References |
1. |
Abbott BC,
Bigland B,
Ritchie JM.
The physiological cost of negative work.
J Physiol
117:
380‐390,
1952.
|
2. |
Alexander Vernon.
The dimensions of knee and ankle muscles and the forces they exert.
J Hum Movement Stud
1:
115‐123,
1975.
|
3. |
Alexander RM.
Principles of Animal Locomotion.
Princeton, NJ; Oxford:
Princeton University Press,
2003.
|
4. |
Alexander RM,
Jayes AS.
Fourier analysis of forces exerted in walking and running.
J Biomech
13:
383‐390,
1980.
|
5. |
Altringham JD,
Block BA.
Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish.
J Exp Biol
200:
2617‐2627,
1997.
|
6. |
Altringham JD,
Johnston IA.
Scaling effects on muscle function: Power output of isolated fish muscle fibres performing dscillatory work.
1990.
|
7. |
Alway SE,
MacDougall JD,
Sale DG,
Sutton JR,
McComas AJ.
Functional and structural adaptations in skeletal muscle of trained athletes.
J Appl Physiol
64:
1114‐1120,
1988.
|
8. |
Askew GN,
Marsh RL.
The effects of length trajectory on the mechanical power output of mouse skeletal muscles.
J Exp Biol
200:
3119‐3131,
1997.
|
9. |
Azizi E,
Brainerd EL,
Roberts TJ.
Variable gearing in pennate muscles.
Proc Natl Acad Sci U S A
105:
1745‐1750,
2008.
|
10. |
Azizi E,
Roberts TJ.
Muscle performance during frog jumping: Influence of elasticity on muscle operating lengths.
Proc Biol Sci
277:
1523‐1530,
2010.
|
11. |
Bandman E,
Rosser BW.
Evolutionary significance of myosin heavy chain heterogeneity in birds.
Microsc Res Tech
50:
473‐491,
2000.
|
12. |
Barany M.
ATPase activity of myosin correlated with speed of muscle shortening.
J Gen Physiol
50:
(Suppl):
197‐218,
1967.
|
13. |
Barclay CJ,
Woledge RC,
Curtin NA.
Energy turnover for Ca2+ cycling in skeletal muscle.
J Muscle Res Cell Motil
28:
259‐274,
2007.
|
14. |
Bassel‐Duby R,
Olson EN.
Signaling pathways in skeletal muscle remodeling.
Annu Rev Biochem
75:
19‐37,
2006.
|
15. |
Bejan A,
Marden JH.
Unifying constructal theory for scale effects in running, swimming and flying.
J Exp Biol
209:
238‐248,
2006.
|
16. |
Bennett MJ,
Rinaldo P,
Strauss AW.
Inborn errors of mitochondrial fatty acid oxidation.
Crit Rev Clin Lab Sci
37:
1‐44,
2000.
|
17. |
Bicudo JE,
Zerbinatti CV.
Physiological constraints in the aerobic performance of hummingbirds.
Braz J Med Biol Res
28:
1139‐1145,
1995.
|
18. |
Biewener AA,
Corning WR,
Tobalske BW.
In vivo pectoralis muscle force‐length behavior during level flight in pigeons (Columba livia).
J Exp Biol
201
(Pt 24):
3293‐307,
1998.
|
19. |
Biewener AA,
Roberts TJ.
Muscle and tendon contributions to force, work, and elastic energy savings: A comparative perspective.
Exerc Sport Sci Rev
28:
99‐107,
2000.
|
20. |
Bister TJ,
Willis DW,
Brown ML,
Jordan SM,
Neumann RM,
Quist MC,
Guy CS.
Proposed standard weight (Ws) equations and standard length categories for 18 warmwater nongame and riverine fish species.
N Am J Fish Manage
20:
570‐574,
2000.
|
21. |
Block BA.
Thermogenesis in muscle.
Annu Rev Physiol
56:
535‐577,
1994.
|
22. |
Bodine SC,
Roy RR,
Eldred E,
Edgerton VR.
Maximal force as a function of anatomical features of motor units in the cat tibialis anterior.
J Neurophysiol
57:
1730‐1745,
1987.
|
23. |
Boggs DF,
Frappell PB.
Unifying principles of locomotion: Foreword.
Physiol Biochem Zool
73:
647‐650,
2000.
|
24. |
Bottinelli R,
Reggiani C.
Human skeletal muscle fibres: Molecular and functional diversity.
Prog Biophys Mol Biol
73:
195‐262,
2000.
|
25. |
Bramble DM,
Carrier DR.
Running and breathing in mammals.
Science
219:
251‐6,
1983.
|
26. |
Brini M,
Carafoli E.
Calcium pumps in health and disease.
Physiol Rev
89:
1341‐1378,
2009.
|
27. |
Brooke MH,
Kaiser KK.
Three human myosin ATPase systems and their importance in muscle pathology.
Neurology
20:
404‐5,
1970.
|
28. |
Brooks GA.
Cell‐cell and intracellular lactate shuttles.
J Physiol
587:
5591‐600,
2009.
|
29. |
Brooks GA,
Mercier J.
Balance of carbohydrate and lipid utilization during exercise: The “crossover” concept.
J Appl Physiol
76:
2253‐2261,
1994.
|
30. |
Brown JH,
West GB,
Santa Fe Institute (Santa Fe N.M.).
Scaling in Biology.
Oxford; New York:
Oxford University Press,
2000.
|
31. |
Bruderer B,
Peter D,
Boldt A,
Liechti F.
Wing‐beat characteristics of birds recorded with tracking radar and cine camera.
IBIS
152:
272‐291,
2010.
|
32. |
Buller AJ,
Eccles JC,
Eccles RM.
Differentiation of fast and slow muscles in the cat hind limb.
J Physiol
150:
399‐416,
1960.
|
33. |
Buser KS,
Kopp B,
Gehr P,
Weibel ER,
Hoppeler H.
Effect of cold environment on skeletal muscle mitochondria in growing rats.
Cell Tissue Res
225:
427‐436,
1982.
|
34. |
Caiozzo VJ.
Plasticity of skeletal muscle phenotype: Mechanical consequences.
Muscle Nerve
26:
740‐768,
2002.
|
35. |
Calder WA.
Size, Function, and Life History.
London:
Harvard University Press, Cambridge, Massachusetts,
1984, p.
431.
|
36. |
Canto C,
Auwerx J.
