Comprehensive Physiology Wiley Online Library

Urea Transport in the Kidney

Full Article on Wiley Online Library



Abstract

Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid‐phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT‐B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT‐A group with six distinct isoforms described to date. In the kidney, UT‐A1 and UT‐A3 are found in the inner medullary collecting duct; UT‐A2 is located in the thin descending limb, and UT‐B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT‐A1 and UT‐A3 are acutely regulated by vasopressin. UT‐A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT‐A1 and UT‐A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long‐term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney. © 2011 American Physiological Society. Compr Physiol 1:699‐729, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

(A) Structure of the nephron. The cartoon depicts the cortex (top), outer medulla (middle), and inner medulla (bottom) showing the location of the various substructures of the nephron labeled as follows: 1, glomerulus; 2, proximal convoluted tubule (PCT); 3s and 3l, proximal straight tubule (PST) in the short‐looped nephron (s) and long‐looped nephron (l); 4s and 4l, thin descending limb (tDL); 5, thin ascending limb (tAL); 6s and 6l, medullary thick ascending limb (mTAL); 7, macula densa; 8, distal convoluted tubule (DCT); 9, cortical collecting duct (CCD); 10, outer medullary collecting duct (OMCD); 11, initial inner medullary collecting duct (IMCD) and 12, terminal IMCD. (B) Urea permeabilities in the different nephron sections of rat kidney. Numbers correspond to areas identified in panel A.

Figure 2. Figure 2.

Cartoon showing the locations of the chief urea transporters (UT‐A1, UT‐A2, and UT‐A3), aquaporins (AQP2‐4) and sodium/potassium transporters (NKCC2, ROMK) in the nephron that contribute to concentration of the urine.

Figure 3. Figure 3.

Genomic organization (A) and gene products (B) of the rat Slc14aC gene. (A) The gene comprises 24 exons, of which the coding exons (red) and untranslated exons (blue) are drawn to scale. Introns <5 kb are also drawn to scale. Introns >5 kb are denoted by //. Triangles denote the α and β promoters. (B) Splicing patterns are shown for four characterized transcripts, UT‐A1, UT‐A2, UT‐A3, and UT‐A4. Coding exons (red) and untranslated exons (blue) are drawn to scale. Figure is adapted from Smith and Fenton 323.

Figure 4. Figure 4.

Comparison of the genomic organization of the urea transporter UT‐A gene (Slc14a2) for human, rat, and mouse. Above are schematic representations of the gene structure for each species. Exon width is representative of actual size and intronic distance is scaled. Introns >5 kb are represented by // and are not scaled. Triangles denote the α (purple) and β (pink) promoters. Coding exons (red) and untranslated exons (blue) are drawn to scale. Figure is adapted from Smith and Fenton 323.

Figure 5. Figure 5.

Secondary structure of human UT‐A1 based on theoretical extrapolation of the primary amino acid sequence. Individual amino acids are identified in bead form. Pink identifies acidic amino acids, blue are basic amino acids, green are the extracellular glycosylation sites at Asn 279 and Asn 742, and red shows the PKA phosphorylated serines at 477 and 490. Amino and carboxy termini are cytoplasmic and the structure indicates 12 membrane‐spanning domains.

Figure 6. Figure 6.

Crystal structure of bacterial urea transporter. Shown is a ribbon diagram of the proposed structure of the dvUT, reproduced by the kind permission of Macmillan Publishers and Nature 196. Dashed lines delineate the monomers. Arrows indicate entry points for urea in each monomer of the trimeric structure. Triangle is the axis of symmetry.

Figure 7. Figure 7.

UT‐A1 protein structure and cellular location. Panel A shows a schematic representation of the structure of UT‐A1 situated across the apical membrane. The schematic projects intracellular and extracellular loop regions, intracellular amino‐ and carboxy‐termini, and external glycosylation sites. Panel B is a thin (1 μ) section of rat kidney inner medulla stained with antibody to the carboxy terminus of UT‐A1 showing apical distribution of UT‐A1 in the tubule lumen. The micrograph was acquired at a 40× magnification.

Figure 8. Figure 8.

UT‐A2 protein structure and cellular location. Panel A shows a schematic representation of the structure of UT‐A2. The schematic projects intracellular and extracellular loop regions, intracellular amino‐ and carboxy‐termini, and external glycosylation sites. UT‐A2 is essentially the carboxy terminal half of UT‐A1 with only a small portion of the large intracellular loop region. Panel B is a thin (2 μ) section of rat kidney outer medulla stained with antibody to the carboxy terminus of UT‐A1 showing UT‐A2 in the thin limbs. The micrograph was acquired at a 40× magnification.

Figure 9. Figure 9.

UT‐A3 protein structure and cellular location. Panel A shows a schematic representation of the structure of UT‐A3 situated across the basal membrane. The schematic projects intracellular and extracellular loop regions, intracellular amino‐ and carboxy‐termini, and external glycosylation sites. Panel B is a thin (1 μ) section of rat kidney inner medulla stained with antibody that specifically recognizes UT‐A3 showing basal distribution of UT‐A3 in the tubule lumen. The micrograph was acquired at a 40× magnification.

Figure 10. Figure 10.

Urea transporter (UT‐A1) protein abundances in inner medullary (IM) base and tip of rats with diabetes mellitus (DM). Right: Western blots of IM tip (top) and base (Bottom) proteins. Both IM base and tip were probed with a specific antibody to UT‐A and show the characteristic 117‐ and 97‐kDa glycoprotein forms of UT‐A1. Within each gel, the left three lanes are control rat tissues, and the right three lanes are lysates from rats with DM. Each lane is tissue from a separate animal. Left: densitometric analysis of the total groups (n = 6) with combined 117‐ and 97‐kDa band densities averaged for each group expressed as % of control levels. Black portion of the bars represent the contribution of the 117 kDa glycoprotein form to the total density; white portions show the contribution of the 97 kDa glycoproteins. *, P < 0.05 for total UT‐A1 vs. control levels.

Figure 11. Figure 11.

Urea transporter (UT‐A1) protein abundances in inner medullary (IM) tip of rats fed a diet supplemented with lithium (40 mmol/kg of standard rat chow) for 0 (control), 7 days (7d), 14 days (14d), or fed the diet for 14 days, then had lithium removed for 7 days (7d r) or 14 days (14d r). Top: schematic of serum lithium levels. Middle: IM tip tissue probed with antibody to UT‐A1, 40× micrographs, brown indicates positive UT‐A1 presence in the IMCDs. Bottom: Western blots of IM tip probed for UT‐A1 protein abundance (top) and tubulin as a loading control (Bottom). Each lane is tissue from a separate animal.



Figure 1.

(A) Structure of the nephron. The cartoon depicts the cortex (top), outer medulla (middle), and inner medulla (bottom) showing the location of the various substructures of the nephron labeled as follows: 1, glomerulus; 2, proximal convoluted tubule (PCT); 3s and 3l, proximal straight tubule (PST) in the short‐looped nephron (s) and long‐looped nephron (l); 4s and 4l, thin descending limb (tDL); 5, thin ascending limb (tAL); 6s and 6l, medullary thick ascending limb (mTAL); 7, macula densa; 8, distal convoluted tubule (DCT); 9, cortical collecting duct (CCD); 10, outer medullary collecting duct (OMCD); 11, initial inner medullary collecting duct (IMCD) and 12, terminal IMCD. (B) Urea permeabilities in the different nephron sections of rat kidney. Numbers correspond to areas identified in panel A.



Figure 2.

Cartoon showing the locations of the chief urea transporters (UT‐A1, UT‐A2, and UT‐A3), aquaporins (AQP2‐4) and sodium/potassium transporters (NKCC2, ROMK) in the nephron that contribute to concentration of the urine.



Figure 3.

Genomic organization (A) and gene products (B) of the rat Slc14aC gene. (A) The gene comprises 24 exons, of which the coding exons (red) and untranslated exons (blue) are drawn to scale. Introns <5 kb are also drawn to scale. Introns >5 kb are denoted by //. Triangles denote the α and β promoters. (B) Splicing patterns are shown for four characterized transcripts, UT‐A1, UT‐A2, UT‐A3, and UT‐A4. Coding exons (red) and untranslated exons (blue) are drawn to scale. Figure is adapted from Smith and Fenton 323.



Figure 4.

Comparison of the genomic organization of the urea transporter UT‐A gene (Slc14a2) for human, rat, and mouse. Above are schematic representations of the gene structure for each species. Exon width is representative of actual size and intronic distance is scaled. Introns >5 kb are represented by // and are not scaled. Triangles denote the α (purple) and β (pink) promoters. Coding exons (red) and untranslated exons (blue) are drawn to scale. Figure is adapted from Smith and Fenton 323.



Figure 5.

Secondary structure of human UT‐A1 based on theoretical extrapolation of the primary amino acid sequence. Individual amino acids are identified in bead form. Pink identifies acidic amino acids, blue are basic amino acids, green are the extracellular glycosylation sites at Asn 279 and Asn 742, and red shows the PKA phosphorylated serines at 477 and 490. Amino and carboxy termini are cytoplasmic and the structure indicates 12 membrane‐spanning domains.



Figure 6.

Crystal structure of bacterial urea transporter. Shown is a ribbon diagram of the proposed structure of the dvUT, reproduced by the kind permission of Macmillan Publishers and Nature 196. Dashed lines delineate the monomers. Arrows indicate entry points for urea in each monomer of the trimeric structure. Triangle is the axis of symmetry.



Figure 7.

UT‐A1 protein structure and cellular location. Panel A shows a schematic representation of the structure of UT‐A1 situated across the apical membrane. The schematic projects intracellular and extracellular loop regions, intracellular amino‐ and carboxy‐termini, and external glycosylation sites. Panel B is a thin (1 μ) section of rat kidney inner medulla stained with antibody to the carboxy terminus of UT‐A1 showing apical distribution of UT‐A1 in the tubule lumen. The micrograph was acquired at a 40× magnification.



Figure 8.

UT‐A2 protein structure and cellular location. Panel A shows a schematic representation of the structure of UT‐A2. The schematic projects intracellular and extracellular loop regions, intracellular amino‐ and carboxy‐termini, and external glycosylation sites. UT‐A2 is essentially the carboxy terminal half of UT‐A1 with only a small portion of the large intracellular loop region. Panel B is a thin (2 μ) section of rat kidney outer medulla stained with antibody to the carboxy terminus of UT‐A1 showing UT‐A2 in the thin limbs. The micrograph was acquired at a 40× magnification.



Figure 9.

UT‐A3 protein structure and cellular location. Panel A shows a schematic representation of the structure of UT‐A3 situated across the basal membrane. The schematic projects intracellular and extracellular loop regions, intracellular amino‐ and carboxy‐termini, and external glycosylation sites. Panel B is a thin (1 μ) section of rat kidney inner medulla stained with antibody that specifically recognizes UT‐A3 showing basal distribution of UT‐A3 in the tubule lumen. The micrograph was acquired at a 40× magnification.



Figure 10.

Urea transporter (UT‐A1) protein abundances in inner medullary (IM) base and tip of rats with diabetes mellitus (DM). Right: Western blots of IM tip (top) and base (Bottom) proteins. Both IM base and tip were probed with a specific antibody to UT‐A and show the characteristic 117‐ and 97‐kDa glycoprotein forms of UT‐A1. Within each gel, the left three lanes are control rat tissues, and the right three lanes are lysates from rats with DM. Each lane is tissue from a separate animal. Left: densitometric analysis of the total groups (n = 6) with combined 117‐ and 97‐kDa band densities averaged for each group expressed as % of control levels. Black portion of the bars represent the contribution of the 117 kDa glycoprotein form to the total density; white portions show the contribution of the 97 kDa glycoproteins. *, P < 0.05 for total UT‐A1 vs. control levels.



Figure 11.

Urea transporter (UT‐A1) protein abundances in inner medullary (IM) tip of rats fed a diet supplemented with lithium (40 mmol/kg of standard rat chow) for 0 (control), 7 days (7d), 14 days (14d), or fed the diet for 14 days, then had lithium removed for 7 days (7d r) or 14 days (14d r). Top: schematic of serum lithium levels. Middle: IM tip tissue probed with antibody to UT‐A1, 40× micrographs, brown indicates positive UT‐A1 presence in the IMCDs. Bottom: Western blots of IM tip probed for UT‐A1 protein abundance (top) and tubulin as a loading control (Bottom). Each lane is tissue from a separate animal.

