References |
1. |
Abdulla FA,
Smith PA.
Neuropeptide Y actions and the distribution of Ca2+‐dependent Cl− conductance in rat dorsal root ganglion neurons.
J Auton Nerv Syst
78:
24‐24,
1999.
|
2. |
Akasu T,
Nishimura T,
Tokimasa T.
Calcium‐dependent chloride current in neurons of the rabbit pelvic parasympathetic ganglia.
J Physiol
422:
303‐303,
1990.
|
3. |
Akbarali HI,
Giles WR.
Ca2+ and Ca2+‐activated Cl− currents in rabbit oesophageal smooth muscle.
J Physiol
460:
117‐117,
1993.
|
4. |
Anderson MP,
Welsh MJ.
Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia.
Proc Natl Acad Sci U S A
88:
6003‐6003,
1991.
|
5. |
André S,
Boukhaddaoui H,
Campo B,
Al‐Jumaily M,
Mayeux V,
Greuet D,
Valmier J,
Scamps F.
Axotomy‐induced expression of calcium‐activated chloride current in subpopulations of mouse dorsal root ganglion neurons.
J Neurophysiol
90:
3764‐3764,
2003.
|
6. |
Angermann JE,
Sanguinetti AR,
Kenyon JL,
Leblanc N,
Greenwood IA.
Mechanism of the inhibition of Ca2+‐activated Cl− currents by phosphorylation in pulmonary arterial smooth muscle cells.
J Gen Physiol
128:
73‐73,
2006.
|
7. |
Arreola J,
Begenisich T,
Nehrke K,
Nguyen HV,
Park K,
Richardson L,
Yang B,
Schutte BC,
Lamb FS,
Melvin JE.
Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl− channel gene.
J Physiol
545:
207‐207,
2002.
|
8. |
Arreola J,
Melvin JE,
Begenisich T.
Activation of calcium‐dependent chloride channels in rat parotid acinar cells.
J Gen Physiol
108:
35‐35,
1996.
|
9. |
Arreola J,
Melvin JE,
Begenisich T.
Differences in regulation of Ca2+‐activated Cl− channels in colonic and parotid secretory cells.
Am J Physiol
274:
C161‐C166,
1998.
|
10. |
Bader CR,
Bertrand D,
Schlichter R.
Calcium‐activated chloride current in cultured sensory and parasympathetic quail neurons.
J Physiol
394:
125‐125,
1987.
|
11. |
Bader CR,
Bertrand D,
Schwartz EA.
Voltage‐activated and calcium‐activated currents studied in solitary rod inner segments from the salamander retina.
J Physiol
331:
253‐253,
1982.
|
12. |
Bao L,
Kaldany C,
Holmstrand EC,
Cox DH.
Mapping the BKCa channel's “Ca2+ bowl”: Side‐chains essential for Ca2+ sensing.
J Gen Physiol
123:
475‐475,
2004.
|
13. |
Bao R,
Lifshitz LM,
Tuft RA,
Bellvé K,
Fogarty KE,
ZhuGe R.
A close association of RyRs with highly dense clusters of Ca2+‐activated Cl− channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle.
J Gen Physiol
132:
145‐145,
2008.
|
14. |
Barish ME.
A transient calcium‐dependent chloride current in the immature Xenopus oocyte.
J Physiol
342:
309‐309,
1983.
|
15. |
Barnes S,
Bui Q.
Modulation of calcium‐activated chloride current via pH‐induced changes of calcium channel properties in cone photoreceptors.
J Neurosci
11:
4015‐4015,
1991.
|
16. |
Barnes S,
Deschênes MC.
Contribution of Ca and Ca‐activated Cl channels to regenerative depolarization and membrane bistability of cone photoreceptors.
J Neurophysiol
68:
745‐745,
1992.
|
17. |
Barnes S,
Hille B.
Ionic channels of the inner segment of tiger salamander cone photoreceptors.
J Gen Physiol
94:
719‐719,
1989.
|
18. |
Barro‐Soria R,
Aldehni F,
Almaça J,
Witzgall R,
Schreiber R,
Kunzelmann K.
ER‐localized bestrophin 1 activates Ca2+‐dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel.
Pflügers Arch
459:
485‐485,
2010.
|
19. |
Bekar LK,
Walz W.
Intracellular chloride modulates A‐type potassium currents in astrocytes.
Glia
39:
207‐207,
2002.
|
20. |
Bernheim L,
Bader CR,
Bertrand D,
Schlichter R.
Transient expression of a Ca2+‐activated Cl− current during development of quail sensory neurons.
Dev Biol.
136:
129‐129,
1989.
|
21. |
Bevensee MO,
Apkon M,
Boron WF.
Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na/HCO3 cotransport.
J Gen Physiol
110:
467‐467,
1997.
|
22. |
Boccaccio A,
Menini A.
Temporal development of cyclic nucleotide‐gated and Ca2+‐activated Cl− currents in isolated mouse olfactory sensory neurons.
J Neurophysiol
98:
153‐153,
2007.
|
23. |
Bolduc V,
Marlow G,
Boycott KM,
Saleki K,
Inoue H,
Kroon J,
Itakura M,
Robitaille Y,
Parent L,
Baas F,
Mizuta K,
Kamata N,
Richard I,
Linssen WH,
Mahjneh I,
de Visser M,
Bashir R,
Brais B.
Recessive mutations in the putative calcium‐activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies.
Am J Hum Genet
86:
213‐213,
2010.
|
24. |
Bonvin E,
Le Rouzic P,
Bernaudin JF,
Cottart CH,
Vandebrouck C,
Crié A,
Leal T,
Clement A,
Bonora M.
Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator‐deficient mice.
J Physiol
586:
3231‐3231,
2008.
|
25. |
Boudes M,
Sar C,
Menigoz A,
Hilaire C,
Péquignot MO,
Kozlenkov A,
Marmorstein A,
Carroll P,
Valmier J,
Scamps F.
Best1 is a gene regulated by nerve injury and required for Ca2+‐activated Cl− current expression in axotomized sensory neurons.
J Neurosci
29:
10063‐10063,
2009.
|
26. |
Bowery NG,
Smart TG.
GABA and glycine as neurotransmitters: A brief history.
Br J Pharmacol
147:
S109‐S119,
2006.
|
27. |
Broegger T,
Jacobsen JC,
Dam VS,
Boedtkjer DM,
Kold‐Petersen H,
Pedersen FS,
Aalkjaer C,
Matchkov VV.
Bestrophin is important for the rhythmic but not the tonic contraction in rat mesenteric small arteries.
Cardiovasc Res (in press),
2011.
|
28. |
Brooks M,
Etter K,
Catalfamo J,
Brisbin A,
Bustamante C,
Mezey J.
