Comprehensive Physiology Wiley Online Library

Neurotrophic Factors in Development and Regulation of Respiratory Control

Full Article on Wiley Online Library



Abstract

Neurotrophic factors (NTFs) are a heterogeneous group of extracellular signaling molecules that play critical roles in the development, maintenance, modulation and plasticity of the central and peripheral nervous systems. A subset of these factors, including members of three multigene families—the neurotrophins, neuropoetic cytokines and the glial cell line‐derived neurotrophic factor ligands—are particularly important for development and regulation of neurons involved in respiratory control. Here, we review the functional biology of these NTFs and their receptors, as well as their roles in regulating survival, maturation, synaptic strength and plasticity in respiratory control pathways. In addition, we highlight recent progress in identifying the role of abnormal NTF signaling in the molecular pathogenesis of respiratory dysfunction in Rett syndrome and in the development of potential new NTF‐targeted therapeutic strategies. © 2013 American Physiological Society. Compr Physiol 3:1125‐1134, 2013.

References
 1. Airaksinen MS, Saarma M. The GDNF family: Signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383‐394, 2002.
 2. Andresen MC, Kunze DL. Nucleus tractus solitarius–gateway to neural circulatory control. Annu Rev Physiol 56: 93‐116, 1994.
 3. Andresen MC, Yang MY. Non‐NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius. Am J Physiol 259: H1307‐H1311, 1990.
 4. Baker‐Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7: 48‐55, 2004.
 5. Baker‐Herman TL, Mitchell GS. Phrenic long‐term facilitation requires spinal serotonin receptor activation and protein synthesis. J Neurosci 22: 6239‐6246, 2002.
 6. Balkowiec A, Katz DM. Brain‐derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice. J Physiol 510 (Pt 2): 527‐533, 1998.
 7. Balkowiec A, Katz DM. Activity‐dependent release of endogenous brain‐derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20: 7417‐7423, 2000.
 8. Balkowiec A, Katz DM. Cellular mechanisms regulating activity‐dependent release of native brain‐derived neurotrophic factor from hippocampal neurons. J Neurosci 22: 10399‐10407, 2002.
 9. Balkowiec A, Kunze DL, Katz DM. Brain‐derived neurotrophic factor acutely inhibits AMPA‐mediated currents in developing sensory relay neurons. J Neurosci 20: 1904‐1911, 2000.
 10. Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8: 221‐232, 2007.
 11. Bibel M, Barde YA. Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14: 2919‐2937, 2000.
 12. Bissonnette JM, Knopp SJ. Separate respiratory phenotypes in methyl‐CpG‐binding protein 2 (Mecp2) deficient mice. Pediatr Res 59: 513‐518, 2006.
 13. Bordet T, Schmalbruch H, Pettmann B, Hagege A, Castelnau‐Ptakhine L, Kahn A, Haase G. Adenoviral cardiotrophin‐1 gene transfer protects pmn mice from progressive motor neuronopathy. J Clin Invest 104: 1077‐1085, 1999.
 14. Bouvier J, Autran S, Dehorter N, Katz DM, Champagnat J, Fortin G, Thoby‐Brisson M. Brain‐derived neurotrophic factor enhances fetal respiratory rhythm frequency in the mouse preBotzinger complex in vitro. Eur J Neurosci 28: 510‐520, 2008.
 15. Brady R, Zaidi SI, Mayer C, Katz DM. BDNF is a target‐derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19: 2131‐2142, 1999.
 16. Brosenitsch TA, Katz DM. Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N‐type calcium channels. J Neurosci 21: 2571‐2579, 2001.
 17. Brosenitsch TA, Katz DM. Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol Cell Neurosci 20: 447‐457, 2002.
 18. Brosenitsch TA, Salgado‐Commissariat D, Kunze DL, Katz DM. A role for L‐type calcium channels in developmental regulation of transmitter phenotype in primary sensory neurons. J Neurosci 18: 1047‐1055, 1998.
 19. Burton MD, Kawashima A, Brayer JA, Kazemi H, Shannon DC, Schuchardt A, Costantini F, Pachnis V, Kinane TB. RET proto‐oncogene is important for the development of respiratory CO2 sensitivity. J Auton Nerv Syst 63: 137‐143, 1997.
 20. Carmignoto G, Pizzorusso T, Tia S, Vicini S. Brain‐derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex. J Physiol (Lond) 498: 153‐164, 1997.
 21. Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49: 341‐348, 2006.
 22. Chao MV. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat Rev Neurosci 4: 299‐309, 2003.
 23. Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. Clin Sci (Lond) 110: 167‐173, 2006.