References
 1. Abdoun K, Stumpff F, Rabbani I, Martens H. Modulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2. Am J Physiol Gastrointest Liver Physiol 298: G190–G202, 2010.
 2. Acher R, Chauvet J, Chauvet MT, Rouille Y. Unique evolution of neurohypophysial hormones in cartilaginous fishes: Possible implications for urea‐based osmoregulation. J Exp Zool 284: 475–484, 1999.
 3. Addis T. The renal lesion in Bright's disease. Am J Med Sci 176: 617–637, 1928.
 4. Ahloulay M, Bouby N, Machet F, Kubrusly M, Coutaud C, Bankir L. Effects of glucagon on glomerular filtration rate and urea and water excretion. Am J Physiol 263: F24–F36, 1992.
 5. Ahloulay M, Déchaux M, Laborde K, Bankir L. Influence of glucagon on GFR and on urea and electrolyte excretion: Direct and indirect effects. Am J Physiol 269: F225–F235, 1995.
 6. Artagaveytia N, Elalouf JM, De RC, Boivin R, Cirio A. Expression of urea transporter (UT‐A) mRNA in papilla and pelvic epithelium of kidney in normal and low protein fed sheep. Comp Biochem Physiol B Biochem Mol Biol 140: 279–285, 2005.
 7. Ashkar ZM, Martial S, Isozaki T, Price SR, Sands JM. Urea transport in initial IMCD of rats fed a low‐protein diet: Functional properties and mRNA abundance. Am J Physiol 268: F1218–F1223, 1995.
 8. Bagnasco SM. The erythrocyte urea transporter UT‐B. J Membr Biol 212: 133–138, 2006.
 9. Bagnasco SM, Peng T, Janech MG, Karakashian A, Sands JM. Cloning and characterization of the human urea transporter UT‐A1 and mapping of the human Slc14a2 gene. Am J Physiol Renal Physiol 281: F400–F406, 2001.
 10. Bagnasco SM, Peng T, Nakayama Y, Sands JM. Differential expression of individual UT‐A urea transporter isoforms in rat kidney. J Am Soc Nephrol 11: 1980–1986, 2000.
 11. Bagnis C, Chapel S, Chiaroni J, Bailly P. A genetic strategy to control expression of human blood group antigens in red blood cells generated in vitro. Transfusion 49: 967–976, 2009.
 12. Bailey JL, Mitch WE. Twice told tales of metabolic acidosis, glucocorticoids, and protein wasting: What do results from rats tell us about patients with kidney disease? Semin Dial 13: 227–231, 2000.
 13. Bankir L. Antidiuretic action of vasopressin: Quantitative aspects and interaction between V1a and V2 receptor‐mediated effects. Cardiovasc Res 51: 372–390, 2001.
 14. Bankir L, Chen K, Yang B. Lack of UT‐B in vasa recta and red blood cells prevents urea‐induced improvement of urinary concentrating ability. Am J Physiol Renal Physiol 286: F144–F151, 2004.
 15. Bankir L, Trinh‐Trang‐Tan MM. Renal urea transporters. Direct and indirect regulation by vasopressin. Exp Physiol 85: 243S–252S, 2000.
 16. Bansal AD, Hoffert JD, Pisitkun T, Hwang S, Chou CL, Boja ES, Wang G, Knepper MA. Phosphoproteomic profiling reveals vasopressin‐regulated phosphorylation sites in collecting duct. J Am Soc Nephrol 21: 303–315, 2010.
 17. Bardoux P, Ahloulay M, Le Maout S, Bankir L, Trinh‐Trang‐Tan MM. Aquaporin‐2 and urea transporter‐A1 are up‐regulated in rats with type I diabetes mellitus. Diabetologia 44: 637–645, 2001.
 18. Beckers G, Bendt AK, Kraemer R, Burkovski A. Molecular identification of the urea uptake system and transcriptional analysis of urea transporter‐ and urease‐encoding genes in Corynebacterium glutamicum. J Bacteriol 186: 7645–7652, 2004.
 19. Bedford JJ, Leader JP, Jing R, Walker LJ, Klein JD, Sands JM, Walker RJ. Amiloride restores renal medullary osmolytes in lithium‐induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 294: F812–F820, 2008.
 20. Berger UV, Tsukaguchi H, Hediger MA. Distribution of mRNA for the facilitated urea transporter UT3 in the rat nervous system. Anat Embryol (Berl) 197: 405–414, 1998.
 21. Berl T. On the adaptation of renal cells to hypertonicity. Am J Kidney Dis 35: XLVII–XLVIL, 2000.
 22. Berliner RW, Levinsky NG, Davidson DG, Eden M. Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24: 730–744, 1958.
 23. Bickel CA, Knepper MA, Verbalis JG, Ecelbarger CA. Dysregulation of renal salt and water transport proteins in diabetic Zucker rats. Kidney Int 61: 2099–2110, 2002.
 24. Birukawa N, Ando H, Goto M, Kanda N, Pastene LA, Urano A. Molecular cloning of urea transporters from the kidneys of baleen and toothed whales. Com Biochem Physiol B Biochem Mol Biol 149: 227–235, 2008.
 25. Blessing NW, Blount MA, Sands JM, Martin CF, Klein JD. Urea transporters UT‐A1 and UT‐A3 accumulate in the plasma membrane in response to increased hypertonicity. Am J Physiol Renal Physiol 295: F1336–F1341, 2008.
 26. Blount MA, Klein JD, Martin CF, Tchapyjnikov D, Sands JM. Forskolin stimulates phosphorylation and membrane accumulation of UT‐A3. Am J Physiol Renal Physiol 293: F1308–F1313, 2007.
 27. Blount MA, Mistry AC, Fröhlich O, Price SR, Chen G, Sands JM, Klein JD. Phosphorylation of UT‐A1 urea transporter at serines 486 and 499 is important for vasopressin‐regulated activity and membrane accumulation. Am J Physiol Renal Physiol 295: F295–F299, 2008.
 28. Blount MA, Sands JM, Kent KJ, Smith TD, Price SR, Klein JD. Candesartan augments compensatory changes in medullary transport proteins in the diabetic rat kidney. Am J Physiol Renal Physiol 285: F1448–F1452, 2008.
 29. Blount MA, Sim JH, Zhou R, Martin CF, Lu W, Sands JM, Klein JD. The expression of transporters involved in urine concentration recover differently after ceasing lithium treatment. Am J Physiol Renal Physiol 298: F601–F608, 2010.
 30. Bos JL. Epac: A new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4: 733–738, 2003.
 31. Bradford AD, Terris J, Ecelbarger CA, Klein JD, Sands JM, Chou C‐L, Knepper MA. 97 and 117 kDa forms of the collecting duct urea transporter UT‐A1 are due to different states of glycosylation. Am J Physiol Renal Physiol 281: F133–F143, 2001.
 32. Braun MH, Steele SL, Ekker M, Perry SF. Nitrogen excretion in developing zebrafish (Danio rerio): A role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 296: F994–F1005, 2009.
 33. Braun MH, Steele SL, Perry SF. The responses of zebrafish (Danio rerio) to high external ammonia and urea transporter inhibition: Nitrogen excretion and expression of rhesus glycoproteins and urea trnasporter proteins. J Exp Biol 212: 3846–3856, 2009.
 34. Bright R. Cases and observations illustrative of renal disease accompanied with secretion of albuminous urine. Guys Hosp Rep 1: 338–379, 1836.
 35. Brooks DD, Nutting DF, Crofton JT, Share L. Vasopressin in rats with genetic and streptozotocin‐induced diabetes. Diabetes 38: 54–57, 1989.
 36. Brooks HL, Ageloff S, Kwon TH, Brandt W, Terris JM, Seth A, Michea L, Nielsen S, Fenton R, Knepper MA. cDNA array identification of genes regulated in rat renal medulla in response to vasopressin infusion. Am J Physiol Renal Physiol 284: F218–F228, 2003.
 37. Cadnapaphornchai MA, Kim Y‐W, Gurevich AK, Summer SN, Falk S, Thurman JM, Schrier RW. Urinary concentrating defect in hypothyroid rats: Role of sodium, potassium, 2‐chloride co‐transporter, and aquaporins. J Am Soc Nephrol 14: 566–574, 2003.
 38. Cadnapaphornchai MA, Summer SN, Falk S, Thurman JM, Knepper MA, Schrier RW. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am J Physiol Renal Physiol 285: F965–F971, 2003.
 39. Cartron JP, Ripoche P. Urea transport and Kidd blood groups. Transfus Clin Biol 2: 309–315, 1995.
 40. Chandhoke PS, Saidel GM. Mathematical model of mass transport throughout the kidney. Effects of nephron heterogeneity and tubular‐vascular organization. Ann Biomed Eng 9: 263–301, 1981.
 41. Chen G, Fröhlich O, Yang Y, Klein JD, Sands JM. Loss of N‐linked glycosylation reduces urea transporter UT‐A1 response to vasopressin. J Biol Chem 281: 27436–27442, 2006.
 42. Chen G, Huang H, Fröhlich O, Yang Y, Klein JD, Price SR, Sands JM. MDM2 E3 ubiquitin ligase mediates UT‐A1 urea transporter ubiquitination and degradation. Am J Physiol Renal Physiol 295: F1528–F1534, 2008.
 43. Chen G, Yang Y, Froehlich O, Klein JD, Sands JM. Suppression subtractive hybridization analysis of low‐protein diet and vitamin D induced gene expression from rat kidney inner medullary base. Physiol Genomics 41: 203–211, 2010.
 44. Chen YC, Cadnapaphornchai MA, Summer SN, Falk S, Li C, Wang W, Schrier RW. Molecular mechanisms of impaired urinary concentrating ability in glucocorticoid‐deficient rats. J Am Soc Nephrol 16: 2864–2871, 2005.
 45. Chou C‐L, DiGiovanni SR, Luther A, Lolait SJ, Knepper MA. Oxytocin as an antidiuretic hormonez. II. Role of V2 vasopressin receptor. Am J Physiol 269: F78–F85, 1995.
 46. Chou C‐L, DiGiovanni SR, Mejia R, Nielsen S, Knepper MA. Oxytocin as an antidiuretic hormone. I. Concentration dependence of action. Am J Physiol 269: F70–F77, 1995.
 47. Chou C‐L, Knepper MA. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol 257: F359–F365, 1989.
 48. Chou C‐L, Sands JM, Nonoguchi H, Knepper MA. Concentration dependence of urea and thiourea transport pathway in rat inner medullary collecting duct. Am J Physiol 258: F486–F494, 1990a.
 49. Chou C‐L, Sands JM, Nonoguchi H, Knepper MA. Urea‐gradient associated fluid absorption with σurea=1 in rat terminal collecting duct. Am J Physiol 258: F1173–F1180, 1990b.
 50. Christensen S, Kusano E, Yusufi ANK, Murayama N, Dousa TP. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J Clin Invest 75: 1869–1879, 1985.
 51. Christison R. Observations on the variety of dropsy which depends on diseased kidney. Edinb Med Surg J 32: 262–292, 1829.
 52. Collins D, Winter DC, Hogan AM, Schirmer L, Baird AW, Stewart GS. Differential protein abundance and function of UT‐B transporters in human colon. Am J Physiol Gastrointest Liver Physiol 298: G345–G351, 2010.
 53. Combet S, Geffroy N, Berthonaud V, Dick B, Teillet L, Verbavatz J‐M, Corman B, Trinh‐Trang‐Tan M‐M. Correction of age‐related polyuria by dDAVP: Molecular analysis of aquaporins and urea transporters. Am J Physiol Renal Physiol 284: F199–F208, 2003.
 54. Combet S, Teillet L, Geelen G, Pitrat B, Gobin R, Nielsen S, Trinh‐Trang‐Tan MM, Corman B, Verbavatz JM. Food restriction prevents age‐related polyuria by vasopressin‐dependent recruitment of aquaporin‐2. Am J Physiol Renal Physiol 281: F1123–F1131, 2001.
 55. Cotte N, Balestre MN, Phalipou S, Hibert M, Manning M, Barberis C, Mouillac B. Identification of residues responsible for the selective binding of peptide antagonists and agonists in the V2 vasopressin receptor. J Biol Chem 273: 29462–29468, 1998.
