971, 2003.
 307. Ripps H , Breinin GM , Baum JL . Accommodation in the cat. Trans Am Ophthalmol Soc 59: 176‐193, 1961.
 308. Riva CE , Cranstoun SD , Petrig BL . Effect of decreased ocular perfusion pressure on blood flow and the flicker‐induced flow response in the cat optic nerve head. Microvasc Res 52: 258‐269, 1996.
 309. Riva CE , Falsini B , Logean E . Flicker‐evoked responses of human optic nerve head blood flow: Luminance versus chromatic modulation. Invest Ophthalmol Vis Sci 42: 756‐762, 2001.
 310. Riva CE , Titze P , Hero M , Movaffaghy A , Petrig BL . Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 38: 2338‐2343, 1997.
 311. Robertson D. Primer on the Autonomic Nervous System. Boston: Academic Press, 2004.
 312. Roecklein K , Wong P , Ernecoff N , Miller M , Donofry S , Kamarck M , Wood‐Vasey WM , Franzen P . The post illumination pupil response is reduced in seasonal affective disorder. Psychiatry Res 210: 150‐158, 2013.
 313. Roste GK , Dietrichs E . Cerebellar cortical and nuclear afferents from the edinger‐westphal nucleus in the cat. Anat Embryol 178: 59‐65, 1988.
 314. Ruskell GL . The Orbital Distribution of the Sphenopalatine Ganglion in the Rabbit. In: Rohen JW , editor. International Congress of Anatomists. The Structure of the Eye. Ii. Symposium; Held August 8‐13, 1965 During the Eighth International Congress of Anatomists, Wiesbaden, Germany. Stuttgart: Schattauer, 1965, pp. 323–339.
 315. Ruskell GL . An ocular parasympathetic nerve pathway of facial nerve origin and its influence on intraocular pressure. Exp Eye Res 10: 319‐330, 1970.
 316. Ruskell GL . Orbital branches of pterygopalatine ganglion and their relationship with internal carotid nerve branches in primates. J Anat 106: 323, 1970.
 317. Ruskell GL . Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Exp Eye Res 12: 166‐172, 1971.
 318. Ruskell GL . The distribution of autonomic post‐ganglionic nerve fibres to the lacrimal gland in monkeys. J Anat 109: 229‐242, 1971.
 319. Ruskell GL . Ocular fibres of the maxillary nerve in monkeys. J Anat 118: 195‐203, 1974.
 320. Ruskell GL . Accommodation and the nerve pathway to the ciliary muscle: A review. Ophthalmic Physiol Opt 10: 239‐242, 1990.
 321. Ruskell GL . Trigeminal innervation of the scleral spur in cynomolgus monkeys. J Anat 184 (Pt 3): 511‐518, 1994.
 322. Ruskell GL . Access of autonomic nerves through the optic canal, and their orbital distribution in man. Anat Rec A Discov Mol Cell Evol Biol 275: 973‐978, 2003.
 323. Ruskell GL , Griffiths T . Peripheral nerve pathway to the ciliary muscle. Exp Eye Res 28: 277‐284, 1979.
 324. Rusu MC , Pop F , Curca GC , Podoleanu L , Voinea LM . The pterygopalatine ganglion in humans: A morphological study. Ann Anat 191: 196‐202, 2009.
 325. Samuels BC , Hammes NM , Johnson PL , Shekhar A , McKinnon SJ , Allingham RR . Dorsomedial/perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci 53: 7328‐7335, 2012.
 326. Saper CB , Scammell TE , Lu J . Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257‐1263, 2005.
 327. Scalia F . Retinal projections to the olivary pretectal nucleus in the tree shrew and comparison with the rat. Brain Behav Evol 6: 237‐252, 1972.
 328. Scalia F . The termination of retinal axons in the pretectal region of mammals. J Comp Neurol 145: 223‐257, 1972.
 329. Scalia F , Arango V . Topographic organization of the projections of the retina to the pretectal region in the rat. J Comp Neurol 186: 271‐292, 1979.
 330. Schaeffel F , Troilo D , Wallman J , Howland HC . Developing eyes that lack accommodation grow to compensate for imposed defocus. Vis Neurosci 4: 177‐183, 1990.
 331. Schmerl E , Steinberg B . Central control of intraocular pressure by active principles. Am J Ophthalmol 31: 1097‐1101, 1948.
