Comprehensive Physiology Wiley Online Library

Cryo‐EM in the Study of Membrane Transport Proteins

Full Article on Wiley Online Library



Abstract

Electron cryomicroscopy (cryo‐EM) has evolved as a widely used approach to understand a range of structure‐function questions, particularly of membrane proteins. Studies by both electron crystallography and single particle analysis have provided a wealth of information on membrane transport proteins. Cryo‐EM methods with an emphasis on electron crystallography, which has yielded the most membrane transport protein structural information of any of the cryo‐EM techniques, are described here. Two‐dimensional crystallization approaches are outlined, as well as advances in cryo‐EM specimen preparation, data collection, and image processing. Examples of membrane transport protein structure described serve to illustrate some of the advances in both structural understanding and methods. Further examples outline impressive results that were obtained by a combination of electron crystallography and X‐ray crystallography as well as additional complementary methods. © 2012 American Physiological Society. Compr Physiol 2:283‐293, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

A two‐dimensional (2D) crystal usually consists of protein (black/dark gray ovals) within a lipid bilayer. The schematic representation shows a cutout of such a 2D crystal.

Figure 2. Figure 2.

The membrane morphologies encountered in electron crystallography are (A) collapsed vesicles, (B) planar‐tubular crystals, which basically correspond to an extended vesicle, and (C) sheets, which do not necessarily have a square shape and ideally consist of a single 2D crystal layer, composed of the reconstituted membrane protein molecules within one lipid bilayer. A highly ordered 2D crystal sheet composed of a single layer offers the great advantage of allowing for electron diffraction data collection. The schematic figure in (D) depicts a helical crystal, which offers all orientations of the protein in each micrograph. Thus, it is not necessary to collect data of tilted specimens of a helical crystal. The size of 2D crystals can be as small as 50 nm on the very low end up to one or more microns in the ideal situation.

Figure 3. Figure 3.

Single particle analysis involves the distribution of the detergent‐solubilized membrane protein on an EM grid (A). Certain samples will be randomly oriented while others, such as shown in (B), will have preferred orientations. The dark oval represents the protein solublilized in detergent (white).

Figure 4. Figure 4.

Electron crystallography involves screening of negatively stained samples to identify order, size, and morphology during 2D crystallization trials. Electron cryomicroscopy (Cryo‐EM) data is collected at low electron doses, evaluated by optical diffraction, scanned, and data is processed to obtain structural information.

Figure 5. Figure 5.

Single particle analysis requires screening in negative stain. Cryo‐EM data is collected with digital cameras, or recorded photographic film is evaluated by optical diffraction and subsequently scanned. CCD cameras used for data collection eliminate these steps. Image processing reveals novel structural in the form of projection and/or 3D maps.

Figure 6. Figure 6.

(A) A side view of a grid prepared by regular vitrification or backinjection with the carbon film in dark gray and the vitreous ice in light gray. (B) A carbon‐sandwich grid side view, where the specimen is enclosed in the vitreous ice between two carbon film layers. (C) A holey or perforated grid is used for single particles and, sometimes, helical crystals. The upper panel of (C) shows the top view of such a holey or perforated grid.

Figure 7. Figure 7.

The carbon‐sandwich grid allows for even highly sensitive 2D crystals to be maintained under optimal hydration conditions and vitreous ice thickness. It is particularly valuable to avoid charging effects at high tilt angles 45.



Figure 1.

A two‐dimensional (2D) crystal usually consists of protein (black/dark gray ovals) within a lipid bilayer. The schematic representation shows a cutout of such a 2D crystal.



Figure 2.

The membrane morphologies encountered in electron crystallography are (A) collapsed vesicles, (B) planar‐tubular crystals, which basically correspond to an extended vesicle, and (C) sheets, which do not necessarily have a square shape and ideally consist of a single 2D crystal layer, composed of the reconstituted membrane protein molecules within one lipid bilayer. A highly ordered 2D crystal sheet composed of a single layer offers the great advantage of allowing for electron diffraction data collection. The schematic figure in (D) depicts a helical crystal, which offers all orientations of the protein in each micrograph. Thus, it is not necessary to collect data of tilted specimens of a helical crystal. The size of 2D crystals can be as small as 50 nm on the very low end up to one or more microns in the ideal situation.