 56. Couriaud C, Ripoche P, Rousselet G. Cloning and functional characterization of a rat urea transporter: Expression in the brain. Biochim Biophys Acta 1309: 197–199, 1996.
 57. Crawford JD, Doyle AP, Probst H. Service of urea in renal water conservation. Am J Physiol 196: 545–548, 1959.
 58. Damiano AE, Zotta E, Ibarra C. Functional and molecular expression of AQP9 channel and UT‐A transporter in normal and preeclamptic human placentas. Placenta 27: 1073–1081, 2006.
 59. Danielson RA, Schmidt‐Nielsen B, Hohberger C. Micropuncture study of the regulation of urea excretion by the collecting ducts in rats on high and low protein diets. In: Schmidt‐Nielsen B, Kerr DWS, editors. Urea and the Kidney. Amsterdam: Excerpta Medica, 1970, p. 375–384.
 60. Doran JJ, Klein JD, Kim Y‐H, Smith TD, Kozlowski SD, Gunn RB, Sands JM. Tissue distribution of UT‐A and UT‐B mRNA and protein in rat. Am J Physiol Regul Integr Comp Physiol 290: R1446–R1459, 2006.
 61. Doran JJ, Timmer RT, Sands JM. Accurate mRNA size determination in northern analysis using individual lane size markers. Biotechniques 27: 280–282, 1999.
 62. Dousa TP. Interaction of lithium with vasopressin‐sensitive cyclic AMP system of human renal medulla. Endocrinology 95: 1359–1366, 1974.
 63. Duchesne R, Klein JD, Velotta JB, Doran JJ, Rouillard P, Roberts BR, McDonough AA, Sands JM. UT‐A urea transporter protein in heart: Increased abundance during uremia, hypertension, and heart failure. Circ Res 89: 139–145, 2001.
 64. Dunn IC, Wilson PW, Lu Z, Bain MM, Crossan CL, Talbot RT, Waddington D. New hypotheses on the function of the avian shell gland derived from microarray analysis comparing tissue from juvenile and sexually mature hens. Gen Comp Endocrinol 163: 225–232, 2009.
 65. Ecelbarger CA, Sands JM, Doran JJ, Cacini W, Kishore BK. Expression of salt and urea transporters in rat kidney during cisplatin‐induced polyuria. Kidney Int 60: 2274–2282, 2001.
 66. Edwards A, Pallone TL. Facilitated transport in vasa recta: Theoretical effects on solute exchange in the medullary microcirculation. Am J Physiol Renal Physiol 272: F505–F514, 1997.
 67. Edwards A, Pallone TL. A multiunit model of solute and water removal by inner medullary vasa recta. Am J Physiol Heart Circ Physiol 274: H1202–H1210, 1998.
 68. Elalouf J‐M, Di Stefano A, de Rouffignac C. Sensitivities of rat kidney thick ascending limbs and collecting ducts to vasopressin in vivo. Proc Natl Acad Sci U S A 83: 2276–2280, 1986.
 69. Epstein FH, Kleeman CR, Pursel S, Hendrikx A. The effect of feeding protein and urea on the renal concentrating process. J Clin Invest 36: 635–641, 1957.
 70. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE. Mice lacking angiotensin‐converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 74: 953–965, 1996.
 71. Esther CR Jr, Marrero MB, Howard TE, Machaud A, Corvol P, Capecchi MR, Bernstein KE. The critical role of tissue angiotensin‐converting enzyme as revealed by gene targeting in mice. J Clin Invset 99: 2375–2385, 1997.
 72. Faubert PF, Chou SY, Porush JG, Byrd R. Regulation of papillary plasma flow by angiotensin II. Kidney Int 32: 472–478, 1987.
 73. Feng X, Huang H, Yang Y, Fröhlich O, Klein JD, Sands JM, Chen G. Caveolin‐1 directly interacts with UT‐A1 urea transporter: The role of caveolae/lipid rafts in UT‐A1 regulation at the cell membrane. Am J Physiol Renal Physiol 296: F1514–F1520, 2009.
 74. Fenton RA. Urea transporters and renal function: Lessons from knockout mice. Curr Opin Nephrol Hypertens 17: 513–518, 2008.
 75. Fenton RA, Chou C‐L, Ageloff S, Brandt W, Stokes JB III, Knepper M. Increased collecting duct urea transporter expression in Dahl salt‐sensitive rats. Am J Physiol Renal Physiol 285: F143–F151, 2003.
 76. Fenton RA, Chou C‐L, Sowersby H, Smith CP, Knepper MA. Gamble's “economy of water” revisited: Studies in urea transporter knockout mice. Am J Physiol Renal Physiol 291: F148–F154, 2006.
 77. Fenton RA, Chou C‐L, Stewart GS, Smith CP, Knepper MA. Urinary concentrating defect in mice with selective deletion of phloretin‐sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci U S A 101: 7469–7474, 2004.
 78. Fenton RA, Cooper GJ, Morris ID, Smith CP. Coordinated expression of UT‐A and UT‐B urea transporters in rat testis. Am J Physiol Cell Physiol 282: C1492–C1501, 2002.
 79. Fenton RA, Cottingham CA, Stewart GS, Howorth A, Hewitt JA, Smith CP. Structure and characterization of the mouse UT‐A gene (Slc14a2). Am J Physiol Renal Physiol 282: F630–F638, 2002.
 80. Fenton RA, Flynn A, Shodeinde A, Smith CP, Schnermann J, Knepper MA. Renal phenotype of UT‐A urea transporter knockout mice. J Am Soc Nephrol 16: 1583–1592, 2005.
 81. Fenton RA, Hewitt JE, Howorth A, Cottingham CA, Smith CP. The murine urea transporter genes Slc14a1 and Slc14a2 occur in tandem on chromosome 18. Cytogenet Cell Genet 87: 95–96, 1999.
 82. Fenton RA, Howorth A, Cooper GJ, Meccariello R, Morris ID, Smith CP. Molecular characterization of a novel UT‐A urea transporter isoform (UT‐A5) in testis. Am J Physiol Cell Physiol 279: C1425–C1431, 2000.
 83. Fenton RA, Knepper MA. Urea and renal function in the 21st century: Insights from knockout mice. J Am Soc Nephrol 18: 679–688, 2007.
 84. Fenton RA, Shodeinde A, Knepper MA. UT‐A urea transporter promoter, UT‐Aalpha, targets principal cells of the renal inner medullary collecting duct. Am J Physiol Renal Physiol 290: F188–F195, 2006.
 85. Fenton RA, Stewart GS, Carpenter B, Howorth A, Potter EA, Cooper GJ, Smith CP. Characterization of the mouse urea transporters UT‐A1 and UT‐A2. Am J Physiol Renal Physiol 283: F817–F825, 2002.
 86. Fernández‐Llama P, Andrews P, Nielsen S, Ecelbarger CA, Knepper MA. Impaired aquaporin and urea transporter expression in rats with adriamycin‐induced nephrotic syndrome. Kidney Int 53: 1244–1253, 1998.
 87. Fines GA, Ballantyne JS, Wright PA. Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch. Am J Physiol Regul Integr Comp Physiol 280: R16–R24, 2001.
 88. Fröhlich O, Aggarwal D, Klein JD, Kent K, Yang Y, Gunn RB, Sands JM. Stimulation of UT‐A1‐mediated transepithelial urea flux in MDCK cells by lithium. Am J Physiol Renal Physiol 294: F518–F524, 2008.
 89. Fröhlich O, Klein JD, Smith PM, Sands JM, Gunn RB. Urea transport in MDCK cells that are stably transfected with UT‐A1. Am J Physiol Cell Physiol 286: C1264–C1270, 2004.
 90. Fröhlich O, Klein JD, Smith PM, Sands JM, Gunn RB. Regulation of UT‐A1‐mediated transepithelial urea flux in MDCK cells. Am J Physiol Cell Physiol 291: C600–C606, 2006.
 91. Fröhlich O, Macey RI, Edwards‐Moulds J, Gargus JJ, Gunn RB. Urea transport deficiency in Jk(a‐b‐) erythrocytes. Am J Physiol 260: C778–C783, 1991.
 92. Galla JH, Booker BB, Luke RG. Role of the loop segment in the urinary concentrating defect of hypercalcemia. Kidney Int 29: 977–982, 1986.
 93. Galluci E, Micelli S, Lippe C. Non‐electrolyte permeability across thin lipid membranes. Arch Int Physiol Biochim 79: 881–887, 1971.
 94. Gamble JL, McKhann CF, Butler AM, Tuthill E. An economy of water in renal function referable to urea. Am J Physiol 109: 139–154, 1934.
 95. Gertner R, Klein JD, Bailey JL, Kim D‐U, Luo X, Bagnasco SM, Sands JM. Aldosterone decreases UT‐A1 urea transporter expression via the mineralocorticoid receptor. J Am Soc Nephrol 15: 558–565, 2004.
 96. Gillin AG, Sands JM. Characteristics of osmolarity‐stimulated urea transport in rat IMCD. Am J Physiol 262: F1061–F1067, 1992.
 97. Gillin AG, Star RA, Sands JM. Osmolarity‐stimulated urea transport in rat terminal IMCD: Role of intracellular calcium. Am J Physiol 265: F272–F277, 1993.
 98. Gottschalk CW, Mylle M. Micropuncture study of composition of loop of Henle fluid in desert rodents. Am J Physiol 204: 532–535, 1959.
 99. Guo L, Zhao D, Song Y, Meng Y, Zhao H, Zhao X, Yang B. Reduced urea flux across the blood‐testis barrier and early maturation in the male reproductive system in UT‐B‐null mice. Am J Physiol Cell Physiol 293: C305–C312, 2007.
 100. Guron G, Nilsson A, Nitescu N, Nielsen S, Sundelin B, Frokiaer J, Friberg P. Mechanisms of impaired urinary concentrating ability in adult rats treated neonatally with enalapril. Acta Physiol Scand 165: 103–112, 1999.
 101. Hall GD, Smith B, Weeks RJ, Selby PJ, Southgate J, Chester JD. Novel urothelium specific gene expression identified by differential display reverse transcriptase‐polymerase chain reaction. J Urol 175: 337–342, 2006.
 102. Han KH, Woo SK, Kim WY, Park SH, Cha JH, Kim J, Kwon HM. Maturation of TonEBP expression in developing rat kidney. Am J Physiol Renal Physiol 287: F878–F885, 2004.
 103. Harrington AR, Valtin H. Impaired urinary concentration after vasopressin and its gradual correction in hypothalamic diabetes insipidus. J Clin Invest 47: 502–510, 1968.
 104. Helms MN, Chen X‐J, Ramosevac S, Eaton DC, Jain L. Dopamine regulation of amiloride‐sensitive sodium channels in lung cells. Am J Physiol Lung Cell Mol Physiol 291: L610–L618, 2006.
 105. Hendrikx A, Epstein FH. Effect of feeding protein and urea on renal concentrating ability in the rat. Am J Physiol 195: 539–542, 1958.
 106. Hill WG, Southern NM, MacIver B, Potter E, Apodaca G, Smith CP, Zeidel ML. Isolation and characterization of the Xenopus oocyte plasma membrane: A new method for studying activity of water and solute transporters. Am J Physiol Renal Physiol 289: F217–F224, 2005.
 107. Hoffert JD, Pisitkun T, Wang G, Shen R‐F, Knepper MA. Quantitative phosphoproteomics of vasopressin‐sensitive renal cells: Regulation of aquaporin‐2 phosphorylation at two sites. Proc Natl Acad Sci U S A 103: 7159–7164, 2006.
 108. Honegger KJ, Capuano P, Winter C, Bacic D, Stange G, Wagner CA, Biber J, Murer H, Hernando N. Regulation of sodium‐proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC). Proc Natl Acad Sci U S A 103: 803–808, 2006.
 109. Hong X, Xing H, Yu Y, Wen Y, Zhang Y, Zhang S, Tang G, Xu X. Genetic polymorphisms of the urea transporter gene are associated with antihypertensive response to nifedipine GITS. Methods Find Exp Clin Pharmacol 29: 3–10, 2007.
 110. Hoorn EJ, Hoffert JD, Knepper MA. Combined proteomics and pathways analysis of collecting duct reveals a protein regulatory network activated in vasopressin escape. J Am Soc Nephrol 16: 2852–2863, 2005.
 111. Hu MC, Bankir L, Michelet S, Rousselet G, Trinh‐Trang‐Tan M‐M. Massive reduction of urea transporters in remnant kidney and brain of uremic rats. Kidney Int 58: 1202–1210, 2000.
