Comprehensive Physiology Wiley Online Library

Ca2+‐Activated Cl− Channels

Full Article on Wiley Online Library



Abstract

Ca2+‐activated Cl channels (CaCCs) are plasma membrane proteins involved in various important physiological processes. In epithelial cells, CaCC activity mediates the secretion of Cl and of other anions, such as bicarbonate and thiocyanate. In smooth muscle and excitable cells of the nervous system, CaCCs have an excitatory role coupling intracellular Ca2+ elevation to membrane depolarization. Recent studies indicate that TMEM16A (transmembrane protein 16 A or anoctamin 1) and TMEM16B (transmembrane protein 16 B or anoctamin 2) are CaCC‐forming proteins. Induced expression of TMEM16A and B in null cells by transfection causes the appearance of Ca2+‐activated Cl currents similar to those described in native tissues. Furthermore, silencing of TMEM16A by RNAi causes disappearance of CaCC activity in cells from airway epithelium, biliary ducts, salivary glands, and blood vessel smooth muscle. Mice devoid of TMEM16A expression have impaired Ca2+‐dependent Cl secretion in the epithelial cells of the airways, intestine, and salivary glands. These animals also show a loss of gastrointestinal motility, a finding consistent with an important function of TMEM16A in the electrical activity of gut pacemaker cells, that is, the interstitial cells of Cajal. Identification of TMEM16 proteins will help to elucidate the molecular basis of Cl transport. © 2011 American Physiological Society. Compr Physiol 1:2155‐2174, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Properties of Ca2+‐activated Cl channels (CaCCs). The figure shows the characteristic voltage dependence of Ca2+‐activated Cl currents. Each panel reports a series of membrane currents elicited by voltage steps in the −100 to +100 mV range at a given cytosolic Ca2+ concentration. At intermediated Ca2+ concentrations (100‐500 nM), the currents are activated mainly by positive membrane potentials. When the Ca2+ concentration reaches micromolar levels, CaCC‐dependent currents appear also at negative membrane potentials (taken, with permission, from ref. 165).

Figure 2. Figure 2.

The Ca2+‐activated Cl channels (CaCC) role in the airway epithelium. Schematic representation of Cl transport across the airway epithelium. ATP released from the cell binds to apical or basolateral P2Y2 purinergic receptors that trigger a series of events leading to the production of inositol 1,4,5‐triphosphate (IP3). IP3 binds to its receptor on the endoplasmic reticulum resulting in Ca2+ release. Ca2+ may also enter the cell through plasma membrane calcium channels. On the apical membrane Ca2+ leads to activation of CaCC, possibly TMEM16A. On the basolateral membrane, Ca2+ activates K+ channels that confer the driving force for apical Cl secretion. Cl enters the cell through NKCC, the Na+/K+/2Cl cotransporter. ATP may be metabolized by membrane‐bound nucleotidases with the consequent production of adenosine, which in turn can bind to an adenosine receptor that leads to intracellular cAMP increase. Binding of different hormones to basolaterally located receptors have similar effects. cAMP induces Cl secretion through cystic fibrosis transmembrane conductance regulator.

Figure 3. Figure 3.

Ca2+‐activated Cl channels (CaCCs) in exocrine glands. Representation of a simplified airway submucosal gland as prototypical exocrine glands. Different hormonal stimuli may trigger Cl secretion either via a Ca2+‐dependent pathway, thus involving CaCC in the mucosal surface or throughout cAMP signaling involving cystic fibrosis transmembrane conductance regulator. The membrane protein introducing Cl on the basolateral membrane is the Na+/K+/2Cl cotransporter. The water molecules that follow Cl secretion hydrate and push the mucin granules and other macromolecules (e.g., lactoferrin, lysozyme, and defensins) toward the gland duct.

Figure 4. Figure 4.

Ca2+‐activated Cl channels (CaCCs) function in smooth muscle. Schematic representation of the ion transport systems involved in Cl secretion in smooth muscle. Binding of hormones to G‐protein‐coupled receptors activates phospholipase C, which in turn releases inositol 1,4,5‐triphosphate (IP3). IP3 initiates release of Ca2+ from sarcoplasmic reticulum stores that activates CaCCs. The resulting Cl exit and membrane depolarization amplifies the Ca2+ increase by opening voltage‐dependent Ca2+ channels. CaCCs may be also activated through Ca2+‐induced Ca2+ release. Indeed, activation of clusters of ryanodine receptors inducing localized Ca2+ release (Ca2+ sparks) leads to opening of CaCCs and thus occurrence of spontaneous transient inward current. As in epithelial cells, Cl is loaded into smooth muscle troughout the activity of Na+/K+/2Cl cotransporter.

Figure 5. Figure 5.

Ca2+‐activated Cl channels (CaCCs) in photoreceptors. In the dark, the continuous activity of cyclic nucleotide‐gated channels in the outer segment of photoreceptors, and thus of Na+ and Ca2+ inflow, leads to cell membrane depolarization. This causes activation of voltage‐gated Ca2+ channels in the inner segment and probably also in the synaptic terminal. Intracellular Ca2+ increase activates CaCCs/TMEM16B in the synaptic terminal, favoring neurotransmitter release toward second‐order neurons.



Figure 1.

Properties of Ca2+‐activated Cl channels (CaCCs). The figure shows the characteristic voltage dependence of Ca2+‐activated Cl currents. Each panel reports a series of membrane currents elicited by voltage steps in the −100 to +100 mV range at a given cytosolic Ca2+ concentration. At intermediated Ca2+ concentrations (100‐500 nM), the currents are activated mainly by positive membrane potentials. When the Ca2+ concentration reaches micromolar levels, CaCC‐dependent currents appear also at negative membrane potentials (taken, with permission, from ref. 165).



Figure 2.

The Ca2+‐activated Cl channels (CaCC) role in the airway epithelium. Schematic representation of Cl transport across the airway epithelium. ATP released from the cell binds to apical or basolateral P2Y2 purinergic receptors that trigger a series of events leading to the production of inositol 1,4,5‐triphosphate (IP3). IP3 binds to its receptor on the endoplasmic reticulum resulting in Ca2+ release. Ca2+ may also enter the cell through plasma membrane calcium channels. On the apical membrane Ca2+ leads to activation of CaCC, possibly TMEM16A. On the basolateral membrane, Ca2+ activates K+ channels that confer the driving force for apical Cl secretion. Cl enters the cell through NKCC, the Na+/K+/2Cl cotransporter. ATP may be metabolized by membrane‐bound nucleotidases with the consequent production of adenosine, which in turn can bind to an adenosine receptor that leads to intracellular cAMP increase. Binding of different hormones to basolaterally located receptors have similar effects. cAMP induces Cl secretion through cystic fibrosis transmembrane conductance regulator.



