References |
1. | Aertsen A, Preißl H. Dynamics of activity and connectivity in physiological neuronal networks. In: HG S, editor. Nonlinear Dynamics and Neuronal Networks. New York: Wiley‐VCH, 1991, pp. 281‐302. |
2. | Aghdam HH, Heravi EJ. Guide to Convolutional Neural Networks. New York: Springer, Berlin, Heidelberg, 2017. |
3. | Ahissar M, Hochstein S. The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci 8: 457‐464, 2004. |
4. | Ajina S, Bridge H. Blindsight and unconscious vision: What they teach us about the human visual system. Neuroscientist 23: 529‐541, 2016. |
5. | Allman J, Miezin F, McGuinness E. Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local‐global comparisons in visual neurons. Annu Rev Neurosci 8: 407‐430, 1985. |
6. | Allman JM, Kaas JH. A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res 31: 85‐105, 1971. |
7. | Alvarado MC, Bachevalier J. Revisiting the maturation of medial temporal lobe memory functions in primates. Learn Mem 7: 244‐256, 2000. |
8. | Amedi A, Malach R, Hendler T, Peled S, Zohary E. Visuo‐haptic object‐related activation in the ventral visual pathway. Nat Neurosci 4: 324‐330, 2001. |
9. | Andersen RA, Cui H. Intention, action planning, and decision making in parietal‐frontal circuits. Neuron 63: 568‐583, 2009. |
10. | Andersen RA, Snyder LH, Bradley DC, Xing J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20: 303‐330, 1997. |
11. | Angelucci A, Bressloff PC. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra‐classical receptive field surround of primate V1 neurons. Prog Brain Res 154: 93‐120, 2006. |
12. | Archambault PS, Ferrari‐Toniolo S, Caminiti R, Battaglia‐Mayer A. Visually‐guided correction of hand reaching movements: The neurophysiological bases in the cerebral cortex. Vision Res 110: 244‐256, 2015. |
13. | Ashby FG. Statistical Analysis of fMRI Data. Cambridge, MA: MIT Press, 2011. |
14. | Atkinson AP, Adolphs R. The neuropsychology of face perception: Beyond simple dissociations and functional selectivity. Philos Trans R Soc Lond B Biol Sci 366: 1726‐1738, 2011. |
15. | Attneave F. Some informational aspects of visual perception. Psychol Rev 61: 183‐193, 1954. |
16. | Bagloee SA, Tavana M, Asadi M, Oliver T. Autonomous vehicles: Challenges, opportunities, and future implications for transportation policies. Journal of Modern Transportation 24: 284‐303, 2016. |
17. | Banerjee A, Dean HL, Pesaran B. A likelihood method for computing selection times in spiking and local field potential activity. J Neurophysiol 104: 3705‐3720, 2010. |
18. | Banks MS, Gepshtein S, Landy MS. Why is spatial stereoresolution so low? J Neurosci 24: 2077‐2089, 2004. |
19. | Bar M. Visual objects in context. Nat Rev Neurosci 5: 617‐629, 2004. |
20. | Bar M, Aminoff E. Cortical analysis of visual context. Neuron 38: 347‐358, 2003. |
21. | Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, Hamalainen MS, Marinkovic K, Schacter DL, Rosen BR, Halgren E. Top‐down facilitation of visual recognition. Proc Natl Acad Sci U S A 103: 449‐454, 2006. |
22. | Barlow H. The mechanical mind. Annu Rev Neurosci 13: 15‐24, 1990. |
23. | Barlow HB. Pattern recognition and the responses of sensory neurons. Ann N Y Acad Sci 156: 872‐881, 1969. |
24. | Barnett L, Seth AK. The MVGC multivariate Granger causality toolbox: A new approach to Granger‐causal inference. J Neurosci Methods 223: 50‐68, 2014. |
25. | Baron‐Cohen S, Harrison JE. Synaesthesia: Classic and Contemporary Readings. Cambridge, MA: Blackwell, 1997. |
26. | Bart E, Hegdé J. Invariant Recognition of Visual Objects. Lausanne, Switzerland: Frontiers Media SA, 2013. |
27. | Barton JJ. Higher cortical visual function. Curr Opin Ophthalmol 9: 40‐45, 1998. |
28. | Bassett DS, Sporns O. Network neuroscience. Nat Neurosci 20: 353‐364, 2017. |
29. | Berzuini C, Dawid P, Bernardinelli L. Causality: Statistical Perspectives and Applications. Hoboken, NJ: Wiley, 2012. |
30. | Biederman I. Perceiving real‐world scenes. Science 177: 77‐80, 1972. |
31. | Biswal BB. Resting state fMRI: A personal history. Neuroimage 62: 938‐944, 2012. |
32. | Blake DT. Network supervision of adult experience and learning dependent sensory cortical plasticity. Compr Physiol 7: 977‐1008, 2017. |
33. | Blake R, Logothetis N. Visual competition. Nat Rev Neurosci 3: 13‐21, 2002. |
34. | Bloom FE, Morrison JH, Young WG. Neuroinformatics: A new tool for studying the brain. J Affect Disord 92: 133‐138, 2006. |
35. | Braddick O. Encyclopedia of Perception. Thousand Oaks, CA: SAGE Publications, Inc., 2010. |
36. | Bremmer F, Krekelberg B. Seeing and acting at the same time: Challenges for brain (and) research. Neuron 38: 367‐370, 2003. |
37. | Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of visual motion: A comparison of neuronal and psychophysical performance. J Neurosci 12: 4745‐4765, 1992. |
38. | Brown LL, Schneider JS, Lidsky TI. Sensory and cognitive functions of the basal ganglia. Curr Opin Neurobiol 7: 157‐163, 1997. |
39. | Brown RJ, Norcia AM. A method for investigating binocular rivalry in real‐time with the steady‐state VEP. Vision Res 37: 2401‐2408, 1997. |
40. | Bruce C, Desimone R, Gross CG. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46: 369‐384, 1981. |
41. | Bruno RM. Synchrony in sensation. Curr Opin Neurobiol 21: 701‐708, 2011. |
42. | Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80: 807‐815, 2013. |
43. | Buckner RL, Krienen FM, Yeo BT. Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16: 832‐837, 2013. |
44. | Bullier J. Integrated model of visual processing. Brain Res Brain Res Rev 36: 96‐107, 2001. |
45. | Bullier J, Hupe JM, James AC, Girard P. The role of feedback connections in shaping the responses of visual cortical neurons. Prog Brain Res 134: 193‐204, 2001. |
46. | Burgess N, O'Keefe J. Models of place and grid cell firing and theta rhythmicity. Curr Opin Neurobiol 21: 734‐744, 2011. |
47. | Cabeza R, Ciaramelli E, Moscovitch M. Cognitive contributions of the ventral parietal cortex: An integrative theoretical account. Trends Cogn Sci 16: 338‐352, 2012. |
48. | Callaway EM. Neural substrates within primary visual cortex for interactions between parallel visual pathways. Prog Brain Res 149: 59‐64, 2005. |