 112. Hu MC, Bankir L, Trinh‐Trang‐Tan MM. mRNA expression of renal urea transporters in normal and Brattleboro rats: Effect of dietary protein intake. Exp Nephrol 7: 44–51, 1999.
 113. Huang H, Feng X, Zhuang J, Froehlich O, Klein JD, Cai H, Sands JM, Chen G. Internalization of UT‐A1 urea transporter is dynamin dependent and mediated by both caveolae and clathrin coated pit pathways. Am J Physiol Renal Physiol 299: F1389‐F1395, 2010.
 114. Huang H, Yang Y, Eaton DC, Sands JM, Chen G. The N‐terminal 81‐aa fragment is critical for UT‐A1 urea transporter bioactivity. J Epithel Biol Pharmacol 3: 34–39, 2010.
 115. Hung CC, Nawata CM, Wood CM, Wright PA. Rhesus glycoprotein and urea transporter genes are expressed in early stages of development of rainbow trout (Oncorhynchus mykiss). J Exp Zool A Ecol Genet Physiol 309: 262–268, 2008.
 116. Hung CYC, Galvez F, Ip YK, Wood CM. Increased gene expression of a facilitated diffusion urea transporter in the skin of the African lungfish (Protopterus annectens) during massively elevated post‐terrestrialization urea excretion. J Exp Biol 212: 1202–1211, 2009.
 117. Hwang S, Gunaratne R, Rinschen MM, Yu M‐J, Pisitkun T, Hoffert JD, Fenton RA, Knepper MA, Chou C‐L. Vasporessin increases phosphorylation of Ser 84 and Ser 486 in Slc14a2 collecting duct urea transporters. Am J Physiol Renal Physiol 299: F559–F567, 2010.
 118. Hyodo S, Katoh F, Kaneko T, Takei Y. A facilitative urea transporter is localized in the renal collecting tubule of the dogfish Triakis scyllia. J Exp Biol 207: 347–356, 2004.
 119. Igarashi P, Whyte DA, Nagami GT. Cloning and kidney cell‐specific activity of the promoter of the murine renal Na‐K‐Cl cotransporter gene. J Biol Chem 271: 9666–9674, 1996.
 120. Imai M. Function of the thin ascending limbs of Henle of rats and hamsters perfused in vitro. Am J Physiol 232: F201–F209, 1977.
 121. Imai M. Functional heterogeneity of the descending limbs of Henle's loop. II. Interspecies differences among rabbits, rats, and hamsters. Pfluegers Arch 402: 393–401, 1984.
 122. Imai M, Kokko JP. Sodium, chloride, urea, and water transport in the thin ascending limb of Henle. J Clin Invest 53: 393–402, 1974.
 123. Imbert M, de Rouffignac C. Role of sodium and urea in the renal concentrating mechanism in Psammomys obesus. Pfluegers Arch 361: 107–114, 1976.
 124. Inoue H, Jackson SD, Vikulina T, Klein JD, Tomita K, Bagnasco SM. Identification and characterization of a Kidd antigen/UT‐B urea transporter expressed in human colon. Am J Physiol Cell Physiol 287: C30–C35, 2004.
 125. Inoue H, Kozlowski SD, Klein JD, Bailey JL, Sands JM, Bagnasco SM. Regulated expression of the renal and intestinal UT‐B urea transporter in response to varying urea load. Am J Physiol Renal Physiol 289: F451–F458, 2005.
 126. Inoue T, Terris J, Ecelbarger CA, Chou C‐L, Nielsen S, Knepper MA. Vasopressin regulates apical targeting of aquaporin‐2 but not of UT1 urea transporter in renal collecting duct. Am J Physiol 276: F559–F566, 1999.
 127. Irshaid NM, Eicher NI, Hustinx H, Poole J, Olsson ML. Novel alleles at the JK blood group locus explain the absence of the erythrocyte urea transporter in European families. Br J Haematol 116: 445–453, 2002.
 128. Irshaid NM, Henry SM, Olsson ML. Genomic characterization of the kidd blood group gene: Different molecular basis of the Jk(a‐b‐) phenotype in Polynesians and Finns. Transfusion 40: 69–74, 2000.
 129. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272: 20782–20786, 1997.
 130. Isozaki T, Gillin AG, Swanson CE, Sands JM. Protein restriction sequentially induces new urea transport processes in rat initial IMCDs. Am J Physiol 266: F756–F761, 1994.
 131. Isozaki T, Lea JP, Tumlin JA, Sands JM. Sodium‐dependent net urea transport in rat initial IMCDs. J Clin Invest 94: 1513–1517, 1994.
 132. Isozaki T, Verlander JW, Sands JM. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest 92: 2448–2457, 1993.
 133. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci U S A 92: 3521–3525, 1995.
 134. Jackson BA, Braun‐Werness JL, Kusano E, Dousa TP. Concentrating defect in the adrenalectomized rat. vasopressin‐sensitive cyclic adenosine monophosphate metabolism in the papillary collecting duct Abnormal. J Clin Invest 72: 997–1004, 1983.
 135. Jacob VA, Harbaugh CM, Dietz JR, Fenton RA, Kim SM, Castrop H, Schnermann J, Knepper MA, Chou CL, Anderson SA. Magnetic resonance imaging of urea transporter knockout mice shows renal pelvic abnormalities. Kidney Int 74: 1202–1208, 2008.
 136. Jaenike JR. The influence of vasopressin on the permeability of the mammalian collecting duct to urea. J Clin Invest 40: 144–151, 1961.
 137. Jeon US, Han K‐H, Park S‐H, Lee SD, Sheen MR, Jung J‐Y, Kim WY, Sands JM, Kim J, Kwon HM. Downregulation of renal TonEBP in hypokalemic rats. Am J Physiol Renal Physiol 293: F408–F415, 2007.
 138. Jeon US, Kim JA, Sheen MR, Kwon HM. How tonicity regulates genes: Story of TonEBP transcriptional activator. Acta Physiol Scand 187: 241–247, 2006.
 139. Jung J‐Y, Madsen KM, Han K‐H, Yang C‐W, Knepper MA, Sands JM, Kim J. Expression of urea transporters in potassium‐depleted mouse kidney. Am J Physiol Renal Physiol 285: F1210–F1224, 2003.
 140. Kakinuma Y, Fogo A, Inagami T, Ichikawa I. Intrarenal localization of angiotensin II type 1 receptor mRNA in the rat. Kidney Int 43: 1229–1235, 1993.
 141. Kakumura K, Watanabe S, Bell JD, Donald JA, Toop T, Kaneko T, Hyodo S. Multiple urea transporter proteins in the kidney of holocephalan elephant fish (Callorhinchus milii). Comp Biochem Physiol B Biochem Mol Biol 154: 239–247, 2009.
 142. Kamoi K, Tamura T, Tanaka K, Ishikashi M, Yamagi T. Hyponatremia and osmoregulation of thirst and vasopressin secretion in patients with adrenal insufficiency. J Clin Endocrinol Metab 77: 1584–1588, 1993.
 143. Karakashian A, Timmer RT, Klein JD, Gunn RB, Sands JM, Bagnasco SM. Cloning and characterization of two new mRNA isoforms of the rat renal urea transporter: UT‐A3 and UT‐A4. J Am Soc Nephrol 10: 230–237, 1999.
 144. Kato A, Klein JD, Zhang C, Sands JM. Angiotensin II increases vasopressin‐stimulated facilitated urea permeability in rat terminal IMCDs. Am J Physiol Renal Physiol 279: F835–F840, 2000.
 145. Kato A, Naruse M, Knepper MA, Sands JM. Long‐term regulation of inner medullary collecting duct urea transport in rat. J Am Soc Nephrol 9: 737–745, 1998.
 146. Kato A, Sands JM. Active sodium‐urea counter‐transport is inducible in the basolateral membrane of rat renal initial inner medullary collecting ducts. J Clin Invest 102: 1008–1015, 1998a.
 147. Kato A, Sands JM. Evidence for sodium‐dependent active urea secretion in the deepest subsegment of the rat inner medullary collecting duct. J Clin Invest 101: 423–428, 1998b.
 148. Kato A, Sands JM. Urea transport processes are induced in rat IMCD subsegments when urine concentrating ability is reduced. Am J Physiol 276: F62–F71, 1999.
 149. Kawamura S, Imai M, Seldin DW, Kokko JP. Characteristics of salt and water transport in superficial and juxtamedullalry straight segments of proximal tubules. J Clin Invest 55: 1269–1277, 1975.
 150. Kihara M, Umemura S, Sumida Y, Yokoyama N, Yabana M, Nyui N, Tamura K, Murakami K, Fukamizu A, Ishii M. Genetic deficiency of angiotensinogen produces an impaired urine concentrating ability in mice. Kidney Int 53: 548–555, 1998.
 151. Kim D‐U, Klein JD, Racine S, Murrell BP, Sands JM. Urea may regulate urea transporter protein abundance during osmotic diuresis. Am J Physiol Renal Physiol 288: F188–F197, 2005.
 152. Kim D‐U, Sands JM, Klein JD. Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats. Am J Physiol Renal Physiol 285: F303–F309, 2003.
 153. Kim D‐U, Sands JM, Klein JD. Role of vasopressin in diabetes mellitus‐induced changes in medullary transport proteins involved in urine concentration in Brattleboro rats. Am J Physiol Renal Physiol 286: F760–F766, 2004.
 154. Kim Y‐H, Kim D‐U, Han K‐H, Jung J‐Y, Sands JM, Knepper MA, Madsen KM, Kim J. Expression of urea transporters in the developing rat kidney. Am J Physiol Renal Physiol 282: F530–F540, 2002.
 155. Kim YM, Kim WY, Lee HW, Kim J, Kwon HM, Klein JD, Sands JM, Kim D. Urea and NaCl regulate UT‐A1 urea transporter in opposing directions via TonEBP pathway during osmotic diuresis. Am J Physiol Renal Physiol 296: F67–F77, 2009.
 156. Kiran D, Mutsvangwa T. Effects of partial ruminal defaunation on urea‐nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. J Anim Sci 88: 1034–1047, 2010.
 157. Kishore BK, Terris J, Fernandez‐Llama P, Knepper MA. Ultramicrodetermination of vasopressin‐regulated renal urea transporter protein in microdissected renal tubules. Am J Physiol 272: F531–F537, 1997.
 158. Klahr S, Alleyne GAO. Effects of chronic protein‐calorie malnutrition on the kidney. Kidney Int 3: 129–141, 1973.
 159. Klein JD, Blount MA, Fröhlich O, Denson C, Tan X, Sim J, Martin CF, Sands JM. Phosphorylation of UT‐A1 on serine 486 correlates with membrane accumulation and urea transport activity in both rat IMCDs and cultured cells. Am J Physiol Renal Physiol 298: F935–F940, 2010.
 160. Klein JD, Fröhlich O, Blount MA, Martin CF, Smith TD, Sands JM. Vasopressin increases plasma membrane accumulation of urea transporter UT‐A1 in rat inner medullary collecting ducts. J Am Soc Nephrol 17: 2680–2686, 2006.
 161. Klein JD, Gunn RB, Roberts BR, Sands JM. Down‐regulation of urea transporters in the renal inner medulla of lithium‐fed rats. Kidney Int 61: 995–1002, 2002.
 162. Klein JD, Kozlowski SD, Abi Antooun T, Sands JM. Adrenalectomy blocks the compensatory increases in UT‐A1 and AQP2 in diabetic rat kidney. J Membr Biol 212: 139–144, 2006.
 163. Klein JD, Murrell BP, Tucker S, Kim Y‐H, Sands JM. Urea transporter UT‐A1 and aquaporin‐2 proteins decrease in response to angiotensin II or norepinephrine‐induced acute hypertension. Am J Physiol Renal Physiol 291: F952–F959, 2006.
 164. Klein JD, Price SR, Bailey JL, Jacobs JD, Sands JM. Glucocorticoids mediate a decrease in the AVP‐regulated urea transporter in diabetic rat inner medulla. Am J Physiol 273: F949–F953, 1997.
 165. Klein JD, Quach DL, Cole JM, Disher K, Mongiu AK, Wang X, Bernstein KE, Sands JM. Impaired urine concentration and the absence of tissue ACE: The involvement of medullary transport proteins. Am J Physiol Renal Physiol 283: F517–F524, 2002.
 166. Klein JD, Rouillard P, Roberts BR, Sands JM. Acidosis mediates the up‐regulation of UT‐A protein in livers from uremic rats. J Am Soc Nephrol 13: 581–587, 2002.