 24. Clark CG, Hasser EM, Kunze DL, Katz DM, Kline DD. Endogenous brain‐derived neurotrophic factor in the nucleus tractus solitarius tonically regulates synaptic and autonomic function. J Neurosci 31: 12318‐12329, 2011.
 25. Cohen S, Levi‐Montalcini R, Hamburger V. A nerve growth‐stimulating factor isolated from sarcom as 37 and 180. Proc Natl Acad Sci U S A 40: 1014‐1018, 1954.
 26. Dale‐Nagle EA, Hoffman MS, MacFarlane PM, Mitchell GS. Multiple pathways to long‐lasting phrenic motor facilitation. Adv Exp Med Biol 669: 225‐230, 2010.
 27. Dechant G, Barde YA. The neurotrophin receptor p75(NTR): Novel functions and implications for diseases of the nervous system. Nat Neurosci 5: 1131‐1136, 2002.
 28. Dejours P. Chemoreflexes in breathing. Physiol Rev 42: 335‐358, 1962.
 29. Dutschmann M, Morschel M, Reuter J, Zhang W, Gestreau C, Stettner GM, Kron M. Postnatal emergence of synaptic plasticity associated with dynamic adaptation of the respiratory motor pattern. Respir Physiol Neurobiol 164: 72‐79, 2008.
 30. ElShamy WM, Ernfors P. Brain‐derived neurotrophic factor, neurotrophin‐3, and neurotrophin‐4 complement and cooperate with each other sequentially during visceral neuron development. J Neurosci 17: 8667‐8675, 1997.
 31. Epa WR, Markovska K, Barrett GL. The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J Neurochem 89: 344‐353, 2004.
 32. Erickson JT, Brosenitsch TA, Katz DM. Brain‐derived neurotrophic factor and glial cell line‐derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21: 581‐589, 2001.
 33. Erickson JT, Conover JC, Borday V, Champagnat J, Barbacid M, Yancopoulos G, Katz DM. Mice lacking brain‐derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 16: 5361‐5371, 1996.
 34. Erickson JT, Mayer C, Jawa A, Ling L, Olson Jr EB, Mitchell GS, Katz DM. Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats. J Physiol 509: 519‐526, 1998.
 35. Fasnacht N, Muller W. Conditional gp130 deficient mouse mutants. Semin Cell Dev Biol 19: 379‐384, 2008.
 36. Frerking M, Malenka RC, Nicoll RA. Brain‐derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus. J Neurophysiol 80: 3383‐3386, 1998.
 37. Golder FJ, Ranganathan L, Satriotomo I, Hoffman M, Lovett‐Barr MR, Watters JJ, Baker‐Herman TL, Mitchell GS. Spinal adenosine A2a receptor activation elicits long‐lasting phrenic motor facilitation. J Neurosci 28: 2033‐2042, 2008.
 38. Gray J, Yeo GS, Cox JJ, Morton J, Adlam AL, Keogh JM, Yanovski JA, El Gharbawy A, Han JC, Tung YC, Hodges JR, Raymond FL, O'Rahilly S, Farooqi IS. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain‐derived neurotrophic factor (BDNF) gene. Diabetes 55: 3366‐3371, 2006.
 39. Guo H, Huang L, Hellard DT, Katz DM. Development of pontine noradrenergic A5 neurons requires brain‐derived neurotrophic factor. Eur J Neurosci 21: 2019‐2023, 2005.
 40. Hannila SS, Lawrance GM, Ross GM, Kawaja MD. TrkA and mitogen‐activated protein kinase phosphorylation are enhanced in sympathetic neurons lacking functional p75 neurotrophin receptor expression. Eur J Neurosci 19: 2903‐2908, 2004.
 41. Hellard D, Brosenitsch T, Fritzsch B, Katz DM. Cranial sensory neuron development in the absence of brain‐derived neurotrophic factor in BDNF/Bax double null mice. Dev Biol 275: 34‐43, 2004.
 42. Hertzberg T, Brosenitsch T, Katz DM. Depolarizing stimuli induce high levels of dopamine synthesis in fetal rat sensory neurons. Neuroreport 7: 233‐237, 1995.
 43. Hertzberg T, Fan G, Finley JC, Erickson JT, Katz DM. BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Dev Biol 166: 801‐811, 1994.
 44. Hertzberg T, Fan G, Finley JC, Erickson JT, Katz DM. BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Dev Biol 166: 801‐811, 1994.
