References |
1. |
Agnew WS,
Levinson SR,
Brabson JS,
Raftery MA.
Purification of the tetrodotoxin‐binding component associated with the voltage‐sensitive sodium channel from Electrophorus electricus electroplax membranes.
Proc Natl Acad Sci U S A
75:
2606‐2610,
1978.
|
2. |
Aguilan JT,
Sundaram S,
Nieves E,
Stanley P.
Mutational and functional analysis of Large in a novel CHO glycosylation mutant.
Glycobiology
19:
971‐986,
2009.
|
3. |
Akhavan A,
Atanasiu R,
Shrier A.
Identification of a COOH‐terminal segment involved in maturation and stability of human ether‐a‐go‐go‐related gene potassium channels.
J Biol Chem
278:
40105‐40112,
2003.
|
4. |
Albach C,
Klein RA,
Schmitz B.
Do rodent and human brains have different N‐glycosylation patterns?
Biol Chem
382:
187‐194,
2001.
|
5. |
Altmann F,
Staudacher E,
Wilson IB,
Marz L.
Insect cells as hosts for the expression of recombinant glycoproteins.
Glycoconj J
16:
109‐123,
1999.
|
6. |
Andersen OS,
Feldberg S,
Nakadomari H,
Levy S,
McLaughlin S.
Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.
Biophys J
21:
35‐70,
1978.
|
7. |
Angata K,
Fukuda M.
Polysialyltransferases: Major players in polysialic acid synthesis on the neural cell adhesion molecule.
Biochimie
85:
195‐206,
2003.
|
8. |
Angata T,
Varki A.
Chemical diversity in the sialic acids and related alpha‐keto acids: An evolutionary perspective.
Chem Rev
102:
439‐469,
2002.
|
9. |
Apweiler R,
Hermjakob H,
Sharon N.
On the frequency of protein glycosylation, as deduced from analysis of the SWISS‐PROT database.
Biochim Biophys Acta
1473:
4‐8,
1999.
|
10. |
Arber S,
Hunter JJ,
Ross J Jr,
Hongo M,
Sansig G,
Borg J,
Perriard JC,
Chien KR,
Caroni P.
MLP‐deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure.
Cell
88:
393‐403,
1997.
|
11. |
Arhem P.
Voltage sensing in ion channels: A 50‐year‐old mystery resolved?
Lancet
363:
1221‐1223,
2004.
|
12. |
Armstrong CM.
Sodium channels and gating currents.
Physiol Rev
61:
644‐683,
1981.
|
13. |
Armstrong CM,
Bezanilla F.
Currents related to movement of the gating particles of the sodium channels.
Nature
242:
459‐461,
1973.
|
14. |
Armstrong CM,
Cota G.
Calcium block of Na+ channels and its effect on closing rate.
Proc Natl Acad Sci U S A
96:
4154‐4157,
1999.
|
15. |
Armstrong CM,
Cota G.
Calcium ion as a cofactor in Na channel gating.
Proc Natl Acad Sci U S A
88:
6528‐6531,
1991.
|
16. |
Aumiller JJ,
Hollister JR,
Jarvis DL.
A transgenic insect cell line engineered to produce CMP‐sialic acid and sialylated glycoproteins.
Glycobiology
13:
497‐507,
2003.
|
17. |
Bennett E,
Urcan MS,
Tinkle SS,
Koszowski AG,
Levinson SR.
Contribution of sialic acid to the voltage dependence of sodium channel gating. A possible electrostatic mechanism.
J Gen Physiol
109:
327‐343,
1997.
|
18. |
Bennett ES.
Isoform‐specific effects of sialic acid on voltage‐dependent Na+ channel gating: Functional sialic acids are localized to the S5‐S6 loop of domain I.
J Physiol
538:
675‐690,
2002.
|
19. |
Bezanilla F,
Armstrong CM.
Kinetic properties and inactivation of the gating currents of sodium channels in squid axon.
Philos Trans R Soc Lond B Biol Sci
270:
449‐458,
1975.
|
20. |
Blaustein MP,
Goldman DE.
The action of certain polyvalent cations on the voltage‐clamped lobster axon.
J Gen Physiol
51:
279‐291,
1968.
|
21. |
Boccaccio A,
Moran O,
Conti F.
Calcium dependent shifts of Na+ channel activation correlated with the state dependence of calcium‐binding to the pore.
Eur Biophys J
27:
558‐566,
1998.
|
22. |
Borjesson SI,
Elinder F.
Structure, function, and modification of the voltage sensor in voltage‐gated ion channels.
Cell Biochem Biophys
52:
149‐174,
2008.
|
23. |
Brockhausen I,
Schachter H,
Stanley P.
O‐GalNAc Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of Glycobiology (2nd ed). Cold Spring Harbor Laboratory Press, 2009, chap 9.
|
24. |
Brooks NL,
Corey MJ,
Schwalbe RA.
Characterization of N‐glycosylation consensus sequences in the Kv3.1 channel.
FEBS J
273:
3287‐3300,
2006.
|
25. |
Buraei Z,
Yang J.
The β subunit of voltage‐gated Ca2+ channels.
Physiol Rev
90:
1461‐1506, 2010.
|
26. |
Burda P,
Aebi M.
The dolichol pathway of N‐linked glycosylation.
Biochim Biophys Acta
1426:
239‐257,
1999.
|
27. |
Cabral MG,
Piteira AR,
Silva Z,
Ligeiro D,
Brossmer R,
Videira PA.
Human dendritic cells contain cell surface sialyltransferase activity.
Immunol Lett
131:
89‐96,
2010.
|
28. |
Cartwright TA,
Corey MJ,
Schwalbe RA.
Complex oligosaccharides are N‐linked to Kv3 voltage‐gated K+ channels in rat brain.
Biochim Biophys Acta
1770:
666‐671,
2007.
|
29. |
Cartwright TA,
Schwalbe RA.
Atypical sialylated N‐glycan structures are attached to neuronal voltage‐gated potassium channels.
Biosci Rep
29:
301‐313,
2009.
|
30. |
Castillo C,
Diaz ME,
Balbi D,
Thornhill WB,
Recio‐Pinto E.
Changes in sodium channel function during postnatal brain development reflect increases in the level of channel sialidation.