Figure 3.

Ca2+‐activated Cl channels (CaCCs) in exocrine glands. Representation of a simplified airway submucosal gland as prototypical exocrine glands. Different hormonal stimuli may trigger Cl secretion either via a Ca2+‐dependent pathway, thus involving CaCC in the mucosal surface or throughout cAMP signaling involving cystic fibrosis transmembrane conductance regulator. The membrane protein introducing Cl on the basolateral membrane is the Na+/K+/2Cl cotransporter. The water molecules that follow Cl secretion hydrate and push the mucin granules and other macromolecules (e.g., lactoferrin, lysozyme, and defensins) toward the gland duct.



Figure 4.

Ca2+‐activated Cl channels (CaCCs) function in smooth muscle. Schematic representation of the ion transport systems involved in Cl secretion in smooth muscle. Binding of hormones to G‐protein‐coupled receptors activates phospholipase C, which in turn releases inositol 1,4,5‐triphosphate (IP3). IP3 initiates release of Ca2+ from sarcoplasmic reticulum stores that activates CaCCs. The resulting Cl exit and membrane depolarization amplifies the Ca2+ increase by opening voltage‐dependent Ca2+ channels. CaCCs may be also activated through Ca2+‐induced Ca2+ release. Indeed, activation of clusters of ryanodine receptors inducing localized Ca2+ release (Ca2+ sparks) leads to opening of CaCCs and thus occurrence of spontaneous transient inward current. As in epithelial cells, Cl is loaded into smooth muscle troughout the activity of Na+/K+/2Cl cotransporter.



Figure 5.

Ca2+‐activated Cl channels (CaCCs) in photoreceptors. In the dark, the continuous activity of cyclic nucleotide‐gated channels in the outer segment of photoreceptors, and thus of Na+ and Ca2+ inflow, leads to cell membrane depolarization. This causes activation of voltage‐gated Ca2+ channels in the inner segment and probably also in the synaptic terminal. Intracellular Ca2+ increase activates CaCCs/TMEM16B in the synaptic terminal, favoring neurotransmitter release toward second‐order neurons.

