References |
1. |
Aderem A,
Underhill DM.
Mechanisms of phagocytosis in macrophages.
Annu Rev Immunol
17:
593‐593,
1999.
|
2. |
Alberts B.
Molecular biology of the cell.
New York:
Garland Science,
2002.
|
3. |
Anderson RG.
The caveolae membrane system.
Annu Rev Biochem
67:
199‐199,
1998.
|
4. |
Anderson RG,
Jacobson K.
A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains.
Science
296:
1821‐1821,
2002.
|
5. |
Araujo JA,
Barajas B,
Kleinman M,
Wang X,
Bennett BJ,
Gong KW,
Navab M,
Harkema J,
Sioutas C,
Lusis AJ,
Nel AE.
Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress.
Circ Res
102:
589‐589,
2008.
|
6. |
Bakshi MS,
Zhao L,
Smith R,
Possmayer F,
Petersen NO.
Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro.
Biophys J
94:
855‐855,
2008.
|
7. |
Berntsen P,
Park CY,
Rothen‐Rutishauser B,
Tsuda A,
Sager TM,
Molina RM,
Donaghey TC,
Alencar AM,
Kasahara DI,
Ericsson T,
Millet EJ,
Swenson J,
Tschumperlin DJ,
Butler JP,
Brain JD,
Fredberg JJ,
Gehr P,
Zhou EH.
Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells.
J R Soc Interface
7
Suppl 3:
S331‐S340,
2010.
|
8. |
Blank F,
Rothen‐Rutishauser B,
Gehr P.
Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens.
Am J Respir Cell Mol Biol
36:
669‐669,
2007.
|
9. |
Boxall AB,
Hardy A,
Beulke S,
Boucard T,
Burgin L,
Falloon PD,
Haygarth PM,
Hutchinson T,
Kovats RS,
Leonardi G,
Levy LS,
Nichols G,
Parsons SA,
Potts L,
Stone D,
Topp E,
Turley DB,
Walsh K,
Wellington EM,
Williams RJ.
Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.
Environ Health Perspect
117:
508‐508,
2009.
|
10. |
Brain JD.
Lung macrophages: how many kinds are there? What do they do?
Am Rev Respir Dis
137:
507‐507,
1988.
|
11. |
Brain JD,
Gehr P,
Kavet RI.
Airway macrophages. The importance of the fixation method.
Am Rev Respir Dis
129:
823‐823,
1984.
|
12. |
Brandenberger C,
Muhlfeld C,
Ali Z,
Lenz AG,
Schmid O,
Parak WJ,
Gehr P,
Rothen‐Rutishauser B.
Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol‐coated gold nanoparticles.
Small
6:
1669‐1669,
2010.
|
13. |
Brauner EV,
Forchhammer L,
Moller P,
Simonsen J,
Glasius M,
Wahlin P,
Raaschou‐Nielsen O,
Loft S.
Exposure to ultrafine particles from ambient air and oxidative stress‐induced DNA damage.
Environ Health Perspect
115:
1177‐1177,
2007.
|
14. |
Brodsky FM,
Chen CY,
Knuehl C,
Towler MC,
Wakeham DE.
Biological basket weaving: Formation and function of clathrin‐coated vesicles.
Annu Rev Cell Dev Biol
17:
517‐517,
2001.
|
15. |
Brown JS,
Zeman KL,
Bennett WD.
Ultrafine particle deposition and clearance in the healthy and obstructed lung.
Am J Respir Crit Care Med
166:
1240‐1240,
2002.
|
16. |
Bruske I,
Hampel R,
Socher MM,
Ruckerl R,
Schneider A,
Heinrich J,
Oberdorster G,
Wichmann HE,
Peters A.
Impact of ambient air pollution on the differential white blood cell count in patients with chronic pulmonary disease.
Inhal Toxicol
22:
245‐245,
2010.
|
17. |
Brzoska M,
Langer K,
Coester C,
Loitsch S,
Wagner TO,
Mallinckrodt C.