Figure 3.

Single particle analysis involves the distribution of the detergent‐solubilized membrane protein on an EM grid (A). Certain samples will be randomly oriented while others, such as shown in (B), will have preferred orientations. The dark oval represents the protein solublilized in detergent (white).



Figure 4.

Electron crystallography involves screening of negatively stained samples to identify order, size, and morphology during 2D crystallization trials. Electron cryomicroscopy (Cryo‐EM) data is collected at low electron doses, evaluated by optical diffraction, scanned, and data is processed to obtain structural information.



Figure 5.

Single particle analysis requires screening in negative stain. Cryo‐EM data is collected with digital cameras, or recorded photographic film is evaluated by optical diffraction and subsequently scanned. CCD cameras used for data collection eliminate these steps. Image processing reveals novel structural in the form of projection and/or 3D maps.



Figure 6.

(A) A side view of a grid prepared by regular vitrification or backinjection with the carbon film in dark gray and the vitreous ice in light gray. (B) A carbon‐sandwich grid side view, where the specimen is enclosed in the vitreous ice between two carbon film layers. (C) A holey or perforated grid is used for single particles and, sometimes, helical crystals. The upper panel of (C) shows the top view of such a holey or perforated grid.



Figure 7.

The carbon‐sandwich grid allows for even highly sensitive 2D crystals to be maintained under optimal hydration conditions and vitreous ice thickness. It is particularly valuable to avoid charging effects at high tilt angles 45.