A genome‐wide linkage scan in German shepherd dogs localizes canine platelet procoagulant deficiency (Scott syndrome) to canine chromosome 27.
Gene
450:
70‐70,
2010.
|
29. |
Brooks MB,
Catalfamo JL,
Brown HA,
Ivanova P,
Lovaglio J.
A hereditary bleeding disorder of dogs caused by a lack of platelet procoagulant activity.
Blood
99:
2434‐2434,
2002.
|
30. |
Byrne NG,
Large WA.
Action of noradrenaline on single smooth muscle cells freshly dispersed from the rat anococcygeus muscle.
J Physiol
389:
513‐513,
1987.
|
31. |
Caputo A,
Caci E,
Ferrera L,
Pedemonte N,
Barsanti C,
Sondo E,
Pfeffer U,
Ravazzolo R,
Zegarra‐Moran O,
Galietta LJ.
TMEM16A, a membrane protein associated with calcium‐dependent chloride channel activity.
Science
322:
590‐590,
2008.
|
32. |
Cherubini E,
Gaiarsa JL,
Ben‐Ari Y.
GABA: An excitatory transmitter in early postnatal life.
Trends Neurosci
14:
515‐515,
1991.
|
33. |
Chipperfield AR,
Harper AA.
Chloride in smooth muscle.
Prog Biophys Mol Biol
74:
175‐175,
2000.
|
34. |
Cia D,
Bordais A,
Valera C,
Forster V,
Sahel JA,
Rendon A,
Picaud S.
Voltage‐gated channels and calcium homeostasis in mammalian rod photoreceptors.
J Neurophysiol
93:
1468‐1468,
2005.
|
35. |
Cliff WH,
Frizzell RA.
Separate Cl− conductances activated by cAMP and Ca2+ in Cl−‐secreting epithelial cells.
Proc Natl Acad Sci U S A
87:
4956‐4956,
1990.
|
36. |
Coakley RD,
Grubb BR,
Paradiso AM,
Gatzy JT,
Johnson LG,
Kreda SM,
O'Neal WK,
Boucher RC.
Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium.
Proc Natl Acad Sci U S A
100:
16083‐16083,
2003.
|
37. |
Criddle DN,
de Moura RS,
Greenwood IA,
Large WA.
Effect of niflumic acid on noradrenaline‐induced contractions of the rat aorta.
Br J Pharmacol
118:
1065‐1065,
1996.
|
38. |
Criddle DN,
de Moura RS,
Greenwood IA,
Large WA.
Inhibitory action of niflumic acid on noradrenaline‐ and 5‐hydroxytryptamine‐induced pressor responses in the isolated mesenteric vascular bed of the rat.
Br J Pharmacol
120:
813‐813,
1997.
|
39. |
Cruickshank SF,
Baxter LM,
Drummond RM.
The Cl− channel blocker niflumic acid releases Ca2+ from an intracellular store in rat pulmonary artery smooth muscle cells.
Br J Pharmacol
140:
1442‐1442,
2003.
|
40. |
Cunningham SA,
Awayda MS,
Bubien JK,
Ismailov II,
Arrate MP,
Berdiev BK,
Benos DJ,
Fuller CM.
Cloning of an epithelial chloride channel from bovine trachea.
J Biol Chem
270:
31016‐31016,
1995.
|
41. |
Currie KP,
Scott RH.
Calcium‐activated currents in cultured neurones from rat dorsal root ganglia.
Br J Pharmacol
106:
593‐593,
1992.
|
42. |
Currie KP,
Wootton JF,
Scott RH.
Activation of Ca2+‐dependent Cl− currents in cultured rat sensory neurones by flash photolysis of DM‐nitrophen.
J Physiol
482:
291‐291,
1995.
|
43. |
Danahay H,
Atherton H,
Jones G,
Bridges RJ,
Poll CT.
Interleukin‐13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells.
Am J Physiol
282:
L226‐L236,
2002.
|
44. |
Davies PJ,
Ireland DR,
McLachlan EM.
Sources of Ca2+ for different Ca2+‐activated K+ conductances in neurons of the rat superior cervical ganglion.
J Physiol
495:
353‐353,
1996.
|
45. |
Davis AJ,
Forrest AS,
Jepps TA,
Valencik ML,
Wiwchar M,
Singer CA,
Sones WR,
Greenwood IA,
Leblanc N.
Expression profile and protein translation of TMEM16A in murine smooth muscle.
Am J Physiol Cell Physiol
299:
C948‐C959,
2010.
|
46. |
De Castro F,
Geijo‐Barrientos E,
Gallego R.
Calcium‐activated chloride current in normal mouse sympathetic ganglion cells.
J Physiol
498:
397‐397,
1997.
|
47. |
Dharmsathaphorn K,
Pandol SJ.
Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line.
J Clin Invest
77:
348‐348,
1986.
|
48. |
Dolphin AC.
Calcium channel diversity: Multiple roles of calcium channel subunits.
Curr Opin Neurobiol
19:
237‐237,
2009.
|
49. |
Dorschner RA,
Lopez‐Garcia B,
Peschel A,
Kraus D,
Morikawa K,
Nizet V,
Gallo RL.
The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides.
FASEB J
20:
35‐35,
2006.
|
50. |
Dutta AK,
Khimji AK,
Kresge C,
Bugde A,
Dougherty M,
Esser V,
Ueno Y,
Glaser SS,
Alpini G,
Rockey DC,
Feranchak AP.
Identification and functional characterization of TMEM16A, a Ca2+‐activated Cl− channel activated by extracellular nucleotides, in biliary epithelium.
J Biol Chem
286:
766‐766,
2011.
|
51. |
Eggermont J.
Calcium‐activated chloride channels: (un)known, (un)loved?
Proc Am Thorac Soc
1:
22‐22,
2004.
|
52. |
Elble RC,
Widom J,
Gruber AD,
Abdel‐Ghany M,
Levine R,
Goodwin A,
Cheng HC,
Pauli BU.
Cloning and characterization of lung‐endothelial cell adhesion molecule‐1 suggest it is an endothelial chloride channel.
J Biol Chem
272:
27853‐27853,
1997.
|
53. |
Evans MG,
Marty A.
Calcium‐dependent chloride currents in isolated cells from rat lacrimal glands.
J Physiol
378:
437‐437,
1986.
|
54. |
Evans RL,
Park K,
Turner RJ,
Watson GE,
Nguyen HV,
Dennett MR,
Hand AR,
Flagella M,
Shull GE,
Melvin JE.
Severe impairment of salivation in Na+/K+/2Cl− cotransporter (NKCC1)‐deficient mice.
J Biol Chem
275:
26720‐26720,
2000.
|
55. |
Fallah G,
Römer T,
Detro‐Dassen S,
Braam U,
Markwardt F,
Schmalzing G.
TMEM16A(a)/anoctamin‐1 shares a homodimeric architecture with CLC chloride Channels.