 332. Schmidt TM , Kofuji P . Differential cone pathway influence on intrinsically photosensitive retinal ganglion cell subtypes. J Neurosci 30: 16262‐16271, 2010.
 333. Schor CM , Narayan V . Graphical analysis of prism adaptation, convergence accommodation, and accommodative convergence. Am J Optom Phys Opt 59: 774‐784, 1982.
 334. Schrodl F , Brehmer A , Neuhuber WL . Intrinsic choroidal neurons in the duck eye express galanin. J Comp Neurol 425: 24‐33, 2000.
 335. Schrodl F , De Laet A , Tassignon M‐J , Van Bogaert P‐P , Brehmer A , Neuhuber WL , Timmermans J‐P . Intrinsic choroidal neurons in the human eye: Projections, targets, and basic electrophysiological data. Invest Ophthalmol Vis Sci 44: 3705‐3712, 2003.
 336. Schrodl F , Schweigert M , Brehmer A , Neuhuber WL . Intrinsic Neurons in the duck choroid are contacted by Cgrp‐immunoreactive nerve fibres: Evidence for a local pre‐central reflex arc in the eye. Exp Eye Res 72: 137‐146, 2001.
 337. Schwiegerling J . Theoretical limits to visual performance. Surv Ophthalmol 45: 139‐146, 2000.
 338. Selbach JM , Gottanka J , Wittmann M , Lutjen‐Drecoll E . Efferent and afferent innervation of primate trabecular meshwork and scleral spur. Invest Ophthalmol Vis Sci 41: 2184‐2191, 2000.
 339. Selbach JM , Rohen JW , Steuhl KP , Lutjen‐Drecoll E . Angioarchitecture and innervation of the primate anterior episclera. Curr Eye Res 30: 337‐344, 2005.
 340. Selbach JM , Schonfelder U , Funk RH . Arteriovenous anastomoses of the episcleral vasculature in the rabbit and rat eye. J Glaucoma 7: 50‐57, 1998.
 341. Seligsohn EE , Bill A . Effects of Ng‐Nitro‐L‐arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropin‐releasing hormone. Br J Pharmacol 109: 1219‐1225, 1993.
 342. Semmlow J , Heerema D . Synkinetic interaction of convergence accomodation and accommodative convergence. Vision Res 19: 1237‐1242, 1979.
 343. Shi XP , Zamudio AC , Candia OA , Wolosin JM . Adreno‐cholinergic modulation of junctional communications between the pigmented and nonpigmented layers of the ciliary body epithelium. Invest Ophthalmol Vis Sci 37: 1037‐1046, 1996.
 344. Shih YF , Fitzgerald ME , Cuthbertson SL , Reiner A . Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks. Exp Eye Res 69: 9‐20, 1999.
 345. Shih YF , Fitzgerald ME , Reiner A . Effect of choroidal and ciliary nerve transection on choroidal blood flow, retinal health, and ocular enlargement. Vis Neurosci 10: 969‐979, 1993.
 346. Shimizu Y . Localization of neuropeptides in the cornea and uvea of the rat: An immunohistochemical study. Cell Mol Biol 28: 103‐110, 1982.
 347. Sillito AM , Zbrozyna AW . The activity characteristics of the preganglionic pupilloconstrictor neurones. J Physiol 211: 767‐779, 1970.
 348. Sillito AM , Zbrożyna AW . The localization of pupilloconstrictor function within the mid‐brain of the cat. J Physiol 211: 461‐477, 1970.
 349. Sossi N , Anderson DR . Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125. Arch Ophthalmol 101: 98‐101, 1983.
 350. Spencer SE , Sawyer WB , Wada H , Platt KB , Loewy AD . Cns projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: A retrograde transneuronal viral cell body labeling study. Brain Res 534: 149‐169, 1990.
 351. Stakenburg M . Accommodation without pupillary constriction. Vision Res 31: 267‐273, 1991.
 352. Steele GE , Weller RE . Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys. Visual Neurosci 10: 563‐583, 1993.
 353. Steiger HJ , Buttnerennever JA . Oculomotor nucleus afferents in monkey demonstrated with horseradish‐peroxidase. Brain Res 160: 1‐15, 1979.
 354. Steinle JJ , Krizsan‐Agbas D , Smith PG . Regional regulation of choroidal blood flow by autonomic innervation in the rat. Am J Physiol Regul Integr Comp Physiol 279: R202‐R209, 2000.
