References |
1. | Alastruey J, Khir AW, Matthys KS, Segers P, Sherwin SJ, Verdonck PR, Parker KH, Peiro J. Pulse wave propagation in a model human arterial network: Assessment of 1‐D visco‐elastic simulations against in vitro measurements. J Biomech
44: 2250‐2258, 2011. |
2. |
Asmar
R
,
Rudnichi
A
,
Blacher
J
,
London
GM
,
Safar
ME
. Pulse pressure and aortic pulse wave are markers of cardiovascular risk in hypertensive populations. Am J Hypertens
14: 91‐97, 2001. |
3. |
Avolio
AP
,
Van Bortel
LM
,
Boutouyrie
P
,
Cockcroft
JR
,
McEniery
CM
,
Protogerou
AD
,
Roman
MJ
,
Safar
ME
,
Segers
P
,
Smulyan
H
. Role of pulse pressure amplification in arterial hypertension: Experts' opinion and review of the data. Hypertension
54: 375‐383, 2009. |
4. |
Batchelor
GK
. An Introduction to Fluid Mechanics. Cambridge: Cambridge University Press, 1967. |
5. |
Bertram
CD
,
Butcher
KS
. Possible sources of discrepancy between sphygmomanometer cuff pressure and blood pressure quantified in a collapsible‐tube analogue. J Biomech Eng
114: 68‐77, 1992. |
6. |
Bovendeerd
PH
,
Borsje
P
,
Arts
T
,
van de Vosse
FN
. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: A model study. Ann Biomed Eng
34: 1833‐1845, 2006. |
7. |
Burton
AC.
Physiology and Biophysics of the Circulation. Chicago: Year Book Medical Publishers, 1972. |
8. |
Buschmann
I
,
Pries
A
,
Styp‐Rekowska
B
,
Hillmeister
P
,
Loufrani
L
,
Henrion
D
,
Shi
Y
,
Duelsner
A
,
Hoefer
I
,
Gatzke
N
,
Wang
H
,
Lehmann
K
,
Ulm
L
,
Ritter
Z
,
Hauff
P
,
Hlushchuk
R
,
Djonov
V
,
van Veen
T
,
le Noble
F
. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow‐driven arteriogenesis. Development
137: 2187‐2196, 2010. |
9. | Canic S, Tambaca J, Guidoboni G, Mikelic A, Hartley CJ, Rosenstrauch D. Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM Journal on Applied Mathematics
67: 164‐193, 2006. |
10. |
Cardamone
L
,
Valentin
A
,
Eberth
JF
,
Humphrey
JD
. Origin of axial prestretch and residual stress in arteries. Biomech Model Mechanobiol
8: 431‐446, 2009. |
11. |
Carlson
BE
,
Arciero
JC
,
Secomb
TW
. Theoretical model of blood flow autoregulation: Roles of myogenic, shear‐dependent, and metabolic responses. Am J Physiol Heart Circ Physiol
295: H1572‐H1579, 2008. |
12. |
Caro
CG
,
Pedley
TJ
,
Schroter
RC
,
Seed
WA
. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978. |
13. |
Chien
S.