49. | Campos JJ, Langer A, Krowitz A. Cardiac responses on the visual cliff in prelocomotor human infants. Science 170: 196‐197, 1970. |
50. | Cao JW, Lin ZP. Extreme learning machines on high dimensional and large data applications: A survey. Math Probl Eng 2015: 1‐13, 2015. |
51. | Cavanagh P. What's up in top‐down processing? In: Gorea A, editor. Representations of Vision: Trends and Tacit Assumptions in Vision Research. New York: Cambridge University Press, 1991, pp. 295‐304. |
52. | Chacron MJ, Longtin A, Maler L. Efficient computation via sparse coding in electrosensory neural networks. Curr Opin Neurobiol 21: 752‐760, 2011. |
53. | Chen Y, Elenee Argentinis JD, Weber G. IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research. Clin Ther 38: 688‐701, 2016. |
54. | Chentanez T, Keatisuwan W, Akaraphan A, Chaunchaiyakul R, Lechanavanich C, Hiranrat S, Chaiwatcharaporn C, Glinsukon T. Reaction time, impulse speed, overall synaptic delay and number of synapses in tactile reaction neuronal circuits of normal subjects and thinner sniffers. Physiol Behav 42: 423‐431, 1988. |
55. | Christensen R. Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians. Boca Raton, FL: CRC Press, 2011. |
56. | Churchland PS. A neurophilosophical slant on consciousness research. Progress in Brain Research 149: 285‐293, 2005. |
57. | Churchland PS, Ramachandran VS, Sejnowski TJ. A critique of pure vision. In: Koch C, Davis J, editors. Large‐Scale Neuronal Theories of the Brain. Cambridge, MA: MIT Press, 1994, pp. 23‐60. |
58. | Coates P, Coleman S. Phenomenal Qualities: Sense, Perception, and Consciousness. New York: Oxford University Press, 2015. |
59. | Cohen MR, Maunsell JH. Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12: 1594‐1600, 2009. |
60. | Cohen MR, Newsome WT. Estimates of the contribution of single neurons to perception depend on timescale and noise correlation. J Neurosci 29: 6635‐6648, 2009. |
61. | Cowey A, Stoerig P. Blindsight in monkeys. Nature 373: 247‐249, 1995. |
62. | Crapse TB, Basso MA. Insights into decision making using choice probability. J Neurophysiol 114: 3039‐3049, 2015. |
63. | Crasto CJ. Neuroinformatics. Totowa, NJ: Humana, 2007. |
64. | Crick F. Visual perception: Rivalry and consciousness. Nature 379: 485‐486, 1996. |
65. | Crick F, Koch C. Are we aware of neural activity in primary visual cortex? Nature 375: 121‐123, 1995. |
66. | Crick F, Koch C. Consciousness and neuroscience. Cereb Cortex 8: 97‐107, 1998. |
67. | Crick F, Koch C. A framework for consciousness. Nat Neurosci 6: 119‐126, 2003. |
68. | Cumming BG, Nienborg H. Feedforward and feedback sources of choice probability in neural population responses. Curr Opin Neurobiol 37: 126‐132, 2016. |
69. | Cytowic RE. Synesthesia: A Union of the Senses. Cambridge, MA: MIT Press, 2002. |
70. | Cytowic RE, Eagleman D. Wednesday is Indigo Blue: Discovering the Brain of Synesthesia. Cambridge, MA: MIT Press, 2009. |
71. | Dan Y, Atick JJ, Reid RC. Efficient coding of natural scenes in the lateral geniculate nucleus: Experimental test of a computational theory. J Neurosci 16: 3351‐3362, 1996. |
72. | Davidoff JB. Differences in Visual Perception: The Individual Eye. London: Crosby Lockwood Staples, 1975. |
73. | Davies ER. Computer and Machine Vision: Theory, Algorithms, Practicalities. Amsterdam; Boston: Elsevier, 2012. |
74. | DeAngelis GC, Cumming BG, Newsome WT. Cortical area MT and the perception of stereoscopic depth. Nature 394: 677‐680, 1998. |
75. | DeAngelis GC, Newsome WT. Organization of disparity‐selective neurons in macaque area MT. J Neurosci 19: 1398‐1415, 1999. |
76. | DeAngelis GC, Newsome WT. Perceptual “read‐out” of conjoined direction and disparity maps in extrastriate area MT. PLoS Biol 2: E77, 2004. |
77. | Dennett DC. Consciousness Explained. Boston: Little, Brown and Co., 1991. |
78. | Desimone R, Ungerleider LG. Neural mechanisms of visual processing in monkeys. In: Boller F, Grafman J, editor. Handbook of Neuropsvchology. Amsterdam: Elsevier, 1989. |
79. | DeYoe EA, Van Essen DC. Concurrent processing streams in monkey visual cortex. Trends Neurosci 11: 219‐226, 1988. |
80. | Dienes Z. Understanding Psychology As A Science: An Introduction to Scientific and Statistical Inference. New York: Palgrave Macmillan, 2008. |
81. | Dobzhansky T. Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35: 125‐129, 1973. |
82. | Dolan RJ, Fink GR, Rolls E, Booth M, Holmes A, Frackowiak RS, Friston KJ. How the brain learns to see objects and faces in an impoverished context. Nature 389: 596‐599, 1997. |
83. | Doya K. Bayesian Brain: Probabilistic Approaches to Neural Coding. Cambridge, MA: MIT Press, 2007. |
84. | Driver J, Spence C. Cross‐modal links in spatial attention. Philos Trans R Soc Lond B Biol Sci 353: 1319‐1331, 1998. |
85. | Einhauser W, Kruse W, Hoffmann KP, Konig P. Differences of monkey and human overt attention under natural conditions. Vision Res 46: 1194‐1209, 2006. |
86. | Einhauser W, Mundhenk TN, Baldi P, Koch C, Itti L. A bottom‐up model of spatial attention predicts human error patterns in rapid scene recognition. J Vis 7: 6.1‐6.13, 2007. |
87. | Eliasmith C, Mandik P. Qualia. In: Hochstein E, editors. Dictionary of Philosophy of Mind, Waterloo, Canada: Sites.google.com, 2004. |
88. | Elston GN. Cortical heterogeneity: Implications for visual processing and polysensory integration. J Neurocytol 31: 317‐335, 2002. |
89. | Emmans D, Laihinen A, Halsband U. Comparative Neuropsychology and Brain Imaging. Zürich: LIT Verlag, 2015. |
90. | Engel AK, Moll CK, Fried I, Ojemann GA. Invasive recordings from the human brain: Clinical insights and beyond. Nat Rev Neurosci 6: 35‐47, 2005. |
91. | Erwin J, Hof PR. Aging in Nonhuman Primates. New York: Karger, 2002. |
92. | Fabre‐Thorpe M, Richard G, Thorpe SJ. Rapid categorization of natural images by rhesus monkeys. Neuroreport 9: 303‐308, 1998. |
93. | Fahle M, Poggio T. Perceptual Learning. Cambridge, MA: MIT Press, 2002. |
94. | Fantz RL. The origin of form perception. Sci Am 204: 66‐72, 1961. |