AMP‐activated protein kinase and its downstream transcriptional pathways.
Cell Mol Life Sci
67:
3407‐3423,
2010.
|
37. |
Carrier DR,
Heglund NC,
Earls KD.
Variable gearing during locomotion in the human musculoskeletal system.
Science
265:
651‐3,
1994.
|
38. |
Cartee GD,
Wojtaszewski JF.
Role of Akt substrate of 160 kDa in insulin‐stimulated and contraction‐stimulated glucose transport.
Appl Physiol Nutr Metab
32:
557‐566,
2007.
|
39. |
Cediel RA,
Blob RW,
Schrank GD,
Plourde RC,
Schoenfuss HL.
Muscle fiber type distribution in climbing Hawaiian gobioid fishes: Ontogeny and correlations with locomotor performance.
Zoology (Jena)
111:
114‐122,
2008.
|
40. |
Chin ER,
Olson EN,
Richardson JA,
Yang Q,
Humphries C,
Shelton JM,
Wu H,
Zhu W,
Bassel‐Duby R,
Williams RS.
A calcineurin‐dependent transcriptional pathway controls skeletal muscle fiber type.
Genes Dev
12:
2499‐509,
1998.
|
41. |
Conley KE,
Kayar SR,
Rosler K,
Hoppeler H,
Weibel ER,
Taylor CR.
Adaptive variation in the mammalian respiratory system in relation to energetic demand .4. Capillaries and their relationship to oxidative capacity.
Respir Physiol
69:
47‐64,
1987.
|
42. |
Conley KE,
Kemper WF,
Crowther GJ.
Limits to sustainable muscle performance: Interaction between glycolysis and oxidative phosphorylation.
J Exp Biol
204:
3189‐3194,
2001.
|
43. |
Conley KE,
Kushmerick MJ,
Jubrias SA.
Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo.
J Physiol
511
(Pt 3):
935‐945,
1998.
|
44. |
Conley KE,
Lindstedt SL.
Minimal cost per twitch in rattlesnake tail muscle.
Nature
383:
71‐72,
1996.
|
45. |
Conley KE,
Lindstedt SL.
Energy‐saving mechanisms in muscle: The minimization strategy.
J Exp Biol
205:
2175‐2181,
2002.
|
46. |
Conley KE,
Ordway GA,
Richardson RS.
Deciphering the mysteries of myoglobin in striated muscle.
Acta Physiologica Scandinavica
168:
623‐634,
2000.
|
47. |
Crowther GJ,
Jubrias SA,
Gronka RK,
Conley KE.
A “functional biopsy” of muscle properties in sprinters and distance runners.
Med Sci Sports Exerc
34:
1719‐1724,
2002.
|
48. |
Daniel TL,
Tu MS.
Animal movement, mechanical tuning and coupled systems.
J Exp Biol
202:
3415‐3421,
1999.
|
49. |
Daniels JT.
A physiologist's view of running economy.
Med Sci Sports Exerc
17:
332‐8,
1985.
|
50. |
Darveau CA,
Hochachka PW,
Welch KC,
Roubik DW,
Suarez RK.
Allometric scaling of flight energetics in Panamanian orchid bees: A comparative phylogenetic approach.
J Exp Biol
208:
3581‐3591,
2005.
|
51. |
Dawson TJT,
Richard C.
Energetic cost of locomotion in kangaroos.
Nature
246:
313‐314,
1973.
|
52. |
Delling U,
Tureckova J,
Lim HW,
De Windt LJ,
Rotwein P,
Molkentin JD.
A calcineurin‐NFATc3‐dependent pathway regulates skeletal muscle differentiation and slow myosin heavy‐chain expression.
Mol Cell Biol
20:
6600‐6611,
2000.
|
53. |
Desplanches D,
Kayar SR,
Sempore B,
Flandrois R,
Hoppeler H.
Rat soleur muscle ultrastructure after hindlimb suspension.
J Appl Physiol
69:
504‐508,
1990.
|
54. |
Dickinson MH,
Farley CT,
Full RJ,
Koehl MA,
Kram R,
Lehman S.
How animals move: An integrative view.
Science
288:
100‐6,
2000.
|
55. |
Drucker E,
Jensen J.
Pectoral fin locomotion in the striped surfperch. II. Scaling swimming kinematics and performance at a gait transition.
J Exp Biol
199:
2243‐2252,
1996.
|
56. |
Eaton RL.
Cheetah: The Biology, Ecology, and Behavior of an Endangered Species.
New York:
Van Nostrand Reinhold Co., 1974 |
57. |
Edman KA,
Elzinga G,
Noble MI.
Further characterization of the enhancement of force by stretch during activity in single muscle fibres of the frog [proceedings].
J Physiol
280:
35P‐36P,
1978.
|
58. |
Eisenberg BR,
Kuda AM,
Peter JB.
Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig.
J Cell Biol
60:
732‐754,
1974.
|
59. |
Feder ME,
Garland T, Jr,
Marden JH,
Zera AJ.
Locomotion in response to shifting climate zones: Not so fast.
Annu Rev Physiol
72:
167‐190,
2010.
|
60. |
Fitts RH.
Muscle fatigue: The cellular aspects.
Am J Sports Med
24:
S9‐S13,
1996.
|
61. |
Flann KL,
LaStayo PC,
McClain DA,
Hazel M,
Lindstedt SL.
Muscle damage and muscle remodeling: No pain, no gain?
J Exp Biol
214:
674‐679,
2011.
|
62. |
Folland JP,
Williams AG.
The adaptations to strength training : Morphological and neurological contributions to increased strength.
Sports Med
37:
145‐168,
2007.
|
63. |
Francis‐West PH,
Antoni L,
Anakwe K.
Regulation of myogenic differentiation in the developing limb bud.
J Anat
202:
69‐81,
2003.
|
64. |
Gardiner KR,
Gardiner PF,
Edgerton VR.
Guinea pig soleus and gastrocnemius electromyograms at varying speeds, grades, and loads.
J Appl Physiol
52:
451‐7,
1982.
|
65. |
Garry DJ,
Ordway GA,
Lorenz JN,
Radford NB,
Chin ER,
Grange RW,
Bassel‐Duby R,
Williams RS.
Mice without myoglobin.
Nature
395:
905‐908,
1998.
|
66. |
Gatesy SM,
Biewener AA.