Shear dependence of effective cell volume as a determinant of blood viscosity. Science
168: 977‐979, 1970. |
14. |
Chien
S
,
Usami
S
,
Taylor
HM
,
Lundberg
JL
,
Gregersen
MI
. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J Appl Physiol
21: 81‐87, 1966. |
15. |
Coppola
G
,
Caro
C
. Arterial geometry, flow pattern, wall shear and mass transport: Potential physiological significance. J R Soc Interface
6: 519‐528, 2009. |
16. |
Davies
JE
,
Alastruey
J
,
Francis
DP
,
Hadjiloizou
N
,
Whinnett
ZI
,
Manisty
CH
,
Aguado‐Sierra
J
,
Willson
K
,
Foale
RA
,
Malik
IS
,
Hughes
AD
,
Parker
KH
,
Mayet
J
. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension
60: 778‐785, 2012. |
17. |
Dobrin
PB
. Vascular mechanics. Compr Physiol (Suppl 8): 65‐102, 2011. |
18. |
Ellwein
LM
,
Pope
SR
,
Xie
A
,
Batzel
JJ
,
Kelley
CT
,
Olufsen
MS
. Patient‐specific modeling of cardiovascular and respiratory dynamics during hypercapnia. Math Biosci
241: 56‐74, 2013. |
19. |
Euler
L
. Principia pro motu sanguinis per arterias determinando. In:
Fuss
PH
,
Fuss
N
, editors. Opera posthuma mathematica et physica anno 1844 detecta, Vol. 2. Petropoli: Apund Eggers et Socios, 1862, pp. 814‐823. |
20. |
Fåhraeus
R
. Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefäßsystem. Zur Frage der Bedeutung der intravasculären Erythrocytenaggregation. Klin Wochenschr
7: 100‐106, 1928. |
21. |
Fåhraeus
R
,
Lindqvist
T
. The viscosity of the blood in narrow capillary tubes. Am J Physiol
96: 562‐568, 1931. |
22. |
Fedosov
DA
,
Caswell
B
,
Popel
AS
,
Karniadakis
GE
. Blood flow and cell‐free layer in microvessels. Microcirculation
17: 615‐628, 2010. |
23. |
Fischer
TM
,
Stöhr‐Liesen
M
,
Schmid‐Schönbein
H
. The red cell as a fluid droplet: Tank tread‐like motion of the human erythrocyte membrane in shear flow. Science
202: 894‐896, 1978. |
24. |
Fishman
AP
,
Richards
DW
. Circulation of the Blood: Men and Ideas. New York: Oxford University Press, 1964. |
25. |
Frank
O
. Die Grundform des arteriellen Pulses. Erste Abhandlung. Mathematische Analyse. Zeitschrift für Biologie
37: 483‐526, 1899. |
26. |
Fronek
K
,
Zweifach
BW
. Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am J Physiol
228: 791‐796, 1975. |
27. |
Fung
YC.
Biomechanics. Mechanical Properties of Living Tissues. Second Edition. New York: Springer, 1993. |
28. |
Fung
YC.
Biomechanics: Circulation. Second edition. New York: Springer‐Verlag, 1997. |
29. |
Fung
YC
,
Liu
SQ
. Strain distribution in small blood vessels with zero‐stress state taken into consideration. Am J Physiol
262: H544‐H552, 1992. |
30. |
Gore
RW
. Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure. Circ Res
34: 581‐591, 1974. |
31. |
Grandchamp
X
,
Coupier
G
,
Srivastav
A
,
Minetti
C
,
Podgorski
T
. Lift and down‐gradient shear‐induced diffusion in red blood cell suspensions. Phys Rev Lett
110: 2013. |
32. |
Greenwald
SE
,
Carter
AC
,
Berry
CL
. Effect of age on the in vitro reflection coefficient of the aortoiliac bifurcation in humans. Circulation
82: 114‐123, 1990. |
33. |
Greve
JM
,
Les
AS
,
Tang
BT
,
Draney Blomme
MT
,
Wilson
NM
,
Dalman
RL
,
Pelc
NJ
,
Taylor
CA
. Allometric scaling of wall shear stress from mice to humans: Quantification using cine phase‐contrast MRI and computational fluid dynamics. Am J Physiol Heart Circ Physiol
291: H1700‐H1708, 2006. |
34. |
Hagenbach
E
. Uber die Bestimmung der Zähigkeit einer Flüssigkeit durch den Ausfluss aus Röhren. Poggendorf's Annalen der Physik und Chemie
108: 385‐426, 1860. |
35. |
Hales
S.
Statical essays: containing haemosticks, reprinted 1964, No. 22, History of Medicine series, Library of New York Academy of Medicine. New York: Hafner, 1733. |
36. |
Halpern
D
,
Secomb
TW
. The squeezing of red blood cells through capillaries with near‐minimal diameters. J Fluid Mech
203: 381‐400, 1989. |
37. |
Hariprasad
DS
,
Secomb
TW
. Two‐dimensional simulation of red blood cell motion near a wall under a lateral force. Physical Review E
90: 053014, 2014. |
38. |
Harvey
W.
Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus. 1628. English translation with annotations, C.D. Leake. 4th edition. Springfield, Ill.: Thomas, 1958. |
39. |
Holzapfel
GA
,
Gasser
TC
,
Ogden
RW
. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast
61: 1‐48, 2000. |
40. |
Humphrey
JD
,
Delange
SL
. An Introduction to Biomechanics. Solids and Fluids, Analysis and Design. New York: Springer, 2004. |
41. |
Johnson
PC
. The myogenic response. In:
Bohr
DF
,
Somlyo
AP
,
Sparks
HV, Jr
., editors. Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II: Vascular Smooth Muscle. Bethesda, MD: American Physiological Society, 1980, pp. 409‐442. |
42. |
Jones
CJ
,
Parker
KH
,
Hughes
R
,
Sheridan
DJ
. Nonlinearity of human arterial pulse wave transmission. J Biomech Eng
114: 10‐14, 1992. |
43. |
Kilner
PJ
,
Yang
GZ
,
Firmin
DN
. Morphodynamics of flow through sinuous curvatures of the heart. Biorheology
39: 409‐417, 2002. |
44. |
Kilner
PJ
,
Yang
GZ
,
Mohiaddin
RH
,
Firmin
DN
,
Longmore
DB
. Helical and retrograde secondary flow patterns in the aortic arch studied by three‐directional magnetic resonance velocity mapping. Circulation
88: 2235‐2247, 1993. |
45. |
Kim
S
,
Popel
AS
,
Intaglietta
M
,
Johnson
PC
. Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle. Am J Physiol Heart Circ Physiol
290: H941‐H947, 2006. |
46. |
Koller
A
,
Kaley
G
. Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am J Physiol
260: H862‐H868, 1991. |
47. |
Lakatta
EG
,
Levy
D
. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: A “set up” for vascular disease. Circulation
107: 139‐146, 2003. |
48. |
Langille
BL
. Arterial remodeling: Relation to hemodynamics. Can J Physiol Pharmacol
74: 834‐841, 1996. |
49. |
Langille
BL
,
O'Donnell
F
. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium‐dependent. Science
231: 405‐407, 1986. |
50. |
Laurent
S
,
Cockcroft
J
,
Van
BL
,
Boutouyrie
P
,
Giannattasio
C
,
Hayoz
D
,
Pannier
B
,
Vlachopoulos
C
,
Wilkinson
I
,
Struijker‐Boudier
H
, European Network for Non‐Invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur Heart J
27: 2588‐2605, 2006. |
51. |
Levick
JR.
An Introduction to Cardiovascular Physiology. Fourth Edition. London: Hodder Arnold, 2003. |
52. |
Lindert
J
,
Werner
J
,
Redlin
M
,
Kuppe
H
,
Habazettl
H
,
Pries
AR
. OPS imaging of human microcirculation: A short technical report. J Vasc Res
39: 368‐372, 2002. |
53. |
Lipowsky
HH
,
Kovalcheck
S
,
Zweifach
BW
. The distribution of blood rheological parameters in the mirovasculature of the cat mesentery. Circ Res
43: 738‐749, 1978. |
54. |
Lipowsky
HH
,
Usami
S
,
Chien
S
. In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc Res
19: 297‐319, 1980. |
55. |
Lipowsky
HH
,
Zweifach
BW
. Network analysis of microcirculation of cat mesentery. Microvasc Res
7: 73‐83, 1974. |
56. |
London
GM
,
Guerin
AP
. Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J
138: 220‐224, 1999. |
57. |
Love
AEH.