References
 1. Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 Å resolution of F1‐ATPase from bovine heart mitochondria. Nature 370(6491): 621‐628, 1994.
 2. Aller SG, Unger VM. Projection structure of the human copper transporter CTR1 at 6‐Å resolution reveals a compact trimer with a novel channel‐like architecture. Proc Natl Acad Sci U S A 103(10): 3627‐3632, 2006.
 3. Appel M, Hizlan D, Vinothkumar KR, Ziegler C, Kühlbrandt W. Conformations of NhaA, the Na+/H +exchanger from Escherichia coli, in the pH‐activated and ion‐translocating states. J Mol Biol 388(3): 659‐672, 2009.
 4. Bammes BE, Jakana J, Schmid MF, Chiu W. Radiation damage effects at four specimen temperatures from 4 to 100 K. J Struct Biol 169(3): 331‐341, 2010.
 5. Beroukhim R, Unwin N. Distortion correction of tubular crystals: Improvements in the acetylcholine receptor structure. Ultramicroscopy 70(1‐2): 57‐81, 1997.
 6. Braun T, Philippsen A, Wirtz S, Borgnia MJ, Agre P, Kühlbrandt W, Engel A, Stahlberg H. The 3.7 Å projection map of the glycerol facilitator GlpF: A variant of the aquaporin tetramer. EMBO Rep 1(2): 183‐189, 2000.
 7. Bueler SA, Rubinstein JL. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae. Biochemistry 47(45): 11804‐11810, 2008.
 8. Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, Chang G. X‐ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 104(48): 18999‐19004, 2007.
 9. Cheng A, Leung A, Fellmann D, Quispe J, Suloway C, Pulokas J, Abeyrathne PD, Lam JS, Carragher B, Potter CS. Towards automated screening of two‐dimensional crystals. J Struct Biol 160(3): 324‐331, 2007.
 10. Courty S, Lebeau L, Martel L, Lenne PF, Balavoine F, Dischert W, Konovalov O, Mioskowski C, Legrand JF, Venien‐Bryan C. Two‐dimensional crystallization of a His‐tagged protein on monolayers of fluidity‐enhanced Ni2+‐chelating lipids. Langmuir 18: 9502‐9512, 2002.
 11. Crowther RA, Henderson R, Smith JM. MRC image processing programs. J Struct Biol 116(1): 9‐16, 1996.
 12. Darst SA, Ahlers M, Meller PH, Kubalek EW, Blankenburg R, Ribi HO, Ringsdorf H, Kornberg RD. Two‐dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. Biophys J 59: 387‐396, 1991.
 13. Darst SA, Kubalek EW, Edwards AM, Kornberg RD. Two‐dimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II. J Mol Biol 221(1): 347‐357, 1991.
 14. Dauvergne J, Polidori A, Vénien‐Bryan C, Pucci B. Synthesis of a hemifluorinated amphiphile designed for self‐assembly and two‐dimensional crystallization of membrane protein. Tetrahedron Lett. 49: 2247‐2250, 2008.
 15. De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM. Three‐dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci U S A 106(11): 4237‐4242, 2009.
 16. Dietrich J, Venien‐Bryan C. Strategies for Two‐Dimensional Crystallization of Proteins Using Lipid Monolayers. Imperial College Press, 2005.
 17. Dolder M, Walz T, Hefti A, Engel A. Human erythrocyte band 3. Solubilization and reconstitution into two‐dimensional crystals. J Mol Biol 231(1): 119‐132, 1993.
 18. Downing KH, Nogales E. Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors. Methods Enzymol 483: 121‐142, 2010.
 19. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X‐ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415(6869): 287‐294, 2002.
 20. Fleishman SJ, Unger VM, Yeager M, Ben‐Tal N. A Calpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol Cell 15(6): 879‐888, 2004.
 21. Fleishman SJ, Harrington SE, Enosh A, Halperin D, Tate CG, Ben‐Tal N. Quasi‐symmetry in the cryo‐EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 364(1): 54‐67, 2006.
 22. Fromherz P. Electron microsopic studies of lipid protein films. Nature 231: 267‐268, 1971.