Incorporation of biodegradable nanoparticles into human airway epithelium cells‐in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases.
Biochem Biophys Res Commun
318:
562‐562,
2004.
|
18. |
Card JW,
Zeldin DC,
Bonner JC,
Nestmann ER.
Pulmonary applications and toxicity of engineered nanoparticles.
Am J Physiol Lung Cell Mol Physiol
295:
L400‐L411,
2008.
|
19. |
Chang LY GP,
Rothen‐Rutishauser B,
Blank F,
Mühfeld C,
Crapo JD.
Alveolar epithelium in lung toxicology. In:
McQueen CA, editor.
Comprehensive toxicology (2nd ed).
Oxford:
Elsevier,
pp. 59‐91,
2010.
|
20. |
Clift MJ,
Gehr P,
Rothen‐Rutishauser B.
Nanotoxicology: A perspective and discussion of whether or not in vitro testing is a valid alternative.
Arch Toxicol, DOI 10.1007/s00204‐010‐0560‐6, 2010.
|
21. |
Conner SD,
Schmid SL.
Regulated portals of entry into the cell.
Nature
422:
37‐37,
2003.
|
22. |
Daniels CB,
Orgeig S.
Pulmonary surfactant: The key to the evolution of air breathing.
News Physiol Sci
18:
151‐151,
2003.
|
23. |
de Haar C,
Hassing I,
Bol M,
Bleumink R,
Pieters R.
Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co‐administered antigen in mice.
Clin Exp Allergy
36:
1469‐1469,
2006.
|
24. |
Donaldson K,
Aitken R,
Tran L,
Stone V,
Duffin R,
Forrest G,
Alexander A.
Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety.
Toxicol Sci
92:
5‐5,
2006.
|
25. |
Donaldson K,
Stone V,
Borm PJ,
Jimenez LA,
Gilmour PS,
Schins RP,
Knaapen AM,
Rahman I,
Faux SP,
Brown DM,
MacNee W.
Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10).
Free Radic Biol Med
34:
1369‐1369,
2003.
|
26. |
Donaldson K,
Stone V,
Tran CL,
Kreyling W,
Borm PJ.
Nanotoxicology.
Occup Environ Med
61:
727‐727,
2004.
|
27. |
Donaldson K,
Tran L,
Jimenez LA,
Duffin R,
Newby DE,
Mills N,
MacNee W,
Stone V.
Combustion‐derived nanoparticles: a review of their toxicology following inhalation exposure.
Part Fibre Toxicol
2:
10,
2005.
|
28. |
Donath E.
Biosensors: Viruses for ultrasensitive assays.
Nat Nanotechnol
4:
215‐215,
2009.
|
29. |
Droge W,
Schulze‐Osthoff K,
Mihm S,
Galter D,
Schenk H,
Eck HP,
Roth S,
Gmunder H.
Functions of glutathione and glutathione disulfide in immunology and immunopathology.
FASEB J
8:
1131‐1131,
1994.
|
30. |
Dudek SM,
Garcia JG.
Cytoskeletal regulation of pulmonary vascular permeability.
J Appl Physiol
91:
1487‐1487,
2001.
|
31. |
Edidin M.
Membrane cholesterol, protein phosphorylation, and lipid rafts.
Sci STKE
2001:
pe1,
2001.
|
32. |
Eisenberg D,
Schwarz E,
Komaromy M,
Wall R.
Analysis of membrane and surface protein sequences with the hydrophobic moment plot.
J Mol Biol
179:
125‐125,
1984.
|
33. |
Elder A,
Gelein R,
Silva V,
Feikert T,
Opanashuk L,
Carter J,
Potter R,
Maynard A,
Ito Y,
Finkelstein J,
Oberdorster G.
Translocation of inhaled ultrafine manganese oxide particles to the central nervous system.