95. | Farah MJ, Ratcliff G. The Neuropsychology of High‐Level Vision: Collected Tutorial Essays. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994. |
96. | Fawcett JM, Risko EF, Kingstone A. The Handbook of Attention. Cambridge, MA: MIT Press, 2015. |
97. | Fei‐Fei L, Iyer A, Koch C, Perona P. What do we perceive in a glance of a real‐world scene? J Vis 7: 10, 2007. |
98. | Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1‐47, 1991. |
99. | Frassle S, Lomakina EI, Razi A, Friston KJ, Buhmann JM, Stephan KE. Regression DCM for fMRI. Neuroimage 155: 406‐421, 2017. |
100. | Frassle S, Sommer J, Jansen A, Naber M, Einhauser W. Binocular rivalry: Frontal activity relates to introspection and action but not to perception. J Neurosci 34: 1738‐1747, 2014. |
101. | Freedman DJ. Familiarity breeds plasticity: Distinct effects of experience on putative excitatory and inhibitory neurons in inferior temporal cortex. Neuron 74: 8‐11, 2012. |
102. | Freedman DJ, Assad JA. Experience‐dependent representation of visual categories in parietal cortex. Nature 443: 85‐88, 2006. |
103. | Friston K, Moran R, Seth AK. Analysing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol 23: 172‐178, 2013. |
104. | Friston KJ. Functional and effective connectivity: A review. Brain Connect 1: 13‐36, 2011. |
105. | Futuyma DJ. Evolution. Sunderland, MA: Sinauer Associates, 2009. |
106. | Geisler WS. Contributions of ideal observer theory to vision research. Vision Res 51: 771‐781, 2011. |
107. | Geisler WS, Diehl RL. Bayesian natural selection and the evolution of perceptual systems. Philos Trans R Soc Lond B Biol Sci 357: 419‐448, 2002. |
108. | Geisler WS, Kersten D. Illusions, perception and Bayes. Nat Neurosci 5: 508‐510, 2002. |
109. | Ghazanfar AA, Schroeder CE. Is neocortex essentially multisensory? Trends Cogn Sci 10: 278‐285, 2006. |
110. | Ghose GM. Learning in mammalian sensory cortex. Curr Opin Neurobiol 14: 513‐518, 2004. |
111. | Ghose GM, Yang T, Maunsell JH. Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol 87: 1867‐1888, 2002. |
112. | Gibson EJ, Walk RD. The “visual cliff.” Sci Am 202: 64‐71, 1960. |
113. | Gilbert CD, Sigman M, Crist RE. The neural basis of perceptual learning. Neuron 31: 681‐697, 2001. |
114. | Gilmore GC, Spinks RA, Thomas CW. Age effects in coding tasks: Componential analysis and test of the sensory deficit hypothesis. Psychol Aging 21: 7‐18, 2006. |
115. | Girard P, Hupe JM, Bullier J. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85: 1328‐1331, 2001. |
116. | Glasser MF, Smith SM, Marcus DS, Andersson JL, Auerbach EJ, Behrens TE, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC, Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, Van Essen DC. The Human Connectome Project's neuroimaging approach. Nat Neurosci 19: 1175‐1187, 2016. |
117. | Gliga T. Handbook of developmental social neuroscience. Neuropsychol Rehabil 20: 637‐638, 2010. |
118. | Glimcher PW. Indeterminacy in brain and behavior. Annu Rev Psychol 56: 25‐56, 2005. |
119. | Goldstein LH, McNeil JE. Clinical Neuropsychology: A Practical Guide to Assessment and Management for Clinicians. Chichester, West Sussex; Malden, MA: Wiley‐Blackwell, 2013. |
120. | Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci 15: 20‐25, 1992. |
121. | Goswami G, Powell BM, Vatsa M, Singh R, Noore A. FR‐CAPTCHA: CAPTCHA based on recognizing human faces. PLoS One 9: e91708, 2014. |
122. | Grady CL. Age‐related changes in cortical blood flow activation during perception and memory. Ann N Y Acad Sci 777: 14‐21, 1996. |
123. | Grady CL, Maisog JM, Horwitz B, Ungerleider LG, Mentis MJ, Salerno JA, Pietrini P, Wagner E, Haxby JV. Age‐related changes in cortical blood flow activation during visual processing of faces and location. J Neurosci 14: 1450‐1462, 1994. |
124. | Graham AM, Pfeifer JH, Fisher PA, Lin W, Gao W, Fair DA. The potential of infant fMRI research and the study of early life stress as a promising exemplar. Dev Cogn Neurosci 12: 12‐39, 2015. |
125. | Gregory MD, Agam Y, Selvadurai C, Nagy A, Vangel M, Tucker M, Robertson EM, Stickgold R, Manoach DS. Resting state connectivity immediately following learning correlates with subsequent sleep‐dependent enhancement of motor task performance. Neuroimage 102 (Pt 2): 666‐673, 2014. |
126. | Grill‐Spector K, Kanwisher N. Visual recognition: As soon as you know it is there, you know what it is. Psychol Sci 16: 152‐160, 2005. |
127. | Grill‐Spector K, Malach R. The human visual cortex. Annu Rev Neurosci 27: 649‐677, 2004. |
128. | Gross CG. Processing the facial image: A brief history. Am Psychol 60: 755‐763, 2005. |
129. | Gross CG, Bruce CJ, Desimone R, Fleming R, Gattass R. Cortical visual areas of the temporal lobe: Three areas in the macaque. In: Woolsey CN, editor. Cortical Sensory Organization. New York: Humana Press, 1981, pp. 187‐216. |
130. | Gross CG, Rodman HR, Gochin PM, Colombo MW. Inferior temporal cortex as a pattern recognition device. In: Baum E., editor. Computational Learning and Cognition. Philadelphia: Society for Industrial and Applied Mathematics, 1993, pp. 44‐73. |
131. | Grossberg S. Linking visual development and learning to information processing: Preattentive and attentive brain dynamics. In: DeWeerd P, Pinaud R, Tremere L, editors. Plasticity in the Visual System: From Genes to Circuits. New York: Springer/Kluwer Academic Press, 2005, pp. 323‐346. |
132. | Guidotti R, Del Gratta C, Baldassarre A, Romani GL, Corbetta M. Visual learning induces changes in resting‐state fMRI multivariate pattern of information. J Neurosci 35: 9786‐9798, 2015. |
133. | Guyonneau R, Vanrullen R, Thorpe SJ. Temporal codes and sparse representations: A key to understanding rapid processing in the visual system. J Physiol Paris 98: 487‐497, 2004. |
134. | Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801‐806, 2005. |
135. | Halligan PW, Kischka U, Marshall JC. Handbook of Clinical Neuropsychology. Oxford; New York: Oxford University Press, 2010. |
136. | Hansen PC, Kringelbach ML, Salmelin R. MEG: An Introduction to Methods. New York: Oxford University Press, 2010. |
137. | Hardcastle VG. Consciousness and the neurobiology of perceptual binding. Semin Neurol 17: 163‐170, 1997. |