References
 1. Abdulla FA, Smith PA. Neuropeptide Y actions and the distribution of Ca2+‐dependent Cl− conductance in rat dorsal root ganglion neurons. J Auton Nerv Syst 78: 24‐24, 1999.
 2. Akasu T, Nishimura T, Tokimasa T. Calcium‐dependent chloride current in neurons of the rabbit pelvic parasympathetic ganglia. J Physiol 422: 303‐303, 1990.
 3. Akbarali HI, Giles WR. Ca2+ and Ca2+‐activated Cl− currents in rabbit oesophageal smooth muscle. J Physiol 460: 117‐117, 1993.
 4. Anderson MP, Welsh MJ. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A 88: 6003‐6003, 1991.
 5. André S, Boukhaddaoui H, Campo B, Al‐Jumaily M, Mayeux V, Greuet D, Valmier J, Scamps F. Axotomy‐induced expression of calcium‐activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol 90: 3764‐3764, 2003.
 6. Angermann JE, Sanguinetti AR, Kenyon JL, Leblanc N, Greenwood IA. Mechanism of the inhibition of Ca2+‐activated Cl− currents by phosphorylation in pulmonary arterial smooth muscle cells. J Gen Physiol 128: 73‐73, 2006.
 7. Arreola J, Begenisich T, Nehrke K, Nguyen HV, Park K, Richardson L, Yang B, Schutte BC, Lamb FS, Melvin JE. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl− channel gene. J Physiol 545: 207‐207, 2002.
 8. Arreola J, Melvin JE, Begenisich T. Activation of calcium‐dependent chloride channels in rat parotid acinar cells. J Gen Physiol 108: 35‐35, 1996.
 9. Arreola J, Melvin JE, Begenisich T. Differences in regulation of Ca2+‐activated Cl− channels in colonic and parotid secretory cells. Am J Physiol 274: C161‐C166, 1998.
 10. Bader CR, Bertrand D, Schlichter R. Calcium‐activated chloride current in cultured sensory and parasympathetic quail neurons. J Physiol 394: 125‐125, 1987.
 11. Bader CR, Bertrand D, Schwartz EA. Voltage‐activated and calcium‐activated currents studied in solitary rod inner segments from the salamander retina. J Physiol 331: 253‐253, 1982.
 12. Bao L, Kaldany C, Holmstrand EC, Cox DH. Mapping the BKCa channel's “Ca2+ bowl”: Side‐chains essential for Ca2+ sensing. J Gen Physiol 123: 475‐475, 2004.
 13. Bao R, Lifshitz LM, Tuft RA, Bellvé K, Fogarty KE, ZhuGe R. A close association of RyRs with highly dense clusters of Ca2+‐activated Cl− channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. J Gen Physiol 132: 145‐145, 2008.
 14. Barish ME. A transient calcium‐dependent chloride current in the immature Xenopus oocyte. J Physiol 342: 309‐309, 1983.
 15. Barnes S, Bui Q. Modulation of calcium‐activated chloride current via pH‐induced changes of calcium channel properties in cone photoreceptors. J Neurosci 11: 4015‐4015, 1991.
 16. Barnes S, Deschênes MC. Contribution of Ca and Ca‐activated Cl channels to regenerative depolarization and membrane bistability of cone photoreceptors. J Neurophysiol 68: 745‐745, 1992.
 17. Barnes S, Hille B. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J Gen Physiol 94: 719‐719, 1989.
 18. Barro‐Soria R, Aldehni F, Almaça J, Witzgall R, Schreiber R, Kunzelmann K. ER‐localized bestrophin 1 activates Ca2+‐dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflügers Arch 459: 485‐485, 2010.
 19. Bekar LK, Walz W. Intracellular chloride modulates A‐type potassium currents in astrocytes. Glia 39: 207‐207, 2002.
 20. Bernheim L, Bader CR, Bertrand D, Schlichter R. Transient expression of a Ca2+‐activated Cl− current during development of quail sensory neurons. Dev Biol. 136: 129‐129, 1989.
 21. Bevensee MO, Apkon M, Boron WF. Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na/HCO3 cotransport. J Gen Physiol 110: 467‐467, 1997.
 22. Boccaccio A, Menini A. Temporal development of cyclic nucleotide‐gated and Ca2+‐activated Cl− currents in isolated mouse olfactory sensory neurons. J Neurophysiol 98: 153‐153, 2007.
 23. Bolduc V, Marlow G, Boycott KM, Saleki K, Inoue H, Kroon J, Itakura M, Robitaille Y, Parent L, Baas F, Mizuta K, Kamata N, Richard I, Linssen WH, Mahjneh I, de Visser M, Bashir R, Brais B. Recessive mutations in the putative calcium‐activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 86: 213‐213, 2010.
 24. Bonvin E, Le Rouzic P, Bernaudin JF, Cottart CH, Vandebrouck C, Crié A, Leal T, Clement A, Bonora M. Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator‐deficient mice. J Physiol 586: 3231‐3231, 2008.
 25. Boudes M, Sar C, Menigoz A, Hilaire C, Péquignot MO, Kozlenkov A, Marmorstein A, Carroll P, Valmier J, Scamps F. Best1 is a gene regulated by nerve injury and required for Ca2+‐activated Cl− current expression in axotomized sensory neurons. J Neurosci 29: 10063‐10063, 2009.
 26. Bowery NG, Smart TG. GABA and glycine as neurotransmitters: A brief history. Br J Pharmacol 147: S109‐S119, 2006.
 27. Broegger T, Jacobsen JC, Dam VS, Boedtkjer DM, Kold‐Petersen H, Pedersen FS, Aalkjaer C, Matchkov VV. Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries. Cardiovasc Res (in press), 2011.
 28. Brooks M, Etter K, Catalfamo J, Brisbin A, Bustamante C, Mezey J. A genome‐wide linkage scan in German shepherd dogs localizes canine platelet procoagulant deficiency (Scott syndrome) to canine chromosome 27. Gene 450: 70‐70, 2010.
 29. Brooks MB, Catalfamo JL, Brown HA, Ivanova P, Lovaglio J. A hereditary bleeding disorder of dogs caused by a lack of platelet procoagulant activity. Blood 99: 2434‐2434, 2002.
 30. Byrne NG, Large WA. Action of noradrenaline on single smooth muscle cells freshly dispersed from the rat anococcygeus muscle. J Physiol 389: 513‐513, 1987.
 31. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra‐Moran O, Galietta LJ. TMEM16A, a membrane protein associated with calcium‐dependent chloride channel activity. Science 322: 590‐590, 2008.
 32. Cherubini E, Gaiarsa JL, Ben‐Ari Y. GABA: An excitatory transmitter in early postnatal life. Trends Neurosci 14: 515‐515, 1991.
 33. Chipperfield AR, Harper AA. Chloride in smooth muscle. Prog Biophys Mol Biol 74: 175‐175, 2000.
 34. Cia D, Bordais A, Valera C, Forster V, Sahel JA, Rendon A, Picaud S. Voltage‐gated channels and calcium homeostasis in mammalian rod photoreceptors. J Neurophysiol 93: 1468‐1468, 2005.
 35. Cliff WH, Frizzell RA. Separate Cl− conductances activated by cAMP and Ca2+ in Cl−‐secreting epithelial cells. Proc Natl Acad Sci U S A 87: 4956‐4956, 1990.
 36. Coakley RD, Grubb BR, Paradiso AM, Gatzy JT, Johnson LG, Kreda SM, O'Neal WK, Boucher RC. Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci U S A 100: 16083‐16083, 2003.