 23. Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv Biophys 35: 25‐80, 1998.
 24. Fujiyoshi Y. Structural physiology based on electron crystallography. Protein Sci 20(5): 806‐817, 2011.
 25. Fujiyoshi Y, Unwin N. Electron crystallography of proteins in membranes. Curr Opin Struct Biol 18: 587‐592, 2008.
 26. Gibbons C, Montgomery MG, Leslie AG, Walker JE. The structure of the central stalk in bovine F(1)‐ATPase at 2.4 Å resolution. Nat Struct Biol 7(11): 1055‐1061, 2000.
 27. Gipson B, Zeng X, Stahlberg H. 2dx_merge: Data management and merging for 2D crystal images. J Struct Biol 160(3): 375‐384, 2007.
 28. Glaeser RM. Specimen flatness of thin crystalline arrays: Influence of the substrate. Ultramicroscopy 46(1‐4): 33‐43, 1992.
 29. Glaeser RM, Zilker A, Radermacher M, Gaub HE, Hartmann T, Baumeister W. Interfacial energies and surface‐tension forces involved in the preparation of thin, flat crystals of biological macromolecules for high‐resolution electron microscopy. J Microsc 161(1): 21‐45, 1991.
 30. Glaves JP, Fisher L, Ward A, Young HS. Helical crystallization of two example membrane proteins MsbA and the Ca(2+)‐ATPase. Methods Enzymol 483: 143‐159, 2010.
 31. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T. Lipid‐protein interactions in double‐layered two‐dimensional AQP0 crystals. Nature 438(7068): 633‐638, 2005.
 32. Gonen T, Sliz P, Kistler J, Cheng Y, Walz T. Aquaporin‐0 membrane junctions reveal the structure of a closed water pore. Nature 429(6988): 193‐197, 2004.
 33. Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz O, Kühlbrandt W. Structure of the archaeal Na+/H +antiporter NhaP1 and functional role of transmembrane helix 1. EMBO J 30(2): 439‐449, 2011.
 34. Guan L, Mirza O, Verner G, Iwata S, Kaback HR. Structural determination of wild‐type lactose permease. Proc Natl Acad Sci U S A 104(39): 15294‐15298, 2007.
 35. Gyobu N, Tani K, Hiroaki Y, Kamegawa A, Mitsuoka K, Fujiyoshi Y. Improved specimen preparation for cryo‐electron microscopy using a symmetric carbon sandwich technique. J Struct Biol 146: 325‐333, 2004.
 36. Hacksell I, Rigaud JL, Purhonen P, Pourcher T, Hebert H, Leblanc G. Projection structure at 8 Å resolution of the melibiose permease, an Na‐sugar co‐transporter from Escherichia coli. EMBO J 21(14): 3569‐3574, 2002.
 37. Henderson R. Realizing the potential of electron cryo‐microscopy. Q Rev Biophys 37: 3‐13, 2004.
 38. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH. Model for the structure of bacteriorhodopsin based on high‐resolution electron cryo‐microscopy. J Mol Biol 213(4): 899‐929, 1990.
 39. Henderson R, Unwin PN. Three‐dimensional model of purple membrane obtained by electron microscopy. Nature 257(5521): 28‐32, 1975.
 40. Herz K, Rimon A, Jeschke G, Padan E. Beta‐sheet‐dependent dimerization is essential for the stability of NhaA Na+/H+ antiporter. J Biol Chem 284(10): 6337‐6347, 2009.
 41. Heymann JA, Hirai T, Shi D, Subramaniam S. Projection structure of the bacterial oxalate transporter OxlT at 3.4 Å resolution. J Struct Biol 144(3): 320‐326, 2003.
 42. Hirai T, Subramaniam S. Structure and transport mechanism of the bacterial oxalate transporter OxlT. Biophys J 87(5): 3600‐3607, 2004.
 43. Hite RK, Gonen T, Harrison SC, Walz T. Interactions of lipids with aquaporin‐0 and other membrane proteins. J Physiol 456(4): 651‐661, 2008.
 44. Hite RK, Li Z, Walz T. Principles of membrane protein interactions with annular lipids deduced from aquaporin‐0 2D crystals. EMBO J 29(10): 1652‐1658, 2010.
 45. Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435(7046): 1197‐1202, 2005.