 355. Stelling JW , Jacob TJ . Functional coupling in bovine ciliary epithelial cells is modulated by carbachol. Am J Physiol 273: 1876‐1881, 1997.
 356. Stjernschantz J , Alm A , Bill A . Effects of intracranial oculomotor nerve stimulation on ocular blood flow in rabbits: Modification by indomethacin. Exp Eye Res 23: 461‐469, 1976.
 357. Stjernschantz J , Bill A . Effect of intracranial stimulation of the oculomotor nerve on ocular blood flow in the monkey, cat, and rabbit. Invest Ophthalmol Vis Sci 18: 99‐9103, 1979.
 358. Stjernschantz J , Bill A . Vasomotor effects of facial nerve stimulation: Noncholinergic vasodilation in the eye. Acta Physiol Scand 109: 45‐50, 1980.
 359. Stjernschantz J , Geijer C , Bill A . Electrical stimulation of the fifth cranial nerve in rabbits: Effects on ocular blood flow, extravascular albumin content and intraocular pressure. Exp Eye Res 28: 229‐238, 1979.
 360. Stjernschantz J , Sears M , Stjernschantz L . Intraocular effects of substance P in the rabbit. Invest Ophthalmol Vis Sci 20: 53‐60, 1981.
 361. Stone RA . Vasoactive intestinal polypeptide and the ocular innervation. Invest Ophthalmol Vis Sci 27: 951‐957, 1986.
 362. Stone RA , Kuwayama Y . Substance P‐like immunoreactive nerves in the human eye. Arch Ophthalmol 103: 1207‐1211, 1985.
 363. Stone RA , Kuwayama Y , Laties AM . Regulatory peptides in the eye. Experientia 43: 791‐800, 1987.
 364. Stone RA , Laties AM , Brecha NC . Substance P‐like immunoreactive nerves in the anterior segment of the rabbit, cat and monkey eye. Neuroscience 7: 2459‐2468, 1982.
 365. Stone RA , McGlinn AM . Calcitonin gene‐related peptide immunoreactive nerves in human and rhesus monkey eyes. Invest Ophthalmol Vis Sci 29: 305‐310, 1988.
 366. Stone RA , McGlinn AM , Kuwayama Y , Grimes PA . Peptide immunoreactivity of the ciliary ganglion and its accessory cells in the rat. Brain Res 475: 389‐392, 1988.
 367. Stone RA , Tervo T , Tervo K , Tarkkanen A . Vasoactive intestinal polypeptide‐like immunoreactive nerves to the human eye. Acta Ophthalmol (Copenh) 64: 12‐18, 1986.
 368. Strohmaier CA , Reitsamer HA , Kiel JW . Episcleral venous pressure and iop responses to central electrical stimulation in the rat. Invest Ophthalmol Vis Sci 54: 6860‐6866, 2013.
 369. Sugimoto T , Itoh K , Mizuno N . Direct projections from edinger‐westphal nucleus to cerebellum and spinal‐cord in cat—hrp study. Neurosci Lett 9: 17‐22, 1978.
 370. Sugimoto T , Itoh K , Mizuno N . Localization of neurons giving rise to the oculomotor parasympathetic outflow: A hrp study in cat. Neurosci Lett 7: 301‐305, 1978.
 371. Sugiura S , Yamaga C . Studies on the adrenergic nerve of the cornea. Nihon Ganka Gakkai Zasshi 72: 872‐879, 1968.
 372. Sun WS , May PJ . Organization of the extraocular and preganglionic motoneurons supplying the orbit in the lesser galago. Anat Rec 237: 89‐103, 1993.
 373. Suzuki N , Hardebo JE , Owman C . Trigeminal fibre collaterals storing substance P and calcitonin gene‐related peptide associate with ganglion cells containing choline acetyltransferase and vasoactive intestinal polypeptide in the sphenopalatine ganglion of the rat. An axon reflex modulating parasympathetic ganglionic activity? Neuroscience 30: 595‐604, 1989.
 374. Takagi M , Abe H , Toda H , Usui T . Accommodative and pupillary responses to sinusoidal target depth movement. Ophthal Physl Opt 13: 253‐257, 1993.
 375. Takemura A , Inoue Y , Kawano K , Quaia C , Miles FA . Single‐unit activity in cortical area Mst associated with disparity‐vergence eye movements: Evidence for population coding. J Neurophysiol 85: 2245‐2266, 2001.