Bipedal locomotion ‐ effects of speed, size and limb posture in birds and humans.
J Zool
224:
127‐147,
1991.
|
67. |
Gibb A,
Jayne B,
Lauder G.
Kinematics of pectoral fin locomotion in the bluegill sunfish lepomis macrochirus.
J Exp Biol
189:
133‐161,
1994.
|
68. |
Gillespie JR,
Landgren GL,
Leith DE.
1:2 ratio of breathing to stride frequencies in a galloping horse breathing 6% CO2.
Equine Exercise Physiology
3:
66‐70,
1991.
|
69. |
Gillis GB,
Blob RW.
How muscles accommodate movement in different physical environments: Aquatic vs. terrestrial locomotion in vertebrates.
Comp Biochem Physiol A Mol Integr Physiol
131:
61‐75,
2001.
|
70. |
Goldspink G.
Gene expression in skeletal muscle.
Biochem Soc Trans
30:
285‐290,
2002.
|
71. |
Goldspink G.
Research on mechano growth factor: Its potential for optimising physical training as well as misuse in doping.
Br J Sports Med
39:
787‐788; discussion
787‐788,
2005.
|
72. |
Goldspink G,
Scutt A,
Martindale J,
Jaenicke T,
Turay L,
Gerlach GF.
Stretch and force generation induce rapid hypertrophy and myosin isoform gene switching in adult skeletal muscle.
Biochem Soc Trans
19:
368‐373,
1991.
|
73. |
Greenberg CC,
Jurczak MJ,
Danos AM,
Brady MJ.
Glycogen branches out: New perspectives on the role of glycogen metabolism in the integration of metabolic pathways.
Am J Physiol Endocrinol Metab
291:
E1‐E8,
2006.
|
74. |
Gregorio CC,
Granzier H,
Sorimachi H,
Labeit S.
Muscle assembly: A titanic achievement?
Curr Opin Cell Biol
11:
18‐25,
1999.
|
75. |
Guyton AC.
Human Physiology and Mechanisms of Disease.
Philadelphia,
Saunders,
1987.
|
76. |
Haldane JB.
On being the right size.
In: Possible Worlds and Other Pappers. New York: Harper & Brothers, 20‐28.
1928.
|
77. |
Hamalainen N,
Pette D.
Patterns of myosin isoforms in mammalian skeletal muscle fibres.
Microsc Res Tech
30:
381‐389,
1995.
|
78. |
Hammond KA,
Diamond J.
Maximal sustained energy budgets in humans and animals.
Nature
386:
457‐462,
1997.
|
79. |
Hedrick TL,
Usherwood JR,
Biewener AA.
Wing inertia and whole‐body acceleration: An analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
J Exp Biol
207:
1689‐702,
2004.
|
80. |
Heglund NC,
Taylor CR.
Speed, stride frequency and energy cost per stride: How do they change with body size and gait?
J Exp Biol
138:
301‐318,
1988.
|
81. |
Heglund NC,
Taylor CR,
McMahon TA.
Scaling stride frequency and gait to animal size: Mice to horses.
Science
186:
1112‐3,
1974.
|
82. |
Henneman E.
The size‐principle: A deterministic output emerges from a set of probabilistic connections.
J Exp Biol
115:
105‐112,
1985.
|
83. |
Herzog W,
Leonard TR.
Force enhancement following stretching of skeletal muscle: A new mechanism.
J Exp Biol
205:
1275‐1283,
2002.
|
84. |
Herzog W,
Leonard TR,
Joumaa V,
Mehta A.
Mysteries of muscle contraction.
J Appl Biomech
24:
1‐13,
2008.
|
85. |
Hill AV.
The heat of shortening and the dynamic constants of muscle.
Proc R Soc Lond B
126:
136‐195,
1938.
|
86. |
Hill AV.
The series elastic component of muscle.
Proc R Soc Lond B Biol Sci
137:
273‐280,
1950.
|
87. |
Hochachka PW,
Somero GN.
Biochemical Adaptation : Mechanism and Process in Physiological Evolution.
Oxford:
Oxford University Press,
2002.
|
88. |
Holloszy JO.
Regulation of mitochondrial biogenesis and GLUT4 expression by exercise.
Compr Physiol
1: 921‐940
2011.
|
89. |
Hood DA,
Irrcher I,
Ljubicic V,
Joseph AM.
Coordination of metabolic plasticity in skeletal muscle.
J Exp Biol
209:
2265‐2275,
2006.
|
90. |
Hood DA,
Uguccioni G,
Vainshtein A,
D'souza D.
Mechanisms of exercise induced mitochondrial biogenesis in skeletal muscle: Implications for health and disease.
Compr Physiol
1: 1119‐1134
2011.
|
91. |
Hoppeler H,
Baum O,
Lurman G,
Mueller M.
Molecular mechanisms of muscle plasticity with exercise.
Compr Physiol
1: 1383‐1412
2011.
|
92. |
Hoppeler H,
Howald H,
Conley K,
Lindstedt SL,
Claassen H,
Vock P,
Weibel ER.
Endurance training in humans: Aerobic capacity and structure of skeletal muscle.
J Appl Physiol
59:
320‐7,
1985.
|
93. |
Hoppeler H,
Hudlicka O,
Uhlmann E.
Relationship between mitochondria and oxygen consumption in isolated cat muscles.
J Physiol
385:
661‐675,
1987a.
|
94. |
Hoppeler H,
Kayar SR,
Claassen H,
Uhlmann E,
Karas RH.
Adaptive variation in the mammalian respiratory system in relation to energetic demand: III. Skeletal muscles: setting the demand for oxygen.
Resp Physiol
69:
27‐46,
1987b.
|
95. |
Hoppeler H,
Luthi P,
Claassen H,
Weibel ER,
Howald H.
The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well‐trained orienteers.
Pflugers Arch
344:
217‐232,
1973.
|
96. |
Hou TT,
Johnson JD,
Rall JA.
Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres.
J Physiol
441:
285‐304,
1991.
|
97. |
Hu P,
Zhang KM,
Spratt JA,
Wechsler AS,
Briggs FN.
Transcription rates of SERCA and phospholamban genes change in response to chronic stimulation of skeletal muscle.
Biochim Biophys Acta
1395:
121‐125,
1998.
|
98. |
Hudson NJ,
Franklin CE.
Maintaining muscle mass during extended disuse: Aestivating frogs as a model species.