Environ Health Perspect
114:
1172‐1172,
2006.
|
34. |
Erpenbeck VJ,
Malherbe DC,
Sommer S,
Schmiedl A,
Steinhilber W,
Ghio AJ,
Krug N,
Wright JR,
Hohlfeld JM.
Surfactant protein D increases phagocytosis and aggregation of pollen‐allergen starch granules.
Am J Physiol Lung Cell Mol Physiol
288:
L692‐L698,
2005.
|
35. |
Fanning EW,
Froines JR,
Utell MJ,
Lippmann M,
Oberdorster G,
Frampton M,
Godleski J,
Larson TV.
Particulate matter (PM) research centers (1999‐2005) and the role of interdisciplinary center‐based research.
Environ Health Perspect
117:
167‐167,
2009.
|
36. |
Foster KA,
Yazdanian M,
Audus KL.
Microparticulate uptake mechanisms of in‐vitro cell culture models of the respiratory epithelium.
J Pharm Pharmacol
53:
57‐57,
2001.
|
37. |
Gaskell G,
Allum N,
Bauer M,
Durant J,
Allansdottir A,
Bonfadelli H,
Boy D,
de Cheveigne S,
Fjaestad B,
Gutteling JM,
Hampel J,
Jelsoe E,
Jesuino JC,
Kohring M,
Kronberger N,
Midden C,
Nielsen TH,
Przestalski A,
Rusanen T,
Sakellaris G,
Torgersen H,
Twardowski T,
Wagner W.
Biotechnology and the European public.
Nat Biotechnol
18:
935‐935,
2000.
|
38. |
Gehr P,
Bachofen M,
Weibel ER.
The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity.
Respir Physiol
32:
121‐121,
1978.
|
39. |
Gehr P,
Green FH,
Geiser M,
Im Hof V,
Lee MM,
Schurch S.
Airway surfactant, a primary defense barrier: Mechanical and immunological aspects.
J Aerosol Med
9:
163‐163,
1996.
|
40. |
Gehr P,
Muhlfeld C,
Rothen‐Rutishauser B,
Blank F.
Particle‐lung Interactions.
New York:
Informa Healthcare USA,
2009.
|
41. |
Gehr P,
Schürch S,
Berthiaume Y,
Im Hof V, and
Geiser M.
Particle retention in airways by surfactant.
J Aerosol Med
3:
27‐27,
1990.
|
42. |
Geiser M,
Casaulta M,
Kupferschmid B,
Schulz H,
Semmler‐Behnke M,
Kreyling W.
The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles.
Am J Respir Cell Mol Biol
38:
371‐371,
2008.
|
43. |
Geiser M,
Rothen‐Rutishauser B,
Kapp N,
Schurch S,
Kreyling W,
Schulz H,
Semmler M,
Im HV,
Heyder J,
Gehr P.
Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells.
Environ Health Perspect
113:
1555‐1555,
2005.
|
44. |
Gerber PJ,
Lehmann C,
Gehr P,
Schurch S.
Wetting and spreading of a surfactant film on solid particles: Influence of sharp edges and surface irregularities.
Langmuir
22:
5273‐5273,
2006.
|
45. |
Ghio AJ,
Bennett WD.
Metal particles are inappropriate for testing a postulate of extrapulmonary transport.
Environ Health Perspect
115:
A70‐A71,
2007.
|
46. |
Gil J,
Weibel ER.
Extracellular lining of bronchioles after perfusion‐fixation of rat lungs for electron microscopy.
Anat Rec
169:
185‐185,
1971.
|
47. |
Godfrey RW.
Human airway epithelial tight junctions.
Microsc Res Tech
38:
488‐488,
1997.
|
48. |
Gurr JR,
Wang AS,
Chen CH,
Jan KY.
Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells.
Toxicology
213:
66‐66,
2005.
|
49. |
Harding CV,
Boom WH.
Regulation of antigen presentation by mycobacterium tuberculosis: A role for Toll‐like receptors.