 376. Tamm ER . The trabecular meshwork outflow pathways: Structural and functional aspects. Exp Eye Res 88: 648‐655, 2009.
 377. Tanaka T . Ganglion sphenopalatinum des menschen. Abt Anat Inst Kais Univ (Kyoto) Ser A 3: 91‐115, 1932.
 378. Ten Tusscher MP , Beckers HJ , Vrensen GF , Klooster J . Peripheral neural circuits regulating iop? A review of its anatomical backbone. Doc Ophthalmol 87: 291‐313, 1994.
 379. Ten Tusscher MP , Klooster J , Baljet B , Van der Werf F , Vrensen GF . Pre‐ and post‐ganglionic nerve fibres of the pterygopalatine ganglion and their allocation to the eyeball of rats. Brain Res 517: 315‐323, 1990.
 380. Tentusscher MPM , Klooster J , Vanderwant JJL , Lamers W , Vrensen G . The allocation of nerve‐fibers to the anterior eye segment and peripheral ganglia of rats .2. The sympathetic innervation. Brain Res 494: 105‐113, 1989.
 381. Terenghi G , Polak JM , Allen JM , Zhang SQ , Unger WG , Bloom SR . Neuropeptide Y‐immunoreactive nerves in the uvea of guinea pig and rat. Neurosci Lett 42: 33‐38, 1983.
 382. Terenghi G , Polak JM , Ghatei MA , Mulderry PK , Butler JM , Unger WG , Bloom SR . Distribution and origin of calcitonin gene‐related peptide (Cgrp) immunoreactivity in the sensory innervation of the mammalian eye. J Comp Neurol 233: 506‐516, 1985.
 383. Terenghi G , Polak JM , Probert L , McGregor GP , Ferri GL , Blank MA , Butler JM , Unger WG , Zhang S , Cole DF , Bloom SR . Mapping, quantitative distribution and origin of substance P‐ and vip‐containing nerves in the uvea of guinea pig eye. Histochemistry 75: 399‐417, 1982.
 384. Tervo K , Tervo T , Eranko L , Eranko O , Cuello AC . Immunoreactivity for substance P in the gasserian ganglion, ophthalmic nerve and anterior segment of the rabbit eye. Histochem J 13: 435‐443, 1981.
 385. Tervo K , Tervo T , Eranko L , Vannas A , Cuello AC , Eranko O . Substance P‐immunoreactive nerves in the human cornea and iris. Invest Ophthalmol Vis Sci 23: 671‐674, 1982.
 386. Tervo T , Palkama A . Innervation of the rabbit cornea. A histochemical and electron‐microscopic study. Acta anatomica 102: 164‐175, 1978.
 387. Thieme H , Hildebrandt J , Choritz L , Strauss O , Wiederholt M . Muscarinic receptors of the M2 subtype in human and bovine trabecular meshwork. Graefes Arch Clin Exp Ophthalmol 239: 310‐315, 2001.
 388. Thomas DM , Kaufman RP , Sprague JM , Chambers WW . Experimental studies of the vermal cerebellar projections in the brain stem of the cat (fastigiobulbar tract). J Anat 90: 371‐385, 1956.
 389. Thompson HS . The pupil. In: Adler FH , Hart WM , editors. Adler's Physiology of the Eye: Clinical Application (9th ed.). St. Louis: Mosby Year Book, 1992, pp. 412‐441.
 390. Toda M , Okamura T , Ayajiki K , Toda N . Neurogenic vasoconstriction as affected by cholinergic and nitroxidergic nerves in dog ciliary and ophthalmic arteries. Invest Ophthalmol Vis Sci 40: 1753‐1760, 1999.
 391. Toda N , Ayajiki K , Yoshida K , Kimura H , Okamura T . Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. Circ Res 72: 206‐213, 1993.
 392. Toda N , Toda M , Ayajiki K , Okamura T . Monkey central retinal artery is innervated by nitroxidergic vasodilator nerves. Invest Ophthalmol Vis Sci 37: 2177‐2184, 1996.
 393. Toivanen M , Tervo T , Partanen M , Vannas A , Hervonen A . Histochemical demonstration of adrenergic nerves in the stroma of human cornea. Invest Ophthalmol Vis Sci 28: 398‐400, 1987.
 394. Tornqvist G . Effect of cervical sympathetic stimulation on accommodation in monkeys. An example of a beta‐adrenergic, inhibitory effect. Acta Physiol Scand 67: 363‐372, 1966.