 167. Klein JD, Sands JM, Qian L, Wang X, Yang B. Upregulation of urea transporter UT‐A2 and water channels AQP2 and AQP3 in mice lacking urea transporter UT‐B. J Am Soc Nephrol 15: 1161–1167, 2004.
 168. Klein JD, Timmer RT, Rouillard P, Bailey JL, Sands JM. UT‐A urea transporter protein expressed in liver: Upregulation by uremia. J Am Soc Nephrol 10: 2076–2083, 1999.
 169. Knepper MA. Urea transport in isolated thick ascending limbs and collecting ducts from rats. Am J Physiol 245: F634–F639, 1983a.
 170. Knepper MA. Urea transport in nephron segments from medullary rays of rabbits. Am J Physiol 244: F622–F627, 1983b.
 171. Knepper MA, Danielson RA, Saidel GM, Johnston KH. Effects of dietary protein restriction and glucocorticoid administration on urea excretion in rats. Kidney Int 8: 303–315, 1975.
 172. Knepper MA, Gunter CV, Danielson RA. Effects of glucagon on renal function in protein‐deprived rats. Surg Forum 27: 29–31, 1976.
 173. Knepper MA, Mindell JA. Molecular coin slots for urea. Nature 462: 733–734, 2009.
 174. Knepper MA, Roch‐Ramel F. Pathways of urea transport in the mammalian kidney. Kidney Int 31: 629–633, 1987.
 175. Knepper MA, Sands JM, Chou C‐L. Independence of urea and water transport in rat inner medullary collecting duct. Am J Physiol 256: F610–F621, 1989.
 176. Knox FG, Burnett JC Jr, Kohan DE, Spielman WS, Strand JC. Escape from the sodium‐retaining effects of mineralocorticoids. Kidney Int 17: 263–276, 1980.
 177. Kokko JP, Rector FC. Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2: 214–223, 1972.
 178. Kondo Y, Imai M. Effects of glutaraldehyde fixation on renal tubular function. I. Preservation of vasopressin‐stimulated water and urea pathways in rat papillary collecting duct. Pfluegers Arch 408: 479–483, 1987.
 179. Konno N, Hyodo S, Matsuda K, Uchiyama M. Effect of osmotic stress on expression of a putative facilitative urea transporter in the kidney and urinary bladder of the marine toad, Bufo marinus. J Exp Biol 209: 1207–1216, 2006a.
 180. Konno N, Hyodo S, Matsuda K, Uchiyama M. Arginine vasotocin promotes urea permeability through urea transporter expressed in the toad urinary bladder cells. Gen Comp Endocrinol 152: 281–285, 2006b.
 181. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE. Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 24: 224–234, 2001.
 182. Kudo LH, César KR, Ping WC, Rocha AS. Effect of peritubular hypertonicity on water and urea transport of inner medullary collecting duct. Am J Physiol 262: F338–F347, 1992.
 183. Kudo LH, Van Baak AA, Rocha AS. Effect of vasopressin on sodium transport across inner medullary collecting duct. Am J Physiol 258: F1438–F1447, 1990.
 184. Kwun Y‐S, Yeo SW, Ahn Y‐H, Lim S‐W, Jung J‐Y, Kim W‐Y, Sands JM, Kim J. Immunohistochemical localization of urea transporters A and B in the rat cochlea. Hear Res 183: 84–96, 2003.
 185. Lam AKM, Ko BCB, Tam S, Morris R, Yang JY, Chung SK, Chung SSM. Osmotic response element‐binding protein (OREBP) is an essential regulator of the urine concentrating mechanism. J Biol Chem 279: 48048–48054, 2004.
 186. Laroche‐Joubert N, Marsy S, Michelet S, Imbert‐Teboul M, Doucet A. Protein kinase A‐independent activation of ERK and H,K‐ATPase by cAMP in native kidney cells. role of Epac I. J Biol Chem 277: 18598–18604, 2002.
 187. Lassiter WE, Gottschalk CW, Mylle M. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol 200: 1139–1146, 1961.
 188. Lassiter WE, Mylle M, Gottschalk CW. Net transtubular movement of water and urea in saline diuresis. Am J Physiol 260: 669–673, 1964.
 189. Laurent P, Wood CM, Wang Y, Perry SF, Gilmour KM, Part P, Chevalier C, West M, Walsh PJ. Intracellular vesicular trafficking in the gill epithelium of urea‐excreting fish. Cell Tissue Res 303: 197–210, 2001.
 190. Layton AT. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney. Bull Math Biol 69: 887–929, 2007.
 191. Lee HW, Kim WY, Song HK, Yang CW, Han KH, Kwon HM, Kim J. Sequential expression of NKCC2, TonEBP, aldose reductase, and urea transporter‐A in developing mouse kidney. Am J Physiol Renal Physiol 292: F269–F277, 2007.
 192. Lemley KV, Kriz W. Cycles and separations: The histotopography of the urinary concentrating process. Kidney Int 31: 538–548, 1987.
 193. Leroy C, Basset G, Gruel G, Ripoche P, Trinh‐Trang‐Tan M‐M, Rousselet G. Hyperosmotic NaCl and urea synergistically regulate the expression of the UT‐A2 urea transporter in vitro and in vivo. Biochem Biophys Res Commun 271: 368–373, 2000.
 194. Leung DW, Loo DDF, Hirayama BA, Zeuthen T, Wright EM. Urea transport by cotransporters. J Physiol (Lond) 528: 251–257, 2000.
 195. Levi M, Peterson L, Berl T. Mechanism of concentrating defect in hypercalcemia. Role of polydipsia and prostaglandins. Kidney Int 23: 489–497, 1983.
 196. Levin EJ, Quick M, Zhou M. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462: 757–762, 2009.
 197. Levin MH, de la Fuente R, Verkman AS. Urearetics: A small molecule screen yields nanomolar potency inhibitors of urea transporter UT‐B. FASEB J 21: 551–563, 2007.
 198. Levinsky NG, Berliner RW. The role of urea in the urine concentrating mechanism. J Clin Invest 38: 741–748, 1959.
 199. Li C, Klein JD, Wang W, Knepper MA, Nielsen S, Sands JM, Frokiaer J. Altered expression of urea transporters in response to ureteral obstruction. Am J Physiol Renal Physiol 286: F1154–F1162, 2004.
 200. Li C, Wang W, Summer SN, Falk S, Schrier RW. Downregulation of UT‐A1/UT‐A3 is associated with urinary concentrating defect in glucocorticoid‐excess state. J Am Soc Nephrol 19: 1975–1981, 2008.
 201. Li Y, Konings IBM, Zhao J, Price LS, de Heer E, Deen PMT. Renal expression of exchange protein directly activated by cAMP (Epac) 1 and 2. Am J Physiol Renal Physiol 295: F525–F533, 2008.
 202. Lim S‐W, Han K‐H, Jung J‐Y, Kim W‐Y, Yang C‐W, Sands JM, Knepper MA, Madsen KM, Kim J. Ultrastructural localization of UT‐A and UT‐B in rat kidneys with different hydration status. Am J Physiol Regul Integr Comp Physiol 290: R479–R492, 2006.
 203. Lim S‐W, Li C, Sun B‐K, Kim W‐Y, Han K‐H, Oh Y‐W, Lee J‐U, Kador PF, Knepper MA, Sands JM, Kim J, Yang C‐W. Long‐term treatment with cyclosporine decreases aquaporins and urea transporters in rat kidney. Am J Physiol Renal Physiol 287: F139–F151, 2004.
 204. Litman T, Sogaard R, Zeuthen T. Ammonia and urea permeability of mammalian aquaporins. In: Beitz E, editor. Aquaporins. Berlin: Springer, 2009, p. 327–358.
 205. Liu LH, Ludewig U, Frommer WB, Von Wirén N. AtDUR3 encodes a new type of high‐affinity urea/H+ symporter in Arabidopsis. Plant Cell 15: 790–800, 2003.
 206. Liu ZJ, Shen J, Carbrey JM, Mukhopadhyay R, Agre P, Rosen BP. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99: 6053–6058, 2002.
 207. Lucien N, Bruneval P, Lasbennes F, Belair MF, Mandet C, Cartron JP, Bailly P, Trinh‐Trang‐Tan MM. UT‐B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse. Am J Physiol Regul Integr Comp Physiol 288: R1046–R1056, 2005.
 208. Lucien N, Sidoux‐Walter F, Olivès B, Moulds J, Le Pennec PY, Cartron JP, Bailly P. Characterization of the gene encoding the human Kidd blood group urea transporter protein. Evidence for splice site mutations in Jknull individuals. J Biol Chem 273: 12973–12980, 1998.
 209. Lucien N, Sidoux‐Walter F, Roudier N, Ripoche P, Huet M, Trinh‐Trang‐Tan M‐M, Cartron J‐P, Bailly P. Antigenic and functional properties of the human red blood cell urea transporter hUT‐B1. J Biol Chem 277: 34101–34108, 2002.
 210. Ludden PA, Stohrer RM, Austin KJ, Atkinson RL, Belden EL, Harlow HJ. Effect of protein supplementation on expression and distribution of urea transporter‐B in lambs fed low‐quality forage. J Anim Sci 87: 1354–1365, 2009.
 211. Ma TH, Song YL, Yang BX, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Nephrogenic diabetes insipidus in mice lacking aquaporin‐3 water channels. Proc Natl Acad Sci U S A 97: 4386–4391, 2000.
 212. Macey RI. Transport of water and urea in red blood cells. Am J Physiol 246: C195–C203, 1984.
 213. Macey RI, Farmer REL. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta 211: 104–106, 1970.
 214. Macey RI, Yousef LW. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol 254: C669–C674, 1988.
 215. MacIver B, Smith CP, Hill WG, Zeidel ML. Functional characterization of mouse urea transporters UT‐A2 and UT‐A3 expressed in purified Xenopus laevis oocyte plasma membranes. Am J Physiol Renal Physiol 294: F956–F964, 2008.
 216. Maeda Y, Terada Y, Nonoguchi H, Knepper MA. Hormone and autocoid regulation of cAMP production in rat IMCD subsegments. Am J Physiol 263: F319–F327, 1992.
 217. Magaldi AJ, Cesar KR, Yano Y. Effect of insulin on water and urea transport in the inner medullary collecting duct. Am J Physiol 266: F394–F399, 1994.
 218. Mannuzzu LM, Moronne MM, Macey RI. Estimate of the number of urea transport sites in erythrocyte ghosts using a hydrophobic mercurial. J Membr Biol 133: 85–97, 1993.
 219. Marini JC, Klein JD, Sands JM, Van Amburgh ME. Effect of nitrogen intake on nitrogen recycling and urea transporter abundance in lambs. J Anim Sci 82: 1157–1164, 2004.
 220. Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S. Lithium‐induced downregulation of Aquaporin‐2 water channel expression in rat kidney medulla. J Clin Invest 95: 1838–1845, 1995.
 221. Marsh DJ. Solute and water flows in thin limbs of Henle's loop in the hamster kidney. Am J Physiol 218: 824–831, 1970.
 222. Marsh DJ, Azen SP. Mechanism of NaCl reabsorption by hamster thin ascending limb of Henle's loop . Am J Physiol 228: 71–79, 1975.
 223. Marsh DJ, Knepper MA. Renal handling of urea. In: Windhager EE, editor. Handbook of Physiology—Renal Physiology. Bethesda: American Physiological Society, 1992, p. 1317–1347.
 224. Marsh DJ, Martin CM. Lack of water or urea movement from pelvic urine to papilla in hydropenic hamsters. Miner Electrolyte Metab 3: 81–86, 1980.
 225. Martial S, Olives B, Abrami L, Couriaud C, Bailly P, You G, Hediger MA, Cartron J‐P, Ripoche P, Rousselet G. Functional differentiation of the human red blood cell and kidney urea transporters. Am J Physiol 271: F1264–F1268, 1996.
 226. McDonald MD, Smith CP, Walsh PJ. The physiology and evolution of urea transport in fishes. J Membr Biol 212: 93–107, 2006.
 227. McDonald MD, Vulesevic B, Perry SF, Walsh PJ. Urea transporter and glutamine synthetase regulation and localization in gulf toadfish gill. J Exp Biol 212: 704–712, 2009.