138. | Harnad S. To cognize is to categorize: Cognition is categorization. In: Cohen H, Lefebvre C, editors. Handbook of Categorization in Cognitive Science. San Diego, CA: Elsevier, 2005, pp. 19‐43. |
139. | Hasson U, Hendler T, Ben Bashat D, Malach R. Vase or face? A neural correlate of shape‐selective grouping processes in the human brain. J Cogn Neurosci 13: 744‐753, 2001. |
140. | Hegdé J. Time course of visual perception: Coarse‐to‐fine processing and beyond. Prog Neurobiol 84: 405‐439, 2008. |
141. | Hegdé J, Felleman DJ. Reappraising the functional implications of the primate visual anatomical hierarchy. Neuroscientist 13: 416‐421, 2007. |
142. | Hegde J, Kersten D. A link between visual disambiguation and visual memory. J Neurosci 30: 15124‐15133, 2010. |
143. | Hegdé J, Van Essen DC. A comparative study of shape representation in macaque visual areas V2 and V4. Cereb Cortex 17: 1100‐1116, 2007. |
144. | Hegdé J, Van Essen DC. Temporal dynamics of shape analysis in macaque visual area V2. J Neurophysiol 92: 3030‐3042, 2004. |
145. | Henderson JM, Hollingworth A. Eye movements and visual memory: Detecting changes to saccade targets in scenes. Percept Psychophys 65: 58‐71, 2003. |
146. | Henderson JM, Hollingworth A. High‐level scene perception. Annu Rev Psychol 50: 243‐271, 1999. |
147. | Henson RN. Repetition suppression to faces in the fusiform face area: A personal and dynamic journey. Cortex 80: 174‐184, 2016. |
148. | Hochstein S, Ahissar M. View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron 36: 791‐804, 2002. |
149. | Hodge MJS, Radick G. The Cambridge Companion to Darwin. Cambridge; New York: Cambridge University Press, 2009. |
150. | Hof PR, Mobbs CV. Functional Neurobiology of Aging. San Diego, CA: Academic Press, 2001. |
151. | Hoffman KL, Logothetis NK. Cortical mechanisms of sensory learning and object recognition. Philos Trans R Soc Lond B Biol Sci 364: 321‐329, 2009. |
152. | Hoshi E. Cortico‐basal ganglia networks subserving goal‐directed behavior mediated by conditional visuo‐goal association. Front Neural Circuits 7: 158, 2013. |
153. | Howard IP, Rogers BJ. Perceiving in Depth. New York: Oxford University Press, 2012. |
154. | Hubbard EM, Arman AC, Ramachandran VS, Boynton GM. Individual differences among grapheme‐color synesthetes: Brain‐behavior correlations. Neuron 45: 975‐985, 2005. |
155. | Hubbard EM, Piazza M, Pinel P, Dehaene S. Interactions between number and space in parietal cortex. Nat Rev Neurosci 6: 435‐448, 2005. |
156. | Hubbard EM, Ramachandran VS. Neurocognitive mechanisms of synesthesia. Neuron 48: 509‐520, 2005. |
157. | Huurneman B, Boonstra FN, Cox RF, Cillessen AH, van Rens G. A systematic review on ‘Foveal Crowding’ in visually impaired children and perceptual learning as a method to reduce crowding. BMC Ophthalmol 12: 27, 2012. |
158. | Hyder F. Dynamic Brain Imaging: Multi‐Modal Methods and In Vivo Applications. New York: Humana, 2009. |
159. | Isik L, Meyers EM, Leibo JZ, Poggio T. The dynamics of invariant object recognition in the human visual system. J Neurophysiol 111: 91‐102, 2014. |
160. | James W, Rouben Mamoulian Collection (Library of Congress). The Principles of Psychology. New York: H. Holt and Company, 1890. |
161. | Jeannerod M. Neurophysiological and Neuropsychological Aspects of Spatial Neglect. Amsterdam; New York; North‐Holland: Elsevier Science Pub. Co., 1987. |
162. | Jefferis GS, Livet J. Sparse and combinatorial neuron labelling. Curr Opin Neurobiol 22: 101‐110, 2012. |
163. | Johnson NA. Darwinian Detectives: Revealing the Natural History of Genes and Genomes. Oxford; New York: Oxford University Press, 2007. |
164. | Kaas JH. The evolution of brains from early mammals to humans. Wiley Interdiscip Rev Cogn Sci 4: 33‐45, 2013. |
165. | Kaas JH. Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci U S A 109 (Suppl 1): 10655‐10660, 2012. |
166. | Kaas JH. The evolution of neocortex in primates. Prog Brain Res 195: 91‐102, 2012. |
167. | Kaas JH. Why does the brain have so many visual areas? Journal of Cognitive Neuroscience 1: 121‐135, 1989. |
168. | Kaas JH, Stepniewska I. Evolution of posterior parietal cortex and parietal‐frontal networks for specific actions in primates. J Comp Neurol 524: 595‐608, 2016. |
169. | Kaldy Z, Sigala N. The neural mechanisms of object working memory: What is where in the infant brain? Neurosci Biobehav Rev 28: 113‐121, 2004. |
170. | Karnath HO. Spatial attention systems in spatial neglect. Neuropsychologia 75: 61‐73, 2015. |
171. | Karnath HO, Fruhmann Berger M, Kuker W, Rorden C. The anatomy of spatial neglect based on voxelwise statistical analysis: A study of 140 patients. Cereb Cortex 14: 1164‐1172, 2004. |
172. | Karnath HO, Milner AD, Vallar G. The Cognitive and Neural Bases of Spatial Neglect. Oxford; New York: Oxford University Press, 2002. |
173. | Karthik S, Paul A, Karthikeyan N. Deep Learning Innovations and their Convergence with Big Data. Hershey, PA: Information Science Reference, 2018. |
174. | Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images from human brain activity. Nature 452: 352‐355, 2008. |
175. | Kelly C, Biswal BB, Craddock RC, Castellanos FX, Milham MP. Characterizing variation in the functional connectome: Promise and pitfalls. Trends Cogn Sci 16: 181‐188, 2012. |
176. | Kendall AL, Hantraye P, Palfi S. Striatal tissue transplantation in non‐human primates. Prog Brain Res 127: 381‐404, 2000. |
177. | Kensinger EA. Cognition in ageing and age‐related disease. In: Handbook of the Neuroscience of Aging. New York: Academic Press, 2009. |
178. | Kersten D, Mamassian P, Yuille A. Object perception as Bayesian inference. Annu Rev Psychol 55: 271‐304, 2004. |
179. | Kettlewell HB. Insect survival and selection for pattern: Most camouflage and survival mechanisms, though highly perfected, can be adapted to changing environments. Science 148: 1290‐1296, 1965. |
180. | Killian NJ, Jutras MJ, Buffalo EA. A map of visual space in the primate entorhinal cortex. Nature 491: 761‐764, 2012. |
181. | Kim HF, Hikosaka O. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 138: 1776‐1800, 2015. |