 37. Criddle DN, de Moura RS, Greenwood IA, Large WA. Effect of niflumic acid on noradrenaline‐induced contractions of the rat aorta. Br J Pharmacol 118: 1065‐1065, 1996.
 38. Criddle DN, de Moura RS, Greenwood IA, Large WA. Inhibitory action of niflumic acid on noradrenaline‐ and 5‐hydroxytryptamine‐induced pressor responses in the isolated mesenteric vascular bed of the rat. Br J Pharmacol 120: 813‐813, 1997.
 39. Cruickshank SF, Baxter LM, Drummond RM. The Cl− channel blocker niflumic acid releases Ca2+ from an intracellular store in rat pulmonary artery smooth muscle cells. Br J Pharmacol 140: 1442‐1442, 2003.
 40. Cunningham SA, Awayda MS, Bubien JK, Ismailov II, Arrate MP, Berdiev BK, Benos DJ, Fuller CM. Cloning of an epithelial chloride channel from bovine trachea. J Biol Chem 270: 31016‐31016, 1995.
 41. Currie KP, Scott RH. Calcium‐activated currents in cultured neurones from rat dorsal root ganglia. Br J Pharmacol 106: 593‐593, 1992.
 42. Currie KP, Wootton JF, Scott RH. Activation of Ca2+‐dependent Cl− currents in cultured rat sensory neurones by flash photolysis of DM‐nitrophen. J Physiol 482: 291‐291, 1995.
 43. Danahay H, Atherton H, Jones G, Bridges RJ, Poll CT. Interleukin‐13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells. Am J Physiol 282: L226‐L236, 2002.
 44. Davies PJ, Ireland DR, McLachlan EM. Sources of Ca2+ for different Ca2+‐activated K+ conductances in neurons of the rat superior cervical ganglion. J Physiol 495: 353‐353, 1996.
 45. Davis AJ, Forrest AS, Jepps TA, Valencik ML, Wiwchar M, Singer CA, Sones WR, Greenwood IA, Leblanc N. Expression profile and protein translation of TMEM16A in murine smooth muscle. Am J Physiol Cell Physiol 299: C948‐C959, 2010.
 46. De Castro F, Geijo‐Barrientos E, Gallego R. Calcium‐activated chloride current in normal mouse sympathetic ganglion cells. J Physiol 498: 397‐397, 1997.
 47. Dharmsathaphorn K, Pandol SJ. Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest 77: 348‐348, 1986.
 48. Dolphin AC. Calcium channel diversity: Multiple roles of calcium channel subunits. Curr Opin Neurobiol 19: 237‐237, 2009.
 49. Dorschner RA, Lopez‐Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J 20: 35‐35, 2006.
 50. Dutta AK, Khimji AK, Kresge C, Bugde A, Dougherty M, Esser V, Ueno Y, Glaser SS, Alpini G, Rockey DC, Feranchak AP. Identification and functional characterization of TMEM16A, a Ca2+‐activated Cl− channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem 286: 766‐766, 2011.
 51. Eggermont J. Calcium‐activated chloride channels: (un)known, (un)loved? Proc Am Thorac Soc 1: 22‐22, 2004.
 52. Elble RC, Widom J, Gruber AD, Abdel‐Ghany M, Levine R, Goodwin A, Cheng HC, Pauli BU. Cloning and characterization of lung‐endothelial cell adhesion molecule‐1 suggest it is an endothelial chloride channel. J Biol Chem 272: 27853‐27853, 1997.
 53. Evans MG, Marty A. Calcium‐dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol 378: 437‐437, 1986.
 54. Evans RL, Park K, Turner RJ, Watson GE, Nguyen HV, Dennett MR, Hand AR, Flagella M, Shull GE, Melvin JE. Severe impairment of salivation in Na+/K+/2Cl− cotransporter (NKCC1)‐deficient mice. J Biol Chem 275: 26720‐26720, 2000.
 55. Fallah G, Römer T, Detro‐Dassen S, Braam U, Markwardt F, Schmalzing G. TMEM16A(a)/anoctamin‐1 shares a homodimeric architecture with CLC chloride Channels. Mol Cell Proteomics 10: M110.004697, 2011.
 56. Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra‐Moran O, Ravazzolo R, Pagani F, Galietta LJ. Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 284: 33360‐33360, 2009.
 57. Fischer H, Illek B, Sachs L, Finkbeiner WE, Widdicombe JH. CFTR and calcium‐activated chloride channels in primary cultures of human airway gland cells of serous or mucous phenotype. Am J Physiol 299: L585‐L594, 2010.
 58. Freichel M, Schweig U, Staufferberger S, Freise D, Schorb W, Flockerzi V. Store‐operated cation channels in the heart and cells of the cardiovascular system. Cell Physiol Biochem 9: 270‐270, 1999.
 59. Frings S. Chemoelectrical signal transduction in olfactory sensory neurons of air‐breathing vertebrates. Cell Mol Life Sci 58: 510‐510, 2001.
 60. Frings S, Reuter D, Kleen SJ. Neuronal Ca2+‐activated Cl− channels—homing in on an elusive channel species. Prog Neurobiol 60: 247‐247, 2000.
 61. Galietta LJ, Pagesy P, Folli C, Caci E, Romio L, Costes B, Nicolis E, Cabrini G, Goossens M, Ravazzolo R, Zegarra‐Moran O. IL‐4 is a potent modulator of ion transport in the human bronchial epithelium in vitro. J Immunol 168: 839‐839, 2002.
 62. Garcia JGN, Verin AD, Herenyiova M, English D. Adherent neutrophils activate endothelial myosin light chain kinase: Role in transendothelial migration. J Appl Physiol 84: 1817‐1817, 1998.
 63. Garcia MA, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator‐dependent bicarbonate secretion. J Clin Invest 119: 2613‐2613, 2009.
 64. Gerson C, Sabater J, Scuri M, Torbati A, Coffey R, Abraham JW, Lauredo I, Forteza R, Wanner A, Salathe M, Abraham WM, Conner GE. The lactoperoxidase system functions in bacterial clearance of airways. Am J Respir Cell Mol Biol 22: 665‐665, 2000.
 65. Gomez‐Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296: G1370‐G1381, 2009.
 66. Greenwood IA, Ledoux J, Leblanc N. Differential regulation of Ca2+‐activated Cl− currents in rabbit arterial and portal vein smooth muscle cells by Ca2+‐calmodulin‐dependent kinase. J Physiol 534: 395‐395, 2001.
 67. Greenwood IA, Ledoux J, Sanguinetti A, Perrino BA, Leblanc N. Calcineurin Aα but not Aβ augments ICl(Ca) in rabbit pulmonary artery smooth muscle cells. J Biol Chem 279: 38830‐38830, 2004.
 68. Gritli‐Linde A, Vaziri Sani F, Rock JR, Hallberg K, Iribarne D, Harfe BD, Linde A. Expression patterns of the Tmem16 gene family during cephalic development in the mouse. Gene Expr Patterns 9: 178‐178, 2009.
 69. Groschner K, Graier WF, Kukovetz WR. Histamine induces K+ Ca2+ and Cl− currents in human vascular endothelial cells: Role of ionic currents in stimulation of nitric oxide biosynthesis. Circ Res 75: 304‐304, 1994.
 70. Grubb BR, Lee E, Pace AJ, Koller BH, Boucher RC. Intestinal ion transport in NKCC1‐deficient mice. Am J Physiol 279: G707‐G718, 2000.
 71. Grubb BR, Pace AJ, Lee E, Koller BH, Boucher RC. Alterations in airway ion transport in NKCC1‐deficient mice. Am J Physiol 281: C615‐C623, 2001.