 395. Tornqvist G . The relative importance of the parasympathetic and sympathetic nervous systems for accommodation in monkeys. Invest Ophthalmol 6: 612‐617, 1967.
 396. Toth IE , Boldogkoi Z , Medveczky I , Palkovits M . Lacrimal preganglionic neurons form a subdivision of the superior salivatory nucleus of rat: Transneuronal labelling by pseudorabies virus. J Autonom Nerv Syst 77: 45‐54, 1999.
 397. Townsend DJ , Brubaker RF . Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci 19: 256‐266, 1980.
 398. Toyoshima K , Kawana E , Sakai H . Neuronal origin of the afferents to the ciliary ganglion in cat. Brain Res 185: 67‐76, 1980.
 399. Troilo D , Wallman J . Changes in corneal curvature during accommodation in chicks. Vision Res 27: 241‐247, 1987.
 400. Tsukahara N , Kiyoara T , Ijichi Y . The mode of cerebellar control of pupillary light reflex. Brain Res 60: 244‐248, 1973.
 401. Uddman R , Alumets J , Ehinger B , Hakanson R , Loren I , Sundler F . Vasoactive intestinal peptide nerves in ocular and orbital structures of the cat. Invest Ophthalmol Vis Sci 19: 878‐885, 1980.
 402. Unger WG . Review: Mediation of the ocular response to injury. J Ocul Pharmacol 6: 337‐353, 1990.
 403. Usui S , Ikuno Y , Miki A , Matsushita K , Yasuno Y , Nishida K . Evaluation of the choroidal thickness using high‐penetration optical coherence tomography with long wavelength in highly myopic normal‐tension glaucoma. Am J Ophthalmol 153: 10‐16 e11, 2012.
 404. Uusitalo H , Krootila K , Palkama A . Calcitonin gene‐related peptide (Cgrp) immunoreactive sensory nerves in the human and guinea pig uvea and cornea. Exp Eye Res 48: 467‐475, 1989.
 405. Uusitalo H , Lehtosalo J , Palkama A , Toivanen M . Vasoactive intestinal polypeptide (Vip)‐like immunoreactivity in the human and guinea‐pig choroid. Exp Eye Res 38: 435‐437, 1984.
 406. Uusitalo H , Lehtosalo JI , Palkama A . Vasoactive intestinal polypeptide (Vip)‐immunoreactive nerve fibers in the anterior uvea of the guinea pig. Ophthalmic Res 17: 235‐240, 1985.
 407. Uusitalo R . Effect of sympathetic and parasympathetic stimulation on the secretion and outflow of aqueous humour in the rabbit eye. Acta Physiol Scand 86: 315‐326, 1972.
 408. van der Werf F , Baljet B , Prins M , Otto JA . Innervation of the lacrimal gland in the cynomolgous monkey: A retrograde tracing study. J Anat 188(Pt 3): 591‐601, 1996.
 409. Vilupuru AS , Glasser A . Dynamic accommodation in rhesus monkeys. Vision Res. 42: 125‐141, 2002.
 410. Wahlestedt C , Bynke G , Beding B , von Leithner P , Hakanson R . Neurogenic mechanisms in control of the rabbit iris sphincter muscle. Eur J Pharmacol 117: 303‐309, 1985.
 411. Wang B , Ciuffreda KJ . Depth‐of‐focus of the human eye: Theory and clinical implications. Surv Ophthalmol 51: 75‐85, 2006.
 412. Warwick R . The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat 88: 71‐93, 1954.
 413. Weber JT , Harting JK . The efferent projections of the pretectal complex: An autoradiographic and horseradish peroxidase analysis. Brain Res 194: 1‐28, 1980.
 414. Weinstein JM , Duckrow RB , Beard D , Brennan RW . Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 24: 1559‐1565, 1983.
 415. Weinstein JM , Funsch D , Page RB , Brennan RW . Optic nerve blood flow and its regulation. Invest Ophthalmol Vis Sci 23: 640‐645, 1982.
 416. Westheimer G . Pupil size and visual resolution. Vision Res 4: 39‐45, 1964.
 417. Westheimer G , Blair SM . The parasympathetic pathways to internal eye muscles. Invest Ophth 12: 193‐197, 1973.
 418. Westphal C . Ueber einen fall von chronischer progressiver lähmung der augenmuskeln (ophthalmoplegia externa) nebst beschreibung von ganglienzellengruppen in bereiche des oculomotoriuskerns. Arch Psychiat Nervenkr 18: 846‐871, 1887.