182. | Kiorpes L. Visual development in primates: Neural mechanisms and critical periods. Dev Neurobiol 75: 1080‐1090, 2015. |
183. | Kiorpes L, Price T, Hall‐Haro C, Movshon JA. Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina). Vision Res 63: 34‐42, 2012. |
184. | Knierim JJ, Van Essen DC. Visual cortex: Cartography, connectivity, and concurrent processing. Curr Opin Neurobiol 2: 150‐155, 1992. |
185. | Knill DC, Pouget A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci 27: 712‐719, 2004. |
186. | Kording KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature 427: 244‐247, 2004. |
187. | Kourtzi Z, Connor CE. Neural representations for object perception: Structure, category, and adaptive coding. Annu Rev Neurosci 34: 45‐67, 2011. |
188. | Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends Cogn Sci 17: 26‐49, 2013. |
189. | Krekelberg B, Lappe M. Neuronal latencies and the position of moving objects. Trends Neurosci 24: 335‐339, 2001. |
190. | Kriegel U. Current Controversies in Philosophy of Mind. New York: Routledge, 2013. |
191. | Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. In: NIPS (Neural Information Processing Systems). San Francisco, CA: Morgan Kaufmann Publishers, 2012. |
192. | Kruschke JK. Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Burlington, MA: Academic Press, 2011. |
193. | Kumar P, Tiwari A. Ubiquitous Machine Learning and Its Applications. Hershey, PA: IGI Global, 2017. |
194. | Lacey S, Sathian K. Multisensory object representation: Insights from studies of vision and touch. Prog Brain Res 191: 165‐176, 2011. |
195. | Lamme VA, Roelfsema PR. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23: 571‐579, 2000. |
196. | Lamme VA, Super H, Spekreijse H. Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8: 529‐535, 1998. |
197. | Laubach M. Who's on first? What's on second? The time course of learning in corticostriatal systems. Trends Neurosci 28: 509‐511, 2005. |
198. | Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3: 884‐895, 2002. |
199. | LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 521: 436‐444, 2015. |
200. | Legatt AD, Arezzo J, Vaughan HG, Jr. Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: Effects of volume‐conducted potentials. J Neurosci Methods 2: 203‐217, 1980. |
201. | Leopold DA, Logothetis NK. Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379: 549‐553, 1996. |
202. | Levi DM. Crowding–‐An essential bottleneck for object recognition: A mini‐review. Vision Res 48: 635‐654, 2008. |
203. | Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M. Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A 106: 17558‐17563, 2009. |
204. | Li K, Malhotra PA. Spatial neglect. Pract Neurol 15: 333‐339, 2015. |
205. | Lindenfors P. Neocortex evolution in primates: The “social brain” is for females. Biol Lett 1: 407‐410, 2005. |
206. | Logothetis NK, Leopold DA, Sheinberg DL. What is rivalling during binocular rivalry? Nature 380: 621‐624, 1996. |
207. | Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150‐157, 2001. |
208. | Luck SJ, Kappenman ES. Oxford Handbook of Event‐Related Potential Components. Oxford: Oxford University Press, 2012. |
209. | Ma L, Narayana S, Robin DA, Fox PT, Xiong J. Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage 58: 226‐233, 2011. |
210. | Malashichev YB, Deckel AW. Behavioral and Morphological Asymmetries in Vertebrates. Georgetown, TX: Landes Bioscience: Eureka.com, 2006. |
211. | Marcus GF, Freeman JA. The Future of the Brain: Essays by the World's Leading Neuroscientists. Princeton: Princeton University Press, 2015. |
212. | Mariën P, Abutalebi J. Neuropsychological Research: A Review. Hove England; New York: Psychology Press, 2008. |
213. | Marmarelis PZ, Marmarelis VZ. The White‐Noise Method in System identification. In: Analysis of Physiological Systems: The White‐Noise Approach. Boston, MA: Springer US, 1978, pp. 131‐180. |
214. | Marr D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W.H. Freeman, 1982. |
215. | Martin E. Imaging of brain function during early human development. In: Rutherford MA, editor. MRI of the Neonatal Brain. London: Mary A. Rutherford, 2016. |
216. | Maunsell JH, van Essen DC. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3: 2563‐2586, 1983. |
217. | McAdams CJ, Maunsell JH. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23: 765‐773, 1999. |
218. | McAdams CJ, Maunsell JH. Attention to both space and feature modulates neuronal responses in macaque area V4. J Neurophysiol 83: 1751‐1755, 2000. |
219. | McIntosh RD, Schenk T. Two visual streams for perception and action: Current trends. Neuropsychologia 47: 1391‐1396, 2009. |
220. | Merigan WH, Maunsell JH. Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 5: 347‐352, 1990. |
221. | Merigan WH, Maunsell JH. How parallel are the primate visual pathways? Annu Rev Neurosci 16: 369‐402, 1993. |
222. | Middleton FA, Strick PL. Basal‐ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb Cortex 12: 926‐935, 2002. |
223. | Mill J. Rodent models: Utility for candidate gene studies in human attention‐deficit hyperactivity disorder (ADHD). J Neurosci Methods 166: 294‐305, 2007. |
224. | Mills TC. Time Series Econometrics: A Concise Introduction. Houndmills, Basingstoke, Hampshire; New York: Palgrave Macmillan, 2015. |
225. | Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6: 414‐417, 1983. |
226. | Moran JM, Jolly E, Mitchell JP. Social‐cognitive deficits in normal aging. J Neurosci 32: 5553‐5561, 2012. |
227. | Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, Kennard C, Husain M. The anatomy of visual neglect. Brain 126: 1986‐1997, 2003. |
228. | Moser EI, Moser MB, Roudi Y. Network mechanisms of grid cells. Philos Trans R Soc Lond B Biol Sci 369: 20120511, 2014. |
229. | Moser EI, Roudi Y, Witter MP, Kentros C, Bonhoeffer T, Moser MB. Grid cells and cortical representation. Nat Rev Neurosci 15: 466‐481, 2014. |
230. | Moser MB, Rowland DC, Moser EI. Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol 7: a021808, 2015. |
231. | Mukamel R, Fried I. Human intracranial recordings and cognitive neuroscience. Annu Rev Psychol 63: 511‐537, 2012. |