 228. McDonald MD, Walsh PJ, Wood CM. Branchial and renal excretion of urea and urea analogues in the plainfin midshipman, Porichthys notatus. J Comp Physiol B 172: 699–712, 2002.
 229. McDonald MD, Wood CM, Wang YX, Walsh PJ. Differential branchial and renal handling of urea, acetamide and thiourea in the gulf toadfish Opsanus beta: Evidence for two transporters. J Exp Biol 203: 1027–1037, 2000.
 230. Meng Y, Zhao C, Zhang X, Zhao H, Guo L, Lu B, Zhao X, Yang B. Surface electrocardiogram and action potential in mice lacking urea transporter UT‐B. Sci China C Life Sci 52: 474–478, 2009.
 231. Michel CC. Renal medullary microcirculation: Architecture and exchange. Microcirculation 2: 125–139, 1995.
 232. Minocha R, Studley K, Saier MH Jr. The urea transporter (UT) family: Bioinformatic analyses leading to structural, functional, and evolutionary predictions. Receptors Channels 9: 345–352, 2003.
 233. Mistry AC, Chen G, Kato A, Nag K, Sands JM, Hirose S. A novel type of urea transporter, UT‐C, highly expressed in proximal tubule of seawater eel kidney. Am J Physiol Renal Physiol 288: F455–F465, 2005.
 234. Mistry AC, Mallick R, Fröhlich O, Klein JD, Rehm A, Chen G, Sands JM. The UT‐A1 urea transporter interacts with snapin, a snare‐associated protein. J Biol Chem 282: 30097–30106, 2007.
 235. Mistry AC, Mallick R, Klein JD, Sands JM, Froehlich O. Functional characterization of the central hydrophilic linker region of the urea transporter UT‐A1: cAMP activation and snapin binding. Am J Physiol Cell Physiol 298: C1431–C1437, 2010.
 236. Mistry AC, Mallick R, Klein JD, Weimbs T, Sands JM, Fröhlich O. Syntaxin specificity of aquaporins in the inner medullary collecting duct. Am J Physiol Renal Physiol 297: F292–F300, 2009.
 237. Mitch WE, Bailey JL, Wang X, Jurkovitz C, Newby DN, Price SR. Evaluation of signals activating ubiquitin‐proteasome proteolysis in a model of muscle wasting. Am J Physiol Cell Physiol 276: C1132–C1138, 1999.
 238. Miyata N, Park F, Li XF, Cowley AW Jr. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol 277: F437–F446, 1999.
 239. Moeller E, McIntosh JF, Van Slyke DD. Studies of urea excretion. II. Relationship between urine volume and the rate of urea excretion by normal adults. J Clin Invest 6: 427–465, 1929.
 240. Morgan RL, Ballantyne JS, Wright PA. Regulation of a renal urea transporter with reduced salinity in a marine elasmobranch, Raja erinacea. J Exp Biol 206: 3285–3292, 2003.
 241. Morgan RL, Wright PA, Ballantyne JS. Urea transport in kidney brush‐border membrane vesicles from an elasmobranch, Raja erinacea. J Exp Biol 206: 3293–3302, 2003.
 242. Morgan T. Permeability of the nephron to urea. In: Schmidt‐Nielsen B, Kerr DWS, editors. Urea and the Kidney. Amsterdam: Excerpta Medica Foundation, 1970, p. 186–192.
 243. Morgan T, Berliner RW. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am J Physiol 215: 108–115, 1968.
 244. Morgan T, Sakai F, Berliner RW. In vitro permeability of medullary collecting duct to water and urea. Am J Physiol 214: 574–581, 1968.
 245. Morris RG, Uchida S, Brooks H, Knepper MA, Chou CL. Altered expression profile of transporters in the inner medullary collecting duct of aquaporin‐1 knockout mice. Am J Physiol Renal Physiol 289: F194–F199, 2005.
 246. Mujais SK, Kauffman S, Katz AI. Angiotensin II binding sites in individual segments of the rat nephron. J Clin Invest 77: 315–318, 1986.
 247. Nakayama Y, Naruse M, Karakashian A, Peng T, Sands JM, Bagnasco SM. Cloning of the rat Slc14a2 gene and genomic organization of the UT‐A urea transporter. Biochim Biophys Acta 1518: 19–26, 2001.
 248. Nakayama Y, Peng T, Sands JM, Bagnasco SM. The TonE/TonEBP pathway mediates tonicity‐responsive regulation of UT‐A urea transporter expression. J Biol Chem 275: 38275–38280, 2000.
 249. Naruse M, Klein JD, Ashkar ZM, Jacobs JD, Sands JM. Glucocorticoids downregulate the rat vasopressin‐regulated urea transporter in rat terminal inner medullary collecting ducts. J Am Soc Nephrol 8: 517–523, 1997.
 250. Neau P, Degeilh F, Lamotte H, Rousseau B, Ripoche P. Photoaffinity labeling of the human red‐blood‐cell urea‐ transporter polypeptide components. Possible homology with the Kidd blood group antigen. Eur J Biochem 218: 447–455, 1993.
 251. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA. Proteomic analysis of lithium‐induced nephrogenic diabetes insipidus: Mechanisms for aquaporin 2 down‐regulation and cellular proliferation. Proc Natl Acas Sci U S A 105: 3634–3639, 2008.
 252. Nielsen S, Knepper MA. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Physiol 265: F204–F213, 1993.
 253. Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, Knepper MA. Cellular and subcellular localization of the vasopressin‐regulated urea transporter in rat kidney. Proc Natl Acad Sci U S A 93: 5495–5500, 1996.
 254. Nonoguchi H, Sands JM, Knepper MA. Atrial natriuretic factor inhibits vasopressin‐stimulated osmotic water permeability in rat inner medullary collecting duct. J Clin Invest 82: 1383–1390, 1988.
 255. Ogami A, Miyazaki H, Niisato N, Sugimoto T, Marunaka Y. UT‐B1 urea transporter plays a noble role as active water transporter in C6 glial cells. Biochem Biophys Res Commun 351: 619–624, 2006.
 256. Okubo S, Niimura F, Matsusaka T, Fogo A, Hogan BLM, Ichikawa I. Angiotensinogen gene null‐mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption. Kidney Int 53: 617–625, 1998.
 257. Okusa MD, Crystal LJT. Clinical manifestations and management of acute lithium intoxication. Am J Med 97: 383–389, 1994.
 258. Olivès B, Martial S, Mattei MG, Matassi G, Rousselet G, Ripoche P, Cartron JP, Bailly P. Molecular characterization of a new urea transporter in the human kidney. FEBS Lett 386: 156–160, 1996.
 259. Olivès B, Mattei M‐G, Huet M, Neau P, Martial S, Cartron J‐P, Bailly P. Kidd blood group and urea transport function of human erythrocytes are carried by the same protein. J Biol Chem 270: 15607–15610, 1995.
 260. Olives B, Merriman M, Bailly P, Bain S, Barnett A, Todd J, Cartron JP, Merriman T. The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility. Hum Mol Genet 6: 1017–1020, 1997.
 261. Olives B, Neau P, Bailly P, Hediger MA, Rousselet G, Cartron JP, Ripoche P. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 269: 31649–31652, 1994.
 262. Pallone T, Zhang Z, and Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 284: F253–F266, 2003.
 263. Pallone TL. Characterization of the urea transporter in outer medullary descending vasa recta. Am J Physiol 267: R260–R267, 1994.
 264. Pallone TL, Nielsen S, Silldorff EP, Yang S. Diffusive transport of solute in the rat medullary microcirculation. Am J Physiol 269: F55–F63, 1995.
 265. Pallone TL, Work J, Myers RL, Jamison RL. Transport of sodium and urea in outer medullary descending vasa recta. J Clin Invest 93: 212–222, 1994.
 266. Panayotova‐Heiermann M, Wright EA. Mapping the urea channel through the rabbit Na+‐glucose cotransporter SGLT1. J Physiol (Lond) 535: 419–425, 2001.
 267. Pannabecker TL, Dahlmann A, Brokl OH, Dantzler WH. Mixed descending‐ and ascending‐type thin limbs of Henle's loop in mammalian renal inner medulla. Am J Physiol Renal Physiol 278: F202–F208, 2000.
 268. Pannabecker TL, Dantzler WH, Layton HE, Layton AT. Role of three‐dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol Renal Physiol 295: F1271–F1285, 2008.
 269. Pannabecker TL, Henderson CS, Dantzler WH. Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla. Am J Physiol Renal Physiol 294: F1306–F1314, 2008.
 270. Pech V, Klein JD, Kozlowski SD, Wall SM, Sands JM. Vasopressin increases urea permeability in initial IMCDs from diabetic rats. Am J Physiol Renal Physiol 289: F531–F535, 2005.
 271. Peil AE, Stolte H, Schmidt‐Nielsen B. Uncoupling of glomerular and tubular regulations of urea excretion in rat. Am J Physiol 258: F1666–F1674, 1990.
 272. Peng T, Sands JM, Bagnasco SM. Glucocorticoids inhibit transcription and expression of the rat UT‐A urea transporter gene. Am J Physiol Renal Physiol 282: F853–F858, 2002.
 273. Pennell JP, Lacy FB, Jamison RL. An in vivo study of the concentrating process in the descending limb of Henle's loop. Kidney Int 5: 337–347, 1974.
 274. Pennell JP, Sanjana V, Frey NR, Jamison RL. The effect of urea infusion on the urinary concentrating mechanism in protein‐depleted rats. J Clin Invest 55: 399–409, 1975.
 275. Pilley CM, Wright PA. The mechanisms of urea transport by early life stages of rainbow trout (Oncorhynchus mykiss). J Exp Biol 203: 3199–3207, 2000.
 276. Potter EA, Stewart G, Smith CP. Urea flux across MDCK‐mUT‐A2 monolayers is acutely sensitive to AVP, cAMP, and [Ca2+]i. Am J Physiol Renal Physiol 291: F122–F128, 2006.
 277. Preisser L, Teillet L, Aliotti S, Gobin R, Berthonaud V, Chevalier J, Corman B, Verbavatz JM. Downregulation of aquaporin‐2 and‐3 in aging kidney is independent of V2 vasopressin receptor. Am J Physiol Renal Physiol 279: F144–F152, 2000.
 278. Prichett WP, Patton AJ, Field JA, Brun KA, Emery JG, Tan KB, Rieman DJ, McClung HA, Nadeau DP, Mooney JL, Suva LJ, Gowen M, Nuttall ME. Identification and cloning of a human urea transporter HUT11, which is downregulated during adipogenesis of explant cultures of human bone. J Cell Biochem 76: 639–650, 2000.
 279. Promeneur D, Bankir L, Hu MC, Trinh‐Trang‐Tan M‐M. Renal tubular and vascular urea transporters: Influence of antidiuretic hormone on messenger RNA expression in Brattleboro rats. J Am Soc Nephrol 9: 1359–1366, 1998.
 280. Promeneur D, Rousselet G, Bankir L, Bailly P, Cartron JP, Ripoche P, Trinh‐Trang‐Tan MM. Evidence for distinct vascular and tubular urea transporters in the rat kidney. J Am Soc Nephrol 7: 852–860, 1996.
 281. Quigley R, Gupta N, Lisec A, Baum M. Maturational changes in rabbit renal basolateral membrane vesicle osmotic water permeability. J Membr Biol 174: 53–58, 2000.
 282. Quigley R, Lisec A, Baum M. Ontogeny of rabbit proximal tubule urea permeability. Am J Physiol Regul Integr Comp Physiol 280: R1713–R1718, 2001.
 283. Rai T, Sasaki S, Uchida S. Polarized trafficking of the aquaporin‐3 water channel is mediated by an NH2‐terminal sorting signal. Am J Physiol Cell Physiol 290: C298–C304, 2006.
 284. Ranade K, Wu KD, Hwu CM, Ting CT, Pei D, Pesich R, Hebert J, Chen YDI, Pratt R, Olshen R, Masaki K, Risch N, Cox DR, Botstein D. Genetic variation in the human urea transporter‐2 is associated with variation in blood pressure. Hum Mol Genet 10: 2157–2164, 2001.