Nat Rev Microbiol
8:
296‐296,
2010.
|
50. |
He F,
Shaffer ML,
Li X,
Rodriguez‐Colon S,
Wolbrette DL,
Williams R,
Cascio WE,
Liao D.
Individual‐level PM(2.5) exposure and the time course of impaired heart rate variability: The APACR study.
J Expo Sci Environ Epidemiol
21:
65‐65,
2010.
|
51. |
Heyder J,
Gebhart J,
Rudolf G,
Schiller CF,
Stahlhofen W.
Deposition of particles in the human respiratory tract in the size range 0.005‐15 [mu]m.
J Aerosol Sci
17:
811‐811,
1986.
|
52. |
Hillaireau H,
Couvreur P.
Nanocarriers’ entry into the cell: Relevance to drug delivery.
Cell Mol Life Sci
66:
2873‐2873,
2009.
|
53. |
Hoet PH,
Bruske‐Hohlfeld I,
Salata OV.
Nanoparticles—known and unknown health risks.
J Nanobiotechnol
2:
12,
2004.
|
54. |
Holt PG,
Schon‐Hegrad MA.
Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue: Implications for immune function studies.
Immunology
62:
349‐349,
1987.
|
55. |
Holt PG,
Schon‐Hegrad MA,
McMenamin PG.
Dendritic cells in the respiratory tract.
Int Rev Immunol
6:
139‐139,
1990.
|
56. |
Holt PG,
Stumbles PA.
Characterization of dendritic cell populations in the respiratory tract.
J Aerosol Med
13:
361‐361,
2000.
|
57. |
Jahnsen FL,
Strickland DH,
Thomas JA,
Tobagus IT,
Napoli S,
Zosky GR,
Turner DJ,
Sly PD,
Stumbles PA,
Holt PG.
Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus.
J Immunol
177:
5861‐5861,
2006.
|
58. |
Kato T,
Yashiro T,
Murata Y,
Herbert DC,
Oshikawa K,
Bando M,
Ohno S,
Sugiyama Y.
Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries.
Cell Tissue Res
311:
47‐47,
2003.
|
59. |
Kendall M.
Fine airborne urban particles (PM2.5) sequester lung surfactant and amino acids from human lung lavage.
Am J Physiol Lung Cell Mol Physiol
293:
L1053‐L1058,
2007.
|
60. |
Kilburn KH.
A hypothesis for pulmonary clearance and its implications.
Am Rev Respir Dis
98:
449‐449,
1968.
|
61. |
Kirchhausen T.
Clathrin.
Annu Rev Biochem
69:
699‐699,
2000.
|
62. |
Kiss AL,
Geuze HJ.
Caveolae can be alternative endocytotic structures in elicited macrophages.
Eur J Cell Biol
73:
19‐19,
1997.
|
63. |
Kiss AL,
Kittel A.
Early endocytotic steps in elicited macrophages: Omega‐shaped plasma membrane vesicles at their cell surface.
Cell Biol Int
19:
527‐527,
1995.
|
64. |
Kreyling WG,
Semmler M,
Erbe F,
Mayer P,
Takenaka S,
Schulz H,
Oberdorster G,
Ziesenis A.
Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low.
J Toxicol Environ Health A
65:
1513‐1513,
2002.
|
65. |
Lehmann AD,
Parak WJ,
Zhang F,
Ali Z,
Rocker C,
Nienhaus GU,
Gehr P,
Rothen‐Rutishauser B.
Fluorescent‐magnetic hybrid nanoparticles induce a dose‐dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization.
Small
6:
753‐753,
2010.
|
66. |
Lehnert BE.
Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung.
Environ Health Perspect
97:
17‐17,
1992.
|
67. |
Lesniak W,
Bielinska AU,
Sun K,
Janczak KW,
Shi X,
Baker JR, Jr,
Balogh LP.
Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection.
Nano Lett
5:
2123‐2123,
2005.
|
68. |
Li N,
Sioutas C,
Cho A,
Schmitz D,
Misra C,
Sempf J,
Wang M,
Oberley T,
Froines J,
Nel A.
Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage.
Environ Health Perspect
111:
455‐455,
2003.
|
69. |
Limbach LK,
Li Y,
Grass RN,
Brunner TJ,
Hintermann MA,
Muller M,
Gunther D,
Stark WJ.
Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations.
Environ Sci Technol
39:
9370‐9370,
2005.
|
70. |
Liu Y,
Meyer‐Zaika W,
Franzka S,
Schmid G,
Tsoli M,
Kuhn H.
Gold‐cluster degradation by the transition of B‐DNA into A‐DNA and the formation of nanowires.
Angew Chem Int Ed Engl
42:
2853‐2853,
2003.
|
71. |
Lohmann‐Matthes ML,
Steinmuller C,
Franke‐Ullmann G.
Pulmonary macrophages.
Eur Respir J
7:
1678‐1678,
1994.
|
72. |
MacNee W.
Oxidative stress and lung inflammation in airways disease.
Eur J Pharmacol
429:
195‐195,
2001.
|
73. |
Maina JN,
West JB.
Thin and strong! The bioengineering dilemma in the structural and functional design of the blood‐gas barrier.
Physiol Rev
85:
811‐811,
2005.
|
74. |
Margulis‐Goshen K,
Netivi HD,
Major DT,
Gradzielski M,
Raviv U,
Magdassi S.
Formation of organic nanoparticles from volatile microemulsions.
J Colloid Interface Sci
342:
283‐283,
2010.
|
75. |
Maynard AD.
Nanotechnology: the next big thing, or much ado about nothing?
Ann Occup Hyg
51:
1‐1,
2007.
|
76. |
Maynard AD,
Aitken RJ,
Butz T,
Colvin V,
Donaldson K,
Oberdorster G,
Philbert MA,
Ryan J,
Seaton A,
Stone V,
Tinkle SS,
Tran L,
Walker NJ,
Warheit DB.
Safe handling of nanotechnology.
Nature
444:
267‐267,
2006.
|
77. |
Meiring JJ,
Borm PJ,
Bagate K,
Semmler M,
Seitz J,
Takenaka S,
Kreyling WG.
The influence of hydrogen peroxide and histamine on lung permeability and translocation of iridium nanoparticles in the isolated perfused rat lung.
Part Fibre Toxicol
2:
3,
2005.
|
78. |
Mellman I,
Steinman RM.
Dendritic cells: specialized and regulated antigen processing machines.
Cell
106:
255‐255,
2001.
|
79. |
Michiels C.
Endothelial cell functions.
J Cell Physiol
196:
430‐430,
2003.
|
80. |
Mills NL,
Amin N,
Robinson SD,
Anand A,
Davies J,
Patel D,
de la Fuente JM,
Cassee FR,
Boon NA,
MacNee W,
Millar AM,
Donaldson K,
Newby DE.
Do inhaled carbon nanoparticles translocate directly into the circulation in humans?
Am J Respir Crit Care Med
173:
426‐426,
2006.
|
81. |
Muhlfeld C,
Gehr P,
Rothen‐Rutishauser B.
Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract.
Swiss Med Wkly
138:
387‐387,
2008.
|
82. |
Muhlfeld C,
Mayhew TM,
Gehr P,
Rothen‐Rutishauser B.
A novel quantitative method for analyzing the distributions of nanoparticles between different tissue and intracellular compartments.
J Aerosol Med
20:
395‐395,
2007.
|
83. |
Muhlfeld C,
Rothen‐Rutishauser B,
Blank F,
Vanhecke D,
Ochs M,
Gehr P.
Interactions of nanoparticles with pulmonary structures and cellular responses.
Am J Physiol Lung Cell Mol Physiol
294:
L817‐L829,
2008.
|
84. |
Nemmar A,
Hoet PH,
Vanquickenborne B,
Dinsdale D,
Thomeer M,
Hoylaerts MF,
Vanbilloen H,
Mortelmans L,
Nemery B.