J Exp Biol
205:
2297‐303,
2002.
|
99. |
Hulbert AJ,
Else PL.
Membranes and the setting of energy demand.
J Exp Biol
208:
1593‐9,
2005.
|
100. |
Hurley BF,
Redmond RA,
Pratley RE,
Treuth MS,
Rogers MA,
Goldberg AP.
Effects of strength training on muscle hypertrophy and muscle cell disruption in older men.
Int J Sports Med
16:
378‐384,
1995.
|
101. |
Jackman MR,
Willis WT.
Characteristics of mitochondria isolated from type I and type IIb skeletal muscle.
Am J Physiol
270:
C673‐C678,
1996.
|
102. |
James RS,
Altringham JD,
Goldspink DF.
The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function.
J Exp Biol
198:
491‐502,
1995.
|
103. |
James RS,
Young IS,
Cox VM,
Goldspink DF,
Altringham JD.
Isometric and isotonic muscle properties as determinants of work loop power output.
Pflugers Arch
432:
767‐774,
1996.
|
104. |
Jansson E,
Kaijser L.
Effect of diet on muscle glycogen and blood glucose utilization during a short‐term exercise in man.
Acta Physiol Scand
115:
341‐347,
1982.
|
105. |
Johnston IA,
Temple GK.
Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour.
J Exp Biol
205:
2305‐2322,
2002.
|
106. |
Johnston II,
Calvo J,
Guderley YH.
Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes.
J Exp Biol
201
(Pt 1):
1‐12,
1998.
|
107. |
Jones JH.
Optimization of the mammalian respiratory system: Symmorphosis versus single species adaptation.
Comp Biochem Physiol B Biochem Mol Biol
120:
125‐138,
1998.
|
108. |
Jones JH,
Lindstedt SL.
Limits to maximal performance.
Annu Rev Physiol
55:
547‐569,
1993.
|
109. |
Josephson RK,
Stevenson RD.
The efficiency of a flight muscle from the locust Schistocerca americana.
J Physiol
442:
413‐429,
1991.
|
110. |
Josephson RK,
Young D.
Synchronous and asynchronous muscles in cicadas.
J Exp Biol
91:
219‐237,
1981.
|
111. |
Josephson RK,
Young D.
A synchronous insect muscle with an operating frequency greater than 500 Hz.
J Exp Biol
118:
185‐208,
1985.
|
112. |
Kardon G,
Campbell JK,
Tabin CJ.
Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb.
Dev Cell
3:
533‐545,
2002.
|
113. |
Kelly DP,
Scarpulla RC.
Transcriptional regulatory circuits controlling mitochondrial biogenesis and function.
Genes Dev
18:
357‐368,
2004.
|
114. |
Kemper WF,
Lindstedt SL,
Hartzler LK,
Hicks JW,
Conley KE.
Shaking up glycolysis: Sustained, high lactate flux during aerobic rattling.
Proc Natl Acad Sci U S A
98:
723‐728,
2001.
|
115. |
Kendall JL,
Lucey KS,
Jones EA,
Wang J,
Ellerby DJ.
Mechanical and energetic factors underlying gait transitions in bluegill sunfish (Lepomis macrochirus).
J Exp Biol210:
4265‐4271,
2007.
|
116. |
Kleiber M.
Body size and metabolism.
Physiol
27:
511‐541,
1932.
|
117. |
Kokshenev VB.
Key principle of the efficient running, swimming, and flying.
Europhysics Letters
90:
1‐5,
2010.
|
118. |
Koves TR,
Noland RC,
Bates AL,
Henes ST,
Muoio DM,
Cortright RN.
Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism.
Am J Physiol Cell Physiol
288:
C1074‐C1082,
2005.
|
119. |
Kram R,
Taylor CR.
Energetics of running: A new perspective.
Nature
346:
265‐267,
1990.
|
120. |
Krogh A.
The progress of physiology.
Science
70:
200‐204,
1929.
|
121. |
Kyrolainen H,
Komi PV.
Differences in mechanical efficiency between power‐ and endurance‐trained athletes while jumping.
Eur J Appl Physiol Occup Physiol
70:
36‐44,
1995.
|
122. |
Labeit D,
Watanabe K,
Witt C,
Fujita H,
Wu Y,
Lahmers S,
Funck T,
Labeit S,
Granzier H.
Calcium‐dependent molecular spring elements in the giant protein titin.
Proc Natl Acad Sci U S A
100:
13716‐13721,
2003.
|
123. |
Lappin AK,
Monroy JA,
Pilarski JQ,
Zepnewski ED,
Pierotti DJ,
Nishikawa KC.
Storage and recovery of elastic potential energy powers ballistic prey capture in toads.
J Exp Biol
209:
2535‐2553,
2006.
|
124. |
Lauder GV,
Drucker EG.
Forces, fishes, and fluids: Hydrodynamic mechanisms of aquatic locomotion.
News Physiol Sci
17:
235‐240,
2002.
|
125. |
Lee CR,
Farley CT.
Determinants of the center of mass trajectory in human walking and running.
J Exp Biol
201:
2935‐2944,
1998.
|
126. |
Leonard TR,
Herzog W.
Regulation of muscle force in the absence of actin‐myosin‐based cross‐bridge interaction.
Am J Physiol Cell Physiol
299:
C14‐C20,
2010.
|
127. |
LeWinter MM,
Granzier H.
Cardiac titin: A multifunctional giant.
Circulation
121:
2137‐2145,
2010.
|
128. |
Lewontin RC.
The Triple Helix: Gene, Organism, and Environment.
London:
Harvard University Press, Cambridge, Mass,
2000, p.
136.
|
129. |
Lindstedt SL,
Conley KE.
Human aerobic performance: Too much ado about limits to V(O(2)).
J Exp Biol
204:
3195‐3199,
2001.
|
130. |
Lindstedt SL,
Hokanson JF,
Wells DJ,
Swain SD,
Hoppeler H,
Navarro V.
Running energetics in the pronghorn antelope.
Nature
353:
748‐750,
1991.
|
131. |
Lindstedt SL,
Hoppeler H,
Bard KM,
Thronson HA, Jr.
Estimate of muscle‐shortening rate during locomotion.
Am J Physiol
249:
R699‐R703,
1985.
|
132. |
Lindstedt SL,
LaStayo PC,
Reich TE.
When active muscles lengthen: Properties and consequences of eccentric contractions.