Mol Cell Proteomics
10:
M110.004697,
2011.
|
56. |
Ferrera L,
Caputo A,
Ubby I,
Bussani E,
Zegarra‐Moran O,
Ravazzolo R,
Pagani F,
Galietta LJ.
Regulation of TMEM16A chloride channel properties by alternative splicing.
J Biol Chem
284:
33360‐33360,
2009.
|
57. |
Fischer H,
Illek B,
Sachs L,
Finkbeiner WE,
Widdicombe JH.
CFTR and calcium‐activated chloride channels in primary cultures of human airway gland cells of serous or mucous phenotype.
Am J Physiol
299:
L585‐L594,
2010.
|
58. |
Freichel M,
Schweig U,
Staufferberger S,
Freise D,
Schorb W,
Flockerzi V.
Store‐operated cation channels in the heart and cells of the cardiovascular system.
Cell Physiol Biochem
9:
270‐270,
1999.
|
59. |
Frings S.
Chemoelectrical signal transduction in olfactory sensory neurons of air‐breathing vertebrates.
Cell Mol Life Sci
58:
510‐510,
2001.
|
60. |
Frings S,
Reuter D,
Kleen SJ.
Neuronal Ca2+‐activated Cl− channels—homing in on an elusive channel species.
Prog Neurobiol
60:
247‐247,
2000.
|
61. |
Galietta LJ,
Pagesy P,
Folli C,
Caci E,
Romio L,
Costes B,
Nicolis E,
Cabrini G,
Goossens M,
Ravazzolo R,
Zegarra‐Moran O.
IL‐4 is a potent modulator of ion transport in the human bronchial epithelium in vitro.
J Immunol
168:
839‐839,
2002.
|
62. |
Garcia JGN,
Verin AD,
Herenyiova M,
English D.
Adherent neutrophils activate endothelial myosin light chain kinase: Role in transendothelial migration.
J Appl Physiol
84:
1817‐1817,
1998.
|
63. |
Garcia MA,
Yang N,
Quinton PM.
Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator‐dependent bicarbonate secretion.
J Clin Invest
119:
2613‐2613,
2009.
|
64. |
Gerson C,
Sabater J,
Scuri M,
Torbati A,
Coffey R,
Abraham JW,
Lauredo I,
Forteza R,
Wanner A,
Salathe M,
Abraham WM,
Conner GE.
The lactoperoxidase system functions in bacterial clearance of airways.
Am J Respir Cell Mol Biol
22:
665‐665,
2000.
|
65. |
Gomez‐Pinilla PJ,
Gibbons SJ,
Bardsley MR,
Lorincz A,
Pozo MJ,
Pasricha PJ,
Van de Rijn M,
West RB,
Sarr MG,
Kendrick ML,
Cima RR,
Dozois EJ,
Larson DW,
Ordog T,
Farrugia G.
Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract.
Am J Physiol Gastrointest Liver Physiol
296:
G1370‐G1381,
2009.
|
66. |
Greenwood IA,
Ledoux J,
Leblanc N.
Differential regulation of Ca2+‐activated Cl− currents in rabbit arterial and portal vein smooth muscle cells by Ca2+‐calmodulin‐dependent kinase.
J Physiol
534:
395‐395,
2001.
|
67. |
Greenwood IA,
Ledoux J,
Sanguinetti A,
Perrino BA,
Leblanc N.
Calcineurin Aα but not Aβ augments ICl(Ca) in rabbit pulmonary artery smooth muscle cells.
J Biol Chem
279:
38830‐38830,
2004.
|
68. |
Gritli‐Linde A,
Vaziri Sani F,
Rock JR,
Hallberg K,
Iribarne D,
Harfe BD,
Linde A.
Expression patterns of the Tmem16 gene family during cephalic development in the mouse.
Gene Expr Patterns
9:
178‐178,
2009.
|
69. |
Groschner K,
Graier WF,
Kukovetz WR.
Histamine induces K+ Ca2+ and Cl− currents in human vascular endothelial cells: Role of ionic currents in stimulation of nitric oxide biosynthesis.
Circ Res
75:
304‐304,
1994.
|
70. |
Grubb BR,
Lee E,
Pace AJ,
Koller BH,
Boucher RC.
Intestinal ion transport in NKCC1‐deficient mice.
Am J Physiol
279:
G707‐G718,
2000.
|
71. |
Grubb BR,
Pace AJ,
Lee E,
Koller BH,
Boucher RC.
Alterations in airway ion transport in NKCC1‐deficient mice.
Am J Physiol
281:
C615‐C623,
2001.
|
72. |
Hallani M,
Lynch JW,
Barry PH.
Characterization of calcium‐activated chloride channels in patches excised from the dendritic knob of mammalian olfactory receptor neurons.
J Membr Biol
161:
163‐163,
1998.
|
73. |
Hartzell C,
Putzier I,
Arreola J.
Calcium‐activated chloride channels.
Annu Rev Physiol
67:
719‐719,
2005.
|
74. |
Hartzell HC,
Qu Z,
Yu K,
Xiao Q,
Chien LT.
Molecular physiology of bestrophins: Multifunctional membrane proteins linked to best disease and other retinopathies.
Physiol Rev
88:
639‐639,
2008.
|
75. |
He Q,
Halm ST,
Zhang J,
Halm DR.
Activation of the basolateral membrane Cl− conductance essential for electrogenic K+ secretion suppresses electrogenic Cl− secretion.
Exp Physiol
96:
305‐305,
2010.
|
76. |
Hengl T,
Kaneko H,
Dauner K,
Vocke K,
Frings S,
Möhrlen F.
Molecular components of signal amplification in olfactory sensory cilia.
Proc Natl Acad Sci U S A
107:
6052‐6052,
2010.
|
77. |
Hewett PW,
Murray JC,
Price EA,
Watts ME,
Woodcock M.
Isolation and characterization of microvessel endothelial cells from human mammary adipose tissue in vitro.
Cell Dev Biol
29:
325‐325,
1993.
|
78. |
Himmel HM,
Whorton AR,
Strauss HC.
Intracellular calcium, currents, and stimulus response coupling in endothelial cells.
Hypertension
21:
112‐112,
1993.
|
79. |
Ho MW,
Kaetzel MA,
Armstrong DL,
Shears SB.
Regulation of a human chloride channel. A paradigm for integrating input from calcium, type ii calmodulin‐dependent protein kinase, and inositol 3,4,5,6‐tetrakisphosphate.
J Biol Chem
276:
18673‐18673,
2001.
|
80. |
Huang F,
Rock JR,
Harfe BD,
Cheng T,
Huang X,
Jan YN,
Jan LY.
Studies on expression and function of the TMEM16A calcium‐activated chloride channel.