Passage of inhaled particles into the blood circulation in humans.
Circulation
105:
411‐411,
2002.
|
85. |
Nicod LP.
Lung defenses: An overview.
Eur Respir Rev
95:
45‐45,
2005.
|
86. |
Niess JH,
Reinecker HC.
Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract.
Curr Opin Gastroenterol
21:
687‐687,
2005.
|
87. |
Oberdorster G,
Maynard A,
Donaldson K,
Castranova V,
Fitzpatrick J,
Ausman K,
Carter J,
Karn B,
Kreyling W,
Lai D,
Olin S,
Monteiro‐Riviere N,
Warheit D,
Yang H.
Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy.
Part Fibre Toxicol
2:
8,
2005.
|
88. |
Oberdorster G,
Oberdorster E,
Oberdorster J.
Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles.
Environ Health Perspect
113:
823‐823,
2005.
|
89. |
Oberdorster G,
Sharp Z,
Atudorei V,
Elder A,
Gelein R,
Kreyling W,
Cox C.
Translocation of inhaled ultrafine particles to the brain.
Inhal Toxicol
16:
437‐437,
2004.
|
90. |
Oberdorster G,
Stone V,
Donaldson K.
Toxicology of nanoparticles: A historical perspective.
Nanotoxicology
1:
2‐2,
2007.
|
91. |
Ochs M,
Weibel ER.
Functional Design of the Human Lung for Gas Exchange.
New York:
McGraw‐Hill, Medical Pub. Division,
2008.
|
92. |
Peters A,
Wichmann HE,
Tuch T,
Heinrich J,
Heyder J.
Respiratory effects are associated with the number of ultrafine particles.
Am J Respir Crit Care Med
155:
1376‐1376,
1997.
|
93. |
Peters‐Golden M.
The alveolar macrophage: The forgotten cell in asthma.
Am J Respir Cell Mol Biol
31:
3‐3,
2004.
|
94. |
Poland CA,
Duffin R,
Kinloch I,
Maynard A,
Wallace WA,
Seaton A,
Stone V,
Brown S,
Macnee W,
Donaldson K.
Carbon nanotubes introduced into the abdominal cavity of mice show asbestos‐like pathogenicity in a pilot study.
Nat Nanotechnol
3:
423‐423,
2008.
|
95. |
Pollard TD,
Earnshaw WC,
Lippincott‐Schwartz J,
Johnson GT.
Cell biology.
Philadelphia:
Saunders Elsevier,
2007.
|
96. |
Pope CA III,
Ezzati M,
Dockery DW.
Fine‐particulate air pollution and life expectancy in the United States.
N Engl J Med
360:
376‐376,
2009.
|
97. |
Porter AE,
Gass M,
Muller K,
Skepper JN,
Midgley P,
Welland M.
Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte‐derived macrophage cells using energy‐filtered transmission electron microscopy and electron tomography.
Environ Sci Technol
41:
3012‐3012,
2007.
|
98. |
Puett RC,
Hart JE,
Yanosky JD,
Paciorek C,
Schwartz J,
Suh H,
Speizer FE,
Laden F.
Chronic fine and coarse particulate exposure, mortality, and coronary heart disease in the Nurses’ Health Study.
Environ Health Perspect
117:
1697‐1697,
2009.
|
99. |
Renwick LC,
Brown D,
Clouter A,
Donaldson K.
Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types.
Occup Environ Med
61:
442‐442,
2004.
|
100. |
Rescigno M,
Urbano M,
Valzasina B,
Francolini M,
Rotta G,
Bonasio R,
Granucci F,
Kraehenbuhl JP,
Ricciardi‐Castagnoli P.
Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.
Nat Immunol
2:
361‐361,
2001.
|
101. |
Rimai DS,
Quesnel DJ,
Busnaina AA.
The adhesion of dry particles in the nanometer to micrometer‐size range.