Brain Res Dev Brain Res
104:
119‐130,
1997.
|
31. |
Cha SK,
Hu MC,
Kurosu H,
Kuro‐o M,
Moe O,
Huang CL.
Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho.
Mol Pharmacol
76:
38‐46,
2009.
|
32. |
Cha SK,
Ortega B,
Kurosu H,
Rosenblatt KP,
Kuro OM,
Huang CL.
Removal of sialic acid involving Klotho causes cell‐surface retention of TRPV5 channel via binding to galectin‐1.
Proc Natl Acad Sci U S A
105:
9805‐9810,
2008.
|
33. |
Chandrasekharan K,
Martin PT.
Genetic defects in muscular dystrophy.
Methods Enzymol
479:
291‐322,
2010.
|
34. |
Chang Q,
Hoefs S,
van der Kemp AW,
Topala CN,
Bindels RJ,
Hoenderop JG.
The beta‐glucuronidase klotho hydrolyzes and activates the TRPV5 channel.
Science
310:
490‐493,
2005.
|
35. |
Chen W,
Stanley P.
Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations that encode truncated N‐acetylglucosaminyltransferase I.
Glycobiology
13:
43‐50,
2003.
|
36. |
Chen X,
Varki A.
Advances in the biology and chemistry of sialic acids.
ACS Chem Biol
5:
163‐176,
2010.
|
37. |
Cohen SA,
Levitt LK.
Partial characterization of the rH1 sodium channel protein from rat heart using subtype‐specific antibodies.
Circ Res
73:
735‐742,
1993.
|
38. |
Conti LR,
Radeke CM,
Vandenberg CA.
Membrane targeting of ATP‐sensitive potassium channel. Effects of glycosylation on surface expression.
J Biol Chem
277:
25416‐25422,
2002.
|
39. |
Creemers EE,
Pinto YM.
Molecular mechanisms that control interstitial fibrosis in the pressure‐overloaded heart.
Cardiovasc Res
89:
265‐272,
2011.
|
40. |
Cronin NB,
O'Reilly A,
Duclohier H,
Wallace BA.
Effects of deglycosylation of sodium channels on their structure and function.
Biochemistry
44:
441‐449,
2005.
|
41. |
Cruz TF,
Gurd JW.
Identification of intrinsic sialidase and sialoglycoprotein substrates in rat brain synaptic junctions.
J Neurochem
40:
1599‐1604,
1983.
|
42. |
Cukierman S,
Zinkand WC,
French RJ,
Krueger BK.
Effects of membrane surface charge and calcium on the gating of rat brain sodium channels in planar bilayers.
J Gen Physiol
92:
431‐447,
1988.
|
43. |
Cummins TR,
Dib‐Hajj SD,
Black JA,
Akopian AN,
Wood JN,
Waxman SG.
A novel persistent tetrodotoxin‐resistant sodium current in SNS‐null and wild‐type small primary sensory neurons.
J Neurosci
19:
RC43,
1999.
|
44. |
de Graffenried CL,
Bertozzi CR.
The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus.
Curr Opin Cell Biol
16:
356‐363,
2004.
|
45. |
Dib‐Hajj SD,
Tyrrell L,
Cummins TR,
Black JA,
Wood PM,
Waxman SG.
Two tetrodotoxin‐resistant sodium channels in human dorsal root ganglion neurons.
FEBS Lett
462:
117‐120,
1999.
|
46. |
Dorrscheidt‐Kafer M.
The action of Ca2+, Mg2+ and H+ on the contraction threshold of frog skeletal muscle: Evidence for surface charges controlling electro‐mechanical coupling.
Pflugers Arch
362:
33‐41,
1976.
|
47. |
Eckhardt M,
Gotza B,
Gerardy‐Schahn R.
Mutants of the CMP‐sialic acid transporter causing the Lec2 phenotype.
J Biol Chem
273:
20189‐20195,
1998.
|
48. |
Elinder F,
Arhem P.
The functional surface charge density of a fast K channel in the myelinated axon of Xenopus laevis.
J Membr Biol
165:
175‐181,
1998.
|
49. |
Elinder F,
Arhem P.
Role of individual surface charges of voltage‐gated K channels.
Biophys J
77:
1358‐1362,
1999.
|
50. |
Elinder F,
Liu Y,
Arhem P.
Divalent cation effects on the Shaker K channel suggest a pentapeptide sequence as determinant of functional surface charge density.
J Membr Biol
165:
183‐189,
1998.
|
51. |
Elinder F,
Madeja M,
Arhem P.
Surface Charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes.
J Gen Physiol
108:
325‐332,
1996.
|
52. |
Esko JD,
Stanley P.
Glycosylation mutants of cultured cells. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of Glycobiology (2nd ed). Cold Spring Harbor Laboratory Press, 2009, chap 46.
|
53. |
Esposito G,
Santana LF,
Dilly K,
Cruz JD,
Mao L,
Lederer WJ,
Rockman HA.
Cellular and functional defects in a mouse model of heart failure.
Am J Physiol Heart Circ Physiol
279:
H3101‐H3112,
2000.
|
54. |
Fedida D,
Wible B,
Wang Z,
Fermini B,
Faust F,
Nattel S,
Brown AM.
Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current.
Circ Res
73:
210‐216,
1993.
|
55. |
Feng J,
Wible B,
Li GR,
Wang Z,
Nattel S.
Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes.
Circ Res
80:
572‐579,
1997.
|
56. |
Fermini B,
Nathan RD.
Sialic acid and the surface charge associated with hyperpolarization‐activated, inward rectifying channels.
J Membr Biol
114:
61‐69,
1990.
|
57. |
Fermini B,
Nathan RD.
Removal of sialic acid alters both T‐ and L‐type calcium currents in cardiac myocytes.
Am J Physiol
260:
H735‐H743,
1991.
|
58. |
Footitt EJ,
Karimova A,
Burch M,
Yayeh T,
Dupre T,
Vuillaumier‐Barrot S,
Chantret I,
Moore SE,
Seta N,
Grunewald S.
Cardiomyopathy in the congenital disorders of glycosylation (CDG): A case of late presentation and literature review.
J Inherit Metab Dis
2009. DOI 10.1007/510545‐009‐1262‐1
|
59. |
Frankenhaeuser B,
Hodgkin AL.