 72. Hallani M, Lynch JW, Barry PH. Characterization of calcium‐activated chloride channels in patches excised from the dendritic knob of mammalian olfactory receptor neurons. J Membr Biol 161: 163‐163, 1998.
 73. Hartzell C, Putzier I, Arreola J. Calcium‐activated chloride channels. Annu Rev Physiol 67: 719‐719, 2005.
 74. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT. Molecular physiology of bestrophins: Multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88: 639‐639, 2008.
 75. He Q, Halm ST, Zhang J, Halm DR. Activation of the basolateral membrane Cl− conductance essential for electrogenic K+ secretion suppresses electrogenic Cl− secretion. Exp Physiol 96: 305‐305, 2010.
 76. Hengl T, Kaneko H, Dauner K, Vocke K, Frings S, Möhrlen F. Molecular components of signal amplification in olfactory sensory cilia. Proc Natl Acad Sci U S A 107: 6052‐6052, 2010.
 77. Hewett PW, Murray JC, Price EA, Watts ME, Woodcock M. Isolation and characterization of microvessel endothelial cells from human mammary adipose tissue in vitro. Cell Dev Biol 29: 325‐325, 1993.
 78. Himmel HM, Whorton AR, Strauss HC. Intracellular calcium, currents, and stimulus response coupling in endothelial cells. Hypertension 21: 112‐112, 1993.
 79. Ho MW, Kaetzel MA, Armstrong DL, Shears SB. Regulation of a human chloride channel. A paradigm for integrating input from calcium, type ii calmodulin‐dependent protein kinase, and inositol 3,4,5,6‐tetrakisphosphate. J Biol Chem 276: 18673‐18673, 2001.
 80. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY. Studies on expression and function of the TMEM16A calcium‐activated chloride channel. Proc Natl Acad Sci U S A 106: 21413‐21413, 2009.
 81. Huang P, Liu J, Di A, Robinson NC, Musch MW, Kaetzel MA, Nelson DJ. Regulation of human CLC‐3 channels by multifunctional Ca2+/calmodulin‐dependent protein kinase. J Biol Chem 276: 20093‐20093, 2001.
 82. Hübner CA, Stein V, Hermans‐Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ. Disruption of KCC2 reveals an essential role of K‐Cl cotransport already in early synaptic inhibition. Neuron 30: 515‐515, 2001.
 83. Hussy N. Calcium‐activated chloride channels in cultured embryonic Xenopus spinal neurons. J Neurophysiol 68: 2042‐2042, 1992.
 84. Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587: 4887‐4887, 2009.
 85. Ihalin R, Loimaranta V, Tenovuo J. Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 445: 261‐261, 2006.
 86. Ishikawa T, Cook DI. A Ca(2+)‐activated Cl− current in sheep parotid secretory cells. J Membr Biol 135: 261‐261, 1993.
 87. Jackson PS, Strange K. Volume‐sensitive anion channels mediate swelling‐activated inositol and taurine efflux. Am. J. Physiol 265: C1489‐C1500, 1993.
 88. Janssen LJ. Ionic mechanisms and Ca2+ regulation in airway smooth muscle contraction: Do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 282: L1161‐L1178, 2002.
 89. Janssen LJ, Sims SM. Histamine activates Cl− and K+ currents in guinea‐pig tracheal myocytes: Convergence with muscarinic signalling pathway. J Physiol 465: 661‐661, 1993.
 90. Jentsch TJ. Chloride and the endosomal‐lysosomal pathway: Emerging roles of CLC chloride transporters. J Physiol 578: 633‐633, 2007.
 91. Jentsch TJ, Neagoe I, Scheel O. CLC chloride channels and transporters. Curr Opin Neurobiol 15: 319‐319, 2005.
 92. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 82: 503‐503, 2002.
 93. Jentsch TJ, Steinmeyer K, Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348: 510‐510, 1990.
 94. Jones K, Shmygol A, Kupittayanant S, Wray S. Electrophysiological characterization and functional importance of calcium‐activated chloride channel in rat uterine myocytes. Pflugers Arch 448: 36‐36, 2004.
 95. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB. Roles of the cation‐chloride cotransporters in neurological disease. Nat Clin Pract Neurol 4: 490‐490, 2008.
 96. Kamouchi M, Mamin A, Droogmans G, Nilius B. Nonselective cation channels in endothelial cells derived from human umbilical vein. J membr Biol 169: 29‐29, 1999.
 97. Kamouchi M, Trouet D, Degreef C, Droogmans G, Eggermont J, Nilius B. Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells. Cell Calcium 22: 497‐497, 1997.
 98. Kaneko H, Möhrlen F, Frings S. Calmodulin contributes to gating control in olfactory calcium‐activated chloride channels. J Gen Physiol 127: 737‐737, 2006.
 99. Kettenmann H. K+ and Cl− uptake by cultured oligodendrocytes. Can J Physiol Pharmacol 65: 1033‐1033, 1987.
 100. Kidd JF, Thorn P. Intracellular Ca2+ and Cl− channel activation in secretory cells. Annu Rev Physiol 62: 493‐493, 2000.
 101. Kimelberg HK. Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim Biophys Acta 646: 179‐179, 1981.
 102. Kleene SJ. Origin of the chloride current in olfactory transduction. Neuron 11: 123‐123, 1993.
 103. Kleene SJ, Gesteland RC. Calcium‐activated chloride conductance in frog olfactory cilia. J Neurosci 11: 3624‐3624, 1991.
 104. Krizaj D, Copenhagen DR. Calcium regulation in photoreceptors. Front Biosci 7: d2023‐d2044, 2002.
 105. Kubo M, Okada Y. Volume‐regulatory Cl− channel currents in cultured human epithelial cells. J Physiol 456: 351‐351, 1992.
 106. Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R. Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 19: 142‐142, 2005.
 107. Kurahashi T, Yau KW. Co‐existence of cationic and chloride components in odorant‐induced current of vertebrate olfactory receptor cells. Nature 363: 71‐71, 1993.
 108. Kuruma A, Hartzell HC. Bimodal control of a Ca2+‐activated Cl− channel by different Ca2+ signals. J Gen Physiol 115: 59‐59, 2000.
 109. Laird JM, García‐Nicas E, Delpire EJ, Cervero F. Presynaptic inhibition and spinal pain processing in mice: A possible role of the NKCC1 cation‐chloride co‐transporter in hyperalgesia. Neurosci Lett 361: 200‐200, 2004.
 110. Lamb FS, Barna TJ. Chloride ion currents contribute functionally to norepinephrine‐induced vascular contraction. Am J Physiol 275: H151‐H160, 1998.
 111. Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC. Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279: 36855‐36855, 2004.
 112. Leblanc N, Ledoux J, Saleh S, Sanguinetti A, Angermann J, O'Driscoll K, Britton F, Perrino BA, Greenwood IA. Regulation of calcium‐activated chloride channels in smooth muscle cells: A complex picture is emerging. Can J Physiol Pharmacol 83: 541‐541, 2005.
 113. Ledoux J, Greenwood I, Villeneuve LR, Leblanc N. Modulation of Ca2+‐dependent Cl− channels by calcineurin in rabbit coronary arterial myocytes. J Physiol 552: 701‐701, 2003.