Colloids Surf A Physicochem Eng Asp
165:
3‐3,
2000.
|
102. |
Rothberg KG,
Heuser JE,
Donzell WC,
Ying YS,
Glenney JR,
Anderson RG.
Caveolin, a protein component of caveolae membrane coats.
Cell
68:
673‐673,
1992.
|
103. |
Rothen‐Rutishauser B,
Blank F,
Muhlfeld C,
Gehr P.
In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter.
Expert Opin Drug Metab Toxicol
4:
1075‐1075,
2008.
|
104. |
Rothen‐Rutishauser B,
Blank F,
Muhlfeld C,
Gehr P.
Nanoparticle‐cell membrane interactions. In:
Gehr P,
Muhlfeld C,
Rothen‐Rutishauser B,
Blank F, editors.
Particle‐lung Interactions (2nd ed).
New York:
Informa Healthcare USA,
2009, p.
226‐226.
|
105. |
Rothen‐Rutishauser B,
Muhlfeld C,
Blank F,
Musso C,
Gehr P.
Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model.
Part Fibre Toxicol
4:
9,
2007.
|
106. |
Rothen‐Rutishauser B,
Schurch S.
Interaction of particles with membranes. In:
Donaldson K,
Borm P, editors.
Particle Toxicology.
Boca Raton:
CRC Press,
2007, p.
139‐139.
|
107. |
Rothen‐Rutishauser BM,
Schurch S,
Haenni B,
Kapp N,
Gehr P.
Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques.
Environ Sci Technol
40:
4353‐4353,
2006.
|
108. |
Schins RP,
Knaapen AM.
Genotoxicity of poorly soluble particles.
Inhal Toxicol
19
Suppl 1:
189‐189,
2007.
|
109. |
Schmid SL.
Clathrin‐coated vesicle formation and protein sorting: an integrated process.
Annu Rev Biochem
66:
511‐511,
1997.
|
110. |
Schneeberger EE.
Ultrastructure of intercellular junctions in the freeze fractured alveolar‐capillary membrane of mouse lung.
Chest
71:
299‐299,
1977.
|
111. |
Schneeberger EE,
Lynch RD.
Tight junctions. Their structure, composition, and function.
Circ Res
55:
723‐723,
1984.
|
112. |
Schulz H,
Harder V,
Ibald‐Mulli A,
Khandoga A,
Koenig W,
Krombach F,
Radykewicz R,
Stampfl A,
Thorand B,
Peters A.
Cardiovascular effects of fine and ultrafine particles.
J Aerosol Medicine
18:
1‐1,
2005.
|
113. |
Schurch S,
Gehr P, Im
Hof V,
Geiser M, and
Green F.
Surfactant displaces particles toward the epithelium in airways and alveoli.
Respir Physiol
80:
17‐17,
1990.
|
114. |
Semmler‐Behnke M,
Takenaka S,
Fertsch S,
Wenk A,
Seitz J,
Mayer P,
Oberdorster G,
Kreyling WG.
Efficient elimination of inhaled nanoparticles from the alveolar region: Evidence for interstitial uptake and subsequent reentrainment onto airways epithelium.
Environ Health Perspect
115:
728‐728,
2007.
|
115. |
Service RF.
Nanotoxicology. Nanotechnology grows up.
Science
304:
1732‐1732,
2004.
|
116. |
Singer SJ,
Nicolson GL.
The fluid mosaic model of the structure of cell membranes.
Science
175:
720‐720,
1972.
|
117. |
Singh S,
Shi T,
Duffin R,
Albrecht C,
van Berlo D,
Hohr D,
Fubini B,
Martra G,
Fenoglio I,
Borm PJ,
Schins RP.
Endocytosis, oxidative stress and IL‐8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles.
Toxicol Appl Pharmacol
222:
141‐141,
2007.
|
118. |
Song Y,
Li X,
Du X.
Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma.
Eur Respir J
34:
559‐559,
2009.
|
119. |
Stearns RC,
Paulauskis JD,
Godleski JJ.