The action of calcium on the electrical properties of squid axons.
J Physiol
137:
218‐244,
1957.
|
60. |
Freeman LC,
Lippold JJ,
Mitchell KE.
Glycosylation influences gating and pH sensitivity of I(sK).
J Membr Biol
177:
65‐79,
2000.
|
61. |
Freeze HH,
Aebi M.
Altered glycan structures: The molecular basis of congenital disorders of glycosylation.
Curr Opin Struct Biol
15:
490‐498,
2005.
|
62. |
Gan L,
Kaczmarek LK.
When, where, and how much? Expression of the Kv3.1 potassium channel in high‐frequency firing neurons.
J Neurobiol
37:
69‐79,
1998.
|
63. |
Gaudry JP,
Arod C,
Sauvage C,
Busso S,
Dupraz P,
Pankiewicz R,
Antonsson B.
Purification of the extracellular domain of the membrane protein GlialCAM expressed in HEK and CHO cells and comparison of the glycosylation.
Protein Expr Purif
58:
94‐102,
2008.
|
64. |
Gellens ME,
George AL Jr,
Chen LQ,
Chahine M,
Horn R,
Barchi RL,
Kallen RG.
Primary structure and functional expression of the human cardiac tetrodotoxin‐insensitive voltage‐dependent sodium channel.
Proc Natl Acad Sci U S A
89:
554‐558,
1992.
|
65. |
Gilbert DL,
Ehrenstein G.
Effect of divalent cations on potassium conductance of squid axons: determination of surface charge.
Biophys J
9:
447‐463,
1969.
|
66. |
Goldin AL.
Evolution of voltage‐gated Na(+) channels.
J Exp Biol
205:
575‐584,
2002.
|
67. |
Gong Q,
Anderson CL,
January CT,
Zhou Z.
Role of glycosylation in cell surface expression and stability of HERG potassium channels.
Am J Physiol Heart Circ Physiol
283:
H77‐H84,
2002.
|
68. |
Grissmer S,
Ghanshani S,
Dethlefs B,
McPherson JD,
Wasmuth JJ,
Gutman GA,
Cahalan MD,
Chandy KG.
The Shaw‐related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type l K+ channel in T cells.
J Biol Chem
267:
20971‐20979,
1992.
|
69. |
Gross HJ,
Merling A,
Moldenhauer G,
Schwartz‐Albiez R.
Ecto‐sialyltransferase of human B lymphocytes reconstitutes differentiation markers in the presence of exogenous CMP‐N‐acetyl neuraminic acid.
Blood
87:
5113‐5126,
1996.
|
70. |
Grudnik P,
Bange G,
Sinning I.
Protein targeting by the signal recognition particle.
Biol Chem
390:
775‐782,
2009.
|
71. |
Grundfest H,
Shanes AM,
Freygang W.
The effect of sodium and potassium ions on the impedance change accompanying the spike in the squid giant axon.
J Gen Physiol
37:
25‐37,
1953.
|
72. |
Guo W,
Li H,
Aimond F,
Johns DC,
Rhodes KJ,
Trimmer JS,
Nerbonne JM.
Role of heteromultimers in the generation of myocardial transient outward K+ currents.
Circ Res
90:
586‐593,
2002.
|
73. |
Hagiwara S,
Watanabe A.
The effect of tetraethylammonium chloride on the muscle membrane examined with an intracellular microelectrode.
J Physiol
129:
513‐527,
1955.
|
74. |
Hahin R,
Campbell DT.
Simple shifts in the voltage dependence of sodium channel gating caused by divalent cations.
J Gen Physiol
82:
785‐805,
1983.
|
75. |
Hall MK,
Cartwright TA,
Fleming CM,
Schwalbe RA.
Importance of glycosylation on function of a potassium channel in neuroblastoma cells.
PLoS One
6:
e19317,
2011.
|
76. |
Hanlon MR,
Wallace BA.
Structure and function of voltage‐dependent ion channel regulatory beta subunits.
Biochemistry
41:
2886‐2894,
2002.
|
77. |
Haris PI,
Ramesh B,
Sansom MS,
Kerr ID,
Srai KS,
Chapman D.
Studies of the pore‐forming domain of a voltage‐gated potassium channel protein.
Protein Eng
7:
255‐262,
1994.
|
78. |
Hatem SN,
Coulombe A,
Balse E.
Specificities of atrial electrophysiology: Clues to a better understanding of cardiac function and the mechanisms of arrhythmias.
J Mol Cell Cardiol
48:
90‐95,
2010.
|
79. |
Helenius A,
Aebi M.
Intracellular functions of N‐linked glycans.
Science
291:
2364‐2369,
2001.
|
80. |
Henrissat B,
Surolia A,
Stanley P.
A Genomic view of glycobiology. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of Glycobiology (2nd ed). Cold Spring Harbor Laboratory Press, 2009, chap 7.
|
81. |
Herzog RI,
Cummins TR,
Waxman SG.
Persistent TTX‐resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons.
J Neurophysiol
86:
1351‐1364,
2001.
|
82. |
Hille B.
Charges and potentials at the nerve surface. Divalent ions and pH.
J Gen Physiol
51:
221‐236,
1968.
|
83. |
Hille B.
Ionic channels: Molecular pores of excitable membranes.
Harvey Lect
82:
47‐69,
1986.
|
84. |
Hille B.
Ion Channels of Excitable Membranes.
Sunderland, Mass.:
Sinauer,
2001, 3rd edition, pp. 646–660.
|
85. |
Hille B,
Ritchie JM,
Strichartz GR.
The effect of surface charge on the nerve membrane on the action of tetrodotoxin and saxitoxin in frog myelinated nerve.
J Physiol
250:
34P‐35P,
1975a.
|
86. |
Hille B,
Woodhull AM,
Shapiro BI.
Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH.
Philos Trans R Soc Lond B Biol Sci
270:
301‐318,
1975b.
|
87. |
Hodgkin AL,
Huxley AF.
The components of membrane conductance in the giant axon of Loligo.
J Physiol
116:
473‐496,
1952a.
|
88. |
Hodgkin AL,
Huxley AF.
Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.
J Physiol
116:
449‐472,
1952b.
|
89. |
Hodgkin AL,
Huxley AF.