Proc Natl Acad Sci U S A
106:
21413‐21413,
2009.
|
81. |
Huang P,
Liu J,
Di A,
Robinson NC,
Musch MW,
Kaetzel MA,
Nelson DJ.
Regulation of human CLC‐3 channels by multifunctional Ca2+/calmodulin‐dependent protein kinase.
J Biol Chem
276:
20093‐20093,
2001.
|
82. |
Hübner CA,
Stein V,
Hermans‐Borgmeyer I,
Meyer T,
Ballanyi K,
Jentsch TJ.
Disruption of KCC2 reveals an essential role of K‐Cl cotransport already in early synaptic inhibition.
Neuron
30:
515‐515,
2001.
|
83. |
Hussy N.
Calcium‐activated chloride channels in cultured embryonic Xenopus spinal neurons.
J Neurophysiol
68:
2042‐2042,
1992.
|
84. |
Hwang SJ,
Blair PJ,
Britton FC,
O'Driscoll KE,
Hennig G,
Bayguinov YR,
Rock JR,
Harfe BD,
Sanders KM,
Ward SM.
Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles.
J Physiol
587:
4887‐4887,
2009.
|
85. |
Ihalin R,
Loimaranta V,
Tenovuo J.
Origin, structure, and biological activities of peroxidases in human saliva.
Arch Biochem Biophys
445:
261‐261,
2006.
|
86. |
Ishikawa T,
Cook DI.
A Ca(2+)‐activated Cl− current in sheep parotid secretory cells.
J Membr Biol
135:
261‐261,
1993.
|
87. |
Jackson PS,
Strange K.
Volume‐sensitive anion channels mediate swelling‐activated inositol and taurine efflux.
Am. J. Physiol
265:
C1489‐C1500,
1993.
|
88. |
Janssen LJ.
Ionic mechanisms and Ca2+ regulation in airway smooth muscle contraction: Do the data contradict dogma?
Am J Physiol Lung Cell Mol Physiol
282:
L1161‐L1178,
2002.
|
89. |
Janssen LJ,
Sims SM.
Histamine activates Cl− and K+ currents in guinea‐pig tracheal myocytes: Convergence with muscarinic signalling pathway.
J Physiol
465:
661‐661,
1993.
|
90. |
Jentsch TJ.
Chloride and the endosomal‐lysosomal pathway: Emerging roles of CLC chloride transporters.
J Physiol
578:
633‐633,
2007.
|
91. |
Jentsch TJ,
Neagoe I,
Scheel O.
CLC chloride channels and transporters.
Curr Opin Neurobiol
15:
319‐319,
2005.
|
92. |
Jentsch TJ,
Stein V,
Weinreich F,
Zdebik AA.
Molecular structure and physiological function of chloride channels.
Physiol Rev
82:
503‐503,
2002.
|
93. |
Jentsch TJ,
Steinmeyer K,
Schwarz G.
Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes.
Nature
348:
510‐510,
1990.
|
94. |
Jones K,
Shmygol A,
Kupittayanant S,
Wray S.
Electrophysiological characterization and functional importance of calcium‐activated chloride channel in rat uterine myocytes.
Pflugers Arch
448:
36‐36,
2004.
|
95. |
Kahle KT,
Staley KJ,
Nahed BV,
Gamba G,
Hebert SC,
Lifton RP,
Mount DB.
Roles of the cation‐chloride cotransporters in neurological disease.
Nat Clin Pract Neurol
4:
490‐490,
2008.
|
96. |
Kamouchi M,
Mamin A,
Droogmans G,
Nilius B.
Nonselective cation channels in endothelial cells derived from human umbilical vein.
J membr Biol
169:
29‐29,
1999.
|
97. |
Kamouchi M,
Trouet D,
Degreef C,
Droogmans G,
Eggermont J,
Nilius B.
Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells.
Cell Calcium
22:
497‐497,
1997.
|
98. |
Kaneko H,
Möhrlen F,
Frings S.
Calmodulin contributes to gating control in olfactory calcium‐activated chloride channels.
J Gen Physiol
127:
737‐737,
2006.
|
99. |
Kettenmann H.
K+ and Cl− uptake by cultured oligodendrocytes.
Can J Physiol Pharmacol
65:
1033‐1033,
1987.
|
100. |
Kidd JF,
Thorn P.
Intracellular Ca2+ and Cl− channel activation in secretory cells.
Annu Rev Physiol
62:
493‐493,
2000.
|
101. |
Kimelberg HK.
Active accumulation and exchange transport of chloride in astroglial cells in culture.
Biochim Biophys Acta
646:
179‐179,
1981.
|
102. |
Kleene SJ.
Origin of the chloride current in olfactory transduction.
Neuron
11:
123‐123,
1993.
|
103. |
Kleene SJ,
Gesteland RC.
Calcium‐activated chloride conductance in frog olfactory cilia.
J Neurosci
11:
3624‐3624,
1991.
|
104. |
Krizaj D,
Copenhagen DR.
Calcium regulation in photoreceptors.
Front Biosci
7:
d2023‐d2044,
2002.
|
105. |
Kubo M,
Okada Y.
Volume‐regulatory Cl− channel currents in cultured human epithelial cells.
J Physiol
456:
351‐351,
1992.
|
106. |
Kunzelmann K,
Bachhuber T,
Regeer R,
Markovich D,
Sun J,
Schreiber R.
Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2.
FASEB J
19:
142‐142,
2005.
|
107. |
Kurahashi T,
Yau KW.
Co‐existence of cationic and chloride components in odorant‐induced current of vertebrate olfactory receptor cells.
Nature
363:
71‐71,
1993.
|
108. |
Kuruma A,
Hartzell HC.
Bimodal control of a Ca2+‐activated Cl− channel by different Ca2+ signals.
J Gen Physiol
115:
59‐59,
2000.
|
109. |
Laird JM,
García‐Nicas E,
Delpire EJ,
Cervero F.
Presynaptic inhibition and spinal pain processing in mice: A possible role of the NKCC1 cation‐chloride co‐transporter in hyperalgesia.
Neurosci Lett
361:
200‐200,
2004.
|
110. |
Lamb FS,
Barna TJ.
Chloride ion currents contribute functionally to norepinephrine‐induced vascular contraction.
Am J Physiol
275:
H151‐H160,
1998.
|
111. |
Lazarowski ER,
Tarran R,
Grubb BR,
van Heusden CA,
Okada S,
Boucher RC.
Nucleotide release provides a mechanism for airway surface liquid homeostasis.
J Biol Chem
279:
36855‐36855,
2004.
|
112. |
Leblanc N,
Ledoux J,
Saleh S,
Sanguinetti A,
Angermann J,
O'Driscoll K,
Britton F,
Perrino BA,
Greenwood IA.
Regulation of calcium‐activated chloride channels in smooth muscle cells: A complex picture is emerging.