 285. Raunser S, Mathai JC, Abeyrathne PD, Rice AJ, Zeidel ML, Walz T. Oligomeric structure and functional characterization of the urea transporter from actinobacillus pleuropneumoniae. J Mol Biol 387: 619–627, 2009.
 286. Ritzhaupt A, Wood IS, Jackson AA, Moran BJ, Shirazi‐Beechey SP. Isolation of a RT‐PCR fragment from human colon and sheep rumen RNA with nucleotide sequence similarity to human and rat urea transporter isoforms. Biochem Soc Trans 26: S122, 1998.
 287. Roch‐Ramel F, Diezi J, Chomety F, Michoud P, Peters G. Disposal of large urea overloads by the rat kidney: A micropuncture study. Am J Physiol 218: 1524–1532, 1970.
 288. Rocha AS, Kudo LH. Water, urea, sodium, chloride, and potassium transport in the in vitro perfused papillary collecting duct. Kidney Int 22: 485–491, 1982.
 289. Rocha AS, Ping WC, Kudo LH. Effect of chlorpropamide on water and urea transport in the inner medullary collecting duct. Kidney Int 39: 79–86, 1991.
 290. Rodela TM, Gilmour KM, Walsh PJ, McDonald MD. Cortisol‐sensitive urea transport across the gill basolateral membrane of the gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 297: R313–R322, 2009.
 291. Rouch AJ, Kudo LH. α2‐Adrenergic‐mediated inhibition of water and urea permeability in the rat IMCD. Am J Physiol 271: F150–F157, 1996.
 292. Rousselet G, Ripoche P, Bailly P. Tandem sequence repeats in urea transporters: Identification, of an urea transporter signature sequence. Am J Physiol 270: F554–F555, 1996.
 293. Sands JM. Regulation of renal urea transporters. J Am Soc Nephrol 10: 635–646, 1999a.
 294. Sands JM. Urea transport: It's not just “freely diffusible” anymore. News Physiol Sci 14: 46–47, 1999b.
 295. Sands JM. Urine‐concentrating ability in the aging kidney. Sci Aging Knowledge Environ 24: pe15, 2003.
 296. Sands JM. Critical role of urea in the urine‐concentrating mechanism. J Am Soc Nephrol 18: 670–671, 2007.
 297. Sands JM. Urinary concentration and dilution in the aging kidney. Semin Nephrol 29: 579–586, 2009.
 298. Sands JM, Flores FX, Kato A, Baum MA, Brown EM, Ward DT, Hebert SC, Harris HW. Vasopressin‐elicited water and urea permeabilities are altered in the inner medullary collecting duct in hypercalcemic rats. Am J Physiol Renal Physiol 274: F978–F985, 1998.
 299. Sands JM, Gargus JJ, Fröhlich O, Gunn RB, Kokko JP. Urinary concentrating ability in patients with Jk(a‐b‐) blood type who lack carrier‐mediated urea transport. J Am Soc Nephrol 2: 1689–1696, 1992.
 300. Sands JM, Knepper MA. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest 79: 138–147, 1987.
 301. Sands JM, Layton HE. The urine concentrating mechanism and urea transporters. In: Alpern RJ, Hebert SC, editors. The Kidney: Physiology and Pathophysiology. San Diego: Academic Press, 2008, p. 1143–1178.
 302. Sands JM, Layton HE. The physiology of urinary concentration: An update. Semin Nephrol 29: 178–195, 2009.
 303. Sands JM, Martial S, Isozaki T. Active urea transport in the rat initial inner medullary collecting duct: Functional characterization and initial expression cloning. Kidney Int 49: 1611–1614, 1996.
 304. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW. Apical extracellular calcium/polyvalent cation‐sensing receptor regulates vasopressin‐elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99: 1399–1405, 1997.
 305. Sands JM, Nonoguchi H, Knepper MA. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253: F823–F832, 1987.
 306. Sands JM, Schrader DC. An independent effect of osmolality on urea transport in rat terminal IMCDs. J Clin Invest 88: 137–142, 1991.
 307. Sands JM, Timmer RT, Gunn RB. Urea transporters in kidney and erythrocytes. Am J Physiol 273: F321–F339, 1997.
 308. Sangari FJ, Cayon AM, Seoane A, Garcia‐Lobo JM. Brucella abortus ure2 region contains an acid activated urea transporter and a nickel transport system. BMC Microbiol 10: 107, 2010.
 309. Schmidt C, Hocherl K, Bucher M. Cytokine‐mediated regulation of urea transporters during experimental endotoxemia. Am J Physiol Renal Physiol 292: F1479–F1489, 2007.
 310. Schwartz GJ, Zavilowitz BJ, Radice AD, Garcia‐Perez A, Sands JM. Maturation of aldose reductase expression in the neonatal rat inner medulla. J Clin Invest 90: 1275–1283, 1992.
 311. Schwartz MJ, Kokko JP. Urinary concentrating defect of adrenal insufficiency. Permissive role of adrenal steroids on the hydroosmotic response across the rabbit cortical collecting duct. J Clin Invest 66: 234–242, 1980.
 312. Seamon KB, Padgett W, Daly JW. Forskolin: Unique diterpene activator of adenylate cyclase in membranes and intact cells. Proc Natl Acad Sci U S A 87: 3363–3367, 1981.
 313. Shannon JA. Glomerular filtration and urea excretion in relation to urine flow in the dog. Am J Physiol 117: 206–225, 1936.
 314. Shannon JA. Urea excretion in the normal dog during forced diuresis. Am J Physiol 122: 782–787, 1938.
 315. Shayakul C, Knepper MA, Smith CP, DiGiovanni SR, Hediger MA. Segmental localization of urea transporter mRNAs in rat kidney. Am J Physiol 272: F654–F660, 1997.
 316. Shayakul C, Smith CP, Mackenzie HS, Lee W‐S, Brown D, Hediger MA. Long‐term regulation of urea transporter expression by vasopressin in Brattleboro rats. Am J Physiol Renal Physiol 278: F620–F627, 2000.
 317. Shayakul C, Steel A, Hediger MA. Molecular cloning and characterization of the vasopressin‐regulated urea transporter of rat kidney collecting ducts. J Clin Invest 98: 2580–2587, 1996.
 318. Shayakul C, Tsukaguchi H, Berger UV, Hediger MA. Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts. Am J Physiol Renal Physiol 280: F487–F494, 2001.
 319. Sidoux‐Walter F, Lucien N, Nissinen R, Sistonen P, Henry S, Moulds J, Cartron J‐P, Bailly P. Molecular heterogeneity of the Jknull phenotype: Expression analysis of the Jk(S291P) mutation found in Finns. Blood 96: 1566–1573, 2000.
 320. Sidoux‐Walter F, Lucien N, Olivès B, Gobin R, Rousselet G, Kamsteeg EJ, Ripoche P, Deen PMT, Cartron JP, Bailly P. At physiological expression levels the Kidd blood group/urea transporter protein is not a water channel. J Biol Chem 274: 30228–30235, 1999.
 321. Silberstein C, Zotta E, Ripoche P, Ibarra C. Characterization of urea transport in Bufo arenarum oocytes. J Exp Zool 298A: 10–15, 2003.
 322. Simmons NL, Chaudhry AS, Graham C, Scriven ES, Thistlethwaite A, Smith CP, Stewart GS. Dietary regulation of ruminal bUT‐B urea transporter expression and localization. J Anim Sci 87: 3288–3299, 2009.
 323. Smith CP, Fenton RA. Genomic organization of the mammalian SLC14a2 urea transporter genes. J Membr Biol 212: 109–117, 2006.
 324. Smith CP, Lee W‐S, Martial S, Knepper MA, You G, Sands JM, Hediger MA. Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J Clin Invest 96: 1556–1563, 1995.
 325. Smith CP, Potter EA, Fenton RA, Stewart GS. Characterization of a human colonic cDNA encoding a structurally novel urea transporter, UT‐A6. Am J Physiol Cell Physiol 287: C1087–C1093, 2004.
 326. Smith HW. De urina. Kaiser Found Med Bull 6: 1–17, 1958.
 327. Sohara E, Rai T, Miyazaki J, Verkman AS, Sasaki S, Uchida S. Defective water and glycerol transport in the proximal tubules of AQP7 knockout mice. Am J Physiol Renal Physiol 289: F1195–F1200, 2005.
 328. Spector DA, Yang Q, Liu J, Wade JB. Expression, localization, and regulation of urea transporter B in rat urothelia. Am J Physiol Renal Physiol 287: F102–F108, 2004.
 329. Spector DA, Yang Q, Wade JB. High urea and creatinine concentrations and urea transporter B in mammalian urinary tract tissues. Am J Physiol Renal Physiol 292: F467–F474, 2007.
 330. Star RA. Apical membrane limits urea permeation across the rat inner medullary collecting duct. J Clin Invest 86: 1172–1178, 1990.
 331. Star RA, Nonoguchi H, Balaban R, Knepper MA. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81: 1879–1888, 1988.
 332. Stephenson JL. Concentration of urine in a central core model of the renal counterflow system. Kidney Int 2: 85–94, 1972.
 333. Stewart GS, Fenton RA, Thévenod F, Smith CP. Urea movement across mouse colonic plasma membranes is mediated by UT‐A urea transporters. Gastroenterology 126: 765–773, 2004.
 334. Stewart GS, Fenton RA, Wang W, Kwon TH, White SJ, Collins VM, Cooper G, Nielsen S, Smith CP. The basolateral expression of mUT‐A3 in the mouse kidney. Am J Physiol Renal Physiol 286: F979–F987, 2004.
 335. Stewart GS, Graham C, Cattell S, Smith TPL, Simmons NL, Smith CP. UT‐B is expressed in bovine rumen: Potential role in ruminal urea transport. Am J Physiol Regul Integr Comp Physiol 289: R605–R612, 2005.
 336. Stewart GS, King SL, Potter EA, Smith CP. Acute regulation of the urea transporter mUT‐A3 expressed in a MDCK cell line. Am J Physiol Renal Physiol 292: F1157–F1163, 2007.
 337. Stewart GS, O'Brien JH, Smith CP. Ubiquitination regulates the plasma membrane expression of renal UT‐A urea transporters. Am J Physiol Cell Physiol 295: C121–C129, 2008.
 338. Stewart GS, Thistlethwaite A, Lees H, Cooper GJ, Smith C. Vasopressin regulation of the renal UT‐A3 urea transporter. Am J Physiol Renal Physiol 296: F642–F649, 2009.
 339. Suda S, Rai T, Sohara E, Sasaki S, Uchida S. Postnatal expression of KLF12 in the inner medullary collecting ducts of kidney and its trans‐activation of UT‐A1 urea transporter promoter. Biochem Biophys Res Commun 344: 246–252, 2006.
 340. Terada Y, Tomita K, Nonoguchi H, Marumo F. PCR localization of angiotensin II receptor and angiotensin mRNAs in rat kidney. Kidney Int 43: 1251–1259, 1993.
 341. Terris J, Ecelbarger CA, Sands JM, Knepper MA. Long‐term regulation of collecting duct urea transporter proteins in rat. J Am Soc Nephrol 9: 729–736, 1998.
 342. Terris JM, Knepper MA, Wade JB. UT‐A3: Localization and characterization of an additional urea transporter isoform in the IMCD. Am J Physiol Renal Physiol 280: F325–F332, 2001.
 343. Tian W, Cohen DM. Signaling and gene regulation by urea in cells of the mammalian kidney medulla. Comp Biochem Physiol A 130: 429–436, 2001.
 344. Tickle P, Thistlethwaite A, Smith CP, Stewart GS. Novel bUT‐B2 urea transporter isoform is constitutively activated. Am J Physiol Regul Integr Comp Physiol 297: R323–R329, 2009.
 345. Timmer RT, Klein JD, Bagnasco SM, Doran JJ, Verlander JW, Gunn RB, Sands JM. Localization of the urea transporter UT‐B protein in human and rat erythrocytes and tissues. Am J Physiol Cell Physiol 281: C1318–C1325, 2001.