The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.
J Physiol
116:
497‐506,
1952c.
|
90. |
Hodgkin AL,
Huxley AF.
Movement of sodium and potassium ions during nervous activity.
Cold Spring Harb Symp Quant Biol
17:
43‐52,
1952d.
|
91. |
Hodgkin AL,
Huxley AF.
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol
117:
500‐544,
1952e.
|
92. |
Hodgkin AL,
Huxley AF,
Katz B.
Measurement of current‐voltage relations in the membrane of the giant axon of Loligo.
J Physiol
116:
424‐448,
1952.
|
93. |
Huxley AF,
Stampfli R.
Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibers.
J Physiol
112:
496‐508,
1951.
|
94. |
Imura A,
Iwano A,
Tohyama O,
Tsuji Y,
Nozaki K,
Hashimoto N,
Fujimori T,
Nabeshima Y.
Secreted Klotho protein in sera and CSF: Implication for post‐translational cleavage in release of Klotho protein from cell membrane.
FEBS Lett
565:
143‐147,
2004.
|
95. |
Isaev D,
Isaeva E,
Khazipov R,
Holmes GL.
Anticonvulsant action of GABA in the high potassium‐low magnesium model of ictogenesis in the neonatal rat hippocampus in vivo and in vitro.
J Neurophysiol
94:
2987‐2992,
2005.
|
96. |
Isaev D,
Isaeva E,
Shatskih T,
Zhao Q,
Smits NC,
Shworak NW,
Khazipov R,
Holmes GL.
Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus.
J Neurosci
27:
11587‐11594,
2007.
|
97. |
Isaev D,
Zhao Q,
Kleen JK,
Lenck‐Santini PP,
Adstamongkonkul D,
Isaeva E,
Holmes GL.
Neuroaminidase reduces interictal spikes in a rat temporal lobe epilepsy model.
Epilepsia
52:
e12‐e15,
2011.
|
98. |
Isaeva E,
Lushnikova I,
Savrasova A,
Skibo G,
Holmes GL,
Isaev D.
Blockade of endogenous neuraminidase leads to an increase of neuronal excitability and activity‐dependent synaptogenesis in the rat hippocampus.
Eur J Neurosci
32:
1889‐1896,
2010.
|
99. |
Isom LL.
Sodium channel beta subunits: anything but auxiliary.
Neuroscientist
7:
42‐54,
2001.
|
100. |
Jaeken J.
Congenital disorders of glycosylation.
Ann N Y Acad Sci
1214:
190‐198, 2010.
|
101. |
James WM,
Agnew WS.
Multiple oligosaccharide chains in the voltage‐sensitive Na channel from electrophorus electricus: Evidence for alpha‐2,8‐linked polysialic acid.
Biochem Biophys Res Commun
148:
817‐826,
1987.
|
102. |
Jegla T,
Salkoff L.
Molecular evolution of K+ channels in primitive eukaryotes.
Soc Gen Physiol Ser
49:
213‐222,
1994.
|
103. |
Jiang Y,
Lee A,
Chen J,
Ruta V,
Cadene M,
Chait BT,
MacKinnon R.
X‐ray structure of a voltage‐dependent K+ channel.
Nature
423:
33‐41,
2003.
|
104. |
Jiang Y,
Ruta V,
Chen J,
Lee A,
MacKinnon R.
The principle of gating charge movement in a voltage‐dependent K+ channel.
Nature
423:
42‐48,
2003.
|
105. |
Johnson D,
Bennett ES.
Isoform‐specific effects of the beta2 subunit on voltage‐gated sodium channel gating.
J Biol Chem
281:
25875‐25881,
2006.
|
106. |
Johnson D,
Bennett ES.
Gating of the shaker potassium channel is modulated differentially by N‐glycosylation and sialic acids.
Pflugers Arch
456:
393‐405,
2008.
|
107. |
Johnson D,
Montpetit ML,
Stocker PJ,
Bennett ES.
The sialic acid component of the beta1 subunit modulates voltage‐gated sodium channel function.
J Biol Chem
279:
44303‐44310,
2004.
|
108. |
Katz B,
Miledi R.
Propagation of electric activity in motor nerve terminals.
Proc R Soc Lond B Biol Sci
161:
453‐482,
1965.
|
109. |
Katz B,
Miledi R.
Spontaneous and evoked activity of motor nerve endings in calcium Ringer.
J Physiol
203:
689‐706,
1969a.
|
110. |
Katz B,
Miledi R.
Tetrodotoxin‐resistant electric activity in presynaptic terminals.
J Physiol
203:
459‐487,
1969b.
|
111. |
Keynes RD,
Rojas E.
Kinetics and steady‐state properties of the charged system controlling sodium conductance in the squid giant axon.
J Physiol
239:
393‐434,
1974.
|
112. |
Kuro‐o M.
Klotho.
Pflugers Arch
459:
333‐343,
2010.
|
113. |
Kurosu H,
Yamamoto M,
Clark JD,
Pastor JV,
Nandi A,
Gurnani P,
McGuinness OP,
Chikuda H,
Yamaguchi M,
Kawaguchi H,
Shimomura I,
Takayama Y,
Herz J,
Kahn CR,
Rosenblatt KP,
Kuro‐o M.
Suppression of aging in mice by the hormone Klotho.
Science
309:
1829‐1833,
2005.
|
114. |
Lairson LL,
Henrissat B,
Davies GJ,
Withers SG.
Glycosyltransferases: Structures, functions, and mechanisms.
Annu Rev Biochem
77:
521‐555,
2008.
|
115. |
Lakshminarayanaiah N.
Surface charges on membranes.
J Membr Biol
29:
243‐253,
1976.
|
116. |
Lakshminarayanaiah N,
Murayama K.
Estimation of surface charges in some biological membranes.
J Membr Biol
23:
279‐292,
1975.
|
117. |
Latorre R,
Labarca P,
Naranjo D.
Surface charge effects on ion conduction in ion channels.
Methods Enzymol
207:
471‐501,
1992.
|
118. |
Lau A,
McLaughlin A,
McLaughlin S.
The adsorption of divalent cations to phosphatidylglycerol bilayer membranes.