Can J Physiol Pharmacol
83:
541‐541,
2005.
|
113. |
Ledoux J,
Greenwood I,
Villeneuve LR,
Leblanc N.
Modulation of Ca2+‐dependent Cl− channels by calcineurin in rabbit coronary arterial myocytes.
J Physiol
552:
701‐701,
2003.
|
114. |
Ledoux J,
Greenwood IA,
Leblanc N.
Dynamics of Ca2+‐dependent Cl− channel modulation by niflumic acid in rabbit coronary arterial myocytes.
Mol Pharmacol
67:
163‐163,
2005.
|
115. |
Lee MG,
Macglashan DW Jr,
Undem BJ.
Role of chloride channels in bradykinin‐induced guinea pig airway vagal C‐fibre activation.
J Physiol
566:
205‐205,
2005.
|
116. |
Lee RJ,
Foskett JK.
Mechanisms of Ca2+‐stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells.
Am J Physiol Lung Cell Mol Physiol
298:
L210‐L231,
2010.
|
117. |
Li G,
Liu Y,
Olson JE.
Calcium/calmodulin‐modulated chloride and taurine conductances in cultured rat astrocytes.
Brain Res
925:
1‐1,
2002.
|
118. |
Liu B,
Linley JE,
Du X,
Zhang X,
Ooi L,
Zhang H,
Gamper N.
The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M‐type K+ channels and activation of Ca2+‐activated Cl− channels.
J Clin Invest
120:
1240‐1240,
2010.
|
119. |
Llano I,
Tan YP,
Caputo C.
Spatial heterogeneity of intracellular Ca2+ signals in axons of basket cells from rat cerebellar slices.
J Physiol
502:
509‐509,
1997.
|
120. |
Lowe G,
Gold GH.
Nonlinear amplification by calcium‐dependent chloride channels in olfactory receptor cells.
Nature
366:
283‐283,
1993.
|
121. |
Ma T,
Thiagarajah JR,
Yang H,
Sonawane ND,
Folli C,
Galietta LJ,
Verkman AS.
Thiazolidinone CFTR inhibitor identified by high‐throughput screening blocks cholera toxin‐induced intestinal fluid secretion.
J Clin Invest
110:
1651‐1651,
2002.
|
122. |
MacLeish PR,
Nurse CA.
Ion channel compartments in photoreceptors: Evidence from salamander rods with intact and ablated terminals.
J Neurophysiol
98:
86‐86,
2007.
|
123. |
Mall M,
Bleich M,
Schürlein M,
Kühr J,
Seydewitz HH,
Brandis M,
Greger R,
Kunzelmann K.
Cholinergic ion secretion in human colon requires coactivation by cAMP.
Am J Physiol
275:
G1274‐G1281,
1998.
|
124. |
Manoury B,
Tamuleviciute A,
Tammaro P.
TMEM16A/anoctamin 1 protein mediates calcium‐activated chloride currents in pulmonary arterial smooth muscle cells.
J Physiol
588:
2305‐2305,
2010.
|
125. |
Marmorstein LY,
Wu J,
McLaughlin P,
Yocom J,
Karl MO,
Neussert R,
Wimmers S,
Stanton JB,
Gregg RG,
Strauss O,
Peachey NS,
Marmorstein AD.
The light peak of the electroretinogram is dependent on voltage‐gated calcium channels and antagonized by bestrophin (Best‐1).
J Gen Physiol
127:
577‐577,
2006.
|
126. |
Martínez‐Pinna J,
McLachlan EM,
Gallego R.
Distinct mechanisms for activation of Cl− and K+ currents by Ca2+ from different sources in mouse sympathetic neurons.
J Physiol
527:
249‐249,
2000.
|
127. |
Mason SJ,
Paradiso AM,
Boucher RC.
Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium.
Br J Pharmacol
103:
1649‐1649,
1991.
|
128. |
Matchkov VV,
Aalkjaer C,
Nilsson H.
A cyclic GMP‐dependent calcium‐activated chloride current in smooth‐muscle cells from rat mesenteric resistance arteries.
J Gen Physiol
123:
121‐121,
2004.
|
129. |
Matchkov VV,
Larsen P,
Bouzinova EV,
Rojek A,
Boedtkjer DM,
Golubinskaya V,
Pedersen FS,
Aalkjaer C,
Nilsson H.
Bestrophin‐3 (vitelliform macular dystrophy 2‐like 3 protein) is essential for the cGMP‐dependent calcium‐activated chloride conductance in vascular smooth muscle cells.
Circ Res
103:
864‐864,
2008.
|
130. |
Matsuda JJ,
Filali MS,
Collins MM,
Volk KA,
Lamb FS.
The ClC‐3 Cl−/H+ antiporter becomes uncoupled at low extracellular pH.
J Biol Chem
285:
2569‐2569,
2010.
|
131. |
Matsui H,
Grubb BR,
Tarran R,
Randell SH,
Gatzy JT,
Davis CW,
Boucher RC.
Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease.
Cell
95:
1005‐1005,
1998.
|
132. |
Mayer ML.
A calcium‐activated chloride current generates the after‐depolarization of rat sensory neurons in culture.
J Physiol
364:
217‐217,
1985.
|
133. |
McEwan GT,
Hirst BH,
Simmons NL.
Carbachol stimulates Cl− secretion via activation of two distinct apical Cl− pathways in cultured human T84 intestinal epithelial monolayers.
Biochim Biophys Acta
1220:
241‐241,
1994.
|
134. |
McNaughton PA.
Light response of vertebrate photoreceptors.
Physiol Rev
70:
847‐847,
1990.
|
135. |
Merlin D,
Jiang L,
Strohmeier GR,
Nusrat A,
Alper SL,
Lencer WI,
Madara JL.
Distinct Ca2+‐ and cAMP‐dependent anion conductances in the apical membrane of polarized T84 cells.
Am J Physiol
275:
C484‐C495,
1998.
|
136. |
Meyer JW,
Flagella M,
Sutliff RL,
Lorenz JN,
Nieman ML,
Weber CS,
Paul RJ,
Shull GE.
Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na+‐K+‐2Cl− cotransporter.
Am J Physiol Heart Circ Physiol,
283:
H1846‐H1855,
2002.
|
137. |
Meyerholz DK,
Stoltz DA,
Namati E,
Ramachandran S,
Pezzulo AA,
Smith AR,
Rector MV,
Suter MJ,
Kao S,
McLennan G,
Tearney GJ,
Zabner J,
McCray PB Jr,
Welsh MJ.
Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children.
Am J Respir Crit Care Med
182:
1251‐1251,
2010.
|
138. |
Mizuta K,
Tsutsumi S,
Inoue H,
Sakamoto Y,
Miyatake K,
Miyawaki K,
Noji S,
Kamata N,
Itakura M.
Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia.
Biochem Biophys Res Commun
357:
126‐126,
2007.
|
139. |
Morris AP,
Scott JK,
Ball JM,
Zeng CQ,
O'Neal WK,
Estes MK.
NSP4 elicits age‐dependent diarrhea and Ca2+‐mediated I− influx into intestinal crypts of CF mice.
Am J Physiol
277:
G431‐G444,
1999.
|
140. |
Moskwa P,
Lorentzen D,
Excoffon KJ,
Zabner J,
McCray PB Jr,
Nauseef WM,
Dupuy C,
Bánfi B.
A novel host defense system of airways is defective in cystic fibrosis.
Am J Respir Crit Care Med
175:
174‐174,
2007.
|
141. |
Nakamura T,
Gold GH.
A cyclic nucleotide‐gated conductance in olfactory receptor cilia.
Nature
325:
442‐442,
1987.
|
142. |
Namkung W,
Finkbeiner WE,
Verkman AS.
CFTR‐adenylyl cyclase I association responsible for UTP activation of CFTR in well‐differentiated primary human bronchial cell cultures.
Mol Biol Cell
21:
2639‐2639,
2010.
|
143. |
Namkung W,
Phuan PW,
Verkman AS.
TMEM16A inhibitors reveal TMEM16A as a minor component of calcium‐activated chloride channel conductance in airway and intestinal epithelial cells.
J Biol Chem
286:
2365‐2365,
2011.
|
144. |
Nickell WT,
Kleene NK,
Kleene SJ.
Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium.
J Physiol
583:
1005‐1005,
2007.
|
145. |
Nilius B,
Droogmans G.
Ion channels and their functional role in vascular endothelium.
Physiol Rev
81:
1415‐1415,
2001.
|
146. |
Nilius B,
Prenen J,
Szucs G,
Wei L,
Tanzi F,
Voets T,
Droogmans G.
Calcium‐activated chloride channels in bovine pulmonary artery endothelial cells.
J Physiol (Lond)
498:
381‐381,
1997.
|
147. |
Nilius B,
Prenen J,
Voets T,
Vandenbremt K,
Eggermont J,
Droogmans G.
Kinetic and pharmacological properties of the calcium activated chloride current in macrovascular endothelial cells.
Cell Calcium
22:
53‐53,
1997.
|
148. |
Novarino G,
Weinert S,
Rickheit G,
Jentsch TJ.
Endosomal chloride‐proton exchange rather than chloride conductance is crucial for renal endocytosis.
Science
328:
1398‐1398,
2010.
|
149. |
Oh EJ,
Weinreich D.
Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig.
J Physiol
558:
513‐513,
2004.
|
150. |
Ousingsawat J,
Martins JR,
Schreiber R,
Rock JR,
Harfe BD,
Kunzelmann K.
Loss of TMEM16A causes a defect in epithelial Ca2+‐dependent chloride transport.
J Biol Chem
284:
28698‐28698,
2009.
|
151. |
Owen DG,
Segal M,
Barker JL.
A Ca‐dependent Cl− conductance in cultured mouse spinal neurons.
Nature
311:
567‐567,
1984.
|
152. |
Pacaud P,
Loirand G,
Mironneau C,
Mironneau J.
Noradrenaline activates a calcium‐activated chloride conductance and increases the voltage‐dependent calcium current in cultured single cells of rat portal vein.
Br J Pharmacol
97:
139‐139,
1989.
|
153. |
Park H,
Oh SJ,
Han KS,
Woo DH,
Park H,
Mannaioni G,
Traynelis SF,
Lee CJ.
Bestrophin‐1 encodes for the Ca2+‐activated anion channel in hippocampal astrocytes.
J Neurosci
29:
13063‐13063,
2009.
|
154. |
Patel AC,
Brett TJ,
Holtzman MJ.
The role of CLCA proteins in inflammatory airway disease.
Annu Rev Physiol
71:
425‐425,
2009.
|
155. |
Pedemonte N,
Caci E,
Sondo E,
Caputo A,
Rhoden K,
Pfeffer U,
Di Candia M,
Bandettini R,
Ravazzolo R,
Zegarra‐Moran O,
Galietta LJ.
Thiocyanate transport in resting and IL‐4‐stimulated human bronchial epithelial cells: Role of pendrin and anion channels.
J Immunol
178:
5144‐5144,
2007.
|
156. |
Perez‐Cornejo P,
De Santiago DE,
Arreola J.
Permeant anions control gating of calcium‐dependent chloride channels.
J Membr Biol
198:
125‐125,
2004.
|
157. |
Petrukhin K,
Koisti MJ,
Bakall B,
Li W,
Xie G,
Marknell T,
Sandgren O,
Forsman K,
Holmgren G,
Andreasson S,
Vujic M,
Bergen AAB,
McGarty‐Dugan V,
Figueroa D,
Austin CP,
Metzker ML,
Caskey CT,
Wadelius C.
Identification of the gene responsible for Best macular dystrophy.
Nature Genet
19:
241‐241,
1998.
|
158. |
Pézier A,
Grauso M,
Acquistapace A,
Monsempes C,
Rospars JP,
Lucas P.
Calcium activates a chloride conductance likely involved in olfactory receptor neuron repolarization in the moth Spodoptera littoralis.
J Neurosci
30:
6323‐6323,
2010.
|
159. |
Picollo A,
Pusch M.
Chloride/proton antiporter activity of mammalian CLC proteins ClC‐4 and ClC‐5.
Nature
436:
420‐420,
2005.
|
160. |
Pifferi S,
Dibattista M,
Menini A.
TMEM16B induces chloride currents activated by calcium in mammalian cells.
Pflugers Arch
458:
1023‐1023,
2009.
|
161. |
Pifferi S,
Pascarella G,
Boccaccio A,
Mazzatenta A,
Gustincich S,
Menini A,
Zucchelli S.
Bestrophin‐2 is a candidate calcium‐activated chloride channel involved in olfactory transduction.
Proc Natl Acad Sci U S A
103:
12929‐12929,
2006.
|
162. |
Poronnik P,
Ward MC,
Cook DI.
Intracellular Ca2+ release by flufenamic acid and other blockers of the non‐selective cation channel.
FEBS Lett
296:
245‐245,
1992.
|
163. |
Protti DA,
Llano I.
Calcium currents and calcium signaling in rod bipolar cells of rat retinal slices.
J Neurosci
18:
3715‐3715,
1998.
|
164. |
Qu Z,
Fischmeister R,
Hartzell C.
Mouse bestrophin‐2 is a bona fide Cl− channel: Identification of a residue important in anion binding and conduction.
J Gen Physiol
123:
327‐327,
2004.
|
165. |
Qu Z,
Wei RW,
Hartzell HC.
Characterization of Ca2+‐activated Cl− currents in mouse kidney inner medullary collecting duct cells.
