References |
1. |
Abbott
SB
,
Stornetta
RL
,
Fortuna
MG
,
Depuy
SD
,
West
GH
,
Harris
TE
,
Guyenet
PG
. Photostimulation of retrotrapezoid nucleus phox2b‐expressing neurons in vivo produces long‐lasting activation of breathing in rats. J Neurosci
29: 5806‐5819, 2009. |
2. |
Adams
JM
,
Attinger
FM
,
Attinger
EO
. Medullary and carotid chemoreceptor interaction for mild stimuli. Pflugers Arch
374: 39‐45, 1978. |
3. |
Adams
JM
,
Severns
ML
. Interaction of chemoreceptor effects and its dependence on the intensity of stimuli. J Appl Physiol
52: 602‐606, 1982. |
4. |
Bayliss
DA
,
Talley
EM
,
Sirois
JE
,
Lei
Q
. TASK‐1 is a highly modulated pH‐sensitive “leak” K(+) channel expressed in brainstem respiratory neurons. Respir Physiol
129: 159‐174, 2001. |
5. |
van Beek
JH
,
Berkenbosch
A
,
De Goede
J
,
Olievier
CN
. Influence of peripheral O2 tension on the ventilatory response to CO2 in cats. Respir Physiol
51: 379‐390, 1983. |
6. |
van Beek
JH
,
Berkenbosch
A
,
De Goede
J
,
Olievier
CN
. Effects of brain stem hypoxaemia on the regulation of breathing. Respir Physiol
57: 171‐188, 1984. |
7. |
Bellville
JW
,
Whipp
BJ
,
Kaufman
RD
,
Swanson
GD
,
Aqleh
KA
,
Wiberg
DM
. Central and peripheral chemoreflex loop gain in normal and carotid body‐resected subjects. J Appl Physiol
46: 843‐853, 1979. |
8. |
Berger
W
,
Berger
K
,
Berndt
J
,
Giese
K
. Interaction of peripheral and central respiratory drives in cats. I. Effects of sodium cyanide as a peripheral chemoreceptor stimulus at different levels of CSF pH. Pflugers Arch
374: 205‐210, 1978. |
9. |
Berkenbosch
A
,
van Beek
JH
,
Olievier
CN
,
De Goede
J
,
Quanjer
PH
. Central respiratory CO2 sensitivity at extreme hypocapnia. Respir Physiol
55: 95‐102, 1984. |
10. |
Berkenbosch
A
,
DeGoede
J
,
Ward
DS
,
Olievier
CN
,
VanHartevelt
J
. Dynamic response of peripheral chemoreflex loop to changes in end‐tidal CO2
. J Appl Physiol
64: 1779‐1785, 1988. |
11. |
Berkenbosch
A
,
DeGoede
J
,
Ward
DS
,
Olievier
CN
,
VanHartevelt
J
. Dynamic response of the peripheral chemoreflex loop to changes in end‐tidal O2. J Appl Physiol
71: 1123‐1128, 1991. |
12. |
Berkenbosch
A
,
Heeringa
J
,
Olievier
CN
,
Kruyt
EW
. Artificial perfusion of the ponto‐medullary region of cats. A method for separation of central and peripheral effects of chemical stimulation of ventilation. Respir Physiol
37: 347‐364, 1979. |
13. |
Berndt
J
,
Berger
W
,
Berger
K
,
Schmidt
M
. Untersuchungen zum zentralen chemosensiblen Mechanismus der Atmung III. Die Wirkung starker J∼nderungen des Liquor‐pH (pH 5,4–7,7). Pfliigers Arch
332: 171‐183, 1972. |
14. |
Biancardi
V
,
Bicego
KC
,
Almeida
MC
,
Gargaglioni
LH
. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch
455: 1119‐1128, 2008. |
15. |
Biancardi
V
,
da Silva
LT
,
Bicego
KC
,
Gargaglioni
LH
. Role of locus coeruleus noradrenergic neurons in cardiorespiratory and thermal control during hypoxia. Respir Physiol Neurobiol
170: 150‐156, 2010. |
16. |
Biscoe
TJ
,
Lall
A
,
Sampson
SR
. Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve. J Physiol
208: 133‐152, 1970. |
17. |
Biscoe
TJ
,
Purves
MJ
. Observations on the rhythmic variation in the cat carotid body chemoreceptor activity which has the same period as respiration. J Physiol
190: 389‐412, 1967. |
18. |
Biscoe
TJ
,
Purves
MJ
,
Sampson
SR
. The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J Physiol
208: 121‐131, 1970. |
19. |
Bisgard
GE
,
Busch
MA
,
Daristotle
L
,
Berssenbrugge
AD
,
Forster
HV
. Carotid body hypercapnia does not elicit ventilatory acclimatization in goats. Respir Physiol
65: 113‐125, 1986. |
20. |
Bisgard
GE
,
Forster
HV
,
Orr
JA
,
Buss
DD
,
Rawlings
CA
,
Rasmussen
B
. Hypoventilation in ponies after carotid body denervation. J Appl Physiol
40: 184‐190, 1976. |
21. |
Black
AM
,
McCloskey
DI
,
Torrance
RW
. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir Physiol
13: 36‐49, 1971. |
22. |
Black
AM
,
Torrance
RW
. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir Physiol
13: 221‐237, 1971. |
23. |
Blain
GM
,
Smith
CA
,
Henderson
KS
,
Dempsey
JA
. Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol
106: 1564‐1573, 2009. |
24. |
Blain
GM
,
Smith
CA
,
Henderson
KS
,
Dempsey
JA
. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol
588: 2455‐2471, 2010. |
25. |
Bradley
SR
,
Pieribone
VA
,
Wang
W
,
Severson
CA
,
Jacobs
RA
,
Richerson
GB
. Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nat Neurosci
5: 401‐402, 2002. |
26. |
Brunner
MJ
,
Sussman
MS
,
Greene
AS
,
Kallman
CH
,
Shoukas
AA
. Carotid sinus baroreceptor reflex control of respiration. Circ Res
51: 624‐636, 1982. |
27. |
Buckler
KJ
. A novel oxygen‐sensitive potassium current in rat carotid body type I cells. J Physiol
498(Pt 3): 649‐662, 1997. |
28. |
Buckler
KJ
. TASK‐like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol
157: 55‐64, 2007. |
29. |
Buckler
KJ
. Responses of glomus cells to hypoxia and acidosis. J Physiol
591: 3667, 2013. |
30. |
Buckler
KJ
. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflüg Arch Eur J Physiol
467: 1013‐1025, 2015. |
31. |
Buckler
KJ
,
Vaughan‐Jones
RD
,
Peers
C
,
Lagadic‐Gossmann
D
,
Nye
PC
. Effects of extracellular pH, PCO2 and HCO3‐ on intracellular pH in type I cells of the neonatal rat carotid body. J Physiol
444: 703‐721, 1991. |
32. |
Buckler
KJ
,
Vaughan‐Jones
RD
,
Peers
C
,
Nye
PC
. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat. J Physiol
436: 107‐129, 1991. |
33. |
Buckler
KJ
,
Williams
BA
,
Honore
E
. An oxygen‐, acid‐ and anaesthetic‐sensitive TASK‐like background potassium channel in rat arterial chemoreceptor cells. J Physiol
525(Pt 1): 135‐142, 2000. |
34. |
Buckler
KJ
,
Williams
BA
,
Orozco
RV
,
Wyatt
CN
. The role of TASK‐like K+ channels in oxygen sensing in the carotid body. Novartis Found Symp
272: 73‐85, 2006. |
35. |
Buerk
DG
,
Osanai
S
,
Mokashi
A
,
Lahiri
S
. Dopamine, sensory discharge, and stimulus interaction with CO2 and O2 in cat carotid body. J Appl Physiol
85: 1719‐1726, 1998. |
36. |
Busch
MA
,
Bisgard
GE
,
Forster
HV
. Ventilatory acclimatization to hypoxia is not dependent on arterial hypoxemia. J Appl Physiol
58: 1874‐1880, 1985. |
37. |
Busch
MA
,
Bisgard
GE
,
Mesina
JE
,
Forster
HV
. The effects of unilateral carotid body excision on ventilatory control in goats. Respir Physiol
54: 353‐361, 1983. |
38. |
Campanucci
VA
,
Dookhoo
L
,
Vollmer
C
,
Nurse
CA
. Modulation of the carotid body sensory discharge by NO: An up‐dated hypothesis. Respir Physiol Neurobiol
184: 149‐157, 2012. |
39. |
Carroll
JL
,
Bamford
OS
,
Fitzgerald
RS
. Postnatal maturation of carotid chemoreceptor responses to O2 and CO2 in the cat. J Appl Physiol
75: 2383‐2391, 1993. |
40. |
Carroll
JL
,
Bureau
MA
. Peripheral chemoreceptor CO2 response during hyperoxia in the 14‐day‐old awake lamb. Respir Physiol
73: 339‐349, 1988. |
41. |
Carroll
JL
,
Canet
E
,
Bureau
MA
. Dynamic ventilatory responses to CO2 in the awake lamb: Role of the carotid chemoreceptors. J Appl Physiol