Biochim Biophys Acta
645:
279‐292,
1981.
|
119. |
Laughlin ST,
Agard NJ,
Baskin JM,
Carrico IS,
Chang PV,
Ganguli AS,
Hangauer MJ,
Lo A,
Prescher JA,
Bertozzi CR.
Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics.
Methods Enzymol
415:
230‐250,
2006.
|
120. |
Levinson SR,
Thornhill WB,
Duch DS,
Recio‐Pinto E,
Urban BW.
The role of nonprotein domains in the function and synthesis of voltage‐gated sodium channels.
Ion Channels
2:
33‐64,
1990.
|
121. |
Liu J,
Kim KH,
London B,
Morales MJ,
Backx PH.
Dissection of the voltage‐activated potassium outward currents in adult mouse ventricular myocytes: I(to,f), I(to,s), I(K,slow1), I(K,slow2), and I(ss).
Basic Res Cardiol
106:
189‐204,
2011.
|
122. |
Long SB,
Campbell EB,
Mackinnon R.
Crystal structure of a mammalian voltage‐dependent Shaker family K+ channel.
Science
309:
897‐903,
2005.
|
123. |
Long SB,
Tao X,
Campbell EB,
MacKinnon R.
Atomic structure of a voltage‐dependent K+ channel in a lipid membrane‐like environment.
Nature
450:
376‐382,
2007.
|
124. |
Lopreato GF,
Lu Y,
Southwell A,
Atkinson NS,
Hillis DM,
Wilcox TP,
Zakon HH.
Evolution and divergence of sodium channel genes in vertebrates.
Proc Natl Acad Sci U S A
98:
7588‐7592,
2001.
|
125. |
Lu Z,
Abe J,
Taunton J,
Lu Y,
Shishido T,
McClain C,
Yan C,
Xu SP,
Spangenberg TM,
Xu H.
Reactive oxygen species‐induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity.
Circ Res
103:
269‐278,
2008.
|
126. |
Mackinnon R.
Structural biology. Voltage sensor meets lipid membrane.
Science
306:
1304‐1305,
2004.
|
127. |
Malin SA,
Nerbonne JM.
Elimination of the fast transient in superior cervical ganglion neurons with expression of KV4.2W362F: molecular dissection of IA.
J Neurosci
20:
5191‐5199,
2000.
|
128. |
Malin SA,
Nerbonne JM.
Molecular heterogeneity of the voltage‐gated fast transient outward K+ current, I(Af), in mammalian neurons.
J Neurosci
21:
8004‐8014,
2001.
|
129. |
Marchal I,
Jarvis DL,
Cacan R,
Verbert A.
Glycoproteins from insect cells: Sialylated or not?
Biol Chem
382:
151‐159,
2001.
|
130. |
Marengo FD,
Wang SY,
Wang B,
Langer GA.
Dependence of cardiac cell Ca2+ permeability on sialic acid‐containing sarcolemmal gangliosides.
J Mol Cell Cardiol
30:
127‐137,
1998.
|
131. |
Marionneau C,
Brunet S,
Flagg TP,
Pilgram TK,
Demolombe S,
Nerbonne JM.
Distinct cellular and molecular mechanisms underlie functional remodeling of repolarizing K+ currents with left ventricular hypertrophy.
Circ Res
102:
1406‐1415,
2008.
|
132. |
McDonagh JC,
Nathan RD.
Sialic acid and the surface charge of delayed rectifier potassium channels.
J Mol Cell Cardiol
22:
1305‐1316,
1990.
|
133. |
McDowell W,
Schwarz RT.
Dissecting glycoprotein biosynthesis by the use of specific inhibitors.
Biochimie
70:
1535‐1549,
1988.
|
134. |
McLaughlin S.
The electrostatic properties of membranes.
Annu Rev Biophys Biophys Chem
18:
113‐136,
1989.
|
135. |
McLaughlin S,
Mulrine N,
Gresalfi T,
Vaio G,
McLaughlin A.
Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.
J Gen Physiol
77:
445‐473,
1981.
|
136. |
McLaughlin SG,
Szabo G,
Eisenman G.
Divalent ions and the surface potential of charged phospholipid membranes.
J Gen Physiol
58:
667‐687,
1971.
|
137. |
McLaughlin SG,
Szabo G,
Eisenman G,
Ciani SM.
Surface charge and the conductance of phospholipid membranes.
Proc Natl Acad Sci U S A
67:
1268‐1275,
1970.
|
138. |
Miller JA,
Agnew WS,
Levinson SR.
Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: Isolation and partial chemical and physical characterization.
Biochemistry
22:
462‐470,
1983.
|
139. |
Mitcheson JS,
Sanguinetti MC.
Biophysical properties and molecular basis of cardiac rapid and slow delayed rectifier potassium channels.
Cell Physiol Biochem
9:
201‐216,
1999.
|
140. |
Miyake A,
Mochizuki S,
Yokoi H,
Kohda M,
Furuichi K.
New ether‐a‐go‐go K(+) channel family members localized in human telencephalon.
J Biol Chem
274:
25018‐25025,
1999.
|
141. |
Monti E,
Bonten E,
D'Azzo A,
Bresciani R,
Venerando B,
Borsani G,
Schauer R,
Tettamanti G.
Sialidases in vertebrates: A family of enzymes tailored for several cell functions.
Adv Carbohydr Chem Biochem
64:
403‐479,
2010.
|
142. |
Montpetit ML,
Stocker PJ,
Schwetz TA,
Harper JM,
Norring SA,
Schaffer L,
North SJ,
Jang‐Lee J,
Gilmartin T,
Head SR,
Haslam SM,
Dell A,
Marth JD,
Bennett ES.
Regulated and aberrant glycosylation modulate cardiac electrical signaling.
Proc Natl Acad Sci U S A
106:
16517‐16522,
2009.
|
143. |
Morimoto K,
Fahnestock M,
Racine RJ.
Kindling and status epilepticus models of epilepsy: Rewiring the brain.
Prog Neurobiol
73:
1‐60,
2004.
|
144. |
Mozhayeva GN,
Naumov AP.
Effect of surface charge on the steady‐state potassium conductance of nodal membrane.
Nature
228:
164‐165,
1970.
|
145. |
Nakano M,
Kakehi K,
Tsai MH,
Lee YC.