 114. Ledoux J, Greenwood IA, Leblanc N. Dynamics of Ca2+‐dependent Cl− channel modulation by niflumic acid in rabbit coronary arterial myocytes. Mol Pharmacol 67: 163‐163, 2005.
 115. Lee MG, Macglashan DW Jr, Undem BJ. Role of chloride channels in bradykinin‐induced guinea pig airway vagal C‐fibre activation. J Physiol 566: 205‐205, 2005.
 116. Lee RJ, Foskett JK. Mechanisms of Ca2+‐stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells. Am J Physiol Lung Cell Mol Physiol 298: L210‐L231, 2010.
 117. Li G, Liu Y, Olson JE. Calcium/calmodulin‐modulated chloride and taurine conductances in cultured rat astrocytes. Brain Res 925: 1‐1, 2002.
 118. Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, Gamper N. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M‐type K+ channels and activation of Ca2+‐activated Cl− channels. J Clin Invest 120: 1240‐1240, 2010.
 119. Llano I, Tan YP, Caputo C. Spatial heterogeneity of intracellular Ca2+ signals in axons of basket cells from rat cerebellar slices. J Physiol 502: 509‐509, 1997.
 120. Lowe G, Gold GH. Nonlinear amplification by calcium‐dependent chloride channels in olfactory receptor cells. Nature 366: 283‐283, 1993.
 121. Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS. Thiazolidinone CFTR inhibitor identified by high‐throughput screening blocks cholera toxin‐induced intestinal fluid secretion. J Clin Invest 110: 1651‐1651, 2002.
 122. MacLeish PR, Nurse CA. Ion channel compartments in photoreceptors: Evidence from salamander rods with intact and ablated terminals. J Neurophysiol 98: 86‐86, 2007.
 123. Mall M, Bleich M, Schürlein M, Kühr J, Seydewitz HH, Brandis M, Greger R, Kunzelmann K. Cholinergic ion secretion in human colon requires coactivation by cAMP. Am J Physiol 275: G1274‐G1281, 1998.
 124. Manoury B, Tamuleviciute A, Tammaro P. TMEM16A/anoctamin 1 protein mediates calcium‐activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol 588: 2305‐2305, 2010.
 125. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R, Wimmers S, Stanton JB, Gregg RG, Strauss O, Peachey NS, Marmorstein AD. The light peak of the electroretinogram is dependent on voltage‐gated calcium channels and antagonized by bestrophin (Best‐1). J Gen Physiol 127: 577‐577, 2006.
 126. Martínez‐Pinna J, McLachlan EM, Gallego R. Distinct mechanisms for activation of Cl− and K+ currents by Ca2+ from different sources in mouse sympathetic neurons. J Physiol 527: 249‐249, 2000.
 127. Mason SJ, Paradiso AM, Boucher RC. Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br J Pharmacol 103: 1649‐1649, 1991.
 128. Matchkov VV, Aalkjaer C, Nilsson H. A cyclic GMP‐dependent calcium‐activated chloride current in smooth‐muscle cells from rat mesenteric resistance arteries. J Gen Physiol 123: 121‐121, 2004.
 129. Matchkov VV, Larsen P, Bouzinova EV, Rojek A, Boedtkjer DM, Golubinskaya V, Pedersen FS, Aalkjaer C, Nilsson H. Bestrophin‐3 (vitelliform macular dystrophy 2‐like 3 protein) is essential for the cGMP‐dependent calcium‐activated chloride conductance in vascular smooth muscle cells. Circ Res 103: 864‐864, 2008.
 130. Matsuda JJ, Filali MS, Collins MM, Volk KA, Lamb FS. The ClC‐3 Cl−/H+ antiporter becomes uncoupled at low extracellular pH. J Biol Chem 285: 2569‐2569, 2010.
 131. Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95: 1005‐1005, 1998.
 132. Mayer ML. A calcium‐activated chloride current generates the after‐depolarization of rat sensory neurons in culture. J Physiol 364: 217‐217, 1985.
 133. McEwan GT, Hirst BH, Simmons NL. Carbachol stimulates Cl− secretion via activation of two distinct apical Cl− pathways in cultured human T84 intestinal epithelial monolayers. Biochim Biophys Acta 1220: 241‐241, 1994.
 134. McNaughton PA. Light response of vertebrate photoreceptors. Physiol Rev 70: 847‐847, 1990.
 135. Merlin D, Jiang L, Strohmeier GR, Nusrat A, Alper SL, Lencer WI, Madara JL. Distinct Ca2+‐ and cAMP‐dependent anion conductances in the apical membrane of polarized T84 cells. Am J Physiol 275: C484‐C495, 1998.
 136. Meyer JW, Flagella M, Sutliff RL, Lorenz JN, Nieman ML, Weber CS, Paul RJ, Shull GE. Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na+‐K+‐2Cl− cotransporter. Am J Physiol Heart Circ Physiol, 283: H1846‐H1855, 2002.
 137. Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB Jr, Welsh MJ. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 182: 1251‐1251, 2010.
 138. Mizuta K, Tsutsumi S, Inoue H, Sakamoto Y, Miyatake K, Miyawaki K, Noji S, Kamata N, Itakura M. Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem Biophys Res Commun 357: 126‐126, 2007.
 139. Morris AP, Scott JK, Ball JM, Zeng CQ, O'Neal WK, Estes MK. NSP4 elicits age‐dependent diarrhea and Ca2+‐mediated I− influx into intestinal crypts of CF mice. Am J Physiol 277: G431‐G444, 1999.
 140. Moskwa P, Lorentzen D, Excoffon KJ, Zabner J, McCray PB Jr, Nauseef WM, Dupuy C, Bánfi B. A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 175: 174‐174, 2007.
 141. Nakamura T, Gold GH. A cyclic nucleotide‐gated conductance in olfactory receptor cilia. Nature 325: 442‐442, 1987.
 142. Namkung W, Finkbeiner WE, Verkman AS. CFTR‐adenylyl cyclase I association responsible for UTP activation of CFTR in well‐differentiated primary human bronchial cell cultures. Mol Biol Cell 21: 2639‐2639, 2010.
 143. Namkung W, Phuan PW, Verkman AS. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium‐activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 286: 2365‐2365, 2011.
 144. Nickell WT, Kleene NK, Kleene SJ. Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 583: 1005‐1005, 2007.
 145. Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev 81: 1415‐1415, 2001.
 146. Nilius B, Prenen J, Szucs G, Wei L, Tanzi F, Voets T, Droogmans G. Calcium‐activated chloride channels in bovine pulmonary artery endothelial cells. J Physiol (Lond) 498: 381‐381, 1997.
 147. Nilius B, Prenen J, Voets T, Vandenbremt K, Eggermont J, Droogmans G. Kinetic and pharmacological properties of the calcium activated chloride current in macrovascular endothelial cells. Cell Calcium 22: 53‐53, 1997.
 148. Novarino G, Weinert S, Rickheit G, Jentsch TJ. Endosomal chloride‐proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328: 1398‐1398, 2010.
 149. Oh EJ, Weinreich D. Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig. J Physiol 558: 513‐513, 2004.