71: 2198‐2205, 1991. |
42. |
Carroll
MS
,
Patwari
PP
,
Kenny
AS
,
Brogadir
CD
,
Stewart
TM
,
Weese‐Mayer
DE
. Residual chemosensitivity to ventilatory challenges in genotyped congenital central hypoventilation syndrome. J Appl Physiol
116: 439‐450, 2014. |
43. |
Chernov
MM
,
Daubenspeck
JA
,
Denton
JS
,
Pfeiffer
JR
,
Putnam
RW
,
Leiter
JC
. A computational analysis of central CO2 chemosensitivity in Helix aspersa. Am J Physiol Cell Physiol
292: C278‐C291, 2007. |
44. |
Chitravanshi
VC
,
Sapru
HN
. Chemoreceptor‐sensitive neurons in commissural subnucleus of nucleus tractus solitarius of the rat. AmJ Physiol
268: R851‐R858, 1995. |
45. |
Clement
ID
,
Bascom
DA
,
Conway
J
,
Dorrington
KL
,
O'Connor
DF
,
Painter
R
,
Paterson
DJ
,
Robbins
PA
. An assessment of central‐peripheral ventilatory chemoreflex interaction in humans. Respir Physiol
88: 87‐100, 1992. |
46. |
Clement
ID
,
Pandit
JJ
,
Bascom
DA
,
Dorrington
KL
,
O'Connor
DF
,
Robbins
PA
. An assessment of central‐peripheral ventilatory chemoreflex interaction using acid and bicarbonate infusions in humans. J Physiol
485(Pt 2): 561‐570, 1995. |
47. |
Coates
EL
,
Li
A
,
Nattie
EE
. Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol
75: 5‐14, 1993. |
48. |
Corcoran
AE
,
Hodges
MR
,
Wu
Y
,
Wang
W
,
Wylie
CJ
,
Deneris
ES
,
Richerson
GB
. Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol
168: 49‐58, 2009. |
49. |
Corne
S
,
Webster
K
,
Younes
M
. Hypoxic respiratory response during acute stable hypocapnia. Am J Respir Crit Care Med
167: 1193‐1199, 2003. |
50. |
Cragg
PA
,
Drysdale
DB
. Interaction of hypoxia and hypercapnia on ventilation, tidal volume and respiratory frequency in the anaesthetized rat. J Physiol
341: 477‐493, 1983. |
51. |
Crosby
A
,
Talbot
NP
,
Balanos
GM
,
Donoghue
S
,
Fatemian
M
,
Robbins
PA
. Respiratory effects in humans of a 5‐day elevation of end‐tidal PCO2 by 8 Torr. J Appl Physiol
95: 1947‐1954, 2003. |
52. |
Cross
BA
,
Grant
BJ
,
Guz
A
,
Jones
PW
,
Semple
SJ
,
Stidwill
RP
. Dependence of phrenic motoneurone output on the oscillatory component of arterial blood gas composition. J Physiol
290: 163‐184, 1979. |
53. |
Cui
Z
,
Fisher
JA
,
Duffin
J
. Central‐peripheral respiratory chemoreflex interaction in humans. Respir Physiol Neurobiol
180: 126‐131, 2012. |
54. |
Cummings
KJ
. Interaction of central and peripheral chemoreflexes in neonatal mice: evidence for hypo‐addition. Respir Physiol Neurobiol
203: 75‐81, 2014. |
55. |
Cummings
KJ
,
Wilson
RJ
. Time‐dependent modulation of carotid body afferent activity during and after intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol
288: R1571‐R1580, 2005. |
56. |
Cunningham
DJC
,
Robbins
PA
,
Wolff
CB
. Integration of respiratory response to changes in alveolar partial pressures in CO1034;2 and O2 and in arterial pH. 1034. In:
Cherniack
NS
,
Widdicombe
JG
, editors. Handbook of Physiology: The Respiratory System. Bethesda MD, U.S.A.: American Physiological Society, 1986, pp. 475‐528. |
57. |
Cunningham
ET
Jr
,
Sawchenko
PE
. A circumscribed projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat: Anatomical evidence for somatostatin‐28‐immunoreactive interneurons subserving reflex control of esophageal motility. J Neurosci
9: 1668‐1682, 1989. |
58. |
Curran
AK
,
Rodman
JR
,
Eastwood
PR
,
Henderson
KS
,
Dempsey
JA
,
Smith
CA
. Ventilatory responses to specific CNS hypoxia in sleeping dogs. J Appl Physiol
88: 1840‐1852, 2000. |
59. |
Cutz
E
,
Pan
J
,
Yeger
H
,
Domnik
NJ
,
Fisher
JT
. Recent advances and controversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol
24: 40‐50, 2013. |
60. |
Dahan
A
,
DeGoede
J
,
Berkenbosch
A
,
Olievier
IC
. The influence of oxygen on the ventilatory response to carbon dioxide in man. J Physiol
428: 485‐499, 1990. |
61. |
Dahan
A
,
Nieuwenhuijs
D
,
Teppema
L
. Plasticity of central chemoreceptors: Effect of bilateral carotid body resection on central CO2 sensitivity. PLoS Med
4: e239, 2007. |
62. |
Daristotle
L
,
Berssenbrugge
AD
,
Engwall
MJ
,
Bisgard
GE
. The effects of carotid body hypocapnia on ventilation in goats. Respir Physiol
79: 123‐135, 1990. |
63. |
Daristotle
L
,
Bisgard
GE
. Central‐peripheral chemoreceptor ventilatory interaction in awake goats. Respir Physiol
76: 383‐391, 1989. |
64. |
Daristotle
L
,
Engwall
MJ
,
Niu
WZ
,
Bisgard
GE
. Ventilatory effects and interactions with change in PaO2 in awake goats. J Appl Physiol
71: 1254‐1260, 1991. |
65. |
Dasso
LL
,
Buckler
KJ
,
Vaughan‐Jones
RD
. Interactions between hypoxia and hypercapnic acidosis on calcium signaling in carotid body type I cells. Am J Physiol Lung Cell Mol Physiol
279: L36‐L42, 2000. |
66. |
Dauger
S
,
Pattyn
A
,
Lofaso
F
,
Gaultier
C
,
Goridis
C
,
Gallego
J
,
Brunet
JF
. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development
130: 6635‐6642, 2003. |
67. |
Day
TA
,
Wilson
RJA. Specific carotid body chemostimulation is sufficient to elicit phrenic poststimulus frequency decline in a novel in situ dual‐perfused rat preparation. Am J Physiol Regul Integr Comp Physiol
289: R532‐R544, 2005. |
68. |
Day
TA
,
Wilson
RJA
. Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation. J Physiol
578: 843‐857, 2007. |
69. |
Day
TA
,
Wilson
RJA
. A negative interaction between central and peripheral respiratory chemoreceptors may underlie sleep‐induced respiratory instability: A novel hypothesis. Adv Exp Med Biol
605: 447‐451, 2008. |
70. |
Day
TA
,
Wilson
RJA
. A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude. J Physiol
587: 883‐896, 2009. |
71. |
Dean
JB
,
Bayliss
DA
,
Erickson
JT
,
Lawing
WL
,
Millhorn
DE
. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience
36: 207‐216, 1990. |
72. |
Dean
JB
,
Lawing
WL
,
Millhorn
DE
. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp Brain Res
76: 656‐661, 1989. |
73. |
DeGoede
J
,
Berkenbosch
A
,
Ward
DS
,
Bellville
JW
,
Olievier
CN
. Comparison of chemoreflex gains obtained with two different methods in cats. J Appl Physiol 1985
59: 170‐179, 1985. |
74. |
Deng
BS
,
Nakamura
A
,
Zhang
W
,
Yanagisawa
M
,
Fukuda
Y
,
Kuwaki
T
. Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. J Appl Physiol
103: 1772‐1779, 2007. |
75. |
Depuy
SD
,
Kanbar
R
,
Coates
MB
,
Stornetta
RL
,
Guyenet
PG
. Control of breathing by raphe obscurus serotonergic neurons in mice. J Neurosci
31: 1981‐1990, 2011. |
76. |
Dias
MB
,
Li
A
,
Nattie
E
. The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle. Respir Physiol Neurobiol
170: 96‐102, 2010. |
77. |
Dias
MB
,
Li
A
,
Nattie
EE
. Antagonism of orexin receptor‐1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J Physiol
587: 2059‐2067, 2009. |
78. |
DiGiulio
C
,
Huang
W
,
Mokashi
A
,
Lahiri
S
. Further characterization of stimulus interaction of cat carotid chemoreceptors. J Auton Nerv Syst
71: 196‐200, 1998. |
79. |
Dobbins
EG
,
Feldman
JL
. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol
347: 64‐86, 1994. |
80. |
Donnelly
DF
,
Smith
E
,
Dutton
RE