 45. Hoffman MS, Mitchell GS. Spinal 5‐HT7 receptor activation induces long‐lasting phrenic motor facilitation. J Physiol 589: 1397‐1407, 2011.
 46. Holm PC, Rodriguez FJ, Kresse A, Canals JM, Silos‐Santiago I, Arenas E. Crucial role of TrkB ligands in the survival and phenotypic differentiation of developing locus coeruleus noradrenergic neurons. Development 130: 3535‐3545, 2003.
 47. Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 24: 677‐736, 2001.
 48. Huang EJ, Reichardt LF. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 72: 609‐642, 2003.
 49. Huang L, Guo H, Hellard D, Katz DM. Glial cell line‐derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output. Neuroscience 130: 95‐105, 2005.
 50. Jarvis CR, Xiong ZG, Plant JR, Churchill D, Lu WY, MacVicar BA, MacDonald JF. Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons. J Neurophysiol 78: 2363‐2371, 1997.
 51. Jiang B, Kitamura A, Yasuda H, Sohya K, Maruyama A, Yanagawa Y, Obata K, Tsumoto T. Brain‐derived neurotrophic factor acutely depresses excitatory synaptic transmission to GABAergic neurons in visual cortical slices. Eur J Neurosci 20: 709‐718, 2004.
 52. Katz DM. Neuronal growth factors and development of respiratory control. Respir Physiol Neurobiol 135: 155‐165, 2003.
 53. Katz DM, Black IB. Expression and regulation of catecholaminergic traits in primary sensory neurons: Relationship to target innervation in vivo. J Neurosci 6: 983‐989, 1986.
 54. Katz DM, Erb MJ. Developmental regulation of tyrosine hydroxylase expression in primary sensory neurons of the rat. Dev Biol 137: 233‐242, 1990.
 55. Kline DD, Ogier M, Kunze DL, Katz DM. Exogenous brain‐derived neurotrophic factor rescues synaptic dysfunction in Mecp2‐null mice. J Neurosci 30: 5303‐5310, 2010.
 56. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax‐deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96‐99, 1995.
 57. Kondo H. An electron microscopic study on the development of synapses in the rat carotid body. Neurosci Lett 3: 197‐200, 1976.
 58. Koshimizu H, Kiyosue K, Hara T, Hazama S, Suzuki S, Uegaki K, Nagappan G, Zaitsev E, Hirokawa T, Tatsu Y, Ogura A, Lu B, Kojima M. Multiple functions of precursor BDNF to CNS neurons: Negative regulation of neurite growth, spine formation and cell survival. Mol Brain 2: 27, 2009.
 59. Kramer ER, Knott L, Su F, Dessaud E, Krull CE, Helmbacher F, Klein R. Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor‐axon pathway selection in the limb. Neuron 50: 35‐47, 2006.
 60. Kron M, Howell CJ, Adams IT, Ransbottom M, Christian D, Ogier M, Katz DM. Brain activity mapping in Mecp2 mutant mice reveals reversible functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment. J Neurosci 32: 13860‐13872, 2012.
 61. Kron M, Morschel M, Reuter J, Zhang W, Dutschmann M. Developmental changes in brain‐derived neurotrophic factor‐mediated modulations of synaptic activities in the pontine Kolliker‐Fuse nucleus of the rat. J Physiol 583: 315‐327, 2007.
 62. Kron M, Reuter J, Gerhardt E, Manzke T, Zhang W, Dutschmann M. Emergence of brain‐derived neurotrophic factor‐induced postsynaptic potentiation of NMDA currents during the postnatal maturation of the Kolliker‐Fuse nucleus of rat. J Physiol 586: 2331‐2343, 2008.
 63. Kron M, Zhang W, Dutschmann M. Developmental changes in the BDNF‐induced modulation of inhibitory synaptic transmission in the Kolliker‐Fuse nucleus of rat. Eur J Neurosci 26: 3449‐3457, 2007.
 64. Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20: 8‐21, 2000.
 65. Lauterborn JC, Pineda E, Chen LY, Ramirez EA, Lynch G, Gall CM. Ampakines cause sustained increases in brain‐derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression. Neuroscience 159: 283‐295, 2009.
 66. Lauterborn JC, Truong GS, Baudry M, Bi X, Lynch G, Gall CM. Chronic elevation of brain‐derived neurotrophic factor by ampakines. J Pharmacol Exp Ther 307: 297‐305, 2003.
 67. Lee FS, Chao MV. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98: 3555‐3560, 2001.
 68. Lee FS, Rajagopal R, Chao MV. Distinctive features of Trk neurotrophin receptor transactivation by G protein‐coupled receptors. Cytokine Growth Factor Rev 13: 11‐17, 2002.