Detailed structural features of glycan chains derived from alpha1‐acid glycoproteins of several different animals: The presence of hypersialylated, O‐acetylated sialic acids but not disialyl residues.
Glycobiology
14:
431‐441,
2004.
|
146. |
Neumcke B,
Stampfli R.
Heterogeneity of external surface charges near sodium channels in the nodal membrane of frog nerve.
Pflugers Arch
401:
125‐131,
1984.
|
147. |
Niwa N,
Nerbonne JM.
Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation.
J Mol Cell Cardiol
48:
12‐25.
|
148. |
Noda M,
Ikeda T,
Suzuki H,
Takeshima H,
Takahashi T,
Kuno M,
Numa S.
Expression of functional sodium channels from cloned cDNA.
Nature
322:
826‐828,
1986.
|
149. |
Noma K,
Kimura K,
Minatohara K,
Nakashima H,
Nagao Y,
Mizoguchi A,
Fujiyoshi Y.
Triple N‐glycosylation in the long S5‐P loop regulates the activation and trafficking of the Kv12.2 potassium channel.
J Biol Chem
284:
33139‐33150,
2009.
|
150. |
Ohtsubo K,
Marth JD.
Glycosylation in cellular mechanisms of health and disease.
Cell
126:
855‐867,
2006.
|
151. |
Ohtsubo K,
Takamatsu S,
Minowa MT,
Yoshida A,
Takeuchi M,
Marth JD.
Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes.
Cell
123:
1307‐1321,
2005.
|
152. |
Pabon A,
Chan KW,
Sui JL,
Wu X,
Logothetis DE,
Thornhill WB.
Glycosylation of GIRK1 at Asn119 and ROMK1 at Asn117 has different consequences in potassium channel function.
J Biol Chem
275:
30677‐30682,
2000.
|
153. |
Parker RB,
Kohler JJ.
Regulation of intracellular signaling by extracellular glycan remodeling.
ACS Chem Biol
5:
35‐46,
2010.
|
154. |
Patnaik SK,
Stanley P.
Lectin‐resistant CHO glycosylation mutants.
Methods Enzymol
416:
159‐182,
2006.
|
155. |
Petrecca K,
Atanasiu R,
Akhavan A,
Shrier A.
N‐linked glycosylation sites determine HERG channel surface membrane expression.
J Physiol
515(Pt 1):
41‐48,
1999.
|
156. |
Phartiyal P,
Jones EM,
Robertson GA.
Heteromeric assembly of human ether‐a‐go‐go‐related gene (hERG) 1a/1b channels occurs cotranslationally via N‐terminal interactions.
J Biol Chem
282:
9874‐9882,
2007.
|
157. |
Pongs O,
Schwarz JR.
Ancillary subunits associated with voltage‐dependent K+ channels.
Physiol Rev
90:
755‐796, 2010.
|
158. |
Post JA.
Removal of sarcolemmal sialic acid residues results in a loss of sarcolemmal functioning and integrity.
Am J Physiol
263:
H147‐H152,
1992.
|
159. |
Puskin JS,
Coene MT.
Na+ and H+ dependent Mn2+ binding to phosphatidylserine vesicles as a test of the Gouy‐Chapman‐Stern theory.
J Membr Biol
52:
69‐74,
1980.
|
160. |
Recio‐Pinto E,
Thornhill WB,
Duch DS,
Levinson SR,
Urban BW.
Neuraminidase treatment modifies the function of electroplax sodium channels in planar lipid bilayers.
Neuron
5:
675‐684,
1990.
|
161. |
Remme CA,
Bezzina CR.
Sodium channel (dys)function and cardiac arrhythmias.
Cardiovasc Ther
28:
287‐294,
2010.
|
162. |
Repnikova E,
Koles K,
Nakamura M,
Pitts J,
Li H,
Ambavane A,
Zoran MJ,
Panin VM.
Sialyltransferase regulates nervous system function in Drosophila.
J Neurosci
30:
6466‐6476,
2010.
|
163. |
Rockman HA,
Chien KR,
Choi DJ,
Iaccarino G,
Hunter JJ,
Ross J Jr,
Lefkowitz RJ,
Koch WJ.
Expression of a beta‐adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene‐targeted mice.
Proc Natl Acad Sci U S A
95:
7000‐7005,
1998.
|
164. |
Rogart RB,
Cribbs LL,
Muglia LK,
Kephart DD,
Kaiser MW.
Molecular cloning of a putative tetrodotoxin‐resistant rat heart Na+ channel isoform.
Proc Natl Acad Sci U S A
86:
8170‐8174,
1989.
|
165. |
Rugiero F,
Mistry M,
Sage D,
Black JA,
Waxman SG,
Crest M,
Clerc N,
Delmas P,
Gola M.
Selective expression of a persistent tetrodotoxin‐resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons.
J Neurosci
23:
2715‐2725,
2003.
|
166. |
Sato C,
Sato M,
Iwasaki A,
Doi T,
Engel A.
The sodium channel has four domains surrounding a central pore.
J Struct Biol
121:
314‐325,
1998.
|
167. |
Savrasova AV,
Lushnikova IV,
Isaeva EV,
Skibo GG,
Isaev DS,
Kostyuk PG.
The effect of neuraminidase blocker on gabazine‐induced seizures in rat hippocampus.
Fiziol Zh
56:
14‐18,
2010.
|
168. |
Schwalbe RA,
Bianchi L,
Brown AM.
Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus.
J Biol Chem
272:
25217‐25223,
1997.
|
169. |
Schwalbe RA,
Corey MJ,
Cartwright TA.
Novel Kv3 glycoforms differentially expressed in adult mammalian brain contain sialylated N‐glycans.
Biochem Cell Biol
86:
21‐30,
2008.
|
170. |
Schwalbe RA,
Wang Z,
Bianchi L,
Brown AM.
Novel sites of N‐glycosylation in ROMK1 reveal the putative pore‐forming segment H5 as extracellular.
J Biol Chem
271:
24201‐24206,
1996.
|
171. |
Schwalbe RA,
Wang Z,
Wible BA,
Brown AM.
Potassium channel structure and function as reported by a single glycosylation sequon.