Am J Physiol
285:
F326‐F335,
2003.
|
166. |
Qu Z,
Wei RW,
Mann W,
Hartzell HC.
Two bestrophins cloned from Xenopus laevis oocytes express Ca2+‐activated Cl− currents.
J Biol Chem
278:
49563‐49563,
2003.
|
167. |
Rasche S,
Toetter B,
Adler J,
Tschapek A,
Doerner JF,
Kurtenbach S,
Hatt H,
Meyer H,
Warscheid B,
Neuhaus EM.
Tmem16b is specifically expressed in the cilia of olfactory sensory neurons.
Chem Senses
35:
239‐239,
2010.
|
168. |
Reisert J,
Bauer PJ,
Yau KW,
Frings S.
The Ca‐activated Cl channel and its control in rat olfactory receptor neurons.
J Gen Physiol
122:
349‐349,
2003.
|
169. |
Reisert J,
Lai J,
Yau KW,
Bradley J.
Mechanism of the excitatory Cl− response in mouse olfactory receptor neurons.
Neuron
45:
553‐553,
2005.
|
170. |
Riordan JR.
CFTR function and prospects for therapy.
Annu Rev Biochem
77:
701‐701,
2008.
|
171. |
Riordan JR,
Rommens JM,
Kerem B,
Alon N,
Rozmahel R,
Grzelczak Z,
Zielenski J,
Lok S,
Plavsic N,
Chou JL,
Drumm ML,
Iannuzzi MC,
Collins FS,
Tsui LC.
Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA.
Science
245:
1066‐1066,
1989.
|
172. |
Rock JR,
Futtner CR,
Harfe BD.
The transmembrane protein TMEM16A is required for normal development of the murine trachea.
Dev Biol
321:
141‐141,
2008.
|
173. |
Rock JR,
Harfe BD.
Expression of TMEM16 paralogs during murine embryogenesis.
Dev Dyn
237:
2566‐2566,
2008.
|
174. |
Rock JR,
O'Neal WK,
Gabriel SE,
Randell SH,
Harfe BD,
Boucher RC,
Grubb BR.
Transmembrane protein 16A (TMEM16A) is a Ca2+‐regulated Cl− secretory channel in mouse airways.
J Biol Chem
284:
14875‐14875,
2009.
|
175. |
Romanenko VG,
Catalán MA,
Brown DA,
Putzier I,
Hartzell HC,
Marmorstein AD,
Gonzalez‐Begne M,
Rock JR,
Harfe BD,
Melvin JE.
Tmem16A encodes the Ca2+‐activated Cl− channel in mouse submandibular salivary gland acinar cells.
J Biol Chem
285:
12990‐12990,
2010.
|
176. |
Rosenthal R,
Bakall B,
Kinnick T,
Peachey N,
Wimmers S,
Wadelius C,
Marmorstein A,
Strauss O.
Expression of bestrophin‐1, the product of the VMD2 gene, modulates voltage‐dependent Ca2+ channels in retinal pigment epithelial cells.
FASEB J
20:
178‐178,
2006.
|
177. |
Sacchi O,
Rossi ML,
Canella R.
The slow Ca2+‐activated K+ current, IAHP, in the rat sympathetic neuron.
J Physiol
483:
15‐15,
1995.
|
178. |
Sagheddu C,
Boccaccio A,
Dibattista M,
Montani G,
Tirindelli R,
Menini A.
Calcium concentration jumps reveal dynamic ion selectivity of calcium‐activated chloride currents in mouse olfactory sensory neurons and TMEM16b‐transfected HEK 293T cells.
J Physiol
588:
4189‐4189,
2010.
|
179. |
Saleh SN,
Greenwood IA.
Activation of chloride currents in murine portal vein smooth muscle cells by membrane depolarization involves intracellular calcium release.
Am J Physiol
288:
C122‐C131,
2005.
|
180. |
Scheel O,
Zdebik AA,
Lourdel S,
Jentsch TJ.
Voltage‐dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
Nature
436:
424‐424,
2005.
|
181. |
Schild D,
Restrepo D.
Transduction mechanisms in vertebrate olfactory receptor cells.
Physiol Rev
78:
429‐429,
1998.
|
182. |
Schreiber R,
Uliyakina I,
Kongsuphol P,
Warth R,
Mirza M,
Martins JR,
Kunzelmann K.
Expression and function of epithelial anoctamins.
J Biol Chem
285:
7838‐7838,
2010.
|
183. |
Schroeder BC,
Cheng T,
Jan YN,
Jan LY.
Expression cloning of TMEM16A as a calcium‐activated chloride channel subunit.
Cell
134:
1019‐1019,
2008.
|
184. |
Scott RH,
Sutton KG,
Griffin A,
Stapleton SR,
Currie KP.
Aspects of calcium‐activated chloride currents: A neuronal perspective.
Pharmacol Ther
66:
535‐535,
1995.
|
185. |
Segal M,
Barker JL,
Owen DG.
Chloride conductances in central neurons.
Isr J Med Sci
23:
95‐95,
1987.
|
186. |
Sheridan JT,
Worthington EN,
Yu K,
Gabriel SE,
Hartzell HC,
Tarran R.
Characterization of the oligomeric structure of the Ca2+‐activated Cl− channel Ano1/TMEM16A.
J Biol Chem
286:
1381‐1381,
2011.
|
187. |
Smith QR,
Johanson CE,
Woodbury DM.
Uptake of 36Cl and 22Na by the brain‐cerebrospinal fluid system: Comparison of the permeability of the blood‐brain and blood‐cerebrospinal fluid barriers.
J Neurochem
37:
117‐117,
1981.
|
188. |
Stephan AB,
Shum EY,
Hirsh S,
Cygnar KD,
Reisert J,
Zhao H.
ANO2 is the cilial calcium‐activated chloride channel that may mediate olfactory amplification.
Proc Natl Acad Sci U S A
106:
11776‐11776,
2009.
|
189. |
Stöhr H,
Heisig JB,
Benz PM,
Schöberl S,
Milenkovic VM,
Strauss O,
Aartsen WM,
Wijnholds J,
Weber BH,
Schulz HL.
TMEM16B, a novel protein with calcium‐dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals.
J Neurosci
29:
6809‐6809,
2009.
|
190. |
Strabel D,
Diener M.
Evidence against direct activation of chloride secretion by carbachol in the rat distal colon.
Eur J Pharmacol
274:
181‐181,
1995.
|
191. |
Stutzin A,
Hoffmann EK.
Swelling‐activated ion channels: Functional regulation in cell‐swelling, proliferation and apoptosis.
Acta Physiol (Oxf)
187:
27‐27,
2006.
|
192. |
Sun H,
Tsunenari T,
Yau KW,
Nathans J.