News Physiol Sci
16:
256‐261,
2001.
|
133. |
Lindstedt SL,
McGlothlin T,
Percy E,
Pifer J.
Task‐specific design of skeletal muscle: Balancing muscle structural composition.
Comp Biochem Physiol B Biochem Mol Biol
120:
35‐40,
1998.
|
134. |
Lindstedt SL,
Reich TE,
Keim P,
LaStayo PC.
Do muscles function as adaptable locomotor springs?
J Exp Biol
205:
2211‐6,
2002.
|
135. |
Lindstedt SL,
Thomas RG,
Leith DE.
Does peak inspiratory flow contribute to setting VO2max? A test of symmorphosis.
Respir Physiol
95:
109‐118,
1994.
|
136. |
Lindstedt SL,
Wells DJ,
Jones JH,
Hoppeler H,
Thronson HA, Jr.
Limitations to aerobic performance in mammals: Interaction of structure and demand.
Int J Sports Med
9:
210‐217,
1988.
|
137. |
Luo Y,
Davis JP,
Tikunova SB,
Smillie LB,
Rall JA.
Myofibrillar determinants of rate of relaxation in skinned skeletal muscle fibers.
Adv Exp Med Biol
538:
573‐581; discussion
581‐582,
2003.
|
138. |
Luthi JM,
Howald H,
Claassen H,
Rosler K,
Vock P,
Hoppeler H.
Structural changes in skeletal muscle tissue with heavy‐resistance exercise.
Int J Sports Med
7:
123‐127,
1986.
|
139. |
MacDougall JD,
Sale DG,
Moroz JR,
Elder GC,
Sutton JR,
Howald H.
Mitochondrial volume density in human skeletal muscle following heavy resistance training.
Med Sci Sports
11:
164‐6,
1979.
|
140. |
Marcinek DJ,
Ciesielski WA,
Conley KE,
Schenkman KA.
Oxygen regulation and limitation to cellular respiration in mouse skeletal muscle in vivo.
Am J Physiol Heart Circ Physiol
285:
H1900‐H1908,
2003.
|
141. |
Marcinek DJ,
Kushmerick MJ,
Conley KE.
Lactic acidosis in vivo: Testing the link between lactate generation and H+ accumulation in ischemic mouse muscle.
J Appl Physiol
108:
1479‐1486,
2010.
|
142. |
Marden JH.
Variability in the size, composition, and function of insect flight muscles.
Annu Rev Physiol
62:
157‐178,
2000.
|
143. |
Marsh RL.
How muscles deal with real‐world loads: The influence of length trajectory on muscle performance.
J Exp Biol
202:
3377‐3385,
1999.
|
144. |
Maruyama K,
Natori R,
Nonomura Y.
New elastic protein from muscle.
Nature
262:
58‐60,
1976.
|
145. |
Mathieu O,
Krauer R,
Hoppeler H,
Gehr P,
Lindstedt SL,
Alexander RM,
Taylor CR,
Weibel ER.
Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass.
Respir Physiol
44:
113‐128,
1981.
|
146. |
Matsakas A,
Patel K.
Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli.
Histol Histopathol
24:
611‐629,
2009.
|
147. |
McMahon TA.
Using body size to understand the structural design of animals: Quadrupedal locomotion.
J Appl Physiol
39:
619‐627,
1975.
|
148. |
Mendez J,
Keys A.
Density and composition of mammalian muscle.
Metabolism
9:
184‐188,
1960.
|
149. |
Monroy JA,
Powers KL,
Gilmore LA,
Uyeno TA,
Lindstedt SL,
Nishikawa KC.
What is the role of titin in active muscle?
Exerc Sport Sci Rev
40:
73‐78,
2012.
|
150. |
Moon BR,
Conley KE,
Lindstedt SL,
Urquhart MR.
Minimal shortening in a high‐frequency muscle.
J Exp Biol
206:
1291‐1297,
2003.
|
151. |
Morgan DW,
Bransford DR,
Costill DL,
Daniels JT,
Howley ET,
Krahenbuhl GS.
Variation in the aerobic demand of running among trained and untrained subjects.
Med Sci Sports Exerc
27:
404‐409,
1995.
|
152. |
Mounier Y,
Tiffreau V,
Montel V,
Bastide B,
Stevens L.
Phenotypical transitions and Ca2 +activation properties in human muscle fibers: Effects of a 60‐day bed rest and countermeasures.
J Appl Physiol
106:
1086‐1099,
2009.
|
153. |
Mountcastle AM,
Daniel TL.
Vortexlet models of flapping flexible wings show tuning for force production and control.
Bioinspiration & Biomimetics
5:
045005,
2010.
|
154. |
Myers MJ,
Steudel K.
Effect of limb mass and its distribution on the energetic cost of running.
J Exp Biol
116:
363‐373,
1985.
|
155. |
Mykles DL.
Crustacean muscle plasticity: Molecular mechanisms determining mass and contractile properties.
Comp Biochem Physiol B Biochem Mol Biol
117:
367‐378,
1997.
|
156. |
Naples SP,
Borengasser SJ,
Rector RS,
Uptergrove GM,
Morris EM,
Mikus CR,
Koch LG,
Britton SL,
Ibdah JA,
Thyfault JP.
Skeletal muscle mitochondrial and metabolic responses to a high‐fat diet in female rats bred for high and low aerobic capacity.
Appl Physiol Nutr Metab
35:
151‐162,
2010.
|
157. |
Naya FJ,
Mercer B,
Shelton J,
Richardson JA,
Williams RS,
Olson EN.
Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo.
J Biol Chem
275:
4545‐8,
2000.
|
158. |
Nishikawa KC,
Monroy JA,
Uyeno T,
Yeo SH,
Pai D,
Lindstedt S.
Is iitin a “winding filament”? A new twist on muscle contraction.
Proc Royal Soc 279: 981‐990, 2012.
|
159. |
Niven JE,
Scharlemann JP.
Do insect metabolic rates at rest and during flight scale with body mass?
Biol Lett
1:
346‐9,
2005.
|
160. |
Nudds RL,
Taylor GK,
Thomas AL.
Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
Proc Biol Sci
271:
2071‐2076,
2004.
|
161. |
O'Connell B,
Nguyen LT,
Stephenson GM.
A single‐fibre study of the relationship between MHC and TnC isoform composition in rat skeletal muscle.