J Biol Chem
270:
15336‐15340,
1995.
|
172. |
Schwartz‐Albiez R,
Merling A,
Martin S,
Haas R,
Gross HJ.
Cell surface sialylation and ecto‐sialyltransferase activity of human CD34 progenitors from peripheral blood and bone marrow.
Glycoconj J
21:
451‐459,
2004.
|
173. |
Schwetz TA,
Norring SA,
Bennett ES.
N‐glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating.
Biochim Biophys Acta
1798:
367‐375,
2010.
|
174. |
Schwetz TA,
Norring SA,
Ednie AR,
Bennett ES.
Sialic acids attached to O‐glycans modulate voltage‐gated potassium channel gating.
J Biol Chem
286:
4123‐4132,
2011.
|
175. |
Shi G,
Trimmer JS.
Differential asparagine‐linked glycosylation of voltage‐gated K+ channels in mammalian brain and in transfected cells.
J Membr Biol
168:
265‐273,
1999.
|
176. |
Snider MD,
Rogers OC.
Membrane traffic in animal cells: Cellular glycoproteins return to the site of Golgi mannosidase I.
J Cell Biol
103:
265‐275,
1986.
|
177. |
Sparks SE,
Krasnewich DM.
Congenital disorders of glycosylation overview. In:
Pagon RA, Bird TD, Dolan CR, Stephens K, editors.
Gene Reviews.
Seattle:
University of Washington, Seattle,
2011. |
178. |
Spires S,
Begenisich T.
Modulation of potassium channel gating by external divalent cations.
J Gen Physiol
104:
675‐692,
1994.
|
179. |
Stanley P,
Schachter H,
Taniguchi N.
N‐Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors.
Essentials of Glycobiology
(2nd ed).
Cold Spring Harbor (NY):
Cold Spring Harbor Laboratory Press,
2009, Chap 8. |
180. |
Stocker PJ,
Bennett ES.
Differential sialylation modulates voltage‐gated Na+ channel gating throughout the developing myocardium.
J Gen Physiol
127:
253‐265,
2006.
|
181. |
Suen KF,
Turner MS,
Gao F,
Liu B,
Althage A,
Slavin A,
Ou W,
Zuo E,
Eckart M,
Ogawa T,
Yamada M,
Tuntland T,
Harris JL,
Trauger JW.
Transient expression of an IL‐23R extracellular domain Fc fusion protein in CHO vs. HEK cells results in improved plasma exposure.
Protein Expr Purif
71:
96‐102,
2010.
|
182. |
Sutachan JJ,
Watanabe I,
Zhu J,
Gottschalk A,
Recio‐Pinto E,
Thornhill WB.
Effects of Kv1.1 channel glycosylation on C‐type inactivation and simulated action potentials.
Brain Res
1058:
30‐43,
2005.
|
183. |
Sutula TP.
Experimental models of temporal lobe epilepsy: New insights from the study of kindling and synaptic reorganization.
Epilepsia
31(Suppl 3):
S45‐S54,
1990.
|
184. |
Suzuki H,
Beckh S,
Kubo H,
Yahagi N,
Ishida H,
Kayano T,
Noda M,
Numa S.
Functional expression of cloned cDNA encoding sodium channel III.
FEBS Lett
228:
195‐200,
1988.
|
185. |
Suzuki T,
Kitajima K,
Inoue S,
Inoue Y.
N‐glycosylation/deglycosylation as a mechanism for the post‐translational modification/remodification of proteins.
Glycoconj J
12:
183‐193,
1995.
|
186. |
Suzuki T,
Kitajima K,
Inoue S,
Inoue Y.
Occurrence and biological roles of ‘proximal glycanases’ in animal cells.
Glycobiology
4:
777‐789,
1994.
|
187. |
Sweeley CC.
Extracellular sialidases.
Adv Lipid Res
26:
235‐252,
1993.
|
188. |
Taatjes DJ,
Roth J,
Weinstein J,
Paulson JC.
Post‐Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope‐purified antibody.
J Biol Chem
263:
6302‐6309,
1988.
|
189. |
Takamatsu S,
Antonopoulos A,
Ohtsubo K,
Ditto D,
Chiba Y,
Le DT,
Morris HR,
Haslam SM,
Dell A,
Marth JD,
Taniguchi N.
Physiological and glycomic characterization of N‐acetylglucosaminyltransferase‐IVa and ‐IVb double deficient mice.
Glycobiology
20:
485‐497, 2010.
|
190. |
Takashima S.
Characterization of mouse sialyltransferase genes: Their evolution and diversity.
Biosci Biotechnol Biochem
72:
1155‐1167,
2008.
|
191. |
Tang K,
Li X,
Zheng MQ,
Rozanski GJ.
Role of apoptosis signal‐regulating kinase‐1‐c‐Jun NH2‐terminal kinase‐p38 signaling in voltage‐gated K+ channel remodeling of the failing heart: Regulation by thioredoxin.
Antioxid Redox Signal
14:
25‐35,
2011.
|
192. |
Tenno M,
Ohtsubo K,
Hagen FK,
Ditto D,
Zarbock A,
Schaerli P,
von Andrian UH,
Ley K,
Le D,
Tabak LA,
Marth JD.
Initiation of protein O glycosylation by the polypeptide GalNAcT‐1 in vascular biology and humoral immunity.
Mol Cell Biol
27:
8783‐8796,
2007.
|
193. |
Thornhill WB,
Watanabe I,
Sutachan JJ,
Wu MB,
Wu X,
Zhu J,
Recio‐Pinto E.
Molecular cloning and expression of a Kv1.1‐like potassium channel from the electric organ of Electrophorus electricus.
J Membr Biol
196:
1‐8,
2003.
|
194. |
Thornhill WB,
Wu MB,
Jiang X,
Wu X,
Morgan PT,
Margiotta JF.
Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function.
J Biol Chem
271:
19093‐19098,
1996.
|
195. |
Tompkins‐Macdonald GJ,
Gallin WJ,
Sakarya O,
Degnan B,
Leys SP,
Boland LM.
Expression of a poriferan potassium channel: Insights into the evolution of ion channels in metazoans.
J Exp Biol
212:
761‐767,
2009.
|
196. |
Trepanier‐Boulay V,
St‐Michel C,
Tremblay A,
Fiset C.