232. | Murphey DK, Yoshor D, Beauchamp MS. Perception matches selectivity in the human anterior color center. Curr Biol 18: 216‐220, 2008. |
233. | Mutz F, Veronese LP, Oliveira‐Santos T, de Aguiar E, Cheein FAA, de Souza AF. Large‐scale mapping in complex field scenarios using an autonomous car. Expert Syst Appl 46: 439‐462, 2016. |
234. | Naselaris T, Kay KN, Nishimoto S, Gallant JL. Encoding and decoding in fMRI. Neuroimage 56: 400‐410, 2011. |
235. | Nelson CA, Collins ML. Handbook of Developmental Cognitive Neuroscience. Cambridge, MA: MIT Press, 2008. |
236. | Newsome WT, Britten KH, Salzman CD, Movshon JA. Neural mechanisms of motion perception. In: Cold Spring Harbor Symposia in Quantitative Biology. Cold Spring Harbor, NY: Cold Spring Harbor Lab Press, 1990, p. 697‐705. |
237. | Nielsen FA, Christensen MS, Madsen KH, Lund TE, Hansen LK. fMRI neuroinformatics. IEEE Eng Med Biol Mag 25: 112‐119, 2006. |
238. | Nobre K, Kastner S. The Oxford Handbook of Attention. Oxford; New York: Oxford University Press, 2014. |
239. | Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG. Oxford; New York: Oxford University Press, 2006. |
240. | Okuyama‐Uchimura F, Komai S. Mouse ability to perceive subjective contours. Perception 45: 315‐327, 2016. |
241. | Olshausen BA, Field DJ. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37: 3311‐3325, 1997. |
242. | Op de Beeck HP, Dicarlo JJ, Goense JB, Grill‐Spector K, Papanastassiou A, Tanifuji M, Tsao DY. Fine‐scale spatial organization of face and object selectivity in the temporal lobe: Do functional magnetic resonance imaging, optical imaging, and electrophysiology agree? J Neurosci 28: 11796‐11801, 2008. |
243. | Orger MB, Smear MC, Anstis SM, Baier H. Perception of Fourier and non‐Fourier motion by larval zebrafish. Nat Neurosci 3: 1128‐1133, 2000. |
244. | Osborne LC, Palmer SE, Lisberger SG, Bialek W. The neural basis for combinatorial coding in a cortical population response. J Neurosci 28: 13522‐13531, 2008. |
245. | Panzeri S, Brunel N, Logothetis NK, Kayser C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci 33: 111‐120, 2010. |
246. | Papanicolaou AC. The Oxford Handbook of Functional Brain Imaging in Neuropsychology and Cognitive Neurosciences. New York: Oxford University Press, 2017. |
247. | Parodi S, Riccardi G, Castagnino N, Tortolina L, Maffei M, Zoppoli G, Nencioni A, Ballestrero A, Patrone F. Systems medicine in oncology: Signaling network modeling and new‐generation decision‐support systems. Methods Mol Biol 1386: 181‐219, 2016. |
248. | Pascalis O, de Haan M, Nelson CA. Is face processing species‐specific during the first year of life? Science 296: 1321‐1323, 2002. |
249. | Passingham R. How good is the macaque monkey model of the human brain? Curr Opin Neurobiol 19: 6‐11, 2009. |
250. | Pasupathy A, Miller EK. Different time courses of learning‐related activity in the prefrontal cortex and striatum. Nature 433: 873‐876, 2005. |
251. | Pelli DG. Crowding: A cortical constraint on object recognition. Curr Opin Neurobiol 18: 445‐451, 2008. |
252. | Pelli DG, Tillman KA, Freeman J, Su M, Berger TD, Majaj NJ. Crowding and eccentricity determine reading rate. J Vis 7: 20 21‐36, 2007. |
253. | Perry CJ, Baciadonna L, Chittka L. Unexpected rewards induce dopamine‐dependent positive emotion‐like state changes in bumblebees. Science 353: 1529‐1531, 2016. |
254. | Pessoa L, McMenamin B. Dynamic networks in the emotional brain. Neuroscientist 23: 383‐396, 2016. |
255. | Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single‐word processing. Nature 331: 585‐589, 1988. |
256. | Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1: 153‐170, 1989. |
257. | Platek SM, Shackelford TK. Foundations in Evolutionary Cognitive Neuroscience. Cambridge; New York: Cambridge University Press, 2009. |
258. | Poggio T, Torre V, Koch C. Computational vision and regularization theory. Nature 317: 314‐319, 1985. |
259. | Polonsky A, Blake R, Braun J, Heeger DJ. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3: 1153‐1159, 2000. |
260. | Poort J, Raudies F, Wannig A, Lamme VA, Neumann H, Roelfsema PR. The role of attention in figure‐ground segregation in areas V1 and V4 of the visual cortex. Neuron 75: 143‐156, 2012. |
261. | Pouget A, Snyder LH. Computational approaches to sensorimotor transformations. Nat Neurosci 3 (Suppl): 1192‐1198, 2000. |
262. | Pourtois G, Rauss KS, Vuilleumier P, Schwartz S. Effects of perceptual learning on primary visual cortex activity in humans. Vision Res 48: 55‐62, 2008. |
263. | Prior J, Van Herwegen J. Practical Research with Children. New York: Routledge, 2016. |
264. | Prochazka A, Ellaway P. Sensory systems in the control of movement. Compr Physiol 2: 2615‐2627, 2012. |
265. | Pylyshyn ZW. Visual indexes, preconceptual objects, and situated vision. Cognition 80: 127‐158, 2001. |
266. | Raiguel S, Vogels R, Mysore SG, Orban GA. Learning to see the difference specifically alters the most informative V4 neurons. J Neurosci 26: 6589‐6602, 2006. |
267. | Ribeiro AS, Lacerda LM, Ferreira HA. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox. PeerJ 3: e1078, 2015. |
268. | Richards JE, Rader N. Affective, behavioral, and avoidance responses on the visual cliff: Effects of crawling onset age, crawling experience, and testing age. Psychophysiology 20: 633‐641, 1983. |
269. | Riera JJ, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima R. Pitfalls in the dipolar model for the neocortical EEG sources. J Neurophysiol 108: 956‐975, 2012. |
270. | Rilling JK. Comparative primate neuroimaging: Insights into human brain evolution. Trends Cogn Sci 18: 46‐55, 2014. |
271. | Robertson LC. Binding, spatial attention and perceptual awareness. Nat Rev Neurosci 4: 93‐102, 2003. |
272. | Roe AW, Chelazzi L, Connor CE, Conway BR, Fujita I, Gallant JL, Lu H, Vanduffel W. Toward a unified theory of visual area V4. Neuron 74: 12‐29, 2012. |
273. | Roelfsema PR. Cortical algorithms for perceptual grouping. Annu Rev Neurosci 29: 203‐227, 2006. |
274. | Rogers J, Gibbs RA. Comparative primate genomics: Emerging patterns of genome content and dynamics. Nat Rev Genet 15: 347‐359, 2014. |