The vitelliform macular dystrophy protein defines a new family of chloride channels.
Proc Natl Acad Sci U S A
99:
4008‐4008,
2002.
|
193. |
Suzuki J,
Umeda M,
Sims PJ,
Nagata S.
Calcium‐dependent phospholipid scrambling by TMEM16F.
Nature
468:
834‐834,
2010.
|
194. |
Tarran R,
Button B,
Boucher RC.
Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress.
Annu Rev Physiol
68:
543‐543,
2006.
|
195. |
Tarran R,
Button B,
Picher M,
Paradiso AM,
Ribeiro CM,
Lazarowski ER,
Zhang L,
Collins PL,
Pickles RJ,
Fredberg JJ,
Boucher RC.
Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections.
J Biol Chem
280:
35751‐35751,
2005.
|
196. |
Tarran R,
Loewen ME,
Paradiso AM,
Olsen JC,
Gray MA,
Argent BE,
Boucher RC,
Gabriel SE.
Regulation of murine airway surface liquid volume by CFTR and Ca2+‐activated Cl− conductances.
J Gen Physiol
120:
407‐407,
2002.
|
197. |
Thoreson WB,
Bryson EJ.
Chloride equilibrium potential in salamander cones.
BMC Neurosci
5:
53,
2004.
|
198. |
Thoreson WB,
Stella SL Jr,
Bryson EI,
Clements J,
Witkovsky P.
D2‐like dopamine receptors promote interactions between calcium and chloride channels that diminish rod synaptic transfer in the salamander retina.
Vis Neurosci
19:
235‐235,
2002.
|
199. |
Tian Y,
Kongsuphol P,
Hug M,
Ousingsawat J,
Witzgall R,
Schreiber R,
Kunzelmann K.
Calmodulin‐dependent activation of the epithelial calcium‐dependent chloride channel TMEM16A.
FASEB J
25:
1‐1,
2011.
|
200. |
Tousson A,
Van Tine BA,
Naren AP,
Shaw GM,
Schwiebert LM.
Characterization of CFTR expression and chloride channel activity in human endothelia.
Am J Physiol Cell Physiol
275:
C1555‐C1564,
1998.
|
201. |
Tradtrantip L,
Sonawane ND,
Namkung W,
Verkman AS.
Nanomolar potency pyrimido‐pyrrolo‐quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model.
J Med Chem
52:
6447‐6447,
2009.
|
202. |
Tsutsumi S,
Kamata N,
Vokes TJ,
Maruoka Y,
Nakakuki K,
Enomoto S,
Omura K,
Amagasa T,
Nagayama M,
Saito‐Ohara F,
Inazawa J,
Moritani M,
Yamaoka T,
Inoue H,
Itakura M.
The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD).
Am J Hum Genet
74:
1255‐1255,
2004.
|
203. |
Verkman AS,
Galietta LJ.
Chloride channels as drug targets.
Nat Rev Drug Discov
8:
153‐153,
2009.
|
204. |
Verkman AS,
Lukacs GL,
Galietta LJ.
CFTR chloride channel drug discovery—inhibitors as antidiarrheals and activators for therapy of cystic fibrosis.
Curr Pharm Des
12:
2235‐2235,
2006.
|
205. |
Vermeer S,
Hoischen A,
Meijer RPP,
Gilissen C,
Neveling K,
Wieskamp N,
de Brouwer A,
Koenig M,
Anheim M,
Assoum M,
Drouot N,
Todorovi S,
Milic‐Rasic V,
Lochmüller H,
Stevanin G,
Goizet C,
David A,
Durr A,
Brice A,
Kremer B,
van de Warrenburg BP,
Schijvenaars MM,
Heister A,
Kwint M,
Arts P,
van der Wijst J,
Veltman J,
Kamsteeg EJ,
Scheffer H,
Knoers N.
Targeted next‐generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal‐recessive cerebellar ataxia.
Am J Hum Genet
87:
813‐813,
2010.
|
206. |
Volterra A,
Meldolesi J.
Astrocytes, from brain glue to communication elements: The revolution continues.
Nat Rev Neurosci
6:
626‐626,
2005.
|
207. |
Walz W.
Chloride/anion channels in glial cell membranes.
Glia
40:
1‐1,
2002.
|
208. |
Wang Q,
Large WA.
Action of histamine on single smooth muscle cells dispersed from the rabbit pulmonary artery.
J Physiol
68:
125‐125,
1993.
|
209. |
Wang XD,
Van Breemen C.
Depolarization‐mediated inhibition of Ca2+ entry in endothelial cells.
Am J Physiol
277:
H1498‐H1504,
1999.
|
210. |
Wang YX,
Kotlikoff MI.
Inactivation of calcium‐activated chloride channels in smooth muscle by calcium/calmodulin‐dependent protein kinase.
Proc Natl Acad Sci U S A
94:
14918‐14918,
1997.
|
211. |
Weinert S,
Jabs S,
Supanchart C,
Schweizer M,
Gimber N,
Richter M,
Rademann J,
Stauber T,
Kornak U,
Jentsch TJ.
Lysosomal pathology and osteopetrosis upon loss of H+‐driven lysosomal Cl− accumulation.
Science
328:
1401‐1401,
2010.
|
212. |
Welch NC,
Lalonde MR,
Barnes S,
Kelly ME.
Calcium‐activated chloride channels in müller cells acutely isolated from tiger salamander retina.
Glia
53:
74‐74,
2006.
|
213. |
Wellman GC,
Nelson MT.
Signaling between SR and plasmalemma in smooth muscle: Sparks and the activation of Ca2+‐sensitive ion channels.
Cell Calcium
34:
211‐211,
2003.
|
214. |
Yamamoto C,
Korenaga R,
Kamiya A,
Ando J.
Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors.
Circ Res
87:
385‐385,
2000.
|
215. |
Yang YD,
Cho H,
Koo JY,
Tak MH,
Cho Y,
Shim WS,
Park SP,
Lee J,
Lee B,
Kim BM,
Raouf R,
Shin YK,
Oh U.
TMEM16A confers receptor‐activated calcium‐dependent chloride conductance.
Nature
455:
1210‐1210,
2008.
|
216. |
Yuan P,
Leonetti MD,
Pico AR,
Hsiung Y,
MacKinnon R.
Structure of the human BK channel Ca2+‐activation apparatus at 3.0 Å resolution.
Science
329:
182‐182,
2010.
|
217. |
Yuan XJ.
Role of calcium‐activated chloride current in regulating pulmonary vasomotor tone.
Am J Physiol
272:
L959‐L968,
1997.
|
218. |
Zhu MH,
Kim TW,
Ro S,
Yan W,
Ward SM,
Koh SD,
Sanders KM.
A Ca2+‐activated Cl− conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity.
J Physiol
587:
4905‐4905,
2009.
|