Gender‐based differences in cardiac repolarization in mouse ventricle.
Circ Res
89:
437‐444,
2001.
|
197. |
Trudeau MC,
Titus SA,
Branchaw JL,
Ganetzky B,
Robertson GA.
Functional analysis of a mouse brain Elk‐type K+ channel.
J Neurosci
19:
2906‐2918,
1999.
|
198. |
Tyrrell L,
Renganathan M,
Dib‐Hajj SD,
Waxman SG.
Glycosylation alters steady‐state inactivation of sodium channel Nav1.9/NaN in dorsal root ganglion neurons and is developmentally regulated.
J Neurosci
21:
9629‐9637,
2001.
|
199. |
Ufret‐Vincenty CA,
Baro DJ,
Lederer WJ,
Rockman HA,
Quinones LE,
Santana LF.
Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure.
J Biol Chem
276:
28197‐28203,
2001a.
|
200. |
Ufret‐Vincenty CA,
Baro DJ,
Santana LF.
Differential contribution of sialic acid to the function of repolarizing K(+) currents in ventricular myocytes.
Am J Physiol Cell Physiol
281:
C464‐C474,
2001b.
|
201. |
Ungar D.
Golgi linked protein glycosylation and associated diseases.
Semin Cell Dev Biol
20:
762‐769,
2009.
|
202. |
Utsunomiya I,
Tanabe S,
Terashi T,
Ikeno S,
Miyatake T,
Hoshi K,
Taguchi K.
Identification of amino acids in the pore region of Kv1.2 potassium channel that regulate its glycosylation and cell surface expression.
J Neurochem
112:
913‐923,
2010.
|
203. |
Van den Steen P,
Rudd PM,
Dwek RA,
Opdenakker G.
Concepts and principles of O‐linked glycosylation.
Crit Rev Biochem Mol Biol
33:
151‐208,
1998.
|
204. |
Varki A,
Esko JD,
Colley KJ.
Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of Glycobiology (2nd ed). Cold Spring Harbor Laboratory Press, 2009, chap 3.
|
205. |
Varki A,
Schauer R.
Sialic Acids. In:
Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, .
Essentials of Glycobiology
(2nd ed).
Cold Spring Harbor (NY):
Cold Spring Harbor Laboratory Press,
2009, Chap 14. |
206. |
Waite A,
Tinsley CL,
Locke M,
Blake DJ.
The neurobiology of the dystrophin‐associated glycoprotein complex.
Ann Med
41:
344‐359,
2009.
|
207. |
Wang Y,
Sun Z.
Current understanding of klotho.
Ageing Res Rev
8:
43‐51,
2009.
|
208. |
Warmke JW,
Ganetzky B.
A family of potassium channel genes related to eag in Drosophila and mammals.
Proc Natl Acad Sci U S A
91:
3438‐3442,
1994.
|
209. |
Watanabe I,
Wang HG,
Sutachan JJ,
Zhu J,
Recio‐Pinto E,
Thornhill WB.
Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism.
J Physiol
550:
51‐66,
2003.
|
210. |
Watanabe I,
Zhu J,
Recio‐Pinto E,
Thornhill WB.
Glycosylation affects the protein stability and cell surface expression of Kv1.4 but Not Kv1.1 potassium channels. A pore region determinant dictates the effect of glycosylation on trafficking.
J Biol Chem
279:
8879‐8885,
2004.
|
211. |
Watanabe I,
Zhu J,
Sutachan JJ,
Gottschalk A,
Recio‐Pinto E,
Thornhill WB.
The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
Brain Res
1144:
1‐18,
2007.
|
212. |
Watanabe S,
Kokuho T,
Takahashi H,
Takahashi M,
Kubota T,
Inumaru S.
Sialylation of N‐glycans on the recombinant proteins expressed by a baculovirus‐insect cell system under beta‐N‐acetylglucosaminidase inhibition.
J Biol Chem
277:
5090‐5093,
2002.
|
213. |
Weidmann S.
Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres.
J Physiol
129:
568‐582,
1955.
|
214. |
Yee HF Jr,
Kuwata JH,
Langer GA.
Effects of neuraminidase on cellular calcium and contraction in cultured cardiac myocytes.
J Mol Cell Cardiol
23:
175‐185,
1991.
|
215. |
Yee HF Jr,
Weiss JN,
Langer GA.
Neuraminidase selectively enhances transient Ca2+ current in cardiac myocytes.
Am J Physiol
256:
C1267‐C1272,
1989.
|
216. |
Yohe HC,
Rosenberg A.
Action of intrinsic sialidase of rat brain synaptic membranes on membrane sialolipid and sialoprotein components in situ.
J Biol Chem
252:
2412‐2418,
1977.
|
217. |
Zhang Y,
Hartmann HA,
Satin J.
Glycosylation influences voltage‐dependent gating of cardiac and skeletal muscle sodium channels.
J Membr Biol
171:
195‐207,
1999.
|
218. |
Zhou W,
Jones SW.
Surface charge and calcium channel saturation in bullfrog sympathetic neurons.
J Gen Physiol
105:
441‐462,
1995.
|
219. |
Zhu J,
Recio‐Pinto E,
Hartwig T,
Sellers W,
Yan J,
Thornhill WB.
The Kv1.2 potassium channel: the position of an N‐glycan on the extracellular linkers affects its protein expression and function.
Brain Res
1251:
16‐29,
2009.
|
220. |
Zhu J,
Watanabe I,
Gomez B,
Thornhill WB.
Determinants involved in Kv1 potassium channel folding in the endoplasmic reticulum, glycosylation in the Golgi, and cell surface expression.
J Biol Chem
276:
39419‐39427,
2001.
|
221. |
Zhu J,
Watanabe I,
Gomez B,
Thornhill WB.
Heteromeric Kv1 potassium channel expression: amino acid determinants involved in processing and trafficking to the cell surface.
J Biol Chem
278:
25558‐25567,
2003.
|
222. |
Zolk O,
Caroni P,
Bohm M.
Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure.
Circulation
101:
2674‐2677,
2000.
|
223. |
Zuber C,
Lackie PM,
Catterall WA,
Roth J.
Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N‐CAM in adult rat brain.
J Biol Chem
267:
9965‐9971,
1992.
|