 419. Wiederholt M , Bielka S , Schweig F , Lutjen‐Drecoll E , Lepple‐Wienhues A . Regulation of outflow rate and resistance in the perfused anterior segment of the bovine eye. Exp Eye Res 61: 223‐234, 1995.
 420. Wiederholt M , Schafer R , Wagner U , Lepple‐Wienhues A . Contractile response of the isolated trabecular meshwork and ciliary muscle to cholinergic and adrenergic agents. Ger J Ophthalmol 5: 146‐153, 1996.
 421. Wiederholt M , Sturm A , Lepple‐Wienhues A . Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. Invest Ophthalmol Vis Sci 35: 2515‐2520, 1994.
 422. Wisco JJ , Stark ME , Safir I , Rahman S . A heat map of superior cervical ganglion location relative to the common carotid artery bifurcation. Anesth Analg 114: 462‐465, 2012.
 423. Wong KY . A retinal ganglion cell that can signal irradiance continuously for 10 hours. J Neurosci 32: 11478‐11485, 2012.
 424. Wong KY , Dunn FA , Berson DM . Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48: 1001‐1010, 2005.
 425. Wong KY , Dunn FA , Graham DM , Berson DM . Synaptic influences on rat ganglion‐cell photoreceptors. J Physiol 582: 279‐296, 2007.
 426. Woodhouse JM , Campbell FW . The role of the pupil light reflex in aiding adaptation to the dark. Vision Res 15: 649‐653, 1975.
 427. Yamamoto R , Bredt DS , Snyder SH , Stone RA . The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 54: 189‐200, 1993.
 428. Ye XD , Laties AM , Stone RA . Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 31: 1731‐1737, 1990.
 429. Young MJ , Lund RD . The anatomical substrates subserving the pupillary light reflex in rats: Origin of the consensual pupillary response. Neuroscience 62: 481‐496, 1994.
 430. Yu Y , Koss MC . Alpha2‐adrenoceptors do not mediate reflex mydriasis in rabbits. J Ocul Pharmacol Ther 20: 479‐488, 2004.
 431. Zagvazdin Y , Fitzgerald ME , Reiner A . Role of muscarinic cholinergic transmission in edinger‐westphal nucleus‐induced choroidal vasodilation in pigeon. Exp Eye Res 70: 315‐327, 2000.
 432. Zamora DO , Kiel JW . Topical Proparacaine and episcleral venous pressure in the rabbit. Invest Ophthalmol Vis Sci 50: 2949‐2952, 2009.
 433. Zhang H , Clarke RJ , Gamlin PDR . Behavior of luminance neurons in the pretectal olivary nucleus during the pupillary near response. Exp Brain Res 112: 158‐162, 1996.
 434. Zhang H , Gamlin PDR . Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady‐state characteristics. J Neurophysiol 79: 1255‐1269, 1998.
 435. Zhang SQ , Butler JM , Cole DF . Sensory neural mechanisms in contraction of the rabbit isolated sphincter pupillae: Analysis of the responses to capsaicin and electrical field stimulation. Exp Eye Res 38: 153‐163, 1984.
 436. Zhang Y , Gamlin PDR , Mays LE . Antidromic identification of midbrain near response cells projecting to the oculomotor nucleus. Exp Brain Res 84: 525‐528, 1991.
 437. Zhang Y , Mays LE , Gamlin PDR . Characteristics of near response cells projecting to the oculomotor nucleus. J Neurophysiol 67: 944‐960, 1992.
 438. Zhu BS , Gai WP , Yu YH , Gibbins IL , Blessing WW . Preganglionic parasympathetic salivatory neurons in the brainstem contain markers for nitric oxide synthesis in the rabbit. Neurosci Lett 204: 128‐132, 1996.
 439. Zhu BS , Gibbins IL , Blessing WW . Preganglionic parasympathetic neurons projecting to the sphenopalatine ganglion contain nitric oxide synthase in the rabbit. Brain Res 769: 168‐172, 1997.

Related Articles:

Control of Eye Movements
Microcirculation of the Ocular Fundus
The Vertebrate Retina
Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

David H. McDougal, Paul D. Gamlin. Autonomic Control of the Eye. Compr Physiol 2014, 5: 439-473. doi: 10.1002/cphy.c140014