A Treatise on the Mathematical Theory of Elasticity. 4th ed. New York: Dover, 1944. |
58. |
Luchsinger
PC
,
Snell
RE
,
Patel
DJ
,
Fry
DL
. Instantaneous pressure distribution along the human aorta. Circ Res
15: 503‐510, 1964. |
59. |
Malek
AM
,
Alper
SL
,
Izumo
S
. Hemodynamic shear stress and its role in atherosclerosis. JAMA
282: 2035‐2042, 1999. |
60. |
Mall
FP
. Die Blut und Lymphwege im Dünndarm des Hundes. Abhandlungen der Mathematisch‐Physischen Classe der Königlich Sachsischen Gessellschaft der Wissenschaften
14: 151‐200, 1888. |
61. |
Malpighi
M
.
De
Pulmonibus
. Observations anatomicae bologna. 1661. Translated by J. Young. Proc R Soc Med
23: 1‐11, 1929. |
62. |
Martini
P
,
Pierach
A
,
Schreyer
E
. Die Strömung des Blutes in engen Gefäβen. Eine Abweichung vom Poiseuille'schen Gesetz. Dt Arch Klin Med
169: 212‐222, 1930. |
63. |
McDonald
DA
. The relation of pulsatile pressure to flow in arteries. J Physiol
127: 533‐552, 1955. |
64. |
McDonald
DA.
Blood Flow in Arteries. 2nd ed. London: Edward Arnold, 1974. |
65. |
Milkiewicz
M
,
Brown
MD
,
Egginton
S
,
Hudlicka
O
. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation
8: 229‐241, 2001. |
66. |
Milnor
WR.
Hemodynamics. 2nd ed. Baltimore: Williams and Wilkins, 1989. |
67. |
Mitchell
GF
,
Guo
CY
,
Benjamin
EJ
,
Larson
MG
,
Keyes
MJ
,
Vita
JA
,
Vasan
RS
,
Levy
D
. Cross‐sectional correlates of increased aortic stiffness in the community: The Framingham Heart Study. Circulation
115: 2628‐2636, 2007. |
68. |
Motomiya
M
,
Karino
T
. Flow patterns in the human carotid artery bifurcation. Stroke
15: 50‐56, 1984. |
69. |
Mulvany
MJ
. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol
110: 49‐55, 2012. |
70. |
Mynard
JP
,
Smolich
JJ
. Wave potential and the one‐dimensional windkessel as a wave‐based paradigm of diastolic arterial hemodynamics. Am J Physiol Heart Circ Physiol
307: H307‐H318, 2014. |
71. |
Nichols
WW
,
O'Rourke
MF
. McDonald's Blood Flow in Arteries. Theoretical, experimental and clinical principles. Fourth Edition. London: Arnold, 1998. |
72. |
Parker
KH
. A brief history of arterial wave mechanics. Med Biol Eng Comput
47: 111‐118, 2009. |
73. |
Pedley
TJ.
The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, 1980. |
74. |
Poiseuille
JLM
. Recherches expérimentales sur le mouvement des liquides dans les tubes de très‐petits diamêtres. Mémoires presentés par divers savants à l'Académie Royale des Sciences de l'Institut de France
IX: 433‐544, 1846. |
75. |
Pranay
P
,
Henriquez‐Rivera
RG
,
Graham
MD
. Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids. Physics of Fluids
24: 2012. |
76. |
Pries
AR
,
Ley
K
,
Claassen
M
,
Gaehtgens
P
. Red cell distribution at microvascular bifurcations. Microvasc Res
38: 81‐101, 1989. |
77. |
Pries
AR
,
Neuhaus
D
,
Gaehtgens
P
. Blood viscosity in tube flow: Dependence on diameter and hematocrit. Am J Physiol
263: H1770‐H1778, 1992. |
78. |
Pries
AR
,
Reglin
B
,
Secomb
TW
. Remodeling of blood vessels: Responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension
46: 725‐731, 2005. |
79. |
Pries
AR
,
Secomb
TW
. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol
289: H2657‐H2664, 2005. |
80. |
Pries
AR
,
Secomb
TW
. Blood flow in microvascular networks. In:
Tuma
RF
,
Duran
WN
,
Ley
K
, editors. Handbook of Physiology: Microcirculation. 2nd ed. San Diego: Academic Press, 2008, pp. 3‐36. |
81. |
Pries
AR
,
Secomb
TW
. Origins of heterogeneity in tissue perfusion and metabolism. Cardiovasc Res
81: 328‐335, 2009. |
82. |