. Carbon dioxide versus H ion as a chemoreceptor stimulus. Brain Res
245: 136‐138, 1982. |
81. |
Dubreuil
V
,
Ramanantsoa
N
,
Trochet
D
,
Vaubourg
V
,
Amiel
J
,
Gallego
J
,
Brunet
JF
,
Goridis
C
. A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A
105: 1067‐1072, 2008. |
82. |
Duffin
J
,
Mateika
JH
. Cross‐Talk: The peripheral and central chemoreflexes have additive effects on ventilation in humans. J Physiol
591(Pt 18): 4351‐4353, 2013. |
83. |
Duffin
J
,
Mohan
RM
,
Vasiliou
P
,
Stephenson
R
,
Mahamed
S
. A model of the chemoreflex control of breathing in humans: Model parameters measurement. Respir Physiol
120: 13‐26, 2000. |
84. |
Duprat
F
,
Lauritzen
I
,
Patel
A
,
Honore
E
. The TASK background K(2P) channels: Chemo‐ and nutrient sensors. Trends Neurosci
30: 573‐580, 2007. |
85. |
Dutton
RE
,
Fitzgerald
RS
,
Gross
N
. Ventilatory response to square‐wave forcing of carbon dioxide at the carotid bodies. Respir Physiol
4: 101‐108, 1968. |
86. |
Easton
PA
,
Slykerman
LJ
,
Anthonisen
NR
. Recovery of the ventilatory response to hypoxia in normal adults. J Appl Physiol
64: 521‐528, 1988. |
87. |
Edelman
NH
,
Epstein
PE
,
Lahiri
S
,
Cherniack
NS
. Ventilatory responses to transient hypoxia and hypercapnia in man. Respir Physiol
17: 302‐314, 1973. |
88. |
Edwards
BA
,
Sands
SA
,
Skuza
EM
,
Brodecky
V
,
Stockx
EM
,
Wilkinson
MH
,
Berger
PJ
. Maturation of respiratory control and the propensity for breathing instability in a sheep model. J Appl Physiol
107: 1463‐1471, 2009. |
89. |
Elam
M
,
Yao
T
,
Thoren
P
,
Svensson
TH
. Hypercapnia and hypoxia: Chemoreceptor‐mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res
222: 373‐381, 1981. |
90. |
Eldridge
FL
,
Gill‐Kumar
P
,
Millhorn
DE
. Input‐output relationships of central neural circuits involved in respiration in cats. J Physiol
311: 81‐95, 1981. |
91. |
Erlichman
JS
,
Leiter
JC
. Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. J Appl Physiol
108: 1803‐1811, 2010. |
92. |
Erlichman
JS
,
Li
A
,
Nattie
EE
. Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. J Appl Physiol
85: 1599‐1604, 1998. |
93. |
Eyzaguirre
C
,
Koyano
H
. Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol
178: 385‐409, 1965. |
94. |
Eyzaguirre
C
,
Lewin
J
. Chemoreceptor activity of the carotid body of the cat. J Physiol
159: 222‐237, 1961. |
95. |
Eyzaguirre
C
,
Lewin
J
. The effect of sympathetic stimulation on carotid nerve activity. J Physiol
159: 251‐267, 1961. |
96. |
Fagerlund
MJ
,
Kahlin
J
,
Ebberyd
A
,
Schulte
G
,
Mkrtchian
S
,
Eriksson
LI
. The human carotid body: expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology
113: 1270‐1279, 2010. |
97. |
Fatemian
M
,
Gamboa
A
,
Leon‐Velarde
F
,
Rivera‐Ch
M
,
Palacios
JA
,
Robbins
PA
. Selected contribution: Ventilatory response to CO2 in high‐altitude natives and patients with chronic mountain sickness. J Appl Physiol
94: 1279‐1287, 2003. |
98. |
Fatemian
M
,
Nieuwenhuijs
DJ
,
Teppema
LJ
,
Meinesz
S
,
van der Mey
AG
,
Dahan
A
,
Robbins
PA
. The respiratory response to carbon dioxide in humans with unilateral and bilateral resections of the carotid bodies. J Physiol
549: 965‐973, 2003. |
99. |
Fiamma
M‐N
,
O'Connor
ET
,
Roy
A
,
Zuna
I
,
Wilson
RJA
. The essential role of peripheral respiratory chemoreceptor inputs in maintaining breathing revealed when CO2 stimulation of central chemoreceptors is diminished. J Physiol
591: 1507‐1521, 2013. |
100. |
Fidone
SJ
,
Sato
A
. A study of chemoreceptor and baroreceptor A and C‐fibres in the cat carotid nerve. J Physiol
205: 527‐548, 1969. |
101. |
Filosa
JA
,
Dean
JB
,
Putnam
RW
. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol
541: 493‐509, 2002. |
102. |
Filosa
JA
,
Putnam
RW
. Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. Am J Physiol Cell Physiol
284: C145‐C155, 2003. |
103. |
Finley
JC
,
Katz
DM
. The central organization of carotid body afferent projections to the brainstem of the rat. Brain Res
572: 108‐116, 1992. |
104. |
Fitzgerald
R
. Single fiber chemoreceptor response of carotid and aortic bodies. In:
Paintal
A
, editor. Morphology and Mechanisms of Chemoreceptors. Vallabhbai Patel Chest Institute, Delhi, 1976, pp. 27‐36. |
105. |
Fitzgerald
RS
,
Lahiri
S
. Reflex responses to chemoreceptors stimulation. In: Handbook of Physiology. The Respiratory System. Control of Breathing. Bethesda, MD USA: American Physiological Society, 1986, pp. 313‐362. |
106. |
Fitzgerald
RS
,
Leitner
LM
,
Liaubet
MJ
. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir Physiol
6: 395‐402, 1969. |
107. |
Fitzgerald
RS
,
Parks
DC
. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol
12: 218‐229, 1971. |
108. |
Fitzgerald
RS
,
Shirahata
M
,
Chang
I
. The impact of PCO2 and H+ on the release of acetylcholine from the cat carotid body. Neurosci Lett
397: 205‐209, 2006. |
109. |
Forster
HV
,
Martino
P
,
Hodges
M
,
Krause
K
,
Bonis
J
,
Davis
S
,
Pan
L
. The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing. Adv Exp Med Biol
605: 322‐326, 2008. |
110. |
Forster
HV
,
Pan
LG
,
Lowry
TF
,
Serra
A
,
Wenninger
J
,
Martino
P
. Important role of carotid chemoreceptor afferents in control of breathing of adult and neonatal mammals. Respir Physiol
119: 199‐208, 2000. |
111. |
Forster
HV
,
Smith
CA
. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol Bethesda Md 1985
108: 989‐994, 2010. |
112. |
Gallego
J
. Genetic diseases: Congenital central hypoventilation, Rett, and Prader‐Willi syndromes. Compr Physiol
2: 2255‐2279, 2012. |
113. |
Garcia
AJ
III
,
Zanella
S
,
Koch
H
,
Doi
A
,
Ramirez
JM
. Chapter 3–networks within networks: The neuronal control of breathing. Prog Brain Res
188: 31‐50, 2011. |
114. |
Gargaglioni
LH
,
Hartzler
LK
,
Putnam
RW
. The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol
173: 264‐273, 2010. |
115. |
Gautier
H
,
Bonora
M
. Possible alterations in brain monoamine metabolism during hypoxia‐induced tachypnea in cats. J Appl Physiol
49: 769‐777, 1980. |
116. |
Gelfand
R
,
Lambertsen
CJ
. Dynamic respiratory response to abrupt change of inspired CO2 at normal and high PO2
. J Appl Physiol
35: 903‐913, 1973. |
117. |
Gesell
R
,
Lapides
J
,
Levin
M
. The interaction of central and peripheral chemical control of breathing. Am J Physiol – Legacy Content
130: 155‐170, 1940. |
118. |
Gestreau
C
,
Heitzmann
D
,
Thomas
J
,
Dubreuil
V
,
Bandulik
S
,
Reichold
M
,
Bendahhou
S
,
Pierson
P
,
Sterner
C
,
Peyronnet‐Roux
J
,
Benfriha
C
,
Tegtmeier
I
,
Ehnes
H
,
Georgieff
M
,
Lesage
F
,
Brunet
J‐F
,
Goridis
C
,
Warth
R
,
Barhanin
J
. Task2 potassium channels set central respiratory CO2 and O2 sensitivity. Proc Natl Acad Sci U S A
107: 2325‐2330, 2010. |
119. |
Gheshmy
A
,
Anari
A
,
Besada
D
,
Reid
SG
. Afferent input modulates the chronic hypercapnia‐induced increase in respiratory‐related central pH/CO2 chemosensitivity in the cane toad (Bufo marinus). J Exp Biol
210: 227‐237, 2007. |
120. |
Giese
K
,
Berndt
J
,
Berger
W