 150. Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K. Loss of TMEM16A causes a defect in epithelial Ca2+‐dependent chloride transport. J Biol Chem 284: 28698‐28698, 2009.
 151. Owen DG, Segal M, Barker JL. A Ca‐dependent Cl− conductance in cultured mouse spinal neurons. Nature 311: 567‐567, 1984.
 152. Pacaud P, Loirand G, Mironneau C, Mironneau J. Noradrenaline activates a calcium‐activated chloride conductance and increases the voltage‐dependent calcium current in cultured single cells of rat portal vein. Br J Pharmacol 97: 139‐139, 1989.
 153. Park H, Oh SJ, Han KS, Woo DH, Park H, Mannaioni G, Traynelis SF, Lee CJ. Bestrophin‐1 encodes for the Ca2+‐activated anion channel in hippocampal astrocytes. J Neurosci 29: 13063‐13063, 2009.
 154. Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 71: 425‐425, 2009.
 155. Pedemonte N, Caci E, Sondo E, Caputo A, Rhoden K, Pfeffer U, Di Candia M, Bandettini R, Ravazzolo R, Zegarra‐Moran O, Galietta LJ. Thiocyanate transport in resting and IL‐4‐stimulated human bronchial epithelial cells: Role of pendrin and anion channels. J Immunol 178: 5144‐5144, 2007.
 156. Perez‐Cornejo P, De Santiago DE, Arreola J. Permeant anions control gating of calcium‐dependent chloride channels. J Membr Biol 198: 125‐125, 2004.
 157. Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T, Sandgren O, Forsman K, Holmgren G, Andreasson S, Vujic M, Bergen AAB, McGarty‐Dugan V, Figueroa D, Austin CP, Metzker ML, Caskey CT, Wadelius C. Identification of the gene responsible for Best macular dystrophy. Nature Genet 19: 241‐241, 1998.
 158. Pézier A, Grauso M, Acquistapace A, Monsempes C, Rospars JP, Lucas P. Calcium activates a chloride conductance likely involved in olfactory receptor neuron repolarization in the moth Spodoptera littoralis. J Neurosci 30: 6323‐6323, 2010.
 159. Picollo A, Pusch M. Chloride/proton antiporter activity of mammalian CLC proteins ClC‐4 and ClC‐5. Nature 436: 420‐420, 2005.
 160. Pifferi S, Dibattista M, Menini A. TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458: 1023‐1023, 2009.
 161. Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, Zucchelli S. Bestrophin‐2 is a candidate calcium‐activated chloride channel involved in olfactory transduction. Proc Natl Acad Sci U S A 103: 12929‐12929, 2006.
 162. Poronnik P, Ward MC, Cook DI. Intracellular Ca2+ release by flufenamic acid and other blockers of the non‐selective cation channel. FEBS Lett 296: 245‐245, 1992.
 163. Protti DA, Llano I. Calcium currents and calcium signaling in rod bipolar cells of rat retinal slices. J Neurosci 18: 3715‐3715, 1998.
 164. Qu Z, Fischmeister R, Hartzell C. Mouse bestrophin‐2 is a bona fide Cl− channel: Identification of a residue important in anion binding and conduction. J Gen Physiol 123: 327‐327, 2004.
 165. Qu Z, Wei RW, Hartzell HC. Characterization of Ca2+‐activated Cl− currents in mouse kidney inner medullary collecting duct cells. Am J Physiol 285: F326‐F335, 2003.
 166. Qu Z, Wei RW, Mann W, Hartzell HC. Two bestrophins cloned from Xenopus laevis oocytes express Ca2+‐activated Cl− currents. J Biol Chem 278: 49563‐49563, 2003.
 167. Rasche S, Toetter B, Adler J, Tschapek A, Doerner JF, Kurtenbach S, Hatt H, Meyer H, Warscheid B, Neuhaus EM. Tmem16b is specifically expressed in the cilia of olfactory sensory neurons. Chem Senses 35: 239‐239, 2010.
 168. Reisert J, Bauer PJ, Yau KW, Frings S. The Ca‐activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122: 349‐349, 2003.
 169. Reisert J, Lai J, Yau KW, Bradley J. Mechanism of the excitatory Cl− response in mouse olfactory receptor neurons. Neuron 45: 553‐553, 2005.
 170. Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem 77: 701‐701, 2008.
 171. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui LC. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245: 1066‐1066, 1989.
 172. Rock JR, Futtner CR, Harfe BD. The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev Biol 321: 141‐141, 2008.
 173. Rock JR, Harfe BD. Expression of TMEM16 paralogs during murine embryogenesis. Dev Dyn 237: 2566‐2566, 2008.
 174. Rock JR, O'Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR. Transmembrane protein 16A (TMEM16A) is a Ca2+‐regulated Cl− secretory channel in mouse airways. J Biol Chem 284: 14875‐14875, 2009.
 175. Romanenko VG, Catalán MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez‐Begne M, Rock JR, Harfe BD, Melvin JE. Tmem16A encodes the Ca2+‐activated Cl− channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285: 12990‐12990, 2010.
 176. Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein A, Strauss O. Expression of bestrophin‐1, the product of the VMD2 gene, modulates voltage‐dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20: 178‐178, 2006.
 177. Sacchi O, Rossi ML, Canella R. The slow Ca2+‐activated K+ current, IAHP, in the rat sympathetic neuron. J Physiol 483: 15‐15, 1995.
 178. Sagheddu C, Boccaccio A, Dibattista M, Montani G, Tirindelli R, Menini A. Calcium concentration jumps reveal dynamic ion selectivity of calcium‐activated chloride currents in mouse olfactory sensory neurons and TMEM16b‐transfected HEK 293T cells. J Physiol 588: 4189‐4189, 2010.
 179. Saleh SN, Greenwood IA. Activation of chloride currents in murine portal vein smooth muscle cells by membrane depolarization involves intracellular calcium release. Am J Physiol 288: C122‐C131, 2005.
 180. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ. Voltage‐dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436: 424‐424, 2005.
 181. Schild D, Restrepo D. Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78: 429‐429, 1998.
 182. Schreiber R, Uliyakina I, Kongsuphol P, Warth R, Mirza M, Martins JR, Kunzelmann K. Expression and function of epithelial anoctamins. J Biol Chem 285: 7838‐7838, 2010.
 183. Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium‐activated chloride channel subunit. Cell 134: 1019‐1019, 2008.
 184. Scott RH, Sutton KG, Griffin A, Stapleton SR, Currie KP. Aspects of calcium‐activated chloride currents: A neuronal perspective. Pharmacol Ther 66: 535‐535, 1995.
 185. Segal M, Barker JL, Owen DG. Chloride conductances in central neurons. Isr J Med Sci 23: 95‐95, 1987.
 186. Sheridan JT, Worthington EN, Yu K, Gabriel SE, Hartzell HC, Tarran R. Characterization of the oligomeric structure of the Ca2+‐activated Cl− channel Ano1/TMEM16A. J Biol Chem 286: 1381‐1381, 2011.