 346. Timmer RT, Sands JM. Lithium intoxication. J Am Soc Nephrol 10: 666–674, 1999.
 347. Trinder D, Phillips PA, Stephenson JM, Risvanis J, Aminian A, Adam W, Cooper M, Johnston CI. Vasopressin V1 and V2 receptors in diabetes mellitus. Am J Physiol Endocrinol Metab 266: E217–E223, 1994.
 348. Trinh‐Trang‐Tan M‐M, Cartron JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: Altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant 20: 1984–1988, 2005.
 349. Trinh‐Trang‐Tan M‐M, Geelen G, Teillet L, Corman B. Urea transporter expression in aging kidney and brain during dehydration. Am J Physiol Regul Integr Comp Physiol 285: R1355–R1365, 2003.
 350. Trinh‐Trang‐Tan M‐M, Lasbennes F, Gane P, Roudier N, Ripoche P, Cartron J‐P, Bailly P. UT‐B1 proteins in rat: Tissue distribution and regulation by antidiuretic hormone in kidney. Am J Physiol Renal Physiol 283: F912–F922, 2002.
 351. Tsukaguchi H, Shayakul C, Berger UV, Tokui T, Brown D, Hediger MA. Cloning and characterization of the urea transporter UT3. Localization in rat kidney and testis. J Clin Invest 99: 1506–1515, 1997.
 352. Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics 32: 229–253, 2008.
 353. Uchida S, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S. Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT‐A2. Mol Cell Biol 25: 7357–7363, 2005.
 354. Uchiyama M, Kikuchi R, Konno N, Wakasugi T, Matsuda K. Localization and regulation of a facilitative urea transporter in the kidney of the red‐eared slider turtle (Trachemys scripta elegans). J Exp Biol 212: 249–256, 2009.
 355. Uchiyama M, Konno N. Hormonal regulation of ion and water transport in anuran amphibians. Gen Comp Endocrinol 147: 54–61, 2006.
 356. Ullrich KJ, Rumrich G, Schmidt‐Nielsen B. Urea transport in the collecting duct of rats on normal and low protein diet. Pfluegers Arch 295: 147–156, 1967.
 357. Ullrich KJ, Schmidt‐Nielsen B, O'Dell R, Pehling G, Gottschalk CW, Lassiter WE, Mylle M. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am J Physiol 204: 527–531, 1963.
 358. Valtin H. Structural and functional heterogeneity of mammalian nephrons. Am J Physiol 233: F491–F501, 1977.
 359. Van Zwieten PA, Kam KL, ijl AJ, Hendriks MGC, Beenen OHM, Pfaffendorf M. Hypertensive diabetic ratsin pharmacological studies. Pharmacological Research 33: 95–105, 1996.
 360. Verkman AS, Yang BX, Song YL, Manley GT, Ma TH. Role of water channels in fluid transport studied by phenotype analysis of aquaporin knockout mice. Exp Physiol 85: 233S–241S, 2000.
 361. Wade JB, Lee AJ, Liu J, Ecelbarger CA, Mitchell C, Bradford AD, Terris J, Kim G‐H, Knepper MA. UT‐A2: A 55 kDa urea transporter protein in thin descending limb of Henle's loop whose abundance is regulated by vasopressin. Am J Physiol 278: F52–F62, 2000.
 362. Wagner L, Klein JD, Sands JM, Baylis C. Urea transporters are widely distributed in endothelial cells and mediate inhibition of l‐arginine transport. Am J Physiol Renal Physiol 283: F578–F582, 2002.
 363. Wall SM, Suk Han J, Chou C‐L, Knepper MA. Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262: F989–F998, 1992.
 364. Walsh PJ, Grosell M, Goss GG, Bergman HL, Bergman AN, Wilson P, Laurent P, Alper SL, Smith CP, Kamunde C, Wood CM. Physiological and molecular characterization of urea transport by the gills of the Lake Magadi tilapia (Alcolapia grahami). J Exp Biol 204: 509–520, 2001.
 365. Walsh PJ, Wood CM, Perry SF, Thomas S. Urea transport by hepatocytes and red blood cells of selected elasmobrach and teleost fishes. J Exp Med 193: 321–335, 1994.
 366. Wang X, Harris PC, Somlo S, Batlle D, Torres VE. Effect of calcium‐sensing receptor activation in models of autosomal recessive or dominant polycystic kidney disease. Nephrol Dial Transplant 24: 526–534, 2009.
 367. Wang X‐Y, Beutler K, Nielsen J, Nielsen S, Knepper MA, Masilamani S. Decreased abundance of collecting duct urea transporters UT‐A1 and UT‐A3 with ECF volume expansion. Am J Physiol Renal Physiol 282: F577–F584, 2002.
 368. Wang Y, Klein JD, Blount MA, Martin CF, Kent KJ, Pech V, Wall SM, Sands JM. Epac regulation of the UT‐A1 urea transporter in rat IMCDs. J Am Soc Nephrol 20: 2018–2024, 2009.
 369. Wang Y, Liedtke CM, Klein JD, Sands JM. Protein kinase C regulates urea permeability in the rat inner medullary collecting duct. Am J Physiol Renal Physiol 299: 1401‐1406, 2010.
 370. Wester ES, Johnson ST, Copeland T, Malde R, Lee E, Storry JR, Olsson ML. Erythroid urea transporter deficiency due to novel JKnull alleles. Transfusion 48: 365–372, 2008.
 371. Wieth JO, Funder J, Gunn RB, Brahm J. Passive transport pathways for chloride and urea through the red cell membrane. In: Bolis K, Bloch K, Luria SE, Lynen F, editors. Comparative Biochemistry and Physiology of Transport. Amsterdam: Elsevier/North‐Holland, 1974, p. 317–337.
 372. Wilkie MP. Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. J Exp Zool 293: 284–301, 2002.
 373. Wood CM, McDonald MD, Sundin L, Laurent P, Walsh PJ. Pulsatile urea excretion in the gulf toadfish: Mechanisms and controls. Comp Biochem Physiol B Biochem Mol Biol 136: 667–684, 2003.
 374. Wood CM, Walsh P, Chew S, Ip Y. Greatly elevated urea excretion after air exposure appears to be carrier mediated in the slender lungfish (Protopterus dolloi). Physiol Biochem Zool 78: 893–907, 2005.
 375. Wood CM, Warne JM, Wang YX, McDonald MD, Balment RJ, Laurent P, Walsh PJ. Do circulating plasma AVT and/or cortisol levels control pulsatile urea excretion in the gulf toadfish (Opsanus beta)? Comp Biochem Physiol A 129: 859–872, 2001.
 376. Wright PA, Land MD. Urea production and transport in teleost fishes. Comp Biochem Physiol A 119A: 47–54, 1998.
 377. Xu Y, Olives B, Bailly P, Fischer E, Ripoche P, Ronco P, Cartron J‐P, Rondeau E. Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int 51: 138–146, 1997.
 378. Yamaguchi Y, Takaki S, Hyodo S. Subcellular distribution of urea transporter in the collecting tubule of shark kidney is dependent on environmental salinity. J Exp Zool A Ecol Genet Physiol 311: 705–718, 2009.
 379. Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea‐selective concentrating defect in transgenic mice lacking urea transporter UT‐B. J Biol Chem 277: 10633–10637, 2002.
 380. Yang B, Verkman AS. Analysis of double knockout mice lacking aquaporin‐1 and urea transporter UT‐B. J Biol Chem 277: 36782–36786, 2002.
 381. Yang BX, Verkman AS. Urea transporter UT3 functions as an efficient water channel ‐ Direct evidence for a common water/urea pathway. J Biol Chem 273: 9369–9372, 1998.
 382. Yang JY, Tam WY, Tam S, Guo H, Wu X, Li G, Chau JFL, Klein JD, Chung SK, Sands JM, Chung SSM. Genetic restoration of aldose reductase to the collecting tubules restores maturation of the urine concentrating mechanism. Am J Physiol Renal Physiol 291: F186–F195, 2006.
 383. Yano Y, Monteiro JL, Seguro AC. Effect of amphotericin B on water and urea transport in the inner medullary collecting duct. J Am Soc Nephrol 5: 68–74, 1994.
 384. Yano Y, Rodrigues AC Jr, deBraganca AC, Andrade LC, Magaldi AJ. PKC stimulated by glucagon decreases UT‐A1 urea transporter expression in rat IMCD. Pfluegers Arch 456: 1229–1237, 2008.
 385. Yasui M, Zelenin SM, Celsi G, Aperia A. Adenylate cyclase‐coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol Renal Physiol 272: F443–F450, 1997.
 386. Yip KP. Epac‐mediated Ca2+ mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 291: F882–F890, 2008.
 387. You G, Smith CP, Kanai Y, Lee W‐S, Stelzner M, Hediger MA. Cloning and characterization of the vasopressin‐regulated urea transporter. Nature 365: 844–847, 1993.
 388. Yu H, Meng Y, Wang LS, Jin X, Gao LF, Zhou L, Ji K, Li Y, Zhao LJ, Chen GQ, Zhao XJ, Yang B. Differential protein expression in heart in UT‐B null mice with cardiac conduction defects. Proteomics 9: 504–511, 2009.
 389. Yu MJ, Pisitkun T, Wang G, Aranda JF, Gonzales PA, Tchapyjnikov D, Shen RF, Alonso MA, Knepper MA. Large‐scale quantitative LC‐MS/MS analysis of detergent‐resistant membrane proteins from rat renal collecting duct. Am J Physiol Cell Physiol 295: C661–C678, 2008.
 390. Yu MJ, Pisitkun T, Wang G, Shen RF, Knepper MA. LC‐MS/MS analysis of apical and basolateral plasma membranes of rat renal collecting duct cells. Mol Cell Proteomics 5: 2131–2145, 2006.
 391. Yuan J, Pannabecker TL. Architecture of inner medullary descending and ascending vasa recta: Pathways for countercurrent exchange. Am J Physiol Renal Physiol 299: F265–F272, 2010.
 392. Zhai XY, Fenton RA, Andreasen A, Thomsen JS, Christensen AE. Aquaporin‐1 is not expressed in descending thin limbs of short‐loop nephrons. J Am Soc Nephrol 18: 2937–2944, 2007.
 393. Zhang C, Sands JM, Klein JD. Vasopressin rapidly increases the phosphorylation of the UT‐A1 urea transporter activity in rat IMCDs through PKA. Am J Physiol Renal Physiol 282: F85–F90, 2002.
 394. Zhang R, Verkman AS. Urea transport in freshly isolated and cultured cells from rat inner medullary collecting duct. J Membr Biol 117: 253–261, 1990.
 395. Zhang W, Edwards A. Theoretical effects of UTB urea transporters in the renal medullary microcirculation. Am J Physiol Renal Physiol 285: F731–F747, 2003.
 396. Zhang Y, Sands JM, Kohan DE, Nelson RD, Martin CF, Carlson NG, Kamerath CD, Ge Y, Klein JD, Kishore BK. Potential role of purinergic signaling in urinary concentration in inner medulla: Insights from P2Y2 receptor gene knockout mice. Am J Physiol Renal Physiol 295: F1715–F1724, 2008.
 397. Zhao D, Bankir L, Qian L, Yang D, Yang B. Urea and urine concentrating ability in mice lacking AQP1 and AQP3. Am J Physiol Renal Physiol 291: F429–F438, 2006.
 398. Zhao D, Sonawane ND, Levin MH, Yang B. Comparative transport efficiencies of urea analogues through urea transporter UT‐B. Biochimica et Biophysica Acta (BBA)—Biomembranes 1768: 1815–1821, 2007.
 399. Zotta E, Ochoa F, Tironi FC, Damiano A, Silberstein C, Levy YN, Ibarra C. UT‐A expression in pars recta from a rat model of chronic renal failure. J Nephrol 21: 947–958, 2008.

Related Articles:

Renal Plasma Membranes: Isolation, General Properties, and Biochemical Components
Renal Handling of Urea
Renal Actions of Vasopressin

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Janet D. Klein, Mitsi A. Blount, Jeff M. Sands. Urea Transport in the Kidney. Compr Physiol 2011, 1: 699-729. doi: 10.1002/cphy.c100030