. Interaction of central and peripheral respiratory drives in cats II. Peripheral and central interaction of hypoxia and hypercapnia. Pflugers Arch
374: 211‐217, 1978. |
121. |
De Goede
J
,
Berkenbosch
A
,
Olievier
CN
,
Quanjer
PH
. Ventilatory response to carbon dioxide and apnoeic thresholds. Respir Physiol
45: 185‐199, 1981. |
122. |
Gonzalez
C
,
Almaraz
L
,
Obeso
A
,
Rigual
R
. Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol Rev
74: 829‐898, 1994. |
123. |
Goodman
NW
,
Nail
BS
,
Torrance
RW
. Oscillations in the discharge of single carotid chemorecptor fibers of the cat. Respir Physiol
20: 251‐269, 1974. |
124. |
Gourine
AV
,
Kasymov
V
,
Marina
N
,
Tang
F
,
Figueiredo
MF
,
Lane
S
,
Teschemacher
AG
,
Spyer
KM
,
Deisseroth
K
,
Kasparov
S
. Astrocytes control breathing through pH‐dependent release of ATP. Science
329: 571‐575, 2010. |
125. |
Gray
BA
. Response of the perfused carotid body to changes in pH and PCO2. Respir Physiol
4: 229‐245, 1968. |
126. |
Grodins
FS
,
Buell
J
,
Bart
AJ
. Mathematical analysis and digital simulation of the respiratory control system. J Appl Physiol
22: 260‐276, 1967. |
127. |
Grunstein
MM
,
Derenne
JP
,
Milic‐Emili
J
. Control of depth and frequency of breathing during baroreceptor stimulation in cats. J Appl Physiol
39: 395‐404, 1975. |
128. |
Guenther
MA
,
Bruder
ED
,
Raff
H
. Effects of body temperature maintenance on glucose, insulin, and corticosterone responses to acute hypoxia in the neonatal rat. Am J Physiol Regul Integr Comp Physiol
302: R627‐R633, 2012. |
129. |
Guyenet
PG
. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol
4: 1511‐1562, 2014. |
130. |
Guyenet
PG
,
Abbott
SB
,
Stornetta
RL
. The respiratory chemoreception conundrum: Light at the end of the tunnel? Brain Res
1511: 126‐137, 2013. |
131. |
Guyenet
PG
,
Mulkey
DK
. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol
173: 244‐255, 2010. |
132. |
Guyenet
PG
,
Stornetta
RL
,
Bayliss
DA
. Central respiratory chemoreception. J Comp Neurol
518: 3883‐3906, 2010. |
133. |
Guz
A
,
Noble
MI
,
Widdicombe
JG
,
Trenchard
D
,
Mushin
WW
. The effect of bilateral block of vagus and glossopharyngeal nerves on the ventilatory response to CO2 of conscious man. Respir Physiol
1: 206‐210, 1966. |
134. |
Hancock
MB
. Evidence for direct projections from the nucleus of the solitary tract onto medullary adrenaline cells. J Comp Neurol
276: 460‐467, 1988. |
135. |
Heeringa
J
,
Berkenbosch
A
,
De Goede
J
,
Olievier
CN
. Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respir Physiol
37: 365‐379, 1979. |
136. |
Hellstrom
S
. Morphometric studies of dense‐cored vesicles in type I cells of rat carotid body. J Neurocytol
4: 77‐86, 1975. |
137. |
Herbert
H
,
Moga
MM
,
Saper
CB
. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol
293: 540‐580, 1990. |
138. |
Hernandez‐Miranda
LR
,
Birchmeier
C
. CO2 in the spotlight. eLife
4, e08086, 2015. |
139. |
He
SF
,
Wei
JY
,
Eyzaguirre
C
. Intracellular pH and some membrane characteristics of cultured carotid body glomus cells. Brain Res
547: 258‐266, 1991. |
140. |
Heymans
C
,
Neil
E
. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958. |
141. |
Hodges
MR
,
Forster
HV
. Respiratory neuroplasticity following carotid body denervation: Central and peripheral adaptations. Neural Regen Res
7: 1073‐1079, 2012. |
142. |
Hodges
MR
,
Martino
P
,
Davis
S
,
Opansky
C
,
Pan
LG
,
Forster
HV
. Effects on breathing of focal acidosis at multiple medullary raphe sites in awake goats. J Appl Physiol
97: 2303‐2309, 2004. |
143. |
Holleran
J
,
Babbie
M
,
Erlichman
JS
. Ventilatory effects of impaired glial function in a brain stem chemoreceptor region in the conscious rat. J Appl Physiol
90: 1539‐1547, 2001. |
144. |
Honda
Y
. Respiratory and circulatory activities in carotid body‐resected humans. J Appl Physiol
73: 1‐8, 1992. |
145. |
Honda
Y
,
Hata
N
,
Sakakibara
Y
,
Nishino
T
,
Satomura
Y
. Central hypoxic‐hypercapnic interaction in mild hypoxia in man. Pflugers Arch
391: 289‐295, 1981. |
146. |
Honda
Y
,
Watanabe
S
,
Hashizume
I
,
Satomura
Y
,
Hata
N
,
Sakakibara
Y
,
Severinghaus
JW
. Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection. J Appl Physiol
46: 632‐638, 1979. |
147. |
Hornbein
T
. The relation between stimulus to chemoreceptors and their response. In:
Torrance
RW
, editor. Arterial Chemoreceptors. Oxford: Blackwell Scientific Publications, 1968, pp. 65‐76. |
148. |
Hornbein
TF
,
Griffo
ZJ
,
Roos
A
. Quantitation of chemoreceptor activity: Interrelation of hypoxia and hypercapnia. J Neurophysiol
24: 561‐568, 1961. |
149. |
Hornbein
TF
,
Roos
A
. Specificity of H ion concentration as a carotid chemoreceptor stimulus. J Appl Physiol
18: 580‐584, 1963. |
150. |
Housley
GD
,
Martin‐Body
RL
,
Dawson
NJ
,
Sinclair
JD
. Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience
22: 237‐250, 1987. |
151. |
Iceman
KE
,
Harris
MB
. A group of non‐serotonergic cells is CO2‐stimulated in the medullary raphé. Neuroscience
259: 203‐213, 2014. |
152. |
Iceman
KE
,
Richerson
GB
,
Harris
MB
. Medullary serotonin neurons are CO2 sensitive in situ. J Neurophysiol
110: 2536‐2544, 2013. |
153. |
Ichikawa
H
. Innervation of the carotid body: Immunohistochemical, denervation, and retrograde tracing studies. Microsc Res Tech
59: 188‐195, 2002. |
154. |
Iturriaga
R
. Carotid body chemoreception: The importance of CO2
. Biol Res
26: 319‐329, 1993. |
155. |
Iturriaga
R
,
Lahiri
S
. Carotid body chemoreception in the absence and presence of CO2‐HCO3‐. Brain Res
568: 253‐260, 1991. |
156. |
Iturriaga
R
,
Lahiri
S
,
Mokashi
A
. Carbonic anhydrase and chemoreception in the cat carotid body 1. Am J Physiol
261: C565‐C573, 1991. |
157. |
Iturriaga
R
,
Mokashi
A
,
Lahiri
S
. Anion exchanger and chloride channel in cat carotid body chemotransduction. J Auton Nerv Syst
70: 23‐31, 1998. |
158. |
Jiang
C
,
Xu
H
,
Cui
N
,
Wu
J
. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. Respir Physiol
129: 141‐157, 2001. |
159. |
Jones
JFX
. Retrospective view of the carotid body research of Ronan G. O'Regan. Exp Physiol
89: 39‐43, 2004. |
160. |
Jounieaux
V
,
Parreira
VF
,
Aubert
G
,
Dury
M
,
Delguste
P
,
Rodenstein
DO
. Effects of hypocapnic hyperventilation on the response to hypoxia in normal subjects receiving intermittent positive‐pressure ventilation. Chest
121: 1141‐1148, 2002. |
161. |
Jun
JC
,
Shin
M‐K
,
Yao
Q
,
Bevans‐Fonti
S
,
Poole
J
,
Drager
LF
,
Polotsky
VY
. Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice. Am J Physiol Endocrinol Metab
303: E377‐E388, 2012. |
162. |
Kang
D
,
Wang
J
,
Hogan
JO
,
Vennekens
R
,
Freichel
M
,
White
C
,
Kim
D
. Increase in cytosolic Ca2+produced by hypoxia and other depolarizing stimuli activates a non‐selective cation channel in chemoreceptor cells of rat carotid body. J Physiol
592: 1975‐1992, 2014. |
163. |
Kawai
A
,
Ballantyne
D
,
Muckenhoff
K
,
Scheid
P
. Chemosensitive medullary neurones in the brainstem–spinal cord preparation of the neonatal rat. J Physiol
492(Pt 1): 277‐292, 1996. |
164. |
Khamnei
S
,
Robbins
PA