 187. Smith QR, Johanson CE, Woodbury DM. Uptake of 36Cl and 22Na by the brain‐cerebrospinal fluid system: Comparison of the permeability of the blood‐brain and blood‐cerebrospinal fluid barriers. J Neurochem 37: 117‐117, 1981.
 188. Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H. ANO2 is the cilial calcium‐activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106: 11776‐11776, 2009.
 189. Stöhr H, Heisig JB, Benz PM, Schöberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL. TMEM16B, a novel protein with calcium‐dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29: 6809‐6809, 2009.
 190. Strabel D, Diener M. Evidence against direct activation of chloride secretion by carbachol in the rat distal colon. Eur J Pharmacol 274: 181‐181, 1995.
 191. Stutzin A, Hoffmann EK. Swelling‐activated ion channels: Functional regulation in cell‐swelling, proliferation and apoptosis. Acta Physiol (Oxf) 187: 27‐27, 2006.
 192. Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A 99: 4008‐4008, 2002.
 193. Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium‐dependent phospholipid scrambling by TMEM16F. Nature 468: 834‐834, 2010.
 194. Tarran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 68: 543‐543, 2006.
 195. Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC. Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280: 35751‐35751, 2005.
 196. Tarran R, Loewen ME, Paradiso AM, Olsen JC, Gray MA, Argent BE, Boucher RC, Gabriel SE. Regulation of murine airway surface liquid volume by CFTR and Ca2+‐activated Cl− conductances. J Gen Physiol 120: 407‐407, 2002.
 197. Thoreson WB, Bryson EJ. Chloride equilibrium potential in salamander cones. BMC Neurosci 5: 53, 2004.
 198. Thoreson WB, Stella SL Jr, Bryson EI, Clements J, Witkovsky P. D2‐like dopamine receptors promote interactions between calcium and chloride channels that diminish rod synaptic transfer in the salamander retina. Vis Neurosci 19: 235‐235, 2002.
 199. Tian Y, Kongsuphol P, Hug M, Ousingsawat J, Witzgall R, Schreiber R, Kunzelmann K. Calmodulin‐dependent activation of the epithelial calcium‐dependent chloride channel TMEM16A. FASEB J 25: 1‐1, 2011.
 200. Tousson A, Van Tine BA, Naren AP, Shaw GM, Schwiebert LM. Characterization of CFTR expression and chloride channel activity in human endothelia. Am J Physiol Cell Physiol 275: C1555‐C1564, 1998.
 201. Tradtrantip L, Sonawane ND, Namkung W, Verkman AS. Nanomolar potency pyrimido‐pyrrolo‐quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model. J Med Chem 52: 6447‐6447, 2009.
 202. Tsutsumi S, Kamata N, Vokes TJ, Maruoka Y, Nakakuki K, Enomoto S, Omura K, Amagasa T, Nagayama M, Saito‐Ohara F, Inazawa J, Moritani M, Yamaoka T, Inoue H, Itakura M. The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am J Hum Genet 74: 1255‐1255, 2004.
 203. Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov 8: 153‐153, 2009.
 204. Verkman AS, Lukacs GL, Galietta LJ. CFTR chloride channel drug discovery—inhibitors as antidiarrheals and activators for therapy of cystic fibrosis. Curr Pharm Des 12: 2235‐2235, 2006.
 205. Vermeer S, Hoischen A, Meijer RPP, Gilissen C, Neveling K, Wieskamp N, de Brouwer A, Koenig M, Anheim M, Assoum M, Drouot N, Todorovi S, Milic‐Rasic V, Lochmüller H, Stevanin G, Goizet C, David A, Durr A, Brice A, Kremer B, van de Warrenburg BP, Schijvenaars MM, Heister A, Kwint M, Arts P, van der Wijst J, Veltman J, Kamsteeg EJ, Scheffer H, Knoers N. Targeted next‐generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal‐recessive cerebellar ataxia. Am J Hum Genet 87: 813‐813, 2010.
 206. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: The revolution continues. Nat Rev Neurosci 6: 626‐626, 2005.
 207. Walz W. Chloride/anion channels in glial cell membranes. Glia 40: 1‐1, 2002.
 208. Wang Q, Large WA. Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery. J Physiol 68: 125‐125, 1993.
 209. Wang XD, Van Breemen C. Depolarization‐mediated inhibition of Ca2+ entry in endothelial cells. Am J Physiol 277: H1498‐H1504, 1999.
 210. Wang YX, Kotlikoff MI. Inactivation of calcium‐activated chloride channels in smooth muscle by calcium/calmodulin‐dependent protein kinase. Proc Natl Acad Sci U S A 94: 14918‐14918, 1997.
 211. Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, Rademann J, Stauber T, Kornak U, Jentsch TJ. Lysosomal pathology and osteopetrosis upon loss of H+‐driven lysosomal Cl− accumulation. Science 328: 1401‐1401, 2010.
 212. Welch NC, Lalonde MR, Barnes S, Kelly ME. Calcium‐activated chloride channels in müller cells acutely isolated from tiger salamander retina. Glia 53: 74‐74, 2006.
 213. Wellman GC, Nelson MT. Signaling between SR and plasmalemma in smooth muscle: Sparks and the activation of Ca2+‐sensitive ion channels. Cell Calcium 34: 211‐211, 2003.
 214. Yamamoto C, Korenaga R, Kamiya A, Ando J. Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87: 385‐385, 2000.
 215. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U. TMEM16A confers receptor‐activated calcium‐dependent chloride conductance. Nature 455: 1210‐1210, 2008.
 216. Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R. Structure of the human BK channel Ca2+‐activation apparatus at 3.0 Å resolution. Science 329: 182‐182, 2010.
 217. Yuan XJ. Role of calcium‐activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol 272: L959‐L968, 1997.
 218. Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM. A Ca2+‐activated Cl− conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 587: 4905‐4905, 2009.

Related Articles:

Modulation of Electrical Properties by Ions, Hormones, and Drugs
Lung Cell Biology
Calcium Signaling System in Salivary Glands
Interstitial cells of Cajal
Ion Transport Across Mammalian Small Intestine
Ion Transport Across the Large Intestine
Mechanism of Fluid Transport by Epithelia
Chloride Transport
Epithelial Transport
Electrophysiology of dissociated gastrointestinal muscle cells
Electrophysiology of Salivary and Pancreatic Acinar Cells
Electrophysiology of the intestinal musculature
Neurohormonal Control of Fluid and Electrolyte Transport in Intestinal Mucosa
Pancreatic Secretion of Electrolytes and Water
Pharmacology of drugs acting on gastrointestinal motility
Transport of Calcium
Renal Ion Channels

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Loretta Ferrera, Olga Zegarra‐Moran, Luis J.V. Galietta. Ca2+‐Activated Cl− Channels. Compr Physiol 2011, 1: 2155-2174. doi: 10.1002/cphy.c110017