 46. Iacovache I, Biasini M, Kowal J, Kukulski W, Chami M, van der Goot FG, Engel A, Rémigy HW. The 2DX robot: A membrane protein 2D crystallization Swiss Army knife. J Struct Biol 169(3): 370‐378, 2010.
 47. Jap BK, Walian PJ, Gehring K. Structural architecture of an outer membrane channel as determined by electron crystallography. Nature 350(6314): 167‐170, 1991.
 48. Johnson MC, Rudolph F, Dreaden TM, Zhao G, Barry BA, Schmidt‐Krey I. Assessing two‐dimensional crystallization trials of small membrane proteins for structural biology studies by electron crystallography. J Vis Exp 29(44): 1846, 2010.
 49. Kedrov A, Wegmann S, Smits SH, Goswami P, Baumann H, Muller DJ. Detecting molecular interactions that stabilize, activate and guide ligand‐binding of the sodium/proton antiporter MjNhaP1 from Methanococcus jannaschii. J Struct Biol 159(2): 290‐301, 2007.
 50. Kim C, Vink M, Hu M, Love J, Stokes DL, Ubarretxena‐Belandia I. An automated pipeline to screen membrane protein 2D crystallization. J Struct Funct Genomics 11(2): 155‐166, 2010.
 51. Koning RI, Keegstra W, Oostergetel GT, Schuurman‐Wolters G, Robillard GT, Brisson A. The 5 Å projection structure of the transmembrane domain of the mannitol transporter enzyme II. J Mol Biol 287(5): 845‐851, 1999.
 52. Koning RI, Oostergetel GT, Brisson A. Preparation of flat carbon support films. Ultramicroscopy 94: 183‐191, 2003.
 53. Korkhov VM, Sachse C, Short JM, Tate CG. Three‐dimensional structure of TspO by electron cryomicroscopy of helical crystals. Structure 18(6): 677‐687, 2010.
 54. Korkhov VM, Tate CG. An emerging consensus for the structure of EmrE. Acta Crystallogr D Biol Crystallogr 65(2): 186‐192, 2009.
 55. Kühlbrandt W, Downing KH. Two‐dimensional structure of plant light‐harvesting complex at 3.7 Å resolution by electron crystallography. J Mol Biol 207(4): 823‐828, 1989.
 56. Kühlbrandt W, Wang DN, Fujiyoshi Y. Atomic model of plant light‐harvesting complex by electron crystallography. Nature 367(6464): 614‐621, 1994.
 57. Kukulski W, Schenk AD, Johanson U, Braun T, de Groot BL, Fotiadis D, Kjellbom P, Engel A. The 5 Å structure of heterologously expressed plant aquaporin SoPIP2;1. J Mol Biol 350(4): 611‐616, 2005.
 58. Kunji ER, Harding M. Projection structure of the atractyloside‐inhibited mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae. J Biol Chem 278(39): 36985‐36988, 2003.
 59. Kuo A, Domene C, Johnson LN, Doyle DA, Vénien‐Bryan C. Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography. Structure 13(10): 1463‐1472, 2005.
 60. Lacapère JJ, Stokes DL, Olofsson A, Rigaud JL. Two‐dimensional crystallization of Ca‐ATPase by detergent removal. Biophys J 75(3): 1319‐1329, 1998.
 61. Levin EJ, Quick M, Zhou M. Crystal structure of a bacterial homologue of the kidney urea transporter. Nature 462(7274): 757‐761, 2009.
 62. Liu H, Jin L, Koh SB, Atanasov I, Schein S, Wu L, Zhou ZH. Atomic structure of human adenovirus by cryo‐EM reveals interactions among protein networks. Science 329(5995): 1038‐1043, 2010.
 63. Lyumkis D, Moeller A, Cheng A, Herold A, Hou E, Irving C, Jacovetty EL, Lau PW, Mulder AM, Pulokas J, Quispe JD, Voss NR, Potter CS, Carragher B. Automation in single‐particle electron microscopy connecting the pieces. Methods Enzymol 483: 291‐338, 2010.
 64. Ma C, Chang G. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc Natl Acad Sci U S A 104(9): 3668, 2007.
 65. McHaourab HS, Mishra S, Koteiche HA, Amadi SH. Role of sequence bias in the topology of the multidrug transporter EmrE. Biochemistry 47(31): 7980‐7982, 2008.
 66. Meier T, Polzer P, Diederichs K, Welte W, Dimroth P. Structure of the rotor ring of F‐Type Na+‐ATPase from Ilyobacter tartaricus. Science 308(5722): 659‐662, 2005.