Pries
AR
,
Secomb
TW
,
Gaehtgens
P
. Design principles of vascular beds. Circ Res
77: 1017‐1023, 1995. |
83. |
Pries
AR
,
Secomb
TW
,
Gaehtgens
P
. Structure and hemodynamics of microvascular networks: Heterogeneity and correlations. Am J Physiol
269: H1713‐H1722, 1995. |
84. |
Pries
AR
,
Secomb
TW
,
Gaehtgens
P
. Structural autoregulation of terminal vascular beds: Vascular adaptation and development of hypertension. Hypertension
33: 153‐161, 1999. |
85. |
Pries
AR
,
Secomb
TW
,
Gaehtgens
P
. The endothelial surface layer. Pflugers Arch
440: 653‐666, 2000. |
86. |
Pries
AR
,
Secomb
TW
,
Gaehtgens
P
,
Gross
JF
. Blood flow in microvascular networks. Experiments and simulation. Circ Res
67: 826‐834, 1990. |
87. |
Pries
AR
,
Secomb
TW
,
Gessner
T
,
Sperandio
MB
,
Gross
JF
,
Gaehtgens
P
. Resistance to blood flow in microvessels in vivo. Circ Res
75: 904‐915, 1994. |
88. |
Recek
C.
Conception of the venous hemodynamics in the lower extremity. Angiology
57: 556‐563, 2006. |
89. |
Rhodin
JAG
. Architecture of the vessel wall. Compr Physiol (Suppl 7): 1‐31, 2011. |
90. |
Richardson
DR
,
Zweifach
BW
. Pressure relationships in the macro‐ and microcirculation of the mesentery. Microvasc Res
2: 474‐488, 1970. |
91. |
Rodbard
S
. Vascular caliber. Cardiology
60: 4‐49, 1975. |
92. |
Safar
ME
,
Levy
BI
,
Struijker‐Boudier
H
. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation
107: 2864‐2869, 2003. |
93. |
Sagawa
K
. Baroreflex control of systemic arterial pressure and vascular bed. Compr Physiol (Suppl 8): 453‐496, 2011. |
94. |
Sato
M
,
Hayashi
K
,
Niimi
H
,
Moritake
K
,
Okumura
A
,
Handa
H
. Axial mechanical properties of arterial walls and their anisotropy. Med Biol Eng Comput
17: 170‐176, 1979. |
95. |
Schiffrin
EL
. Vascular remodeling in hypertension: Mechanisms and treatment. Hypertension
59: 367‐374, 2012. |
96. |
Secomb
TW
. Mechanics of blood flow in the microcirculation. Symp Soc Exp Biol
49: 305‐321, 1995. |
97. |
Secomb
TW
. Mechanics of red blood cells and blood flow in narrow tubes. In:
Pozrikidis
C
, editors. Modeling and Simulation of Capsules and Biological Cells. Boca Raton, Florida, Chapman & Hall/CRC, 2003, pp. 163‐196. |
98. |
Secomb
TW
,
Pries
AR
. Blood viscosity in microvessels: Experiment and theory. Comptes Rendus Physique
14: 470‐478, 2013. |
99. |
Segers
P
,
Mynard
J
,
Taelman
L
,
Vermeersch
S
,
Swillens
A
. Wave reflection: Myth or reality? Artery Research
6: 7‐11, 2012. |
100. |
Sharman
JE
,
Davies
JE
,
Jenkins
C
,
Marwick
TH
. Augmentation index, left ventricular contractility, and wave reflection. Hypertension
54: 1099‐1105, 2009. |
101. |
Skalak
R
. Wave propagation in blood flow. In:
Fung
YC
, editors. Biomechanics Symposium. New York: American Society of Mechanical Engineers, 1966, pp. 20‐46. |
102. |
Skalak
R
,
Keller
SR
,
Secomb
TW
. Mechanics of blood flow. J Biomech Eng
103: 102‐115, 1981. |
103. |
Stranden
E
. Edema in venous insufficiency. Phlebolymphology
18: 3‐15, 2011. |
104. |
Strony
J
,
Beaudoin
A
,
Brands
D
,
Adelman
B
. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am J Physiol
265: H1787‐H1796, 1993. |
105. |
Sutera
SP
,
Seshadri
V
,
Croce
PA
,
Hochmuth
RM
. Capillary blood flow. II. Deformable model cells in tube flow. Microvasc Res
2: 420‐433, 1970. |
106. |
Sutera
SP
,
Skalak
R
. The history of Poiseuille's law. Ann Rev Fluid Mech
25: 1‐19, 1993. |
107. |
Tanaka
TT
,
Fung
YC
. Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J Biomech
7: 357‐370, 1974. |
108. |
Trendelenburg
F.