. Hypoxic depression of ventilation in humans: Alternative models for the chemoreflexes. Respir Physiol
81: 117‐134, 1990. |
165. |
Kim
D
,
Cavanaugh
EJ
,
Kim
I
,
Carroll
JL
. Heteromeric TASK‐1/TASK‐3 is the major oxygen‐sensitive background K+ channel in rat carotid body glomus cells. J Physiol
587: 2963‐2975, 2009. |
166. |
Kim
DK
,
Prabhakar
NR
,
Kumar
GK
. Acetylcholine release from the carotid body by hypoxia: evidence for the involvement of autoinhibitory receptors. J Appl Physiol
96: 376‐383, 2004. |
167. |
Kimura
H
,
Tanaka
M
,
Nagao
K
,
Niijima
M
,
Masuyama
S
,
Mizoo
A
,
Uruma
T
,
Tatsumi
K
,
Kuriyama
T
,
Masuda
A
,
Kobayashi
T
,
Honda
Y
. A new aspect of the carotid body function controlling hypoxic ventilatory decline in humans. Appl Human Sci
17: 131‐137, 1998. |
168. |
Kinkead
R
,
Filmyer
WG
,
Mitchell
GS
,
Milsom
WK
. Vagal input enhances responsiveness of respiratory discharge to central changes in pH/CO2 in bullfrogs. J Appl Physiol
77: 2048‐2051, 1994. |
169. |
Kirby
GC
,
McQueen
DS
. Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo. BrJ Pharmacol
88: 889‐898, 1986. |
170. |
Kiwull
P
,
Kiwull‐Schone
H
,
Klatt
W
. Interaction of central and peripheral respiratory drives: Differentiation between the role of stimuli and afferents. In: HH Loeschcke, editor. Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System. Stuttgart: Thieme, 1976, pp. 146‐156. |
171. |
Kiwull‐Schöne
H
,
Kiwull
P
. The role of the vagus nerves in the ventilatory response to lowered PaO2 with intact and eliminated carotid chemoreflexes. Pflüg Arch Eur J Physiol
381: 1‐9, 1979. |
172. |
Kiwull‐Schone
H
,
Kiwull
P
,
Muckenhoff
K
,
Both
W
. The role of carotid chemoreceptors in the regulation of arterial oxygen transport under hypoxia with and without hypercapnia. Adv Exp Med Biol
75: 469‐476, 1976. |
173. |
Klein
JP
,
Forster
HV
,
Bisgard
GE
,
Kaminski
RP
,
Pan
LG
,
Hamilton
LH
. Ventilatory response to inspired CO2 in normal and carotid body‐denervated ponies. J Appl Physiol
52: 1614‐1622, 1982. |
174. |
Kobayashi
S
. Fine structure of the carotid body of the dog. Arch Histol Jpn
30: 95‐120, 1968. |
175. |
Kuhlmann
WD
,
Fedde
MR
. Intrapulmonary receptors in the bullfrog: Sensitivity to CO2
. J Comp Physiol
132: 69‐75, 1979. |
176. |
Kumar
NN
,
Velic
A
,
Soliz
J
,
Shi
Y
,
Li
K
,
Wang
S
,
Weaver
JL
,
Sen
J
,
Abbott
SBG
,
Lazarenko
RM
,
Ludwig
M‐G
,
Perez‐Reyes
E
,
Mohebbi
N
,
Bettoni
C
,
Gassmann
M
,
Suply
T
,
Seuwen
K
,
Guyenet
PG
,
Wagner
CA
,
Bayliss
DA
. PHYSIOLOGY. Regulation of breathing by CO2 requires the proton‐activated receptor GPR4 in retrotrapezoid nucleus neurons. Science
348: 1255‐1260, 2015. |
177. |
Kumar
P
,
Nye
PC
,
Torrance
RW
. Do oxygen tension variations contribute to the respiratory oscillations of chemoreceptor discharge in the cat? J Physiol
395: 531‐552, 1988. |
178. |
Kumar
P
,
Prabhakar
NR
. Peripheral chemoreceptors: Function and plasticity of the carotid body. Compr Physiol
2: 141‐219, 2012. |
179. |
Kummer
W
. Three types of neurochemically defined autonomic fibres innervate the carotid baroreceptor and chemoreceptor regions in the guinea‐pig. Anat Embryol (Berl)
181: 477‐489, 1990. |
180. |
Kuwaki
T
. Orexinergic modulation of breathing across vigilance states. Respir Physiol Neurobiol
164: 204‐212, 2008. |
181. |
Läderach
H
,
Straub
W
. Effects of voluntary hyperventilation on glucose, free fatty acids and several glycostatic hormones. Swiss Med Wkly
131: 19‐22, 2001. |
182. |
Lahiri
S
,
DeLaney
RG
. Relationship between carotid chemoreceptor activity and ventilation in the cat. Respir Physiol
24: 267‐286, 1975. |
183. |
Lahiri
S
,
DeLaney
RG
. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir Physiol
24: 249‐266, 1975. |
184. |
Lahiri
S
,
Mokashi
A
,
DeLaney
RG
,
Fishman
AP
. Arterial PO2 and PCO2 stimulus threshold for carotid chemoreceptors and breathing. Respir Physiol
34: 359‐375, 1978. |
185. |
Lahiri
S
,
Mulligan
E
,
Mokashi
A
. Adaptive response of carotid body chemoreceptors to CO2. Brain Res
234: 137‐147, 1982. |
186. |
LaManna
JC
,
Haxhiu
MA
,
Kutina‐Nelson
KL
,
Pundik
S
,
Erokwu
B
,
Yeh
ER
,
Lust
WD
,
Cherniack
NS
. Decreased energy metabolism in brain stem during central respiratory depression in response to hypoxia. J Appl Physiol
81: 1772‐1777, 1996. |
187. |
Lee
LY
,
Milhorn
HT
. Central ventilatory responses to O2, and CO2 At three levels of carotid chemoreceptor stimulation. Respir Physiol
25: 319‐333, 1975. |
188. |
Lele
EE
,
Hantos
Z
,
Bitay
M
,
Szívós
B
,
Bogáts
G
,
Peták
F
,
Babik
B
. Bronchoconstriction during alveolar hypocapnia and systemic hypercapnia in dogs with a cardiopulmonary bypass. Respir Physiol Neurobiol
175: 140‐145, 2011. |
189. |
Li
A
,
Nattie
E
. Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J Physiol
570: 385‐396, 2006. |
190. |
Limberg
JK
,
Taylor
JL
,
Dube
S
,
Basu
R
,
Basu
A
,
Joyner
MJ
,
Wehrwein
EA
. Role of the carotid body chemoreceptors in baroreflex control of blood pressure during hypoglycaemia in humans. Exp Physiol
99(4):640‐50, 2014. |
191. |
Long
WQ
,
Giesbrecht
GG
,
Anthonisen
NR
. Ventilatory response to moderate hypoxia in awake chemodenervated cats. J Appl Physiol
74: 805‐810, 1993. |
192. |
Lopez‐Lopez
JR
,
Perez‐Garcia
MT
. Oxygen sensitive Kv channels in the carotid body. Respir Physiol Neurobiol
157: 65‐74, 2007. |
193. |
Lopez‐Lopez
JR
,
Perez‐Garcia
MT
. An ASIC channel for acid chemotransduction. Circ Res
101: 965‐967, 2007. |
194. |
Lu
Y
,
Whiteis
CA
,
Sluka
KA
,
Chapleau
MW
,
Abboud
FM
. Responses of glomus cells to hypoxia and acidosis are uncoupled, reciprocal and linked to ASIC3 expression: selectivity of chemosensory transduction. J Physiol
591: 919‐32, 2013. |
195. |
Marek
W
,
Muckenhoff
K
,
Prabhakar
NR
. Significance of pulmonary vagal afferents for respiratory muscle activity in the cat. J Physiol Pharmacol Off J Pol Physiol Soc
59(Suppl 6): 407‐420, 2008. |
196. |
Marshall
JM
. Interaction between the responses to stimulation of peripheral chemoreceptors and baroreceptors: The importance of chemoreceptor activation of the defence areas. J Auton Nerv Syst
3: 389‐400, 1981. |
197. |
Martin‐Body
RL
,
Robson
GJ
,
Sinclair
JD
. Restoration of hypoxic respiratory responses in the awake rat after carotid body denervation by sinus nerve section. J Physiol
380: 61‐73, 1986. |
198. |
Meuret
AE
,
Ritz
T
,
Wilhelm
FH
,
Roth
WT
. Voluntary hyperventilation in the treatment of panic disorder–functions of hyperventilation, their implications for breathing training, and recommendations for standardization. Clin Psychol Rev
25: 285‐306, 2005. |
199. |
Milic‐Emili
J
,
Grunstein
MM
. Drive and timing components of ventilation. Chest
70: 131‐133, 1976. |
200. |
Miller
JR
,
Neumueller
S
,
Muere
C
,
Olesiak
S
,
Pan
L
,
Hodges
MR
,
Forster
HV
. Changes in neurochemicals within the ventrolateral medullary respiratory column in awake goats after carotid body denervation. J Appl Physiol
115: 1088‐1098, 2013. |
201. |
Miller
MJ
,
Tenney