275. | Rolls ET. Invariant visual object and face recognition: Neural and computational bases, and a model, VisNet. Front Comput Neurosci 6: 35, 2012. |
276. | Rosch E. Natural categories. Cognitive Psychology 4: 328‐350, 1973. |
277. | Rubin N. Figure and ground in the brain. Nat Neurosci 4: 857‐858, 2001. |
278. | Salzman CD, Britten KH, Newsome WT. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346: 174‐177, 1990. |
279. | Sathian K, Buxbaum LJ, Cohen LG, Krakauer JW, Lang CE, Corbetta M, Fitzpatrick SM. Neurological principles and rehabilitation of action disorders: Common clinical deficits. Neurorehabil Neural Repair 25: 21S‐32S, 2011. |
280. | Schmid MC, Maier A. To see or not to see‐‐‐Thalamo‐cortical networks during blindsight and perceptual suppression. Prog Neurobiol 126: 36‐48, 2015. |
281. | Schmidt JT. Activity‐driven sharpening of the retinotectal projection: The search for retrograde synaptic signaling pathways. J Neurobiol 59: 114‐133, 2004. |
282. | Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG. Signal timing across the macaque visual system. J Neurophysiol 79: 3272‐3278, 1998. |
283. | Schooler LJ, Shiffrin RM, Raaijmakers JG. A Bayesian model for implicit effects in perceptual identification. Psychol Rev 108: 257‐272, 2001. |
284. | Schoups A, Vogels R, Qian N, Orban G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412: 549‐553, 2001. |
285. | Schwartz S, Maquet P, Frith C. Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination. Proc Natl Acad Sci U S A 99: 17137‐17142, 2002. |
286. | Seger CA. How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews 32: 265‐278, 2008. |
287. | Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci 33: 203‐219, 2010. |
288. | Seger CA, Peterson EJ. Categorization = decision making + generalization. Neurosci Biobehav Rev 37: 1187‐1200, 2013. |
289. | Seitz AR, Dinse HR. A common framework for perceptual learning. Curr Opin Neurobiol 17: 148‐153, 2007. |
290. | Sejnowski TJ, Churchland PS, Movshon JA. Putting big data to good use in neuroscience. Nature Neuroscience 17: 1440‐1441, 2014. |
291. | Sekihara K, Nagarajan SS. Electromagnetic Brain Imaging. New York: Springer, Berlin, Heidelberg, 2015. |
292. | Sereno AB, Maunsell JH. Shape selectivity in primate lateral intraparietal cortex. Nature 395: 500‐503, 1998. |
293. | Sereno MI, Allman JM. Cortical visual areas in mammals. In: Leventhal AG, editor. The Neural Basis of Visual Function. London: Macmillan, 1991, pp. 160‐172. |
294. | Sereno MI, Huang RS. Multisensory maps in parietal cortex. Curr Opin Neurobiol 24: 39‐46, 2014. |
295. | Seung S. Connectome: How the Brain's Wiring Makes us Who We Are. Boston: Houghton Mifflin Harcourt, 2012. |
296. | Seung S. Connectome: How the Brain's Wiring Makes us Who We Are. Boston: Mariner Books, Houghton Mifflin Harcourt, 2013. |
297. | Shadlen MN, Movshon JA. Synchrony unbound: A critical evaluation of the temporal binding hypothesis. Neuron 24: 67‐77, 111‐125, 1999. |
298. | Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD. Adaptive filtering enhances information transmission in visual cortex. Nature 439: 936‐942, 2006. |
299. | Shepherd GM. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14: 278‐291, 2013. |
300. | Sherman SM. Functioning of circuits connecting thalamus and cortex. Compr Physiol 7: 713‐739, 2017. |
301. | Sherman SM, Guillery RW. Exploring the Thalamus and Its Role in Cortical Function. Cambridge, MA: MIT Press, 2006. |
302. | Shettleworth SJ. Cognition, Evolution, and Behavior. Oxford; New York: Oxford University Press, 2010. |
303. | Shipp S. The functional logic of corticostriatal connections. Brain Struct Funct 222: 669‐706, 2017. |
304. | Shmuel A, Augath M, Oeltermann A, Logothetis NK. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9: 569‐577, 2006. |
305. | Shooner C, Hallum LE, Kumbhani RD, Ziemba CM, Garcia‐Marin V, Kelly JG, Majaj NJ, Movshon JA, Kiorpes L. Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vision Res 114: 56‐67, 2015. |
306. | Sigala N, Logothetis NK. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415: 318‐320, 2002. |
307. | Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci 24: 1193‐1216, 2001. |
308. | Sincich LC, Horton JC. The circuitry of V1 and V2: Integration of color, form, and motion. Annu Rev Neurosci 28: 303‐326, 2005. |
309. | Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040‐13045, 2009. |
310. | Snyder LH. Coordinate transformations for eye and arm movements in the brain. Curr Opin Neurobiol 10: 747‐754, 2000. |
311. | Spanne A, Jorntell H. Questioning the role of sparse coding in the brain. Trends Neurosci 38: 417‐427, 2015. |
312. | Spiteri Y, Galea EM. Psychology of Neglect. Hauppauge, NY: Nova Science Publishers, 2012. |
313. | Sporns O. The human connectome: A complex network. Ann N Y Acad Sci 1224: 109‐125, 2011. |
314. | Sporns O. Discovering the Human Connectome. Cambridge, MA: MIT Press, 2012. |
315. | Sporns O. Cerebral cartography and connectomics. Philos Trans R Soc Lond B Biol Sci 370: 1‐12, 2015. |
316. | Sporns O, Honey CJ, Kotter R. Identification and classification of hubs in brain networks. PLoS One 2: e1049, 2007. |
317. | Stein BE. The New Handbook of Multisensory Processing. Cambridge, MA: MIT Press, 2012. |
318. | Stein BE, Jiang W, Wallace MT, Stanford TR. Nonvisual influences on visual‐information processing in the superior colliculus. Prog Brain Res 134: 143‐156, 2001. |
319. | Stone JV. Independent Component Analysis: A Tutorial Introduction. Cambridge, MA: MIT Press, 2004. |
320. | Stoodley CJ. The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum 11: 352‐365, 2012. |
321. | Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage 59: 1560‐1570, 2012. |
322. | Striedter GF, Avise JC, Ayala FJ. In the Light of Evolution: Volume VI: Brain and Behavior. Washington (DC): National Academies Press, 2013. |
323. | Sugase Y, Yamane S, Ueno S, Kawano K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400: 869‐873, 1999. |
324. | Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. Predictive codes for forthcoming perception in the frontal cortex. Science 314: 1311‐1314, 2006. |