 69. Lesbordes JC, Cifuentes‐Diaz C, Miroglio A, Joshi V, Bordet T, Kahn A, Melki J. Therapeutic benefits of cardiotrophin‐1 gene transfer in a mouse model of spinal muscular atrophy. Hum Mol Genet 12: 1233‐1239, 2003.
 70. Lin SY, Wu K, Levine ES, Mount HT, Suen PC, Black IB. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. Brain Res Mol Brain Res 55: 20‐27, 1998.
 71. Liu Q, Wong‐Riley MT. Postnatal development of brain‐derived neurotrophic factor (BDNF) and tyrosine protein kinase B (TrkB) receptor immunoreactivity in multiple brain stem respiratory‐related nuclei of the rat. J Comp Neurol, 2012.
 72. Lou H, Kim SK, Zaitsev E, Snell CR, Lu B, Loh YP. Sorting and activity‐dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron 45: 245‐255, 2005.
 73. Lu B, Gottschalk W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Prog Brain Res 128: 231‐241, 2000.
 74. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 6: 603‐614, 2005.
 75. Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD. A hierarchical NGF signaling cascade controls Ret‐dependent and Ret‐independent events during development of nonpeptidergic DRG neurons. Neuron 54: 739‐754, 2007.
 76. Mahadeo D, Kaplan L, Chao MV, Hempstead BL. High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi‐subunit polypeptide receptors. J Biol Chem 269: 6884‐6891, 1994.
 77. Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro‐BDNF. Nat Neurosci 11: 131‐133, 2008.
 78. Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10: 850‐860, 2009.
 79. Mitchell GS, Johnson SM. Neuroplasticity in respiratory motor control. J Appl Physiol 94: 358‐374, 2003.
 80. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver‐Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382: 76‐79, 1996.
 81. Mowla SJ, Pareek S, Farhadi HF, Petrecca K, Fawcett JP, Seidah NG, Morris SJ, Sossin WS, Murphy RA. Differential sorting of nerve growth factor and brain‐derived neurotrophic factor in hippocampal neurons. J Neurosci 19: 2069‐2080, 1999.
 82. Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10: 209‐219, 2011.
 83. Nagappan G, Zaitsev E, Senatorov VV, Jr., Yang J, Hempstead BL, Lu B. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 106: 1267‐1272, 2009.
 84. Nagarajan N, Quast C, Boxall AR, Shahid M, Rosenmund C. Mechanism and impact of allosteric AMPA receptor modulation by the ampakine CX546. Neuropharmacology 41: 650‐663, 2001.
 85. Nykjaer A, Willnow TE, Petersen CM. p75NTR–live or let die. Curr Opin Neurobiol 15: 49‐57, 2005.
 86. Ogier M, Wang H, Hong E, Wang Q, Greenberg ME, Katz DM. Brain‐derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. J Neurosci 27: 10912‐10917, 2007.
 87. Pascual A, Hidalgo‐Figueroa M, Piruat JI, Pintado CO, Gomez‐Diaz R, Lopez‐Barneo J. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11: 755‐761, 2008.
 88. Patel TD, Jackman A, Rice FL, Kucera J, Snider WD. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25: 345‐357, 2000.
 89. Patel TD, Kramer I, Kucera J, Niederkofler V, Jessell TM, Arber S, Snider WD. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38: 403‐416, 2003.
 90. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382: 73‐76, 1996.
 91. Rajagopal R, Chen ZY, Lee FS, Chao MV. Transactivation of Trk neurotrophin receptors by G‐protein‐coupled receptor ligands occurs on intracellular membranes. J Neurosci 24: 6650‐6658, 2004.
 92. Rex CS, Lauterborn JC, Lin CY, Kramar EA, Rogers GA, Gall CM, Lynch G. Restoration of long‐term potentiation in middle‐aged hippocampus after induction of brain‐derived neurotrophic factor. J Neurophysiol 96: 677‐685, 2006.
 93. Roux JC, Dura E, Villard L. Tyrosine hydroxylase deficit in the chemoafferent and the sympathoadrenergic pathways of the Mecp2 deficient mouse. Neurosci Lett 447: 82‐86, 2008.
 94. Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci 116: 3855‐3862, 2003.
 95. Schmid DA, Yang T, Ogier M, Adams I, Mirakhur Y, Wang Q, Massa SM, Longo FM, Katz DM. A TrkB small molecule partial agonist rescues TrkB phosphorylation deficits and improves respiratory function in a mouse model of Rett syndrome. J Neurosci 32: 1803‐1810, 2012.