SM
. Hypoxia‐induced tachypnea in carotid‐deafferented cats. Respir Physiol
23: 31‐39, 1975. |
202. |
Milsom
WK
,
Jones
DR
. Carbon dioxide sensitivity of pulmonary receptors in the frog. Experientia
33: 1167‐1168, 1977. |
203. |
Milsom
WK
,
Sadig
T
. Interaction between norepinephrine and hypoxia on carotid body chemoreception in rabbits. J Appl Physiol
55: 1893‐1898, 1983. |
204. |
Mitchell
GS
,
Cross
BA
,
Hiramoto
T
,
Scheid
P
. Interactions between lung stretch and PaCO2 in modulating ventilatory activity in dogs. J Appl Physiol
53: 185‐191, 1982. |
205. |
Mitchell
GS
,
Douse
MA
,
Foley
KT
. Receptor interactions in modulating ventilatory activity. Am J Physiol
259: R911‐R920, 1990. |
206. |
Mitchell
GS
,
Smith
CA
,
Vidruk
EH
,
Jameson
LC
,
Dempsey
JA
. Effects of p‐chlorophenylalanine on ventilatory control in goats. J Appl Physiol
54: 277‐283, 1983. |
207. |
Mkrtchian
S
, Kåhlin J,
Ebberyd
A
,
Gonzalez
C
,
Sanchez
D
,
Balbir
A
,
Kostuk
EW
,
Shirahata
M
,
Fagerlund
MJ
,
Eriksson
LI
. The human carotid body transcriptome with focus on oxygen sensing and inflammation – a comparative analysis. J Physiol
590: 3807‐3819, 2012. |
208. |
Mokashi
A
,
Ray
D
,
Botre
F
,
Katayama
M
,
Osanai
S
,
Lahiri
S
. Effect of hypoxia on intracellular pH of glomus cells cultured from cat and rat carotid bodies. J Appl Physiol
78: 1875‐1881, 1995. |
209. |
Morita
E
,
Chiocchio
SR
,
Tramezzani
JH
. Four types of main cells in the carotid body of the cat. J Ultrastruct Res
28: 399‐410, 1969. |
210. |
Moss
IR
. Canadian Association of Neuroscience Review: Respiratory control and behavior in humans: lessons from imaging and experiments of nature. Can J Neurol Sci J Can Sci Neurol
32: 287‐297, 2005. |
211. |
Mouradian
GC
,
Forster
HV
,
Hodges
MR
. Acute and chronic effects of carotid body denervation (CBD) on ventilation and chemoreflexes in three rat strains. J Physiol
590(Pt 14):3335‐47, 2012. |
212. |
Mulkey
DK
,
Stornetta
RL
,
Weston
MC
,
Simmons
JR
,
Parker
A
,
Bayliss
DA
,
Guyenet
PG
. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci
7: 1360‐1369, 2004. |
213. |
Mulkey
DK
,
Talley
EM
,
Stornetta
RL
,
Siegel
AR
,
West
GH
,
Chen
X
,
Sen
N
,
Mistry
AM
,
Guyenet
PG
,
Bayliss
DA
. TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci
27: 14049‐14058, 2007. |
214. |
Mulligan
E
,
Lahiri
S
. Separation of carotid body chemoreceptor responses to O2 and CO2 by oligomycin and by antimycin A. Am J Physiol
242: C200‐C206, 1982. |
215. |
Musch
TI
,
Pelligrino
A
,
Dempsey
JA
. Effects of prolonged N2O and barbiturate anesthesia on brain metabolism and pH in the dog. Respir Physiol
39: 121‐131, 1980. |
216. |
Nakamura
A
,
Zhang
W
,
Yanagisawa
M
,
Fukuda
Y
,
Kuwaki
T
. Vigilance state‐dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J Appl Physiol
102: 241‐248, 2007. |
217. |
Nakayama
H
,
Smith
CA
,
Rodman
JR
,
Skatrud
JB
,
Dempsey
JA
. Carotid body denervation eliminates apnea in response to transient hypocapnia. J Appl Physiol
94: 155‐164, 2003. |
218. |
Nattie
EE
,
Li
A
. CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. J Appl Physiol
90: 1247‐1257, 2001. |
219. |
Nattie
EE
,
Li
A
. CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. J Appl Physiol
92: 2119‐2130, 2002. |
220. |
Nattie
E
,
Li
A
. Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol
106: 1464‐1466, 2009. |
221. |
Nattie
E
,
Li
A
. Central chemoreceptors: Locations and functions. Compr Physiol
2: 221‐254, 2012. |
222. |
Nichols
NL
,
Hartzler
LK
,
Conrad
SC
,
Dean
JB
,
Putnam
RW
. Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats. Adv Exp Med Biol
605: 348‐352, 2008. |
223. |
Nichols
NL
,
Mulkey
DK
,
Wilkinson
KA
,
Powell
FL
,
Dean
JB
,
Putnam
RW
. Characterization of the chemosensitive response of individual solitary complex neurons from adult rats. Am J Physiol Regul Integr Comp Physiol
296: R763‐R773, 2009. |
224. |
Nielsen
M
,
Smith
H
. Studies on the regulation of respiration in acute hypoxia; with a appendix on respiratory control during prolonged hypoxia. Acta Physiol Scand
24: 293‐313, 1952. |
225. |
Niu
WZ
,
Engwall
MJ
,
Bisgard
GE
. Two discharge patterns of carotid body chemoreceptors in the goat. J Appl Physiol
69: 734‐739, 1990. |
226. |
Nuding
SC
,
Segers
LS
,
Shannon
R
,
O'Connor
R
,
Morris
KF
,
Lindsey
BG
. Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphe‐pontomedullary respiratory network. Philos Trans R Soc Lond B Biol Sci
364: 2501‐2516, 2009. |
227. |
Nunes
AR
,
Holmes
AP
,
Sample
V
,
Kumar
P
,
Cann
MJ
,
Monteiro
EC
,
Zhang
J
,
Gauda
EB
. Bicarbonate‐sensitive soluble and transmembrane adenylyl cyclases in peripheral chemoreceptors. Respir Physiol Neurobiol
188(2):83‐93, 2013. |
228. |
Nurse
C
. Carbonic anhydrase and neuronal enzymes in cultured glomus cells of the carotid body of the rat. Cell Tissue Res
261: 65‐71, 1990. |
229. |
Nurse
CA
. Neurotransmission and neuromodulation in the chemosensory carotid body. Auton Neurosci
120: 1‐9, 2005. |
230. |
Nurse
CA
. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol
95: 657‐667, 2010. |
231. |
Onimaru
H
,
Ikeda
K
,
Kawakami
K
. CO2‐sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci
28: 12845‐12850, 2008. |
232. |
O'Regan
RG
,
Majcherczyk
S
. Role of peripheral chemoreceptors and central chemosensitivity in the regulation of respiration and circulation. J Exp Biol
100: 23‐40, 1982. |
233. |
Ortega‐Saenz
P
,
Levitsky
KL
,
Marcos‐Almaraz
MT
,
Bonilla‐Henao
V
,
Pascual
A
,
Lopez‐Barneo
J
. Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol
135: 379‐392, 2010. |
234. |
Ortega‐Sáenz
P
,
Pardal
R
,
Levitsky
K
,
Villadiego
J
,
Muñoz‐Manchado
AB
,
Durán
R
,
Bonilla‐Henao
V
,
Arias‐Mayenco
I
,
Sobrino
V
,
Ordóñez
A
,
Oliver
M
,
Toledo‐Aral
JJ
,
López‐Barneo
J
. Cellular properties and chemosensory responses of the human carotid body. J Physiol
591: 6157‐6173, 2013. |
235. |
Ou
LC
,
Tenney
SM
. The role of brief hypocapnia in the ventilatory response to CO2 with hypoxia. Respir Physiol
28: 333‐346, 1976. |
236. |
Painter
R
,
Khamnei
S
,
Robbins
P
. A mathematical model of the human ventilatory response to isocapnic hypoxia. J Appl Physiol
74: 2007‐2015, 1993. |
237. |
Pan
LG
,
Forster
HV
,
Martino
P
,
Strecker
PJ
,
Beales
J
,
Serra
A
,
Lowry
TF
,
Forster
MM
,
Forster
AL
. Important role of carotid afferents in control of breathing. J Appl Physiol
85: 1299‐1306, 1998. |
238. |
Pardal
R
,
Ortega‐Saenz
P
,
Duran
R
,
Lopez‐Barneo
J
. Glia‐like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell
131: 364‐377, 2007. |
239. |
Patel
AJ
,
Honore
E
. Anesthetic‐sensitive 2P domain K+ channels. Anesthesiology
95: 1013‐1021, 2001. |
240. |
Pedersen
ME
,
Dorrington
KL
,
Robbins
PA
. Effects of dopamine and domperidone on ventilatory sensitivity to hypoxia after 8 h of isocapnic hypoxia. J Appl Physiol
86: 222‐229, 1999. |
241. |
Pedersen
ME
,
Fatemian
M
,
Robbins
PA
. Identification of fast and slow ventilatory responses to carbon dioxide under hypoxic and hyperoxic conditions in humans. J Physiol