 67. Mindell JA, Maduke M, Miller C, Grigorieff N. Projection structure of a ClC‐type chloride channel at 6.5 Å resolution. Nature 409(6817): 219‐223, 2001.
 68. Müller DJ. Out and in: Simplifying membrane protein studies by AFM. Biophys J 91(9): 3133‐3134, 2006.
 69. Müller SA, Müller DJ, Engel A. Assessing the structure and function of single biomolecules with scanning transmission electron and atomic force microscopes. Micron 42(2): 186‐95, 2011.
 70. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin‐1. Nature 407(6804): 599‐605, 2000.
 71. Nicastro D. Cryo‐electron microscope tomography to study axonemal organization. Methods Cell Biol 91: 1‐39, 2009.
 72. Padan E, Tzubery T, Herz K, Kozachkov L, Rimon A, Galili L. NhaA of Escherichia coli, as a model of a pH‐regulated Na+/H+antiporter. Biochim Biophys Acta 1658(1‐2): 2‐13, 2004.
 73. Purhonen P, Lundbäck AK, Lemonnier R, Leblanc G, Hebert H. Three‐dimensional structure of the sugar symporter melibiose permease from cryo‐electron microscopy. J Struct Biol 152(1): 76‐83, 2005.
 74. Radermacher M. Three‐dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech 9(4): 359‐394, 1988.
 75. Radermacher M, Ruiz T. Three‐dimensional reconstruction of single particles in electron microscopy image processing. Methods Mol Biol 319: 427‐461, 2006.
 76. Radermacher M, Wagenknecht T, Verschoor A, Frank J. Three‐dimensional reconstruction from a single‐exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146(2): 113‐136, 1987.
 77. Raunser S, Mathai JC, Abeyrathne PD, Rice AJ, Zeidel ML, Walz T. Oligomeric structure and functional characterization of the urea transporter from Actinobacillus pleuropneumoniae. J Mol Biol 387(3): 619‐627, 2009.
 78. Reichow SL, Gonen T. Lipid‐protein interactions probed by electron crystallography. Curr Opin Struct Biol 19(5): 560‐565, 2009.
 79. Ren G, Reddy VS, Cheng A, Melnyk P, Mitra AK. Visualization of a water‐selective pore by electron crystallography in vitreous ice. Proc Natl Acad Sci U S A 98(4): 1398‐1403, 2001.
 80. Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C. Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458(7234): 47‐52, 2009.
 81. Richard P, Rigaud JL, Gräber P. Reconstitution of CF0F1 into liposomes using a new reconstitution procedure. Eur J Biochem 193(3): 921‐925, 1990.
 82. Rigaud JL, Mosser G, Lacapere JJ, Olofsson A, Levy D, Ranck JL. Bio‐Beads: An efficient strategy for two‐dimensional crystallization of membrane proteins. J Struct Biol 118(3): 226‐235, 1997.
 83. Robinson AJ, Overy C, Kunji ER. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 105(46): 17766‐17771, 2008.
 84. Rubinstein JL, Dickson VK, Runswick MJ, Walker JE. ATP synthase from Saccharomyces cerevisiae: Location of subunit h in the peripheral stalk region. J Mol Biol 345(3): 513‐520, 2005.
 85. Rubinstein JL, Walker JE, Henderson R. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22(23): 6182‐6192, 2003.
 86. Sachse C, Chen JZ, Coureux PD, Stroupe ME, Fändrich M, Grigorieff N. High‐resolution electron microscopy of helical specimens: A fresh look at tobacco mosaic virus. J Mol Biol 371(3): 812‐835, 2007.
 87. Schenk AD, Castaño‐Díez D, Gipson B, Arheit M, Zeng X, Stahlberg H. 3D reconstruction from 2D crystal image and diffraction data. Methods Enzymol 482: 101‐129, 2010.
 88. Schenk AD, Hite RK, Engel A, Fujiyoshi Y, Walz T. Electron crystallography and aquaporins. Methods Enzymol 483: 91‐119, 2010.
 89. Schenk AD, Werten PJ, Scheuring S, de Groot BL, Müller SA, Stahlberg H, Philippsen A, Engel A. The 4.5 Å structure of human AQP2. J Mol Biol 350(2): 278‐289, 2005.