Über die Unterverbindung der Vena saphena magna bei Unterschenkelvarizen. Beitr Klin Chir
7: 195‐210, 1891. |
109. |
Tyberg
JV
,
Davies
JE
,
Wang
Z
,
Whitelaw
WA
,
Flewitt
JA
,
Shrive
NG
,
Francis
DP
,
Hughes
AD
,
Parker
KH
,
Wang
JJ
. Wave intensity analysis and the development of the reservoir‐wave approach. Med Biol Eng Comput
47: 221‐232, 2009. |
110. |
Ursino
M
. Interaction between carotid baroregulation and the pulsating heart: A mathematical model. Am J Physiol
275: H1733‐H1747, 1998. |
111. |
Vaishnav
RN
,
Vossoughi
J
. Residual stress and strain in aortic segments. J Biomech
20: 235‐239, 1987. |
112. |
van de Vosse
FN
,
Stergiopulos
N
. Pulse wave propagation in the arterial tree. Ann Rev Fluid Mech
43: 467‐499, 2011. |
113. |
Vand
V.
Viscosity of solutions and suspensions. I. Theory. J Phys Colloid Chem
52: 277‐299, 1948. |
114. |
Weizsacker
HW
,
Pinto
JG
. Isotropy and anisotropy of the arterial wall. J Biomech
21: 477‐487, 1988. |
115. |
West
JB.
Respiratory Physiology ‐ The Essentials. Baltimore: Williams and Wilkins, 1974. |
116. |
Westerhof
N
,
Boer
C
,
Lamberts
RR
,
Sipkema
P
. Cross‐talk between cardiac muscle and coronary vasculature. Physiol Rev
86: 1263‐1308, 2006. |
117. |
Westerhof
N
,
Lankhaar
JW
,
Westerhof
BE
. The arterial Windkessel. Med Biol Eng Comput
47: 131‐141, 2009. |
118. |
Wexler
L
,
Bergel
DH
,
Gabe
IT
,
Makin
GS
,
Mills
CJ
. Velocity of blood flow in normal human venae cavae. Circ Res
23: 349‐359, 1968. |
119. |
Womersley
JR
. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol
127: 553‐563, 1955. |
120. |
Wootton
DM
,
Ku
DN
. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng
1: 299‐329, 1999. |
121. |
Young
T
. Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood. Phil Trans Roy Soc
98: 164‐186, 1808. |
122. |
Young
T
. On the functions of the heart and arteries. The Croonian lecture. Phil Trans Roy Soc
99: 1‐31, 1809. |
123. |
Zarins
CK
,
Giddens
DP
,
Bharadvaj
BK
,
Sottiurai
VS
,
Mabon
RF
,
Glagov
S
. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res
53: 502‐514, 1983. |
124. |
Zweifach
BW
. Quantitative studies of microcirculatory structure and function. II. Direct measurement of capillary pressure in splanchnic mesenteric vessels. Circ Res
34: 858‐866, 1974. |