325. | Teixeira S, Machado S, Velasques B, Sanfim A, Minc D, Peressutti C, Bittencourt J, Budde H, Cagy M, Anghinah R, Basile LF, Piedade R, Ribeiro P, Diniz C, Cartier C, Gongora M, Silva F, Manaia F, Silva JG. Integrative parietal cortex processes: Neurological and psychiatric aspects. J Neurol Sci 338: 12‐22, 2014. |
326. | Thilagam PS. Advanced Computing, Networking and Security: International Conference, ADCONS 2011, Surathkal, India, December 16‐18, 2011, Revised selected papers. Berlin; New York: Springer, 2012. |
327. | Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature 381: 520‐522, 1996. |
328. | Thorpe SJ, Fabre‐Thorpe M. Neuroscience. Seeking categories in the brain. Science 291: 260‐263, 2001. |
329. | Tolias AS, Keliris GA, Smirnakis SM, Logothetis NK. Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli. Nat Neurosci 8: 591‐593, 2005. |
330. | Tommasi L, Peterson MA, Nadel L. Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior. Cambridge, MA: MIT Press, 2009. |
331. | Tong F, Pratte MS. Decoding patterns of human brain activity. Annu Rev Psychol 63: 483‐509, 2012. |
332. | Treue S. Visual attention: The where, what, how and why of saliency. Curr Opin Neurobiol 13: 428‐432, 2003. |
333. | Trommershauser J, Kording K, Landy MS. Sensory Cue Integration. Oxford; New York: Oxford University Press, 2011. |
334. | Troscianko T, Benton CP, Lovell PG, Tolhurst DJ, Pizlo Z. Camouflage and visual perception. Philos Trans R Soc Lond B Biol Sci 364: 449‐461, 2009. |
335. | Tsodyks M, Gilbert C. Neural networks and perceptual learning. Nature 431: 775‐781, 2004. |
336. | Tyler CW, Likova LT. Crowding: A neuroanalytic approach. J Vis 7: 16.11‐16.19, 2007. |
337. | Ullman S. High‐level Vision: Object Recognition and Visual Cognition. Cambridge, MA: MIT Press, 2000. |
338. | Vallar G, Perani D. The anatomy of unilateral neglect after right‐hemisphere stroke lesions. A clinical/CT‐scan correlation study in man. Neuropsychologia 24: 609‐622, 1986. |
339. | van den Heuvel MP, Sporns O. An anatomical substrate for integration among functional networks in human cortex. J Neurosci 33: 14489‐14500, 2013. |
340. | van der Helm PA. Cognitive architecture of perceptual organization: From neurons to gnosons. Cogn Process 13: 13‐40, 2012. |
341. | Van Essen DC. Functional organization of primate visual cortex. In: Jones EG, Peters A, editors. Cerebral Cortex. New York: Plenum Press, 1975, pp. 259‐329. |
342. | Van Essen DC. Visual areas of the mammalian cerebral cortex. Annu Rev Neurosci 2: 227‐263, 1979. |
343. | Van Essen DC. Organization of visual areas in macaque and human cerebral cortex. In: Chalupa L, Werner JS, editors. The Visual Neurosciences. Cambridge, MA: MIT Press, 2004, pp. 507‐521. |
344. | Van Essen DC, Anderson CH, Felleman DJ. Information processing in the primate visual system: An integrated systems perspective. Science 255: 419‐423, 1992. |
345. | Van Essen DC, Felleman DJ. On hierarchies: Response to Hilgetag et al. Science 271: 777, 1996. |
346. | Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, Chang A, Chen L, Corbetta M, Curtiss SW, Della Penna S, Feinberg D, Glasser MF, Harel N, Heath AC, Larson‐Prior L, Marcus D, Michalareas G, Moeller S, Oostenveld R, Petersen SE, Prior F, Schlaggar BL, Smith SM, Snyder AZ, Xu J, Yacoub E, Consortium WU‐MH. The Human Connectome Project: A data acquisition perspective. Neuroimage 62: 2222‐2231, 2012. |
347. | Van Vleet TM, DeGutis JM. The nonspatial side of spatial neglect and related approaches to treatment. Prog Brain Res 207: 327‐349, 2013. |
348. | VanRullen R, Thorpe SJ. Surfing a spike wave down the ventral stream. Vision Res 42: 2593‐2615, 2002. |
349. | Verrelli BC, Tishkoff SA. Signatures of selection and gene conversion associated with human color vision variation. Am J Hum Genet 75: 363‐375, 2004. |
350. | Vesia M, Crawford JD. Specialization of reach function in human posterior parietal cortex. Exp Brain Res 221: 1‐18, 2012. |
351. | Voogd J, Schraa‐Tam CK, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum 11: 392‐410, 2012. |
352. | Wandell BA, Smirnakis SM. Plasticity and stability of visual field maps in adult primary visual cortex. Nat Rev Neurosci 10: 873‐884, 2009. |
353. | Wang C, Cleland BG, Burke W. Synaptic delay in the lateral geniculate nucleus of the cat. Brain Res 343: 236‐245, 1985. |
354. | Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol 109: 46‐57, 2013. |
355. | Watanabe T, Sasaki Y. Perceptual learning: Toward a comprehensive theory. Annu Rev Psychol 66: 197‐221, 2015. |
356. | Webster MJ, Ungerleider LG, Bachevalier J. Development and plasticity of the neural circuitry underlying visual recognition memory. Can J Physiol Pharmacol 73: 1364‐1371, 1995. |
357. | Weiss Y, Simoncelli EP, Edelson EH. Motion illusions as optimal percepts. Nat Neurosci 5: 598‐604, 2002. |
358. | Werner JS, Chalupa LM. The New Visual Neurosciences. Cambridge, MA: The MIT Press, 2014. |
359. | Westwood DA, Goodale MA. Converging evidence for diverging pathways: Neuropsychology and psychophysics tell the same story. Vision Res 51: 804‐811, 2011. |
360. | Whitney D, Levi DM. Visual crowding: A fundamental limit on conscious perception and object recognition. Trends Cogn Sci 15: 160‐168, 2011. |
361. | Wu MC, David SV, Gallant JL. Complete functional characterization of sensory neurons by system identification. Annu Rev Neurosci 29: 477‐505, 2006. |
362. | Xiao Y, Rao R, Cecchi G, Kaplan E. Improved mapping of information distribution across the cortical surface with the support vector machine. Neural Netw 21: 341‐348, 2008. |
363. | Yang T, Maunsell JH. The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci 24: 1617‐1626, 2004. |
364. | Yoshida M, Itti L, Berg DJ, Ikeda T, Kato R, Takaura K, White BJ, Munoz DP, Isa T. Residual attention guidance in blindsight monkeys watching complex natural scenes. Curr Biol 22: 1429‐1434, 2012. |
365. | Yuille A, Kersten D. Vision as Bayesian inference: Analysis by synthesis? Trends Cogn Sci 10: 301‐308, 2006. |
366. | Zanzotto FM. Brain Informatics: International Conference, BI 2012, Macau, China, December 4‐7, 2012: Proceedings. Berlin; New York: Springer, 2012. |