 90. Schmidt‐Krey I. Electron crystallography of membrane proteins: Two‐dimensional crystallization and screening by electron microscopy. Methods 41: 417‐426, 2007.
 91. Schmidt‐Krey I, Haase W, Mutucumarana V, Stafford DW, Kühlbrandt W. Two‐dimensional crystallization of human vitamin K‐dependent gamma‐glutamyl carboxylase. J Struct Biol 157(2): 437‐442, 2007.
 92. Schmidt‐Krey I, Rubinstein JL. Electron cryomicroscopy of membrane proteins: Specimen preparation for two‐dimensional crystals and single particles. Micron 42(2): 107‐116, 2011.
 93. Schuldiner S. When biochemistry meets structural biology: The cautionary tale of EmrE. Trends Biochem Sci 32(6): 252‐258, 2007.
 94. Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC. Atomic model of an infectious rotavirus particle. EMBO J 30(2): 408‐416, 2011.
 95. Signorell GA, Kaufmann TC, Kukulski W, Engel A, Rémigy HW. Controlled 2D crystallization of membrane proteins using methyl‐beta‐cyclodextrin. J Struct Biol 157(2): 321‐328, 2007.
 96. Stahlberg H, Braun T, de Groot B, Philippsen A, Borgnia MJ, Agre P, Kühlbrandt, W, Engel A. The 6.9‐ Å structure of GlpF: A basis for homology modeling of the glycerol channel from Escherichia coli. J Struct Biol 132(2): 133‐141, 2000.
 97. Stock D, Leslie AG, Walker JE. Molecular architecture of the rotary motor in ATP synthase. Science 286(5445): 1700‐1705, 1999.
 98. Stokes DL, Auer M, Zhang P, Kühlbrandt W. Comparison of H+‐ATPase and Ca2+‐ATPase suggests that a large conformational change initiates P‐type ion pump reaction cycles. Curr Biol 9(13): 672‐679, 1999.
 99. Stuart MC, Koning RI, Oostergetel GT, Brisson A. Mechanism of formation of multilayered 2D crystals of the enzyme IIC‐mannitol transporter. Biochim Biophys Acta 1663(1‐2): 108‐116, 2004.
 100. Tani K, Mitsuma T, Hiroaki Y, Kamegawa A, Nishikawa K, Tanimura Y, Fujiyoshi Y. Mechanism of aquaporin‐4's fast and highly selective water conduction and proton exclusion. J Mol Biol 389(4): 694‐706, 2009.
 101. Tate CG, Ubarretxena‐Belandia I, Baldwin JM. Conformational changes in the multidrug transporter EmrE associated with substrate binding. J Mol Biol 332(1): 229‐242, 2003.
 102. Tsai CJ, Khafizov K, Hakulinen J, Forrest LR, Krämer R, Kühlbrandt W, Ziegler C. Structural asymmetry in a trimeric Na(+)/betaine symporter, BetP, from Corynebacterium glutamicum. J Mol Biol 407(3): 368‐381, 2011.
 103. Ubarretxena‐Belandia I, Tate CG. New insights into the structure and oligomeric state of the bacterial multidrug transporter EmrE: An unusual asymmetric homo‐dimer. FEBS Lett 564(3): 234‐238, 2004.
 104. Unger VM, Kumar NM, Gilula NB, Yeager M. Three‐dimensional structure of a recombinant gap junction membrane channel. Science 283(5405): 1176‐1180, 1999.
 105. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346(4): 967‐989, 2005.
 106. Yamaguchi T, Fujii T, Abe Y, Hirai T, Kang D, Namba K, Hamasaki N, Mitsuoka K. Helical image reconstruction of the outward‐open human erythrocyte band 3 membrane domain in tubular crystals. J Struct Biol 169(3): 406‐412, 2010.
 107. Young HS, Rigaud JL, Lacapère JJ, Reddy LG, Stokes DL. How to make tubular crystals by reconstitution of detergent‐solubilized Ca2(+)‐ATPase. Biophys J 72(6): 2545‐2558, 1997.
 108. Vanhecke D, Asano S, Kochovski Z, Fernandez‐Busnadiego R, Schrod N, Baumeister W, Lučić V. Cryo‐electron tomography: Methodology, developments and biological applications. J Microsc 242: 221‐227, 2010.
 109. Viadiu H, Gonen T, Walz T. Projection map of aquaporin‐9 at 7 Å resolution. J Mol Biol 367(1): 80‐88, 2007.