 96. Sendtner M, Gotz R, Holtmann B, Escary JL, Masu Y, Carroll P, Wolf E, Brem G, Brulet P, Thoenen H. Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr Biol 6: 686‐694, 1996.
 97. Sendtner M, Schmalbruch H, Stockli KA, Carroll P, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358: 502‐504, 1992.
 98. Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain Res Brain Res Rev 33: 199‐227, 2000.
 99. Sklair‐Tavron L, Nestler EJ. Opposing effects of morphine and the neurotrophins, NT‐3, NT‐4, and BDNF, on locus coeruleus neurons in vitro. Brain Res 702: 117‐125, 1995.
 100. Song G, Tin C, Giacometti E, Poon CS. Habituation without NMDA receptor‐dependent desensitization of Hering‐Breuer apnea reflex in a Mecp2 mutant mouse model of Rett syndrome. Front Integr Neurosci 5: 6, 2011.
 101. Stettner GM, Huppke P, Brendel C, Richter DW, Gartner J, Dutschmann M. Breathing dysfunctions associated with impaired control of postinspiratory activity in Mecp2‐/y knockout mice. J Physiol 579: 863‐876, 2007.
 102. Tanaka T, Saito H, Matsuki N. Inhibition of GABAA synaptic responses by brain‐derived neurotrophic factor (BDNF) in rat hippocampus. J Neurosci 17: 2959‐2966, 1997.
 103. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25: 5455‐5463, 2005.
 104. Thoby‐Brisson M, Cauli B, Champagnat J, Fortin G, Katz DM. Expression of functional tyrosine kinase B receptors by rhythmically active respiratory neurons in the pre‐Botzinger complex of neonatal mice. J Neurosci 23: 7685‐7689, 2003.
 105. Traver S, Marien M, Martin E, Hirsch EC, Michel PP. The phenotypic differentiation of locus ceruleus noradrenergic neurons mediated by brain‐derived neurotrophic factor is enhanced by corticotropin releasing factor through the activation of a cAMP‐dependent signaling pathway. Mol Pharmacol 70: 30‐40, 2006.
 106. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M. Partial reversal of Rett Syndrome‐like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 106: 2029‐2034, 2009.
 107. Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Kjolby M, Richner M, Erdmann B, Nyengaard JR, Tessarollo L, Lewin GR, Willnow TE, Chao MV, Nykjaer A. Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14: 54‐61, 2011.
 108. Vermehren‐Schmaedick A, Jenkins VK, Knopp SJ, Balkowiec A, Bissonnette JM. Acute intermittent hypoxia‐induced expression of brain‐derived neurotrophic factor is disrupted in the brainstem of methyl‐CpG‐binding protein 2 null mice. Neuroscience 206: 1‐6, 2012.
 109. Voituron N, Zanella S, Menuet C, Dutschmann M, Hilaire G. Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 168: 109‐118, 2009.
 110. Wang H, Chan SA, Ogier M, Hellard D, Wang Q, Smith C, Katz DM. Dysregulation of brain‐derived neurotrophic factor expression and neurosecretory function in Mecp2 null mice. J Neurosci 26: 10911‐10915, 2006.
 111. Ward CS, Arvide EM, Huang TW, Yoo J, Noebels JL, Neul JL. MeCP2 is critical within HoxB1‐derived tissues of mice for normal lifespan. J Neurosci 31: 10359‐10370, 2011.
 112. White FA, Keller‐Peck CR, Knudson CM, Korsmeyer SJ, Snider WD. Widespread elimination of naturally occurring neuronal death in Bax‐deficient mice. J Neurosci 18: 1428‐1439, 1998.
 113. Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B. Pro‐BDNF‐induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol 185: 727‐741, 2009.
 114. Zhang J, Mifflin SW. Differential roles for NMDA and non‐NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat. J Physiol 511: 733‐745, 1998.
 115. Zuccato C, Cattaneo E. Brain‐derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5: 311‐322, 2009.

Related Articles:

Brain Stem Mechanisms for Generation and Control of Breathing Pattern
Peripheral Chemoreceptors: Function and Plasticity of the Carotid Body
Genetic Diseases: Congenital Central Hypoventilation, Rett, and Prader‐Willi Syndromes

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Michael Ogier, Miriam Kron, David M. Katz. Neurotrophic Factors in Development and Regulation of Respiratory Control. Compr Physiol 2013, 3: 1125-1134. doi: 10.1002/cphy.c120029