Biochem J
378:
269‐274,
2004.
|
162. |
Oakley CR,
Gollnick PD.
Conversion of rat muscle fiber types. A time course study.
Histochemistry
83:
555‐560,
1985.
|
163. |
Okamoto K,
Shaw JM.
Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes.
Annu Rev Genet
39:
503‐536,
2005.
|
164. |
Ono S.
Dynamic regulation of sarcomeric actin filaments in striated muscle.
Cytoskeleton (Hoboken)
67:
677‐692,
2010.
|
165. |
Pandorf CE,
Haddad F,
Roy RR,
Qin AX,
Edgerton VR,
Baldwin KM.
Dynamics of myosin heavy chain gene regulation in slow skeletal muscle: Role of natural antisense RNA.
J Biol Chem
281:
38330‐38342,
2006.
|
166. |
Parsons SA,
Millay DP,
Wilkins BJ,
Bueno OF,
Tsika GL,
Neilson JR,
Liberatore CM,
Yutzey KE,
Crabtree GR,
Tsika RW,
Molkentin JD.
Genetic loss of calcineurin blocks mechanical overload‐induced skeletal muscle fiber type switching but not hypertrophy.
J Biol Chem
279:
26192‐26200,
2004.
|
167. |
Parsons SA,
Wilkins BJ,
Bueno OF,
Molkentin JD.
Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene‐targeted mice.
Mol Cell Biol
23:
4331‐4343,
2003.
|
168. |
Patch LD,
Brooks GA.
Effects of training on VO2 max and VO2 during two running intensities in rats.
Pflugers Arch
386:
215‐219,
1980.
|
169. |
Pennycuick C.
Wingbeat frequency of birds in steady cruising flight: New data and improved predictions.
J Exp Biol
199:
1613‐1618,
1996.
|
170. |
Pennycuick CJ.
Newton Rules Biology : A Physical Approach to Biological Problems.
Oxford; New York:
Oxford University Press,
1992.
|
171. |
Periasamy M,
Kalyanasundaram A.
SERCA pump isoforms: Their role in calcium transport and disease.
Muscle Nerve
35:
430‐442,
2007.
|
172. |
Pette D,
Spamer C.
Metabolic properties of muscle fibers.
Fed Proc
45:
2910‐2914,
1986.
|
173. |
Piazzesi G,
Reconditi M,
Linari M,
Lucii L,
Bianco P,
Brunello E,
Decostre V,
Stewart A,
Gore DB,
Irving TC,
Irving M,
Lombardi V.
Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size.
Cell
131:
784‐795,
2007.
|
174. |
Piersma T.
Phenotypic flexibility during migration: Optimization of organ size contingent on the risks and rewards of fueling and flight?
J Avian Biol
29:
511‐520,
1998.
|
175. |
Piersma T.
Why marathon migrants get away with high metabolic ceilings: Towards an ecology of physiological restraint.
J Exp Biol
214:
295‐302,
2011.
|
176. |
Postel U,
Thompson F,
Barker G,
Viney M,
Morris S.
Migration‐related changes in gene expression in leg muscle of the Christmas Island red crab Gecarcoidea natalis: Seasonal preparation for long‐distance walking.
J Exp Biol
213:
1740‐1750,
2010.
|
177. |
Rall JA.
Energetic aspects of skeletal muscle contraction: Implications of fiber types.
Exerc Sport Sci Rev
13:
33‐74,
1985.
|
178. |
Rao A,
Luo C,
Hogan PG.
Transcription factors of the NFAT family: Regulation and function.
Annu Rev Immunol
15:
707‐747,
1997.
|
179. |
Reich TE,
Lindstedt SL,
LaStayo PC,
Pierotti DJ.
Is the spring quality of muscle plastic?
Am J Physiol Regul Integr Comp Physiol
278:
R1661‐R1666,
2000.
|
180. |
Reichmann H, Hoppeler H, Mathieu‐Costello O, von Bergen F, Pette D. Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflugers Arch 404: 1‐9, 1985. |
181. |
Rinaldi C,
Haddad F,
Bodell PW,
Qin AX,
Jiang W,
Baldwin KM.
Intergenic bidirectional promoter and cooperative regulation of the IIx and IIb MHC genes in fast skeletal muscle.
Am J Physiol Regul Integr Comp Physiol
295:
R208‐R218,
2008.
|
182. |
Roberts TJ.
The integrated function of muscles and tendons during locomotion.
Comp Biochem Physiol A Mol Integr Physiol
133:
1087‐1099,
2002.
|
183. |
Roberts TJ,
Marsh RL.
Probing the limits to muscle‐powered accelerations: Lessons from jumping bullfrogs.
J Exp Biol
206:
2567‐2580,
2003.
|
184. |
Roberts TJ,
Weber JM,
Hoppeler H,
Weibel ER,
Taylor CR.
Design of the oxygen and substrate pathways. II. Defining the upper limits of carbohydrate and fat oxidation.
J Exp Biol
199:
1651‐8,
1996.
|
185. |
Rome LC.
Design and function of superfast muscles: New insights into the physiology of skeletal muscle.
Annu Rev Physiol
68:
193‐221,
2006.
|
186. |
Rome LC,
Klimov AA.
Superfast contractions without superfast energetics: ATP usage by SR‐Ca2 +pumps and crossbridges in toadfish swimbladder muscle.
J Physiol
526
(Pt 2):
279‐286,
2000.
|
187. |
Rome LC,
Lindstedt SL.
The quest for speed: Muscles built for high‐frequency contractions.
News Physiol Sci
13:
261‐268,
1998.
|
188. |
Rome LC,
Syme DA,
Hollingworth S,
Lindstedt SL,
Baylor SM.
The whistle and the rattle: The design of sound producing muscles.
Proc Natl Acad Sci U S A
93:
8095‐100,
1996.
|
189. |
Rowell LB, O'Leary DS, Kellogg Jr. DL .
Integration of cardiovascular control systems in dynamic exercise.
Handbook of Physiology. Section 12. Exercise: regulation and integration of multiple systems. eds. LB Rowell, JT Shepherd. pp.
770‐838,
1996.
|
190. |
Roy RR,
Pierotti DJ,
Garfinkel A,
Zhong H,
Baldwin KM,
Edgerton VR.
Persistence of motor unit and muscle fiber types in the presence of inactivity.
J Exp Biol
211:
1041‐1049,
2008.
|
191. |
Sagan L.