 110. Vink M, Derr K, Love J, Stokes DL, Ubarretxena‐Belandia I. A high‐throughput strategy to screen 2D crystallization trials of membrane proteins. J Struct Biol 160(3): 295‐304, 2007.
 111. Vinothkumar KR, Smits SH, Kühlbrandt W. pH‐induced structural change in a sodium/proton antiporter from Methanococcus jannaschii. EMBO J 24(15): 2720‐2729, 2005.
 112. Vonck J, von Nidda TK, Meier T, Matthey U, Mills DJ, Kühlbrandt W, Dimroth P. Molecular architecture of the undecameric rotor of a bacterial Na+‐ATP synthase. J Mol Biol 321(2): 307‐316, 2002.
 113. Voss NR, Lyumkis D, Cheng A, Lau PW, Mulder A, Lander GC, Brignole EJ, Fellmann D, Irving C, Jacovetty EL, Leung A, Pulokas J, Quispe JD, Winkler H, Yoshioka C, Carragher B, Potter CS. A toolbox for ab initio 3‐D reconstructions in single‐particle electron microscopy. J Struct Biol 169(3): 389‐398, 2010.
 114. Wang DN, Kühlbrandt W. High‐resolution electron crystallography of light‐harvesting chlorophyll a/b‐protein complex in three different media. J Mol Biol 217(4): 691‐699, 1991.
 115. Wang DN, Kühlbrandt W, Sarabia VE, Reithmeier RA. Two‐dimensional structure of the membrane domain of human band 3, the anion transport protein of the erythrocyte membrane. EMBO J 12(6): 2233‐2239, 1993.
 116. Wang DN, Sarabia VE, Reithmeier RA, Kühlbrandt W. Three‐dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J 13(14): 3230‐3235, 1994.
 117. Wang L, Sigworth FJ. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461(7261): 292‐295, 2009.
 118. Walker JE. ATP synthesis by rotary catalysis (nobel lecture). Angew Chem Int Ed 37: 2308‐2319, 1998.
 119. Ward A, Mulligan S, Carragher B, Chang G, Milligan RA. Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. J Struct Biol 165(3): 169‐175, 2009.
 120. Williams KA. Three‐dimensional structure of the ion‐coupled transport protein NhaA. Nature 403(6765): 112‐115, 2000.
 121. Williams KA, Geldmacher‐Kaufer U, Padan E, Schuldiner S, Kühlbrandt W. Projection structure of NhaA, a secondary transporter from Escherichia coli, at 4.0 Å resolution. EMBO J 18(13): 3558‐3563, 1999.
 122. Yu X, Jin L, Zhou ZH. 3.88 A structure of cytoplasmic polyhedrosis virus by cryo‐electron microscopy. Nature 453: 415‐419, 2008.
 123. Zhang P, Beatty A, Milne JL, Subramaniam S. Automated data collection with a Tecnai 12 electron microscope: Applications for molecular imaging by cryomicroscopy. J Struct Biol 135(3): 251‐261, 2001.
 124. Zhao G, Johnson MC, Schnell JR, Kanaoka Y, Haase W, Irikura D, Lam BK, Schmidt‐Krey I. Two‐dimensional crystallization conditions of human leukotriene C4 synthase requiring adjustment of a particularly large combination of specific parameters. J Struct Biol 169(3): 450‐454, 2010.
 125. Zheng H, Taraska J, Merz AJ, Gonen T. The prototypical H+/galactose symporter GalP assembles into functional trimers. J Mol Biol 396(3): 593‐601, 2010.
 126. Ziegler C, Morbach S, Schiller D, Krämer R, Tziatzios C, Schubert D, Kühlbrandt W. Projection structure and oligomeric state of the osmoregulated sodium/glycine betaine symporter BetP of Corynebacterium glutamicum. J Mol Biol 337(5): 1137‐1147, 2004.
 127. Zhuang J, Privé GG, Werner GE, Ringler P, Kaback HR, Engel A. Two‐dimensional crystallization of Escherichia coli lactose permease. J Struct Biol 125(1): 63‐75, 1999.

Related Articles:

Membrane Proteins Structure and Dynamics by Nuclear Magnetic Resonance
Membrane Structure/Proteins
Basic Principles of Transport

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Laura Yaunhee Kim, Matthew C. Johnson, Ingeborg Schmidt‐Krey. Cryo‐EM in the Study of Membrane Transport Proteins. Compr Physiol 2012, 2: 283-293. doi: 10.1002/cphy.c110028