521: 273‐287, 1999. |
242. |
Peers
C
. Effect of lowered extracellular pH on Ca2(+)‐dependent K+ currents in type I cells from the neonatal rat carotid body. J Physiol
422: 381‐395, 1990. |
243. |
Peers
C
. Interactions of chemostimuli at the single cell level: Studies in a model system. Exp Physiol
89: 60‐65, 2004. |
244. |
Peers
C
,
Green
FK
. Inhibition of Ca(2+)‐activated K+ currents by intracellular acidosis in isolated type I cells of the neonatal rat carotid body. J Physiol
437: 589‐602, 1991. |
245. |
Peers
C
,
Wyatt
CN
. The role of maxiK channels in carotid body chemotransduction. Respir Physiol Neurobiol
157: 75‐82, 2007. |
246. |
Pepper
DR
,
Kumar
P
. Inhibition of adult rat carotid body type I cell K+ currents by combined hypoxic and acidotic stimuli. J Physiol
487: 177P‐178P, 1997. |
247. |
Pepper
DR
,
Landauer
RC
,
Kumar
P
. Postnatal development of CO2‐O2 interaction in the rat carotid body in vitro. JPhysiol
485: 531‐541, 1995. |
248. |
Perez
H
,
Ruiz
S
. Medullary responses to chemoreceptor activation are inhibited by locus coeruleus and nucleus raphe magnus. Neuroreport
6: 1373‐1376, 1995. |
249. |
Petheo
GL
,
Molnár
Z
,
Róka
A
,
Makara
JK
,
Spät
A
. A pH‐sensitive chloride current in the chemoreceptor cell of rat carotid body. J Physiol
535: 95‐106, 2001. |
250. |
Phillipson
EA
,
Hickey
RF
,
Bainton
CR
,
Nadel
JA
. Effect of vagal blockade on regulation of breathing in conscious dogs. J Appl Physiol
29: 475‐479, 1970. |
251. |
Plum
F
,
Brown
HW
. Hypoxic‐hypercapnic interaction in subjects with bilateral cerebral dysfunction. J Appl Physiol
18: 1139‐1145, 1963. |
252. |
Pokorski
M
,
Lahiri
S
. Relative peripheral and central chemosensory responses to metabolic alkalosis. AmJ Physiol
245: R873‐R880, 1983. |
253. |
Pokorski
M
,
Takeda
K
,
Sato
Y
,
Okada
Y
. The hypoxic ventilatory response and TRPA1 antagonism in conscious mice. Acta Physiol Oxf Engl
210: 928‐938, 2014. |
254. |
Prabhakar
NR
. O2 sensing at the mammalian carotid body: Why multiple O2 sensors and multiple transmitters? Exp Physiol
91: 17‐23, 2006. |
255. |
Prabhakar
NR
,
Peng
Y‐J
,
Kumar
GK
,
Nanduri
J
. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol
5: 561‐577, 2015. |
256. |
Reid
SG
. Chemoreceptor and pulmonary stretch receptor interactions within amphibian respiratory control systems. Respir Physiol Neurobiol
154: 153‐164, 2006. |
257. |
Reid
SG
,
Milsom
WK
,
Meier
JT
,
Munns
S
,
West
NH
. Pulmonary vagal modulation of ventilation in toads (Bufo marinus). Respir Physiol
120: 213‐230, 2000. |
258. |
Richardson
PS
,
Widdicombe
JG
. The role of the vagus nerves in the ventilatory responses to hypercapnia and hypoxia in anaesthetized and unanaesthetized rabbits. Respir Physiol
7: 122‐135, 1969. |
259. |
Richerson
GB
. Response to CO2 of neurons in the rostral ventral medulla in vitro. J Neurophysiol
73: 933‐944, 1995. |
260. |
Richerson
GB
. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci
5: 449‐461, 2004. |
261. |
Ridderstrale
Y
,
Hanson
MA
. Histochemical localization of carbonic anhydrase in the cat carotid body. Ann NY Acad Sci
429: 398‐400, 1984. |
262. |
Rigual
R
,
Lopez‐Lopez
JR
,
Gonzalez
C
. Release of dopamine and chemoreceptor discharge induced by low pH and high PCO2 stimulation of the cat carotid body. J Physiol
433: 519‐531, 1991. |
263. |
Ritthaler
T
,
Schricker
K
,
Kees
F
,
Krämer
B
,
Kurtz
A
. Acute hypoxia stimulates renin secretion and renin gene expression in vivo but not in vitro. Am J Physiol
272: R1105‐R1111, 1997. |
264. |
Robbins
PA
. Evidence for interaction between the contributions to ventilation from the central and peripheral chemoreceptors in man. J Physiol
401: 503‐518, 1988. |
265. |
Roberts
CA
,
Corfield
DR
,
Murphy
K
,
Calder
NA
,
Hanson
MA
,
Adams
L
,
Guz
A
. Modulation by “central” PCO2 of the response to carotid body stimulation in man. Respir Physiol
102: 149‐161, 1995. |
266. |
Rodman
JR
,
Curran
AK
,
Henderson
KS
,
Dempsey
JA
,
Smith
CA
. Carotid body denervation in dogs: Eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol
91: 328‐335, 2001. |
267. |
Rosin
DL
,
Chang
DA
,
Guyenet
PG
. Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol
499: 64‐89, 2006. |
268. |
Ross
CA
,
Ruggiero
DA
,
Reis
DJ
. Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol
242: 511‐534, 1985. |
269. |
Roux
JC
,
Pequignot
JM
,
Dumas
S
,
Pascual
O
,
Ghilini
G
,
Pequignot
J
,
Mallet
J
,
Denavit‐Saubi
M
. O2‐sensing after carotid chemodenervation: Hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur J Neurosci
12: 3181‐3190, 2000. |
270. |
Roy
A
,
Mandadi
S
,
Fiamma
M‐N
,
Rodikova
E
,
Ferguson
EV
,
Whelan
PJ
,
Wilson
RJA
. Anandamide modulates carotid sinus nerve afferent activity via TRPV1 receptors increasing responses to heat. J Appl Physiol
112: 212‐224, 2012. |
271. |
Roy
A
,
Rozanov
C
,
Mokashi
A
,
Lahiri
S
. P(O(2))‐P(CO(2)) stimulus interaction in [Ca(2+)](i) and CSN activity in the adult rat carotid body. Respir Physiol
122: 15‐26, 2000. |
272. |
Ruffault
P‐L
,
D'Autréaux
F
,
Hayes
JA
,
Nomaksteinsky
M
,
Autran
S
,
Fujiyama
T
,
Hoshino
M
,
Hägglund
M
,
Kiehn
O
,
Brunet
J‐F
,
Fortin
G
,
Goridis
C
. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2
. eLife
4, e07051, 2015. |
273. |
Ryan
ML
,
Hedrick
MS
,
Pizarro
J
,
Bisgard
GE
. Effects of carotid body sympathetic denervation on ventilatory acclimatization to hypoxia in the goat. Respir Physiol
99: 215‐224, 1995. |
274. |
Salman
S
,
Buttigieg
J
,
Zhang
M
,
Nurse
CA
. Chronic exposure of neonatal rat adrenomedullary chromaffin cells to opioids in vitro blunts both hypoxia and hypercapnia chemosensitivity. J Physiol
591: 515‐529, 2013. |
275. |
Santin
JM
,
Watters
KC
,
Putnam
RW
,
Hartzler
LK
. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus. Am J Physiol Regul Integr Comp Physiol
305: R1451‐R1464, 2013. |
276. |
Schuitmaker
JJ
,
Berkenbosch
A
,
De Goede
J
,
Olievier
CN
. Effects of CO2 and H+ on the ventilatory response to peripheral chemoreceptor stimulation. Respir Physiol
64: 69‐79, 1986. |
277. |
Sears
RM
,
Fink
AE
,
Wigestrand
MB
,
Farb
CR
,
de Lecea
L
,
Ledoux
JE
. Orexin/hypocretin system modulates amygdala‐dependent threat learning through the locus coeruleus. Proc Natl Acad Sci U S A
110: 20260‐20265, 2013. |
278. |
Serra
A
,
Brozoski
D
,
Hedin
N
,
Franciosi
R
,
Forster
HV
. Mortality after carotid body denervation in rats. J Appl Physiol
91: 1298‐1306, 2001. |
279. |
Shirahata
M
,
Fitzgerald
RS
. The presence of CO2/HCO3‐ is essential for hypoxic chemotransduction in the in vivo perfused carotid body. Brain Res
545: 297‐300, 1991. |
280. |
Smith
CA
,
Bisgard
GE
,
Nielsen
AM
,
Daristotle
L
,
Kressin
NA
,
Forster
HV
,
Dempsey
JA
. Carotid bodies are required for ventilatory acclimatization to chronic hypoxia. J Appl Physiol
60: 1003‐1010, 1986. |
281. |
Smith
CA
,
Blain
GM
,
Henderson
KS
,
Dempsey
JA
. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2: Role of carotid body CO2
. J. Physiol.