On the origin of mitosing cells.
J Theor Biol
14:
255‐274,
1967.
|
192. |
Schaeffer P,
Conley K,
Lindstedt S.
Structural correlates of speed and endurance in skeletal muscle: The rattlesnake tailshaker muscle.
J Exp Biol
199:
351‐358,
1996.
|
193. |
Schaeffer PJ,
Nichols SD,
Lindstedt SL.
Chronic electrical stimulation drives mitochondrial biogenesis in skeletal muscle of a lizard, Varanus exanthematicus.
J Exp Biol
210:
3356‐3360,
2007.
|
194. |
Schaeffer PJ,
Villarin JJ,
Lindstedt SL.
Chronic cold exposure increases skeletal muscle oxidative structure and function in Monodelphis domestica, a marsupial lacking brown adipose tissue.
Physiol Biochem Zool
76:
877‐887,
2003.
|
195. |
Schaeffer PJ,
Wende AR,
Magee CJ,
Neilson JR,
Leone TC,
Chen F,
Kelly DP.
Calcineurin and calcium/calmodulin‐dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle.
J Biol Chem
279:
39593‐39603,
2004.
|
196. |
Schiaffino S,
Reggiani C.
Molecular diversity of myofibrillar proteins: Gene regulation and functional significance.
Physiol Rev
76:
371‐423,
1996.
|
197. |
Schilling N,
Deban SM.
Fiber‐type distribution of the perivertebral musculature in Ambystoma.
J Morphol
271:
200‐214,
2010.
|
198. |
Schmidt‐Nielsen K.
Locomotion: Energy cost of swimming, flying, and running.
Science
177:
222‐8,
1972.
|
199. |
Schmidt‐Nielsen K.
Scaling : Why is Animal Size So Important? Cambridge:
Cambridge University Press,
1984.
|
200. |
Seipel K,
Schmid V.
Evolution of striated muscle: Jellyfish and the origin of triploblasty.
Dev Biol
282:
14‐26,
2005.
|
201. |
Shadwick RE,
Syme DA.
Thunniform swimming: Muscle dynamics and mechanical power production of aerobic fibres in yellowfin tuna (Thunnus albacares).
J Exp Biol
211:
1603‐1611,
2008.
|
202. |
Sharp NC.
Timed running speed of a cheetah (Acinonyx jubatus).
J Zool
241:
493‐494,
1997.
|
203. |
Skoglund CR.
Functional analysis of swim‐bladder muscles engaged in sound production of the toadfish.
J Biophys Biochem Cytol
10:
187‐200,
1961.
|
204. |
Staron RS.
Human skeletal muscle fiber types: Delineation, development, and distribution.
Can J Appl Physiol
22:
307‐327,
1997.
|
205. |
Steinberg GR,
Kemp BE.
AMPK in health and disease.
Physiol Rev
89:
1025‐1078,
2009.
|
206. |
Steudel K.
The work and energetic cost of locomotion. II. Partitioning the cost of internal and external work within a species.
J Exp Biol
154:
287‐303,
1990.
|
207. |
Stienen GJ,
Kiers JL,
Bottinelli R,
Reggiani C.
Myofibrillar ATPase activity in skinned human skeletal muscle fibres: Fibre type and temperature dependence.
J Physiol
493
(Pt 2):
299‐307,
1996.
|
208. |
Stockdale FE.
Mechanisms of formation of muscle fiber types.
Cell Struct Funct
22:
37‐43,
1997.
|
209. |
Suarez RK,
Lighton JR,
Brown GS,
Mathieu‐Costello O.
Mitochondrial respiration in hummingbird flight muscles.
Proc Natl Acad Sci U S A
88:
4870‐3,
1991.
|
210. |
Suarez RK,
Staples JF,
Lighton JR,
Mathieu‐Costello O.
Mitochondrial function in flying honeybees (Apis mellifera): Respiratory chain enzymes and electron flow from complex III to oxygen.
J Exp Biol
203:
905‐911,
2000.
|
211. |
Sutko JL,
Airey JA.
Ryanodine receptor Ca2+ release channels: Does diversity in form equal diversity in function?
Physiol Rev
76:
1027‐1071,
1996.
|
212. |
Syme DA,
Shadwick RE.
Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from skipjack tuna (Katsuwonus pelamis).
J Exp Biol
205:
189‐200,
2002.
|
213. |
Syrovy I,
Gutmann E.
Myosin from fast and slow skeletal and cardiac muscles of mammals of different size.
Physiol Bohemoslov
24:
325‐334,
1975.
|
214. |
Tada M,
Kirchberger MA,
Repke DI,
Katz AM.
The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3’:5’‐monophosphate‐dependent protein kinase.
J Biol Chem
249:
6174‐6180,
1974.
|
215. |
Taylor CR.
Relating mechanics and energetics during exercise.
Adv Vet Sci Comp Med
38A:
181‐215,
1994.
|
216. |
Taylor CR,
Heglund NC.
Energetics and mechanics of terrestrial locomotion.
Annu Rev Physiol
44:
97‐107,
1982.
|
217. |
Taylor CR,
Longworth KE,
Hoppeler H.
Matching O2 delivery to O2 demand in muscle: II. Allometric variation in energy demand.
Adv Exp Med Biol
227:
171‐181,
1988.
|
218. |
Taylor CR,
Maloiy GM,
Weibel ER,
Langman VA,
Kamau JM,
Seeherman HJ,
Heglund NC.
Design of the mammalian respiratory system. III Scaling maximum aerobic capacity to body mass: Wild and domestic mammals.
Respir Physiol
44:
25‐37,
1981.
|
219. |
Taylor CR,
Schmidt‐Nielsen K,
Raab JL.
Scaling of energetic cost of running to body size in mammals.
Am J Physiol
219:
1104‐7,
1970.
|
220. |
Taylor CR,
Weibel ER.
Design of the mammalian respiratory system. I. Problem and strategy.
Respir Physiol
44:
1‐10,
1981.
|
221. |
Taylor CR,
Weibel ER,
Weber JM,
Vock R,
Hoppeler H,
Roberts TJ,
Brichon G.
Design of the oxygen and substrate pathways. I. Model and strategy to test symmorphosis in a network structure.
J Exp Biol
199:
1643‐9,
1996.
|
222. |
Taylor GK,
Nudds RL,
Thomas AL.
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency.