Endocytosis of ultrafine particles by A549 cells.
Am J Respir Cell Mol Biol
24:
108‐108,
2001.
|
120. |
Stone V,
Brown DM,
Watt N,
Wilson M,
Donaldson K,
Ritchie H,
MacNee W.
Ultrafine particle‐mediated activation of macrophages: Intracellular calcium signaling and oxidative stress.
Inhal Toxicol
12:
345‐345,
2000.
|
121. |
Stone V,
Tuinman M,
Vamvakopoulos JE,
Shaw J,
Brown D,
Petterson S,
Faux SP,
Borm P,
MacNee W,
Michaelangeli F,
Donaldson K.
Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black.
Eur Respir J
15:
297‐297,
2000.
|
122. |
Takano K,
Kojima T,
Go M,
Murata M,
Ichimiya S,
Himi T,
Sawada N.
HLA‐DR‐ and CD11c‐positive dendritic cells penetrate beyond well‐developed epithelial tight junctions in human nasal mucosa of allergic rhinitis.
J Histochem Cytochem
53:
611‐611,
2005.
|
123. |
Timbrell JA.
Principles of Biochemical Toxicology.
New York:
Informa Healthcare,
2009.
|
124. |
Tsoli M,
Kuhn H,
Brandau W,
Esche H,
Schmid G.
Cellular uptake and toxicity of Au55 clusters.
Small
1:
841‐841,
2005.
|
125. |
Unfried K,
Albrecht C,
Klotz LO,
von Mikecz A,
Grether‐Beck S,
Schins RP.
Cellular responses to nanoparticles: Target structures and mechanisms.
Nanotoxicology
1:
1‐1,
2007.
|
126. |
Verma A,
Stellacci F.
Effect of surface properties on nanoparticle‐cell interactions.
Small
6:
12‐12,
2010.
|
127. |
Vermaelen K,
Pauwels R.
Pulmonary dendritic cells.
Am J Respir Crit Care Med
172:
530‐530,
2005.
|
128. |
Warren G,
Wickner W.
Organelle inheritance.
Cell
84:
395‐395,
1996.
|
129. |
Weibel ER.
What makes a good lung?
Swiss Med Wkly
139:
375‐375,
2009.
|
130. |
Werling D,
Hope JC,
Chaplin P,
Collins RA,
Taylor G,
Howard CJ.
Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells.
J Leukoc Biol
66:
50‐50,
1999.
|
131. |
Wichmann HE,
Spix C,
Tuch T,
Wolke G,
Peters A,
Heinrich J,
Kreyling WG,
Heyder J.
Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass.
Res Rep Health Eff Inst
98:
5‐5,
2000.
|
132. |
Wiebert P,
Sanchez‐Crespo A,
Falk R,
Philipson K,
Lundin A,
Larsson S,
Moller W,
Kreyling WG,
Svartengren M.
No significant translocation of inhaled 35‐nm carbon particles to the circulation in humans.
Inhal Toxicol
18:
741‐741,
2006.
|
133. |
Wikstrom ME,
Stumbles PA.
Mouse respiratory tract dendritic cell subsets and the immunological fate of inhaled antigens.
Immunol Cell Biol
85:
182‐182,
2007.
|
134. |
Xia T,
Korge P,
Weiss JN,
Li N,
Venkatesen MI,
Sioutas C,
Nel A.
Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: Implications for ultrafine particle toxicity.
Environ Health Perspect
112:
1347‐1347,
2004.
|
135. |
Xia T,
Kovochich M,
Brant J,
Hotze M,
Sempf J,
Oberley T,
Sioutas C,
Yeh JI,
Wiesner MR,
Nel AE.
Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.
Nano Lett
6:
1794‐1794,
2006.
|
136. |
Yurchenco PD,
Tsilibary EC,
Charonis AS,
Furthmayr H.
Models for the self‐assembly of basement membrane.
J Histochem Cytochem
34:
93‐93,
1986.
|