593(18):4225‐4243, 2015. |
282. |
Smith
CA
,
Forster
HV
,
Blain
GM
,
Dempsey
JA
. An interdependent model of central/peripheral chemoreception: Evidence and implications for ventilatory control. Respir Physiol Neurobiol
173: 288‐297, 2010. |
283. |
Smith
CA
,
Harms
CA
,
Henderson
KS
,
Dempsey
JA
. Ventilatory effects of specific carotid body hypocapnia and hypoxia in awake dogs. J Appl Physiol
82: 791‐798, 1997. |
284. |
Smith
CA
,
Jameson
LC
,
Mitchell
GS
,
Musch
TI
,
Dempsey
JA
. Central‐peripheral chemoreceptor interaction in awake cerebrospinal fluid‐perfused goats. J Appl Physiol
56: 1541‐1549, 1984. |
285. |
Smith
CA
,
Nakayama
H
,
Dempsey
JA
. The essential role of carotid body chemoreceptors in sleep apnea. Can J Physiol Pharmacol
81: 774‐779, 2003. |
286. |
Smith
CA
,
Rodman
JR
,
Chenuel
BJ
,
Henderson
KS
,
Dempsey
JA
. Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: Central vs. peripheral chemoreceptors. J Appl Physiol
100: 13‐19, 2006. |
287. |
Smith
CA
,
Saupe
KW
,
Henderson
KS
,
Dempsey
JA
. Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. J Appl Physiol
79: 689‐699, 1995. |
288. |
Smith
JC
,
Abdala
AP
,
Rybak
IA
,
Paton
JF
. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci
364: 2577‐2587, 2009. |
289. |
Smith
PG
,
Mills
E
. Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience
5: 573‐580, 1980. |
290. |
St Croix
CM
,
Cunningham
DA
,
Paterson
DH
. Nature of the interaction between central and peripheral chemoreceptor drives in human subjects. CanJ Physiol Pharmacol
74: 640‐646, 1996. |
291. |
Summers
BA
,
Overholt
JL
,
Prabhakar
NR
. CO(2) and pH independently modulate L‐type Ca(2+) current in rabbit carotid body glomus cells. J Neurophysiol
88: 604‐612, 2002. |
292. |
Swanson
GD
,
Bellville
JW
. Hypoxic‐hypercapnic interaction in human respiratory control. J Appl Physiol
36: 480‐487, 1974. |
293. |
Takakura
AC
,
Moreira
TS
,
Colombari
E
,
West
GH
,
Stornetta
RL
,
Guyenet
PG
. Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2‐sensitive neurons in rats. J Physiol
572: 503‐523, 2006. |
294. |
Talley
EM
,
Bayliss
DA
. Modulation of TASK‐1 (Kcnk3) and TASK‐3 (Kcnk9) potassium channels: Volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem
277: 17733‐17742, 2002. |
295. |
Tan
ZY
,
Lu
Y
,
Whiteis
CA
,
Benson
CJ
,
Chapleau
MW
,
Abboud
FM
. Acid‐sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res
101: 1009‐1019, 2007. |
296. |
Tenney
SM
,
Brooks
JG
3rd
. Carotid bodies, stimulus interaction, and ventilatory control in unanesthetized goats. Respir Physiol
1: 211‐224, 1966. |
297. |
Teppema
LJ
. Multifaceted clinical effects of acetazolamide: Will the underlying mechanisms please stand up? J Appl Physiol
116: 713‐714, 2014. |
298. |
Teppema
LJ
,
Barts
PW
,
Evers
JA
. The effect of the phase relationship between the arterial blood gas oscillations and central neural respiratory activity on phrenic motoneurone output in cats. Respir Physiol
61: 301‐316, 1985. |
299. |
Teppema
LJ
,
Berendsen
RR
. Response to the reply of J. Duffin to our letter entitled “Acetazolamide and cerebrovascular function at high altitude.” J Physiol
590: 3625‐3626, 2012. |
300. |
Teppema
LJ
,
Bijl
H
,
Romberg
RR
,
Dahan
A
. Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man. J Physiol
572: 849‐856, 2006. |
301. |
Teppema
LJ
,
Dahan
A
. The ventilatory response to hypoxia in mammals: Mechanisms, measurement, and analysis. Physiol Rev
90: 675‐754, 2010. |
302. |
Teppema
LJ
,
Dahan
A
,
Olievier
CN
. Low‐dose acetazolamide reduces CO(2)‐O(2) stimulus interaction within the peripheral chemoreceptors in the anaesthetised cat. J Physiol
537: 221‐229, 2001. |
303. |
Teppema
LJ
,
van Dorp
EL
,
Dahan
A
. Arterial [H+] and the ventilatory response to hypoxia in humans: Influence of acetazolamide‐induced metabolic acidosis. Am J Physiol Lung Cell Mol Physiol
298: L89‐L95, 2010. |
304. |
Teppema
LJ
,
Smith
CA
. CrossTalk opposing view: Peripheral and central chemoreceptors have hyperadditive effects on respiratory motor control. J Physiol
591: 4359‐4361, 2013. |
305. |
Teppema
LJ
,
Veening
JG
,
Kranenburg
A
,
Dahan
A
,
Berkenbosch
A
,
Olievier
C
. Expression of c‐fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol
388: 169‐190, 1997. |
306. |
Teran
FA
,
Massey
CA
,
Richerson
GB
. Serotonin neurons and central respiratory chemoreception: Where are we now? Prog Brain Res
209: 207‐233, 2014. |
307. |
Tin
C
,
Song
G
,
Poon
C‐S
. Hypercapnia attenuates inspiratory amplitude and expiratory time responsiveness to hypoxia in vagotomized and vagal‐intact rats. Respir Physiol Neurobiol
181: 79‐87, 2012. |
308. |
Topor
ZL
,
Pawlicki
M
,
Remmers
JE
. A computational model of the human respiratory control system: Responses to hypoxia and hypercapnia. Ann Biomed Eng
32: 1530‐1545, 2004. |
309. |
Topor
ZL
,
Vasilakos
K
,
Remmers
JE
. Ventilatory instability during sleep: New insights from the computational model. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc 6: 5828‐5831, 2005. |
310. |
Torrance
RW
. Prolegomena. In:
Torrance
RW
, editor. Arterial Chemoreceptors. Oxford: Blackwell, 1968, pp. 1‐40. |
311. |
Trapp
S
,
Aller
MI
,
Wisden
W
,
Gourine
AV
. A role for TASK‐1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci
28: 8844‐8850, 2008. |
312. |
Travis
DM
. Molecular CO2 is inert on carotid chemoreceptor: Demonstration by inhibition of carbonic anhydrase. J Pharmacol Exp Ther
178: 529‐540, 1971. |
313. |
Turner
PJ
,
Buckler
KJ
. Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK‐1 and TASK‐3 channels in mouse carotid body type‐1 cells. J Physiol
591: 5977‐5998, 2013. |
314. |
Ungar
A
,
Bouverot
P
. The ventilatory responses of conscious dogs to isocapnic oxygen tests. a method of exploring the central component of respiratory drive and its dependence on O2 and CO2
. Respir Physiol
39: 183‐197, 1980. |
315. |
Vidruk
EH
,
Olson
EB
Jr
,
Ling
L
,
Mitchell
GS
. Responses of single‐unit carotid body chemoreceptors in adult rats. J Physiol
531: 165‐170, 2001. |
316. |
Wang
S
,
Benamer
N
,
Zanella
S
,
Kumar
NN
,
Shi
Y
,
Bévengut
M
,
Penton
D
,
Guyenet
PG
,
Lesage
F
,
Gestreau
C
,
Barhanin
J
,
Bayliss
DA
. TASK‐2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons. J Neurosci
33: 16033‐16044, 2013. |
317. |
Wang
W
,
Tiwari
JK
,
Bradley
SR
,
Zaykin
RV
,
Richerson
GB
. Acidosis‐stimulated neurons of the medullary raphe are serotonergic. J Neurophysiol
85: 2224‐2235, 2001. |
318. |
Ward
DS
,
Bellville
JW
. Effect of intravenous dopamine on hypercapnic ventilatory response in humans. J Appl Physiol
55: 1418‐1425, 1983. |
319. |
Washburn
CP
,
Sirois
JE
,
Talley
EM
,
Guyenet
PG
,
Bayliss
DA
. Serotonergic raphe neurons express TASK channel transcripts and a TASK‐like pH‐ and halothane‐sensitive K+ conductance. J Neurosci
22: 1256‐1265, 2002. |
320. |
Weizhen
N
,
Engwall
MJ
,
Daristotle
L
,
Pizarro
J
,
Bisgard
GE
. Ventilatory effects of prolonged systemic (CNS) hypoxia in awake goats. Respir Physiol
87: 37‐48, 1992. |
321. |
Wenker
IC
,
Kréneisz
O
,
Nishiyama
A
,
Mulkey
DK
. Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1‐Kir5.1‐like current and may contribute to chemoreception by a purinergic mechanism. J Neurophysiol
104: 3042‐3052, 2010. |
322. |
Wenker
IC
,
Sobrinho
CR
,
Takakura
AC
,
Moreira
TS
,
Mulkey
DK
. Regulation of ventral surface CO2/H+‐sensitive neurons by purinergic signalling. J Physiol
590: 2137‐2150, 2012. |
323. |
Wiemer
W
,
Kiwull
P
. Der Einflub des PACO2 auf die Wirkung der Sinusnervenreizung bei intakten und ausgeschalteten. Pfliigers Arch
330: 28‐44, 1971. |
324. |
Wilding
TJ
,
Cheng
B
,
Roos
A
. pH regulation in adult rat carotid body glomus cells. Importance of extracellular pH, sodium, and potassium. J Gen Physiol
100: 593‐608, 1992. |
325. |
Williams
RH
,
Jensen
LT
,
Verkhratsky
A
,
Fugger
L
,
Burdakov
D
. Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci USA
104: 10685‐10690, 2007. |
326. |
Williams
SE
,
Wootton
P
,
Mason
HS
,
Bould
J
,
Iles
DE
,
Riccardi
D
,
Peers
C
,
Kemp
PJ
. Hemoxygenase‐2 is an oxygen sensor for a calcium‐sensitive potassium channel. Science
306: 2093‐2097, 2004. |
327. |
Wilson
CR
,
Satoh
M
,
Skatrud
JB
,
Dempsey
JA
. Non‐chemical inhibition of respiratory motor output during mechanical ventilation in sleeping humans. J Physiol
518: 605‐618, 1999. |
328. |
Wilson
RJA
,
Day
TA
. CrossTalk opposing view: Peripheral and central chemoreceptors have hypoadditive effects on respiratory motor output. J Physiol
591: 4355‐4357, 2013. |
329. |
Wilson
RJA
,
Day
TA
. Rebuttal by Richard J. A. Wilson and Trevor A. Day. J Physiol
591: 4365, 2013. |
330. |
Younes
MK
. Comments on the CrossTalk opposing views: Peripheral and central chemoreflexes have additive/hypoadditive/ hyperadditive effects on ventilation in humans. Why the controversy? J Physiol
591: 0, 2013. |
331. |
Zhang
M
,
Nurse
CA
. CO2/pH chemosensory signaling in co‐cultures of rat carotid body receptors and petrosal neurons: Role of ATP and ACh. J Neurophysiol
92: 3433‐3445, 2004. |
332. |
Zhong
H
,
Zhang
M
,
Nurse
CA
. Synapse formation and hypoxic signalling in co‐cultures of rat petrosal neurones and carotid body type 1 cells. J Physiol
503(Pt 3): 599‐612, 1997. |