Nature
425:
707‐711,
2003.
|
223. |
Torrella JR,
Fouces V,
Palomeque J,
Viscor G.
Comparative skeletal muscle fibre morphometry among wild birds with different locomotor behaviour.
J Anat
192
(Pt 2):
211‐222,
1998.
|
224. |
van Ekeren GJ,
Sengers RC,
Stadhouders AM.
Changes in volume densities and distribution of mitochondria in rat skeletal muscle after chronic hypoxia.
Int J Exp Pathol
73:
51‐60,
1992.
|
225. |
Vock R,
Hoppeler H,
Claassen H,
Wu DX,
Billeter R,
Weber JM,
Taylor CR,
Weibel ER.
Design of the oxygen and substrate pathways. VI. structural basis of intracellular substrate supply to mitochondria in muscle cells.
J Exp Biol
199:
1689‐1697,
1996.
|
226. |
Wakeling JM,
Blake OM,
Wong I,
Rana M,
Lee SS.
Movement mechanics as a determinate of muscle structure, recruitment and coordination.
Philos Trans R Soc Lond B Biol Sci
366:
1554‐1564,
2011.
|
227. |
Wakeling JM,
Johnston IA.
Muscle power output limits fast‐start performance in fish.
J Exp Biol
201:
1505‐1526,
1998.
|
228. |
Wang K,
McClure J,
Tu A.
Titin: Major myofibrillar components of striated muscle.
Proc Natl Acad Sci U S A
76:
3698‐702,
1979.
|
229. |
Wang LC,
Kernell D.
Fibre type regionalisation in lower hindlimb muscles of rabbit, rat and mouse: A comparative study.
J Anat
199:
631‐643,
2001.
|
230. |
Webb PW.
The swimming energetics of trout. I. Thrust and power output at cruising speeds.
J Exp Biol
55:
489‐520,
1971.
|
231. |
Weber JM.
Metabolic fuels: Regulating fluxes to select mix.
J Exp Biol
214:
286‐294,
2011.
|
232. |
Weber JM,
Brichon G,
Zwingelstein G,
McClelland G,
Saucedo C,
Weibel ER,
Taylor CR.
Design of the oxygen and substrate pathways. IV. Partitioning energy provision from fatty acids.
J Exp Biol
199:
1667‐1674,
1996.
|
233. |
Weber JM,
Roberts TJ,
Vock R,
Weibel ER,
Taylor CR.
Design of the oxygen and substrate pathways. III. Partitioning energy provision from carbohydrates.
J Exp Biol
199:
1659‐1666,
1996.
|
234. |
Weibel ER.
The Pathway for Oxygen : Structure and Function in the Mammalian Respiratory System.
London:
Harvard University Press, Cambridge, Massachusetts,
1984.
|
235. |
Weibel ER.
Scaling of structural and functional variables in the respiratory system.
Annu Rev Physiol
49:
147‐159,
1987.
|
236. |
Weibel ER.
Symmorphosis: On form and Function in Shaping Life.
Cambridge, Massachusetts:
Harvard University Press,
2000.
|
237. |
Weibel ER,
Bacigalupe LD,
Schmitt B,
Hoppeler H.
Allometric scaling of maximal metabolic rate in mammals: Muscle aerobic capacity as determinant factor.
Respir Physiol Neurobiol
140:
115‐132,
2004.
|
238. |
Weibel ER,
Taylor CR,
Hoppeler H.
The concept of symmorphosis: A testable hypothesis of structure‐function relationship.
Proc Natl Acad Sci U S A
88:
10357‐10361,
1991.
|
239. |
Weibel ER,
Taylor CR,
Weber JM,
Vock R,
Roberts TJ,
Hoppeler H.
Design of the oxygen and substrate pathways. VII. Different structural limits for oxygen and substrate supply to muscle mitochondria.
J Exp Biol
199:
1699‐1709,
1996.
|
240. |
Wells DJ.
Muscle performance in hovering hummingbirds.
J Exp Biol
178:
39‐57,
1993.
|
241. |
Wickler SJ,
Hoyt DF,
Clayton HM,
Mullineaux DR,
Cogger EA,
Sandoval E,
McGuire R,
Lopez C.
Energetic and kinematic consequences of weighting the distal limb.
Equine Vet J
36:
772‐777,
2004.
|
242. |
Wigmore PM,
Evans DJ.
Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis.
Int Rev Cytol
216:
175‐232,
2002.
|
243. |
Williams P,
Watt P,
Bicik V,
Goldspink G.
Effect of stretch combined with electrical stimulation on the type of sarcomeres produced at the ends of muscle fibers.
Exp Neurol
93:
500‐509,
1986.
|
244. |
Williams TM,
Dobson GP,
Mathieu‐Costello O,
Morsbach D,
Worley MB,
Phillips JA.
Skeletal muscle histology and biochemistry of an elite sprinter, the African cheetah.
J Comp Physiol B
167:
527‐535,
1997.
|
245. |
Wilson RS,
James RS.
Constraints on muscular performance: Trade‐offs between power output and fatigue resistance.
Proc Soc B
271:
S222‐S225,
2004.
|
246. |
Woledge RC.
The energetics of tortoise muscle.
J Physiol
197:
685‐707,
1968.
|
247. |
Wu H,
Olson EN.
Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice.
J Clin Invest
109:
1327‐1333,
2002.
|
248. |
Wu H,
Rothermel B,
Kanatous S,
Rosenberg P,
Naya FJ,
Shelton JM,
Hutcheson KA,
DiMaio JM,
Olson EN,
Bassel‐Duby R,
Williams RS.
Activation of MEF2 by muscle activity is mediated through a calcineurin‐dependent pathway.
EMBO J
20:
6414‐6423,
2001.
|
249. |
Yales FE.
Comparative physiology: Compared to what?
Am J Physiol
237:
R1‐R2,
1979.
|
250. |
Yeh LA,
Lee KH,
Kim KH.
Regulation of rat liver acetyl‐CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl‐CoA carboxylase by the adenylate energy charge.
J Biol Chem
255:
2308‐2314,
1980.
|
251. |
Zhang MY,
Zhang WJ,
Medler S.
The continuum of hybrid IIX/IIB fibers in normal mouse muscles: MHC isoform proportions and spatial distribution within single fibers.
Am J Physiol Regul Integr Comp Physiol
299:
R1582‐R1591,
2010.
|